
HAL Id: hal-01589479
https://hal.science/hal-01589479

Submitted on 18 Sep 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Formal Verification of User-Level Real-Time Property
Patterns

Ning Ge, Marc Pantel, Silvano Dal Zilio

To cite this version:
Ning Ge, Marc Pantel, Silvano Dal Zilio. Formal Verification of User-Level Real-Time Property
Patterns. 11th International Symposium on Theoretical Aspects of Software Engineering (TASE
2017), Sep 2017, Sophia Antipolis, France. 8p. �hal-01589479�

https://hal.science/hal-01589479
https://hal.archives-ouvertes.fr

Formal Verification of User-Level
Real-Time Property Patterns

Ning Ge
School of Software, Beihang University

Beijing, China
gening@buaa.edu.cn

Marc Pantel
IRIT/INPT

Toulouse, France
marc.pantel@enseeiht.fr

Silvano Dal Zilio
LAAS-CNRS

Toulouse, France
dalzilio@laas.fr

Abstract—To ease the expression of real-time requirements,
Dwyer, and then Konrad, studied a large collection of existing
systems in order to identify a set of real-time property patterns
covering most of the useful use cases. The goal was to provide
a set of reusable patterns that system designers can instantiate
to express requirements instead of using complex temporal logic
formulas. A limitation of this approach is that the choice of
patterns is more oriented towards expressiveness than efficiency;
meaning that it does not take into account the computational
complexity of checking patterns. For this purpose, we define a set
of verification-dedicated, atomic property patterns for qualitative
and quantitative real-time requirements. End-user requirements
can then be expressed as a composition of these patterns using a
predefined meta-model and a mapping library. These properties
can be checked efficiently using a set of elementary observers
and a model checking approach.

Index Terms—real-time requirements, property pattern, ob-
server, model checking, Time Petri net

I. INTRODUCTION AND RELATED WORK

Real-time requirements commonly used during the develop-
ment of concurrent systems can be, for the most part, covered
by a finite set of properties, such as: worst case execution
time, worst case traversal time, state duration, schedulability,
etc. [1]. As illustrated by Dwyer et. al. [2], property patterns
provide a valuable way to handle these requirements. First,
they ease the use of formal methods by providing reusable
solutions to recurrent specification and verification problems.
This is especially true for novice users. Then, they help
decomposing complex properties into a set of simpler ones,
with a lower complexity, and thus may help decrease the
verification cost.

In this paper, we define a new set of property patterns,
supporting the definition of timing constraints, that can be
easily composed. Each combination of pattern can be trans-
lated into a verification observer; therefore providing a way
to automatically prove a requirement using a more standard
model-checker.

Property patterns are an established concept. In their seminal
work, Dwyer et. al. [2] performed a large-scale study of spec-
ifications containing over 500 temporal requirements. They
noticed that over 90% of them could be classified under one of
the short list of patterns that they had identified. They initially
proposed only "qualitative" temporal properties, meaning that

they focused on logical time and could not use quantitative
concepts, such as time interval or durations.

More recent works [3], [4], [5] have proposed an extension
of Dwyer’s patterns with real-time constraints. For instance,
Konrad et al. [3] mapped quantitative time property patterns
into three real-time temporal logics: MTL [6], TCTL [7], and
RTGIL [8], thus delegating the verification problem to model-
checkers able to handle these timed logic. They also defined
pattern templates to ease reuse. These works were mostly
oriented towards providing more expressiveness to users, but
did not really address the verification cost associated to each
new pattern. Indeed, model checking for MTL, TCTL or
RTGIL is expensive in practice and is only available on a
very limited number of model-checkers, most of them not
maintained anymore. An observer-based approach can help
in solving this problem, since it can reduce the initial model
checking problem to a much simpler one, like for example a
reachability property.

Abid et al. [5] proposed an observer-based verification
framework for real-time properties based on Dwyer’s work.
From a requirement engineering point of view, their patterns
are not atomic, meaning that they could be further decomposed
into more essential components. Also, they cannot be nested
or composed together, but can only be composed through
classical disjunction or conjunction of properties. We can
illustrate this limitation with the case of the "end-to-end" real-
time property (Exist A After B Within I), where A and B are
events and I is a given time interval [Tmin, Tmax]. This pattern
means that the first occurrence of B (if it exists) is necessarily
followed by an occurrence of A in a delay that is within I. In
our setting, we can decompose this property into four more
basic elements that can be freely composed: (Exist A), (Exist
B), (TAB ≥ Tmin) and (TAB ≤ Tmax), where TAB stands for the
possible time interval between the first occurrences of A and B.
The definition of a more basic library of patterns simplifies the
definition of new patterns and their semantics. It also simplifies
the verification problem. In [9], Castillos et al. defined a set of
compositional automata-based semantics for property patterns,
and proposed a composition operation in such a way that the
property semantics is defined by composing the automata. This
work is limited to "qualitative" temporal properties based on
Dewyer’s patterns, but does not yet address the "quantitative"
ones.978-1-5386-1925-4/17/$31.00 c©2017 European Union

Our contributions are twofold: (1) the definition of a set
of atomic pattern combinators for the formal expression of
real-time requirements; and (2) the definition of a set of
elementary observers in order to check our real-time patterns.
In this work, we use Time Petri Nets (TPN), and an extension
of TPN with data called TTS (Time Transition System), as
the verification format. We also rely on the model-checking
toolbox TINA [10] for the verification part. We define a set
of event-based observers at TPN level (12 observers), a set of
state-based observers at TTS level (4 observers). Our observers
take advantage of the highest possible level of abstraction
provided by TINA (marking abstraction in our case) to reduce
the size of the abstract state space that needs to be explored
during verification. The results of this work has been applied to
our UML-MARTE real-time verification framework [11], [12],
which provides a toolchain including property-specific model
translation [13], property-specific state space reduction [14],
probabilistic failure analysis [15], etc.

The paper is organised as follows: Sect. II gives some tech-
nical background on model-checking TPN; Sect. III introduces
the catalog of real-time property patterns while Sect. IV ex-
plains the design of observers; Sect. V illustrates the definition
of pattern modifiers and the set of observers; Sect. VI presents
the specification and verification on an example of real-time
property; Sect. VII gives some concluding remarks.

II. TECHNICAL BACKGROUND

Time Petri nets (TPN) [16] are an extension of Petri nets
with timing constraints on the transitions. We use an example
to explain its syntax and semantics.

The TPN in Fig. 1 models the concurrent execution of a
process with two tasks scheduled in parallel. Each transition in
a TPN is decorated with a (static) time interval that constraints
its firing time. In this net, place Pinit is initially marked with
one token. Hence transition fork is enabled and should fire
immediately (with a delay included in the interval [0, 0]).
Upon firing, transitions task1 and task2 start at the same
date. Intuitively, each transition is associated with a local
clock that starts once it is enabled; then the transition can
fire when the clock value is in the time interval associated
with the transition. For instance, due to their time constraints,
Task1_ends always fire before Task2_ends. Once the two tasks
finish (there are two tokens in place Pjoin), the system can
either exit or restart the whole execution.

[0,0] [3,10]

2

[11,15]

[19,27]Pinit Tfork

Task2_running

Task1_running

Task2_ends

Task1_ends

Pjoin Texit Pexit

(10, ∞]

2

Trestart

Figure 1. Time Petri Net Example

Time Petri nets can be composed like ordinary Petri net,
by combining transitions with a common label. This will be
used to add an observer to an existing model. Finally, TTS
extend the semantics of TPN by allowing guards on shared
data variables in transitions and expressions that are evaluated
when a transition fires.

Time Petri Nets provide a formal framework to capture
the real-time behavior of concurrent real-time system. There
exists several analysis tools, such as TINA or Romeo. Our
work relies on TINA (the time Petri net analyzer), a toolbox
for the edition and analysis of Petri nets. TINA also supports
nets with inhibitor and read arcs, priorities, stopwatches, and
its extension TTS. The TINA toolset includes tools for the
exploration of reachability graphs (tina and sift) that support
a large choice of state abstractions; model-checkers for LTL
(selt); for CTL and an existential fragment of µ-calculus
(muse); etc.

Next, we define some core concepts used in the specification
of patterns: occurrence, predicate, scope, events and states. A
pattern describes constraints on three main kind of elements.
What is the object of the constraint (predicate)? When should
it happen (scope)? And how does it compare with the other
events (occurrence)? The occurrence of a predicate could be
specified as existence, absence, always (exist), or exist with
a bounded number of occurrences. For instance, in our initial
example of pattern given in Sect. I, (Exist A After B Within I),
the occurrence is Exist, the predicate is the event A, and the
scope modifier is (After B Within I).

In this context, an event is an instantaneous and atomic
occurrence of an action at a point in time. Our patterns can also
deal with states, that is identifiers that designate when some
given invariant conditions hold. States can change as a result
of an event, and we will often talk about the "enter event" of
a state. In the remainder of this text, and to avoid ambiguity,
a scope modifier will always be applied to an event, while we
allow both states and events in a predicate. In particular, if A is
a state then the scope After A will apply to the corresponding
enter event of A.

III. CATALOG OF REAL-TIME PROPERTY PATTERNS

A real-time property is composed of two main components:
a pattern and a scope. Roughly speaking, when considering the
state graph of the system, the scope operator is used to select a
subset of the reachable states. These (state) candidates are then
qualified by the given pattern. Patterns comprises the system
devised by Dwyer, that is based on eight patterns (Absence,
Existence, Bounded Existence, Precedence, Response, Chain
Precedence and Chain Response) and five scope modifiers
(Global, Before, After, Between and After-Until). Konrad et al.
extended this system to also include quantitative requirements
by introducing five quantitative modifiers (Minimum Duration,
Maximum Duration, Bounded Recurrence, Bounded Response
and Bounded Invariance). We add to this set a new scope
modifier, Periodically, for the specification of periodic events
related requirements. We also add three real-time suffixes, At
least and At most for the specification of bounded time on state

related predicates, and the suffix Within for the specification of
time intervals. The addition of these new modifiers allows us
to express more elaborate patterns, such as (At least d Before
E) or (Absent A Precedes B Periodically); etc.

In order to cross the boundary between property specifi-
cation and verification and reduce the verification cost, we
define a set of elementary constructs for property patterns. In
the proposed pattern system (see Fig. 2), real-time require-
ments are specified using either atomic or composite patterns.
Composite patterns are built using binary operators (or, and,
imply). Atomic patterns are composed of three elementary
constructs: occurrence modifier, basic predicate and scope
modifier. (To avoid any ambiguities we will reserve the use
of the term "pattern" to mean "property pattern".) Basic
predicates are defined based on state and event modifiers, and
scope modifiers are defined based on event modifiers.

Atomic Pa*ern

Event Modi2erState

Scope Modi2erBasic PredicateOccurrence Modi2er

Real-Time Property

Composite Pa*ern

Real-Time

Property Pa0ern

Figure 2. Real-Time Property Specification System

IV. DESIGN PRINCIPLES OF TPN/TTS OBSERVERS

Before illustrating the set of elementary constructs of prop-
erty patterns and defining the set of observers, we first explain
the design principles of the observers in our model checking
approach.

A. Structure of Observer

A TPN/TTS observer is a sub-net that will be composed
with the net capturing the behavior of the system. To assess a
property specification based on events, we use a composition
described by the diagram of Fig. 3. A TPN/TTS observer
is associated to the system through its arcs, joined at the
transitions labelled TA and TB in components A & B. On
the opposite, a TTS observer for state-based properties is
not composed with the system but simply put in parallel (an
operation usually referred to as free product). This operation
is depicted using arcs with dotted-line in Fig. 3.

The abstract structure of our observers contains a place,
namely Ptester, which allows properties to be assessed by using
accessibility assertions declared within a modal µ-calculus
(mmc) formula. This mmc formula checks the existence of
a specific marking and whether a given set of transitions can
be fired. In this context, the most basic mmc formulae that

we use are of the form [T](Ptester = 1) or 〈T〉(Ptester = 0),
meaning that for all (respectively for at least one) successor
state the observer is (respectively is not) in state Ptester. All
the necessary formulas are checked on-the-fly using the muse
model checker.

TPN Structure TPN Structure

TPN Structure

Component A TPN Component B TPN

TPN Observer

[0,0] [0,0]

TA TB

ptester

Figure 3. Observer Structure

Compared with the work of Abid et al. [5], we avoid
completely the use of LTL model-checking with our observers.
Indeed, the use of LTL model-checking requires to use state
space abstraction that preserve the set of traces of a language,
which can be less effective than abstractions that only preserve
state reachability. This has a huge impact on the efficiency of
model checking.

B. Soundness of Observer

Soundness here means that (1) an observer should not
impact the system’s behavior by introducing extra semantics
or removing original semantics; and (2) observers preserve
time divergence, meaning that an observer should not be able
to stop the evolution of time (introducing some kind of time
deadlocks). Indeed, an observer that is synchronized with a
place of the system may impact its behavior by adding or
removing tokens in an unlawful way. Our approach avoids
this problem by interacting with the system only by its
transitions. Moreover, the observers work in a "read-only"
mode, guaranteed by the design "linked from TPN transitions".

Hence the soundness of observers is achieved using an high-
level property of innocuousness that could be proved formally
on each observers, independently from the system. This proof
follows the same structure that the one found in the work
of Abid et al. [17]. Actually, our group has also conducted
experiments on the use of interactive theorem prover to prove
this kind of properties [18].

C. Efficiency of Observer

We follow three principles to ensure the efficiency of our
observers. First, a system with integrated observers should be
able to generate state class graphs with a high-level abstrac-
tion (i.e. marking abstraction for TINA). This graph should
preserve the required semantics of the targeting property.
This principle is achieved by forbidding some elements in
TPN during the design, such as the priority arcs. We rely
on the marking graphs and mmc formulae to transform the
quantitative verification problems to reachability problems

using the muse model checker. Second, the generating state
space of a single observer shall be as small as possible. This
principle requires us to experiment on different encoding of
an observer, in order to select the relatively optimal one.
Some experiences are summarized, such that the stopwatch
and stopwatch inhibitor arcs are more expensive than the other
three types (regular, read, inhibitor arcs). Third, the checking
of each property pattern shall be independent to promote
parallel computation.

V. ELEMENTARY OBSERVERS FOR THE VERIFICATION OF
PROPERTY PATTERNS

A. Basic Event Modifiers

Predicates are specified based on events and states. An event
can be an atomic element E, or a composite one, called event
modifier, e.g. Ei for the definition of the ith occurrence of event
E. Here is a more complex composite observer: t u.t. (unit of
time) after event Ei–k. It contains three basic event modifiers:
(1) Ei (the ith occurrence of event E); (2) Ei–k (the event
delayed k times from the current event Ei); and (3) Ei–k +t (the
event delayed t u.t. from current event Ei–k). We have defined
a set of extensible basic event modifiers. As shown in Fig. 4,
a generic observer structure for event modifiers are defined,
where the transition E is the observable part of the system,
and the transition E′ is the "extensible point" for integrating
other event modifiers.

E E
'

TPN

Structure

Observer

Figure 4. Observer Structure of Event Modifiers

With respect to the above principle, we have defined a set
of basic event modifiers.

1) Ei: the ith occurrence of event E: This event modifier,
illustrated by Fig. 5, requires that occurrence of E is finite.
Note that E1 stands for the first occurrence of E, while E
stands for the event type. If no occurrence is specified, E is
regarded as E1.

E
1

E
i

t

E
2 ...

Figure 5. The ith Occurrence of E

Its observer is defined as the TPN in Fig. 6. When E has
occurred i times, the place Pocc has i tokens, and the transition
Ei is enabled. This design ensures that event Ei occurs at the
same time as the ith occurrence of event E. The place Ponce
with one token controls the occurrence times of Ei. It allows
Ei to occur only once. The number of tokens in Ponce can be
replaced by another finite value to enable Ei several times.

E

i

[0,0]

EiPocc

Ponce

Figure 6. Event Observer: ith Occurrence of E

E
1

E
i

t

E
k

E'
i-k

t

E'
1 ...

E
k+1

E'
2

Figure 7. k Times Delay of E

2) E–k: kth delay of E: The event modifier E–k stands for
a delay of k times compared to event E, illustrated by Fig. 7.

The observer of this event modifier is defined in Fig. 8,
where the place Pocc stores tokens representing the occurring
times of event E. Each time Pocc has k tokens, the read arc
enables the transition E–k, which consumes one token in Pocc.

E

[0,0]
k

E-kPocc

Figure 8. Event Observer: k Times Delay of E

3) E/k: k times slower sub-occurrence of E: The event
modifier E/k stands for the sub-occurrence of event E, with
a frequency k times slower than E, illustrated by Fig. 9.

E
1

E
2k

t

E
k... ...

E'
2

t

E'
1

Figure 9. Sub-Occurrence of E

Its observer is designed as Fig. 10. When E occurs k times,
the place Pocc accumulates k tokens, and the transition E/k is
fired. Simultaneously, all the k tokens in Pocc are consumed.

E

k

[0,0]

E/k
Pocc

Figure 10. Event Observer: k times slower sub-occurrence of E

4) I+t: time t elapsed since system initialization: This event
modifier I+t stands for the absolute time instant measured from
the initial time of the system, illustrated by Fig. 11. It is used
to assess properties such as worst/best case execution time.

E+T

t

I

0 T

Figure 11. T Time Units after System Initialization

Its observer is designed as Fig. 12, which is composed of
two parts: (1) the place PInit representing the initialization of
the system; (2) the transition E′ representing that t u.t. has
elapsed.

[t, t]PInit

E'

Figure 12. Event Observer: Time Elapsed since System Initialization

5) E+t: time t elapsed since the occurrence of event E:
The event modifier E + t stands for the moment when t u.t.
has elapsed since the occurrence of E, illustrated by Fig. 13.
When using this modifier, the occurring times of E should be
finite. This event modifier is used to specify the scope within
and the predicates such as at least/at most. For example, the
property After E Within I ([tmin, tmax]) is specified as After
E + tmin and Before E + tmax.

E E+T

t
T0+TT0

Figure 13. T Time Units after E

Its observer is designed as Fig. 14.

E

[t,t]

E'

Figure 14. Event Observer: Time Elapsed since E

6) SS & SE: entering and exiting events of a State S: The
TTS observer for the entering and exiting events of a state is
designed as Fig. 15, where the transitions SS/ SE represent the
entering/exiting events of the state S. When a system enters
the state S, the assertion S in PRE(S) is true, which is the
guard to enable the transition SS and thus transit the token in
the place PS to the place PE. Similarly, when the system exits
state S, the assertion ¬S in PRE(¬S) is true, which transits the
token in the place PE to the place PS.

SE

[0,0] [0,0]

SS

PRE [S] PRE [¬S]
PS

PE

Figure 15. Event Observer: Entering and Exiting Events of S

B. Basic Predicates

The specification of basic predicates relies on events and
states, where an event can be a single event modifiers or a
composition of several event modifiers. We have defined a
set of basic predicates used by our property patterns. The
generic TPN structure of predicate observers is defined as
Fig. 16, where the transition EM is an event, and the predicate
is assessed using the observer and a set of mmc assertions.

E
M

TPN

Structure

!!"#$%%&'()*+%

Observer

Figure 16. Predicate Observer Pattern

1) O(Ei) = true for the occurrence of event Ei: In Fig. 17,
the place Pocc linked from transition EM is used to observe
the occurrence times of event EM . Once the transition EM has
fired i times, the token in Pocc is observed, which is assessed
using the mmc assertion Pocc ≥ i. Note that TINA takes Pocc
as the number of tokens in the place Pocc.

E
M

Pocc
!"##$%$&

Figure 17. Predicate Observer: Occurrence of Ei

2) isFinite(E) = True for the bounded occurrence of E:
This predicate is used to assess whether the occurrence of
an event is finite. In Fig. 18, the place Pocc accumulates the
occurrence times of event EM . If the transition TOverflow is
not fired, no overflow is detected, as EM does not exceed
the occurring bound Occmax, i.e. a predefined threshold value
which is usually determined by the estimation on system’s
behavior.

EM

Occmax

TOver(ow

[0,0]

Pocc
!"

#$%&'()*

Figure 18. Predicate Observer: Occurrence of E is bounded

3) Freq(EA) · NA = Freq(EB) · NB for equivalent occurrence
of EA and EB: This predicate is used to identify equivalent
occurrences between two periodic events with different (or
equal) frequencies. Suppose two periodic events EA and EB
exhibit respectively occurrence frequency FA and FB. There
exists minimal coefficients NA and NB (NA, NB ∈ Z+) that
makes FA · NA = FB · NB. NA and NB can be computed using
the Least Common Multiple (lcm) and the Greatest Common
Divisor (gcd).

NA =
lcm(FA, FB)

gcd(lcm(FA, FB), FA)
(1)

Nb =
lcm(FA, FB)

gcd(lcm(FA, FB), Fb)
(2)

A real-time property may require to limit the time difference
between two periodic events. If these two events exhibit the
same frequency, NA equals to NB. Otherwise, NA and NB
should be introduced to identify the corresponding occurrence
between EA and EB.

In Fig. 19, places TesterA/ TesterB counts the occurring
times of events EA/EB. The transition Diff may consume
tokens in TesterA/TesterB if tokens in TesterA are superior
or equal to NA and tokens in TesterB are superior or equal
to NB. Once TesterA contains NA + 1 tokens, EA executes at
least one time faster than EB. This exception will be detected
using the Overflow transitions. The checking assertion is:
¬(OverflowA ∨ OverflowB).

TesterB EBEA TesterA

[0,0]NA+1

Over/owA Over/owB

[0,0] [0,0]

Di4

NA NB

NB+1

!"#$%&'()*+,∨ #$%&'()*-.

Figure 19. Predicate Observer: Same Frequency between EA and EB

4) T(EA, EB) > t for minimal Time Interval between Events:
This observer is used to check that the time interval between
the equivalent occurrences of EA and EB is at least t. EA and
EB can be periodic or aperiodic. Its semantics is equivalent to
T(EA) - T(EB) > t. Its observer is similar to that of equivalent
occurrence between events, except that a transition TDelay is
added, representing the time delay for event EA. We use the
following mmc assertion to assess this predicate. When EA and
EB are aperiodic, NA = NB = 1.

¬(OverflowA ∨ OverflowB) ∧ ¬((TesterB = NB) ∧ (TesterA < NA)). (3)

5) T(EA, EB) < t for maximum time interval between Events:
This observer is used to check the time interval between the
equivalent occurrences of EA and EB is at most t. Its semantics
equals to T(EA) - T(EB) < t. Its observer is designed as Fig. 21.
If the assertion ¬(OverflowA ∨OverflowB) is true, then |T(EA)
- T(EB)| < t is valid. When EA and EB are aperiodic, NA =
NB = 1.

TesterA EAEB TesterB [0, 0]

Over0owB Over0owA
[0,0] [0,0]

[t, t]

NB NA

NB+1 NA+1

!"#$%&'()*+,∨ #$%&'()*-.∧,,

!"/%01%&-23-,∧,/%01%&+43+.

TDelay

Figure 20. Predicate Observer: Minimum Time Interval between EA and EB

TesterB EBEA
TesterA [0,0]

Over/owA Over/owB

[t, t] [t, t]

NA NB

NA NB

!"#$%&'()*
+

Figure 21. Predicate Observer: Maximum Time Interval between EA and EB

6) D(S) ≥ t & D(S) < t for minimal/maximal time duration
of a state S: An efficient observer design for the predicate of
state duration is to use the PRE function of TTS. In Fig. 22,
the transition with constraint [t,t] is enabled when state S holds
at least/at most t u.t.. The transition with constraint [0,0] will
fire when state S does not hold any more. This transition is
used to clear the marking in the place Tester, as state S may
hold several times in the whole system’s execution. The mmc
assertions are respectively: S∧(Tester = 1) and S∧(Tester = 0).

[t,t]

TesterPRE [S]

PRE [¬S]

[0,0]

!"#$%&'(#(∧ ()*+&*,(-(.$

!"#$/&'(#(∧ ()*+&*,(-(0$

Figure 22. Predicate Observer: Time Duration of State

C. Basic Scope Modifiers

Basic scope modifiers include Global, Before Ei, After Ei,
and Between EA and EB. Others are compositions of the basic
ones.

1) Global: Global scope modifier does not need an ob-
server in TPN. It requires all states of the system, denoted as
A.

2) Before Ei & After Ei: The observers for this pair of
scope modifiers are designed as the same TPN model, as
shown in Fig. 23, but depend on different logic formulae. The
place Tester counts the occurring times of event E. We use
Tester < i (Ei has not yet occurred) to check Before Ei and
use Tester ≥ i (Ei has occurred) to check After Ei. Note that
this scope requires isFinite(E) to be true.

3) Between EA and EB: Between EA and EB means between
the equivalent occurrences of EA and EB. If both EA and EB are
periodic events, their occurrence frequencies must be equal.

E

Tester

!"#$%&'($)#$%'*'+

,$"-%$&'($)#$%'.'+

Figure 23. Scope Observer: Before E & After E

If EA and EB occur only once, by default their frequencies
are equal. Its observer is designed as shown in Fig. 24,
where the places TesterA and TesterB count the difference
of the occurring times between EA and EB, and the formula
(TesterA = 1) ∧ (TesterB = 0) is used for the assessment.

TesterB EBEA TesterA [0,0]
!"#$"%

&'
(')

'
∧ !"#$"%

*'
('+

Figure 24. Scope Observer: Between two Events

4) After EA Until EB: This scope modifier can be repre-
sented by the above ones:

• When EB occurs after EA, it is equivalent to (Exist EB
After EA) and (Between EA and EB);

• When EB does not occurs after EA, it is equivalent to
(Absent EB After EA) and (After EA).

D. Occurrence Modifiers

Occurrence modifiers are used to specify the occurrence
times of given event/state modifiers within some scope. They
are classified as Exist, Absent, and Always, and are used
together with predicates and scopes. The use of observers for
occurrence modifiers is not mandatory. Assume that in the state
graph, N(P) is the number of states that match the predicate
P, N(S) is the number of states that match the scope S, and
N(P∧ S) is the number of states that match both the predicate
and the scope. With respect to the semantics of Exist, Absent,
Always, the assessments depend on the following assertions:

• Exist P in S means that P must occur within S:{
N(P ∧ S) ≥ 1 if N(S) > 0;
True if N(S) = 0. (4)

• Absent P in S means that P must not occur in S:

N(P ∧ S) = 0 (5)

• Always P in S means that P occur through the whole S:

N(P ∧ S) = N(S) (6)

Note that when N(S) = 0, the scope is false, then the predicate
for any occurrence modifier (Exist, Absent, Always) is always
true. The assertions for Absent and Always satisfies this fact
by default. The assertion "True, if N(S)=0" for Exist is also
defined for this purpose.

VI. EXAMPLE OF REAL-TIME PROPERTY VERIFICATION

We illustrate the proposed specification and verification
approach using a simple example (see Ex. 1).

Example 1: As shown in Fig. 25, two concurrent processes
are modeled in TPN. Both execute only once. The target
property P is Always EA After EB Within [1, 2].

EA EB

[5,10] [3,7]

P0

P1

P2

P3

Figure 25. Observer-based Verification Example

On the basis of our specification patterns, P is composed
by (1) the occurrence modifier Always, (2) the predicate EA
occurs, and (3) the scope After EB Within [1, 2], which is
equivalent to Between EB + 1 and EB + 2.

Accordingly, observers for assessing P are generated using
the set of observers defined in our approach, as shown in
Fig. 26. The predicate EA occurs is observed by using an
atomic event-based observer obs4. The scope Between EB + 1
and EB + 2 is observed by using a composite observer with
three parts: (i) obs1 for event modifier EB + 1, (ii) obs2 for
event modifier EB+2, and (iii) obs3 for scope modifier Between
EB + 1 and EB + 2.

EA EB

[5,10] [3,7]

P0

P1

P2

P3

[1,1]

[2,2]

[0,0]

P4

P5

P6

P7

T1

T2

T3

Obs1

Obs2

Obs3

Observer

Obs4

P8

Figure 26. TPN Observers for the Example

Based on the TPN system with additional observers, a state
graph of marking abstraction with 10 states and 13 transitions
is generated, shown in Fig. 27. Relying on the muse model
checker, P is assessed using the following mmc formulae:
• Assertion P for the predicate EA occurs: P8.
• Assertion S for the scope Between EB + 1 and EB + 2:

P6 ∧ ¬P7.
• Assertion O for the occurrence modifier Always:

if N(P ∧ S) = N(S), then P is satisfied.
For the assertion O, only one state (S5) satisfies P∧ S, thus

N(P ∧ S) = 1; while two states (S4 and S5) satisfy S, thus
N(S) = 2. As N(P ∧ S) 6= N(S), property P fails.

 P0P2 P1P2P8

P0P3

P4P5

P0P3

P1P3

P4P5P8

 P0P3

P5P6

P1P3

P6P7P8

P0P3

P6P7

P1P3P8

P1P3

P5P6P8

EA

EB

EB

EA

T1

T1

EA

T2

T2

EA

T3

T3

EA

S0 S1 S3

S2 S5 S7 S9

S4 S6 S8

Figure 27. Reachability Graph of Verification Example

N(P ∧ S) < N(S) implies that the states satisfying ¬P ∧ S
(¬P1 ∧P6 ∧¬P7) are violating ones. By checking ¬P1 ∧P6 ∧
¬P7, we find the violating state in ktz, which is the state S4
with marking P0P3P5P6.

VII. CONCLUSION

Dwyer’s and Konrad’s pattern systems target expressiveness
of real-time requirements for the end-users, and leave the
verification related issues to the users. Accordingly, these
patterns do not guarantee the efficiency of verification. We
have defined a set of atomic constructs in our property pattern
system and defined the associated set of elementary observers.
End-user real-time requirements are expressed as compositions
of these patterns based on a predefined meta-model and a set
of mapping rules.

Compared to previous works from one of the author [5],
our proposal allows for the automatic generation of composite
observers for a composite property. It has also a positive
outcome on the verification cost. Our pattern verification
framework has been integrated into our UML-MARTE real-
time verification framework [11], [12]. This extends our
available tooling for UML-MARTE with a process for formal
requirement verification and elicitation during the early design
phases.

ACKNOWLEDGMENT

This work was funded by the FUI Project P and ITEA2
Project OPEES projects.

REFERENCES

[1] H. Kopetz, Real-time systems: design principles for distributed embed-
ded applications. Springer, 2011.

[2] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett, “Patterns in property
specifications for finite-state verification,” in Proceedings of the 21st In-
ternational Conference on Software Engineering, ser. ICSE ’99. ACM,
1999, pp. 411–420.

[3] S. Konrad and B. H. Cheng, “Real-time specification patterns,” in Pro-
ceedings of the 27th international conference on Software engineering.
ACM, 2005, pp. 372–381.

[4] V. Gruhn and R. Laue, “Patterns for timed property specifications,”
Electronic Notes in Theoretical Computer Science, vol. 153, no. 2, pp.
117–133, 2006.

[5] N. Abid, S. Dal Zilio, and D. Le Botlan, “Real-time specification patterns
and tools,” in Formal Methods for Industrial Critical Systems. Springer,
2012, pp. 1–15.

[6] R. Koymans, “Specifying real-time properties with metric temporal
logic,” Real-time systems, vol. 2, no. 4, pp. 255–299, 1990.

[7] R. Alur, “Techniques for automatic verification of real-time systems,”
Ph.D. dissertation, stanford university, 1991.

[8] L. E. Moser, Y. Ramakrishna, G. Kutty, P. M. Melliar-Smith, and L. K.
Dillon, “A graphical environment for the design of concurrent real-time
systems,” ACM Transactions on Software Engineering and Methodology
(TOSEM), vol. 6, no. 1, pp. 31–79, 1997.

[9] K. C. Castillos, F. Dadeau, J. Julliand, B. Kanso, and S. Taha, “A compo-
sitional automata-based semantics for property patterns,” in International
Conference on Integrated Formal Methods. Springer, 2013, pp. 316–
330.

[10] B. Berthomieu, P.-O. Ribet, and F. Vernadat, “The tool TINA–
construction of abstract state spaces for Petri nets and Time Petri nets,”
International Journal of Production Research, vol. 42, no. 14, 2004.

[11] N. Ge and M. Pantel, “Time properties verification framework for uml-
marte safety critical real-time systems,” in European Conference on
Modelling Foundations and Applications. Springer, 2012, pp. 352–
367.

[12] N. Ge, M. Pantel, and X. Crégut, “A UML-MARTE temporal property
verification tool based on model checking,” in International Conference
on Embedded Real Time Software and Systems (ERTS), 2014.

[13] N. Ge, M. Pantel, and X. Crégut, “Time properties dedicated transfor-
mation from UML-MARTE activity to time transition system,” ACM
SIGSOFT Software Engineering Notes, vol. 37, no. 4, pp. 1–8, 2012.

[14] N. Ge and M. Pantel, “Real-time property specific reduction for Time
Petri net,” in International Workshop on Petri Nets and Software
Engineering (PNSE@PetriNets), 2014, pp. 165–179.

[15] N. Ge, M. Pantel, and X. Crégut, “Automated failure analysis in model
checking based on data mining,” in International Conference on Model
and Data Engineering. Springer, 2014, pp. 13–28.

[16] P. Merlin and D. Farber, “Recoverability of communication protocols–
implications of a theoretical study,” Communications, IEEE Transactions
on, vol. 24, no. 9, pp. 1036 – 1043, 1976.

[17] N. Abid, S. Dal Zilio, and D. Le Botlan, “A formal framework to specify
and verify real-time properties on critical systems,” IJCCBS, vol. 5, no.
1/2, 2014.

[18] M. Garnacho, J. Bodeveix, and M. Filali-Amine, “A mechanized seman-
tic framework for real-time systems,” in Formal Modeling and Analysis
of Timed Systems FORMATS, 2013.

