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Abstract. Bearing and gear are one of the most important mechanical sources for vibration and 
noise generation in machine tool spindles. In this paper, we study the non-linear dynamic behavior 
of a machine tool spindle system in transient regime. Driving and driver rotors are, respectively, 
powered by a motor torque and loaded by the cutting force. They are supported by two identical 
Rolling Bearings (RBs). Gear excitation is induced by the motor torque and load variation in 
addition to the fluctuation of meshing stiffness due to the variation of input rotational speed. The 
dynamic parameters of RBs are modeled by stiffness and damping matrices computed by the 
derivation of the bearing forces. The equations of motion are solved iteratively using Newmark 
time integration method. The numerical results of the dynamic responses of the system come to 
confirm the significant effect of the transient regime on the dynamic behavior of a gear set. 
Keywords: tool, stiffness, cutting force, spindle, fluctuation, torque. 

1. Introduction

Bearings play an important role in machine tool spindle systems. Compared with hydrostatic, 
aerostatic or magnetic bearings [1], rolling element bearings are still most commonly used today 
in the spindles, which can provide the required precision, load carrying capacity, and spindle 
speeds. The dynamic behavior from the transient state chaotic motion to the steady state periodic 
and quasi periodic motions is also established by Zhang et al. [2]. Luisa et al. [3] reveal how to 
take advantage of the information on vibrations from the mechanical system in a varied range of 
speed and load conditions. Acceleration signals from the accelerometers are treated using a new 
formulation to study the gear motions. In the developed concept of supports for aviation purposes, 
some simulations have been performed. A necessity of increasing bearings load capacity and 
damping has occurred by Kozanecka et al. [4]. 

In rotating machine, to provide speed and torque conversions from a rotating power source to 
connected mechanical devices, gear reducers are often used but its represent a principal source of 
vibration and noise due to excitations associated with the conditions of contact between gear pair 
teeth. Kang et al. [5] made an experimental results specify that the proposed accelerometer-based 
measurement methodology is operational in measuring not only the torsional motions but also the 
other types of translational, rotational and axial motions of a gear. To study the dynamic behavior 
of a spur gear pair it is required to define the stiffness in the contact zone named gear mesh stiffness. 
The gear set have internal and external sources of excitations. The internal one is made by the 
time varying mesh stiffness. These fluctuations are considered the main source of system 
excitation and the origin of the observed noise and vibrations [6]. Bartelmus [7-8] presented the 
varying mesh stiffness in dynamic model of a spur gear system to investigate the different 
responses in presence of defects. Chaari et al. [9-10] introduced the varying mesh stiffness in a 
dynamic model of a spur gear system in order to study its dynamic responses in presence of defects. 
Added frequency components were observed in response spectra. Sachidananda et al. [11] 

1



presented analytical and experimental methods to investigate and compare the altered tooth sum 
gearing against the standard tooth-sum gearing. The experiments were performed using a power 
recirculating type test rig. The tooth loads for the experimental investigations were determined 
considering the surface durability of gears.  

Bartelmus [7-8] and Walha et al. [12] studied the effect of backlash on the dynamic behavior 
of a two stage gearbox. They concluded that tooth separation occurs at the transient regime with 
increase in the vibration level. Sika and Velex [13, 14] proposed a model to study, in transient 
regime, the influence of gear tooth geometry, the backlash and the backstrike effect on the 
dynamic behavior of gear system. A gear set powered by an electric motor in the start time was 
also investigated by Hugues [15]. He noticed that the existence of distributed faults induces an 
increase in the vibration levels when load increases.  

2. Model of a single stage spur gear reducer

A single stage spur gear model with eight degrees of freedom is presented in Figs. 1 and 2. It 
is composed by two rotors supported by RBs. The driving rotor (Part 1: P1) has a pinion with ܼଵ 
teeth, mass ݉ଵ and moment of inertia ܬଵଵ. The driven rotor (Part 2: P2) has a wheel with ܼଶ teeth, 
mass  ݉ଶ and moment of inertia ܬଶଶ.  

Fig. 1. Modeling of a single stage spurs gear 

The system is sought by motor torque ܥ௠ and load torque ܥ௥. The gear mesh stiffness ݇௘(ݐ) 
and damping ݇௖(ݐ) are modelled by linear spring and damping acting on the line of meshing teeth 
action (Fig. 3). The displacement ߣ along the line of action is expressed by [16]: (ݐ)ߣ = ଵݔ) − ߙଶ)sinݔ + ଵݕ) − ߙଶ)cosݕ + ௕ଵଶݎଵଶߠ + ,௕ଶଵݎଶଵߠ (1)

where ݔ௜ and ݕ௜ are the translation of the pair of gear (݅  ௜௝ is the angular displacement ofߠ .(2 ,1 =
the component ݆ in part ݅ (݅, ݆  ௕ଶଵ are, respectively, theݎ ௕ଵଶ andݎ ,is the pressure angle ߙ ,(2 ,1 =
base radius of the pinion and the wheel, ଵܰ is the rotational speed of the pinion. 

The mesh period can be defined by: 

௘ܶ = 60ଵܼܰଵ. (2)

The vector of the degrees of freedom ݍ can be expressed by: ሼݍሽ = ଶଵߠଵଶߠ    ଵݕ    ଵݔଵଵߠ] ଶݔ ଶݕ ଶଶߠ ]் . (3)
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Fig. 2. Modeling of a single stage spurs gear 

Fig. 3. Meshing modeling 

3. Derivation of the equations of motion

3.1. Rolling bearing modeling 

The forces and moments, exerted by the ݇th rolling bearing supporting the spindle (Fig. 4), are 
defined, and using the Hertz contact theory, as: 

ቊܨ௬௞ܨ௭௞ቋ =  ෍ ൫Δ௝௞൯ଵ,ହܭ− ቊcos߰௝௞cosߙ௝௞sin߰௝௞cosߙ௝௞ ቋ ,௭
௝ୀଵ (4)

where, ߰௝௞ and ߙ௝௞ represents respectively the ball angular position and the loaded contact angle, ௝ܴ presents the radial position of the outer race curvature centre of the ݆th ball, ܭ represents the 
Hertz contact constant, deduced from curvature radius of the elements in contact, and Δ௝௞ 
represents the elastic deformations of the ݆th ball.  

This last is defined as follows: 
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Δ௝ = ටΔ௥௝ଶ + Δ௭௝ଶ  − ௝݀ , (5)

where, Δ௥௝ and Δ௫௝ present respectively the radial and axial deflections. They are expressed in the 
reference ܴ൫ Ԧܺ, ሬܻԦ, Ԧܼ൯ , functioning of the elastic and rigid movements of the ݇ th node of the  
spindle: 

۔ۖەۖ
=  Δ௥௝ۓ ൮ (ܷ௞ + ஺ܻ) cos߰௝ + ( ௞ܸ + ஺ܼ)sin߰௝− 2ܦ sinߙ  ଴ ቀ൫ߠ௬௞ + ௬൯sin߰௝ߙ − ௭௞ߠ) + ௭)cos߰௝ቁߙ + ݀଴cosߙ଴ ൲ ,

Δ௫௝  = ௝ܴ ቀ൫ߠ௬௞ + ௬൯ߙ sin߰௝ − ௭௞ߠ) + (௭ߙ cos߰௝ቁ + ݀଴sinߙ଴. (6)

Fig. 4. Modelling of Rolling Bearing (RB) 

The new loaded contact angle can be deduced: 

tanߙ௝ = Δ௫௝Δ௥௝ . (7)

The scaling default is modeled by a half sine wave introduced at the ݆th ball deflections 
expressions, which will be: 

Δ௝ = ටΔ௥௝ଶ + Δ௭௝ଶ  − ௝݀ − ௥ܥ . (8)

In the present study the classic linearised model with four stiffness and damping coefficients 
is used for the RBs modeling. In this model presented in Fig. 5, the forces at each bearing are 
assumed to obey the governing equations of the following form [17]: 
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ቂ݇௜௝ቃ ቄݕݔቅ + ቂܿ௜௝ቃ ൜ݔሶݕሶ ൠ = ൜ܨ௫ܨ௬ൠ, (9)

where ݔ and ݕ are the RBs degrees of freedom, [݇௜ೕ] and [ܿ௜ೕ] are respectively the RBs stiffness 
and damping matrices. They are expressed by: 

൞ቂ݇௜ೕቃ = ൤݇௫௫ ݇௫௬݇௬௫ ݇௬௬൨ ,ቂܿ௜ೕቃ = ቂܿ௫௫ ܿ௫௬ܿ௬௫ ܿ௬௬ቃ . (10)

The derived equations of motion can be represented in a matrix-vector form. It can be written 
as: [ۻ]ሼݍሷ ሽ + ሶݍሼ[(ݐ)۱] ሽ + ሽݍሼ[(ݐ)۹] = ሼ۴௘௫௧(ݐ)ሽ, (11)

where, ۻ represents the mass matrix given by: 

[ۻ] =
ێێۏ
ێێێ
ۍێێ
ଵଵܬ ݉ଵ ݉ଵ ଵଶܬ0 ଶଵ0ܬ ݉ଶ ݉ଶ ۑۑےଶଶܬ

ۑۑۑ
(12) .ېۑۑ

݆ ,݅) includes the RBs stiffness ݇௜௝ [(ݐ)۹] =  the shaft torsional stiffness ݇௧ଵ, ݇௧ଶ and the ,(ݕ ,ݔ
time varying gear mesh stiffness ݇௘(ݐ). It is expressed by: 

(ݐ)۹ =
ێێۏ
ێێێ
ۍێێ

0 ݇௫௫ + (sinߙ)ଶ݇௘(ݐ) sinߙcos݇ߙ௘(ݐ) 0(ݐ)௘݇ߙ௕ଵଶsinݎ sinߙcos݇ߙ௘(ݐ) ݇௬௬ + (cosߙ)ଶ݇௘(ݐ) ௧భ݇(ݐ)௘݇ߙ௕ଵଶcosݎ 0 0 −݇௧భ−݇௧భ (ݐ)௘݇ߙ௕ଵଶsinݎ (ݐ)௘݇ߙ௕ଵଶcosݎ ݇௧భ + ௕ଵଶଶݎ ݇௘(ݐ)0 −(sinߙ)ଶ݇௘(ݐ) −sinߙcos݇ߙ௘(ݐ) 0(ݐ)௘݇ߙ௕ଵଶsinݎ− sinߙcos݇ߙ௘(ݐ) −(cosߙ)ଶ݇௘(ݐ) 0(ݐ)௘݇ߙ௕ଵଶcosݎ− 0 0 00 (ݐ)௘݇ߙ௕ଶଵsinݎ (ݐ)௘݇ߙ௕ଶଵcosݎ (ݐ)௘݇ߙ௕ଶଵsinݎ(ݐ)௕ଶଵ݇௘ݎ௕ଵଶݎ −(sinߙ)ଶ݇௘(ݐ) −sinߙcos݇ߙ௘(ݐ) (ݐ)௘݇ߙ௕ଶଵcosݎ0 −sinߙcos݇ߙ௘(ݐ) −(cosߙ)ଶ݇௘(ݐ) 00 0 0 (ݐ)௕ଶଵ݇௘ݎ௕ଵଶݎ0 (ݐ)௘݇ߙ௕ଵଶsinݎ− (ݐ)௘݇ߙ௕ଵଶcosݎ− (ݐ)௘݇ߙ௕ଶଵsinݎ− 0 ݇௫௫ + (sinߙ)ଶ݇௘(ݐ) sinߙcos݇ߙ௘(ݐ) (ݐ)௘݇ߙ௕ଶଵcosݎ0 sinߙcos݇ߙ௘(ݐ) ݇௬௬ + (cosߙ)ଶ݇௘(ݐ) 0−݇௧మ 0 0 ݇௧మݎ௕ଶଵଶ ݇௘(ݐ) + ݇௧మ (ݐ)௘݇ߙ௕ଶଵsinݎ− (ݐ)௘݇ߙ௕ଶଵsinݎ −݇௧మۑۑے
ۑۑۑ
 .ېۑۑ

(13)

݆ ,݅) includes the RBs damping ܿ௜௝ [(ݐ)۱] =  the shaft torsional damping ܿ௧ଵ, ܿ௧ଶ and the ,(ݕ ,ݔ
time varying gear mesh damping ܿ௘(ݐ). It is expressed by: 
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(ݐ)۱ =
ێێۏ
ێێێ
ۍێێ

0 ܿ௫௫ + (sinߙ)ଶܿ௘(ݐ) sinߙcosܿߙ௘(ݐ) 0(ݐ)௘ܿߙ௕ଵଶsinݎ sinߙcosܿߙ௘(ݐ) ܿ௬௬ + (cosߙ)ଶܿ௘(ݐ) ௧భܿ(ݐ)௘ܿߙ௕ଵଶcosݎ 0 0 −ܿ௧భ−ܿ௧భ (ݐ)௘ܥߙ௕ଵଶsinݎ (ݐ)௘ܥߙ௕ଵଶcosݎ ௧భܥ + ௕ଵଶଶݎ ܿ௘(ݐ)0 −(sinߙ)ଶܿ௘(ݐ) −sinߙcosܿߙ௘(ݐ) 0(ݐ)௘ܿߙ௕ଵଶsinݎ− sinߙcosܿߙ௘(ݐ) −(cosߙ)ଶܿ௘(ݐ) 0(ݐ)௘ܿߙ௕ଵଶcosݎ− 0 0 00 (ݐ)௘ܿߙ௕ଶଵsinݎ (ݐ)௘ܿߙ௕ଶଵcosݎ (ݐ)௘ܿߙ௕ଶଵsinݎ(ݐ)௕ଶଵܿ௘ݎ௕ଵଶݎ −(sinߙ)ଶܿ௘(ݐ) −sinߙcosܿߙ௘(ݐ) (ݐ)௘ܿߙ௕ଶଵcosݎ0 −sinߙcosܿߙ௘(ݐ) −(cosߙ)ଶܿ௘(ݐ) 00 0 0 (ݐ)௕ଶଵܿ௘ݎ௕ଵଶݎ0 (ݐ)௘ܿߙ௕ଵଶsinݎ− (ݐ)௘ܿߙ௕ଵଶcosݎ− (ݐ)௘ܿߙ௕ଶଵsinݎ− 0 ܿ௫௫ + (sinߙ)ଶܿ௘(ݐ) sinߙcosܿߙ௘(ݐ) (ݐ)௘ܿߙ௕ଶଵcosݎ0 sinߙcosܿߙ௘(ݐ) ܿ௬௬ + (cosߙ)ଶܿ௘(ݐ) 0−ܿ௧మ 0 0 ܿ௧భ + ௧మܿ(ݐ)௕ଶଵܿ௘ݎ (ݐ)௘ܿߙ௕ଶଵsinݎ− (ݐ)௘ܿߙ௕ଶଵsinݎ −ܿ௧మ ۑۑے
ۑۑۑ
 .ېۑۑ

(14)

ሼ۴௘௫௧(ݐ)ሽ is the external applied torques vector. It can be expressed as: ሼ۴௘௫௧(ݐ)ሽ = ሼܥ௠, 0, 0, 0, 0, 0, 0, .௥ሽ்ܥ− (15)

Fig. 5. Two dof RB model 

3.2. Cutting model 

The cutting model used in this paper is the dressing and roughing operations. Tangential and 
normal cutting forces are respectively given by: 

௧௚ܨ = ௧ܭ  ൬ ℎ2.10ିସ൰଴.ସଽ ቀ ,2.10ିଷቁݓ ேܨ(16) = ேܭ  ൬ ℎ2.10ିସ൰଴.଼ଷ ቀ ,2.10ିଷቁݓ (17)

with ܭே and ܭ௧ are terms which reflect the specific cutting pressure, ݓ is the width of cut, ℎ is the 
instantaneous cutting thickness. 
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3.3. Electric motor modeling 

The rotational velocity of an electric motor can be related to its torque and the receiver torque 
by: 

ܬ ݀Ω݀ݐ = ௠ܥ − ଶݖଵݖ ௥ܥ , (18)

where ܬ is the equivalent moment of inertia of the rotating parts.  
The relation between driving torque and the motor speed have the following form [18]: ܥ௠ = ௕ܶ1 + ௕ݏ) − ଶ(ݏ ൬ቀܽݏቁ − ,ଶ൰ݏܾ (19)

where ݏ௕ is the slip, ௕ܶ is the torque at breakdown, ܽ and ܾ are two constants characteristic of the 
motor and ݏ is the proportional drop in speed given by: 

ݏ = 1 − ΩΩ௦ , (20)

where Ω௦ and Ω are, respectively, the synchronous speed and the actual rotational speed of the 
motor.  

In the present study a pump is chosen as a load. Load torque characteristic ܥ௥ is proportional 
to the square of the rotational speed [19]: ܥ௥ = ℎଵΩଶ, (21)

where ℎଵ is a coefficient depending on the driven system kind. Eq. (17) can be written as follows: ݀Ω݀ݐ = ܬ1 ቆܥ௠(Ω, (ݐ − ଶݖଵݖ ,௥(Ωܥ .ቇ(ݐ (22)

4. Numerical simulations

Using Newmark integration method, the dynamic behavior of spur gear system is studied by a 
numerical simulation. The mechanical system is powered by an electric motor. The principal 
characteristic parameters of the electric motor are given in Table 1. The principal parameters of 
the spur gear transmission are given in Table 2. Tables 3 presents the eigenfrequencies of the 
system. 

Table 1. Parameters motors specifications 
Electric motor type: ABB-MT 90L 

Electric characteristics 4 poles, 50 Hz, 3 phases 415 V 
Power (kW) 1.5 
Nominal speed (rpm) 1440 
Nominal torque ௙ܶ (N m) 10 
Ratio of starting up torque ௦ܶ/ ௙ܶ  2.7 
Ratio of breakdown torque ௕ܶ/ ௙ܶ 3.2 
Slip ݏ௕ 0.315 
Constant of the motor (a) 1.711 
Constant of the motor (b) 1.316 
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Table 2. Characteristic parameters of the spur gear 
Pinion Wheel 

Teeth numbers  20 40 
Mass (Kg) 0.6 2.5 
Inertia moment (Kg·m2) 2.6 10-4 45 10-4 
Base circle (m) 0.05 0.11 
Module (mm)  3 
Rotor torsional stiffness (N·rd/m) ܭ௧ଵ = ௧ଵܭ = 105 
Pressure angle (°)  ߙ = 20 
Teeth width (mm)  23 
Contact ratio ܥ = 1.6 

Table 3. The determinate eigenfrequencies of the system 
Eigen frequencies (Hz) ܨଵ ܨଶ ଷܨ ସܨ ହܨ ଺ܨ ଻ܨ ܨ଼

0 730,5 904,3 1278,3 1424,4 1891,5 2925,6 3481 

The mechanical transmission is loaded by a machine tool having an inertia moment ܬଶଶ = 45×10-4 Kg·m2. Using the Euler algorithm to resolve Eq. (11), the evolution of motor 
rotational speed versus time is presented in Fig. 6. Two different regimes are determinate. The 
first is the transient regime observed in the time interval [0, ௅ܶ], characterized by an increasing 
rotational speed. The second regime is the steady state observed in a time greater than ௅ܶ and 
subsequently the motor reaches its nominal rotational speed Ω௡. The transient regime duration is ௅ܶ = 0.185 s. The evolution of motor and receiver torques of the studying system is shown in 
Fig. 7.  

Fig. 6. Evolution of torque vs time Fig. 7. Mechanical characteristics of the driving 
and driven systems 

The evolution of the meshing stiffness in transient regime is shown in Fig. 8; numerical results 
show that it is modeled as a non-periodic function. It should be noted that the meshing period 
decreases when the speed increases. 

The dynamic response registered on the pinion ܴܤଵ is presented in Fig. 9(a). Two different 
behaviors are determinate: The first period ( ଵܲ) corresponding to the interval of time [0, ௅ܶ] in 
which the displacement is variable and non-periodic with high vibration amplitudes (Fig. 9(b)). 
The second period ( ଶܲ) is observed in time interval [ ௅ܶ, ௙ܶ] in which the displacement is periodic 
with period ௚ܶଵ (Fig. 9(c)). The motor rotates at its constant nominal frequency and the meshing 
stiffness is periodic with a constant period. The dynamic response shows periodic behavior with 
steady vibration level. 

The displacement is non-periodic during the transient regime, who explains that the 
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corresponding spectrum is rich frequency content. The frequency spectrum of the linear 
displacement of the pinion shaft is presented in Fig. 10. The spectrum indicate the presence of the 
meshing frequency ܨ௚ଵ = 480 Hz and its harmonics ݊×ܨ௚ଵ encircled by side-bands. The system 
eigenfrequencies ܨଶ and ܨହ are also shown. The presence of side-bands is caused by the transient 
regime behavior. 

Fig. 8. Non-periodic evolution of the meshing stiffness in transient regime 

a) b) 

c) 
Fig. 9. a) Pinion ܴܤଵ displacement, b) non stationary domain D1, c) steady state domain D2 

The high amplitude values of displacement in the transient response are the direct result of the 
torsional vibration problem caused by the fact that torsional and lateral movements are coupled 
via the gear mesh [19]. 
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Fig. 12. Evolution in time of the torque applied on the transmission spur gear 

Fig. 10. Spectrum of pinion RB1 displacement 

To investigate the effect of transient regime on the gear teeth, the inter mesh forces and the 
transmission error are studied.  

Fig. 11 presents the transmission error evolution. It’s illustrate that error is time varying and 
periodic with ௔ܶ௖௬ as the period and its fluctuation is depend of loading conditions.  

Fig. 11. Error transmission evolution vs time 

Fig. 12 indicates the normal evolution of the effort on teeth according to time. It shows that 
cyclic over loads on teeth can be expected with values reaching 33.104 N. 
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5. Conclusions

In this study, the dynamic response of a machine tool system is analyzed in the transient 
regimes. The variations of input rotational speed are studied. As a consequence of the speed 
variation, the gear mesh stiffness was modeled with varying period to take into account transient 
regimes. The torque developed by the electric motor is expressed as a function of the angular 
position of the crankshaft. The gear mesh stiffness was adequately computed and introduced in 
the equations of motion of the system and then a numerical simulation was conducted. The 
numerical results of the dynamic responses of the mechanical system come to confirm a significant 
effect of the transient regime on the dynamic behavior of a gear set. 
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