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scheme

 

for
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equation
Stéphane Abide ∗, Belkacem Zeghmati

Laboratoire de Mathématiques et de Physique, Université de Perpignan Via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan, France

This paper presents an analysis of a multigrid defect correction to solve a fourth-order
compact scheme discretization of the Poisson’s equation. We focus on the formulation,
which arises in the velocity/pressure decoupling methods encountered in computational
fluid dynamics. Especially, the Poisson’s equation results of the divergence/gradient
formulation and Neumann boundary conditions are prescribed. The convergence rate
of a multigrid defect correction is investigated by means of an eigenvalues analysis
of the iteration matrix. The stability and the mesh-independency are demonstrated.
An improvement of the convergence rate is suggested by introducing the damped
Jacobi and Incomplete Lower Upper smoothers. Based on an eigenvalues analysis, the
optimal damping parameter is proposed for each smoother. Numerical experiments
confirm the findings of this analysis for periodic domain and uniform meshes which
are the working assumptions. Further numerical investigations allow us to extend the
results of the eigenvalues analysis to Neumann boundary conditions and non-uniform
meshes. The Hodge–Helmholtz decomposition of a vector field is carried out to illustrate
the computational efficiency, especially by making comparisons with a second-order
discretization of the Poisson’s equation solved with a state of art of algebraic multigrid
method.

1. Introduction

Since the early days of computing, many researchworks have been published on the development of numerical solutions
of Poisson’s equation. This elliptic partial differential equation hasmany applications in various areas of applied physics such
as acoustic, electromagnetism, heat and mass transfer, etc. For instance, the Poisson solver is an essential part for solving
incompressible fluid flows. In this case, the computational cost saving still remains of primary importance, that has led to an
important amount of papers in this research area. The combination of a discrete spatial approximation and a linear solver is
the key point of such methods of solutions for elliptic partial differential equations. For instance, the progress in multigrid
methods has allowed us to achieve a good scalability for finite-element, finite-difference or finite-volume discretizations. In
order to reduce the computational cost, yet another popular way is to discretize the equations with high-order schemes like
the spectral methods. High-order methods achieve a better accuracy than lower-order discretizations with identical grid
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size. The compact finite difference schemes belong to this category of high-order schemes. They have the particular feature
to combine the accuracywith linear computational complexity. For this reason, the compact finite difference schemes have a
good scaling potential. However, the combination of such discretizations with an efficient linear solver for elliptic boundary
value problems still remains an open issue. In this way, the main objective of the present work is to propose an iterative
method of solving the Poisson equation discretized based on a fourth-order compact finite difference schemes. A special
care is paid to the singular Poisson equation arising from incompressible fluid flow solvers. Here the discrete formulation
results from the combination of the discrete divergence with the discrete gradient. The Neumann boundary conditions are
also considered.

The compact finite difference schemes achieve a high-order truncation error while keeping the smallest computational
stencil. One of pioneerway to obtain those schemes consists in approximating the partial derivative equationwith a second-
order finite difference and in replacing the higher derivatives in the truncation error by the lower-order derivatives of
equation itself. The well-known Mehrstellen discretization of the Poisson equation, proposed by Collatz [1], is among the
first published papers relating to this procedure. A large amount of works follows this trend [2–10]. For instance, Spotz
and co-workers proposed high-order compact schemes (HOCS) formulation for solving numerically the two-dimensional
convection/diffusion equation [2], the three-dimensional Poisson equation [3], with extension to non-uniform grids [4].
The contributions to HOCS of Zhang and co-workers concern also elliptic boundary value problems [5–8]. A three-
dimensional HOCS of the convection/diffusion equation was proposed [5]. Furthermore, an analytical mesh transformation
was developed to deal with boundary layer type problems [6], and a transformation-freemesh of three-dimensional Poisson
equation [7] was recently proposed. A six-order accuracy was achieved with the compact scheme presented by Wang
and Zhang [8]. These works illustrated a first set of methods to design accurate multi-dimensional schemes for elliptic
boundary value problems. The common feature is that they lead to a sparse linear system, which has to be solved efficiently.
Iterative methods for the solution of linear systems of equations are usually used. The Krylov projection typemethods [2] or
multigrid methods [10,9] have been successfully developed. The recent geometric multigrid procedure designed by Wang
and Zhang [8] has a convergence factor independent of themesh size. This illustrates how compact finite difference schemes
could combine accuracy with a linear computational complexity. In the framework of computational fluid dynamics, these
schemes have been applied to the ψ − ω formulation of the incompressible Navier–Stokes equations [11,12]. It should
be mentioned that in the computational fluid dynamics the Poisson’s equation generally arises from the combination of
gradient and divergence operators, especially with the class of projection methods [13,14].

Yet another popular way to derive the compact schemes is based on Taylor series expansions. Here linear combinations
on the discrete derivative (interpolation) and the function involved are determined by fulfilling requirements on accuracy
and/or resolution. The core of the method was detailed in the seminal paper of Lele [15], and still remains a starting point
for many other high-order schemes [16–18]. Their derivations are based on a one-dimensional computational stencil. The
multidimensional extension can be simply done by means of a tensor product. However, in this case, the resulting linear
system of equations is not sparse which introduces several difficulties to get a solution efficiently, especially for Poisson
equation arising in the incompressible fluid flow solvers [19,20]. Nevertheless, several direct and iterative methods of
solutions have been used [21–24]. For instance, the diagonalization method, which was first used in combination with
spectral methods [25], still remains retained as a method of solutions for linear systems arising from compact schemes
discretization [22,26]. This direct method has an unfavorable computational complexity, and seems not to be suitable for
large scale computing. An another way based on FFT leads to efficient numerical solvers, but it introduces some limitations
on the number of stretching mesh directions [27,28]. The early work of Schiestel and Viazzo [23] introduces an iterative
procedure between the momentum and the pressure correction equations. Their method is based on a variant of the defect
correction method [29]. Knikker [24] suggested a defect correction procedure as method of solutions for the Poisson’s
equation discretized with a fourth-order compact finite difference scheme. The principle consists in solving a lower order
accurate discretization of the Poisson’s equation and in correcting the residual, which is computed using a higher-order
discretization [29]. Introducing an under-relaxation coefficient, this iterative method has demonstrated the efficiency for
the expected application, but no details concerning the convergence rate were specified. Such an analysis was given by
Brüger et al. [30] for an iterative Krylov method preconditioned with an Incomplete Lower Upper (ILU) factorization. Since
the matrix was not available explicitly, the ILU factorization concerned a second-order finite differences approximation of
the Poisson equation. The analysis of the convergence factor showed a condition number which behaves as o(h−1), h being
the grid space.

The above review presents results of several works relating the efficiency of the Poisson solvers based on high-order
compact schemes combined with multigrid. In these works, the Poisson equation did not arise from the combination of the
discrete divergence and the gradient operators. For this reason, these methods are not applicable to the Poisson equation
occurring in the incompressible fluid flow solvers. In this context, only few works considered such discretizations with an
iterative linear solver, also there is a little amount of information on the convergence factor. In the presentwork,we are going
to give some insights into defect correction applied to the Poisson equationwith a particular focus on the convergence factor
analysis. Yet another aim of this work is to show how the convergence factor can be improved by using a smoothing step.
Section 1 deals with the spatial discretization and the analysis of the convergence factor of the defect correction method.
Then several numerical experiments highlight the accuracy and the influence of the smoother operator on the convergence
factor. The computational cost issues are also addressed with the Hodge–Helmholtz decomposition of a vector field, which
mimics the pressure equation in incompressible fluid flow solvers.
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2. Numerical methods

2.1. Fourth-order compact finite difference scheme

The two-dimensional Poisson equation with the Neumann boundary conditions is considered, viz.,

−

∂x∂x + ∂y∂y


φ = f (x, y), (x, y) ∈ Ω,

∂nφ = g(x, y), (x, y) ∈ ∂Ω,
(1)

where Ω is a bounded domain and ∂Ω is the boundary of Ω . The solution φ, the forcing term f and the boundary values
function g are assumed to be sufficiently smooth. This equation is defined on a square domain Ω = [0, 1] × [0, 1] and a
uniform mesh size hx = hy = h = n−1 is considered. The function φ in Eq. (1) is defined on the nodes (xi−1/2, yj−1/2) with
xi−1/2 = (i − 1/2)h and yj−1/2 = (j − 1/2)h, where 1 ≤ i, j ≤ n. This corresponds to the classical layout of pressure like
variables on a staggered grid. According to the projection methods [13,14], the Poisson equation is built as the composition
of the divergence and gradient operators. The operators are defined on the staggered grid. This implies that the gradient
and the divergence are evaluated at the cell faces and at the cell centers, respectively. In particular, the components of the
gradient operator are evaluated at the nodes (xi, yj−1/2) and (xi−1/2, yj), whereas the discrete divergence is computed at the
cell centers (xi−1/2, yj−1/2). The notation δcfx(y) refers to the cartesian components of the gradient operator and δfcx(y) refers to
the derivatives involved in the divergence operator. Thus the discrete Poisson problem, expressed with tensorial notations,
reads

−

δfcx δ

cf
x ⊗ I + I ⊗ δfcy δ

cf
y


φ = f (2)

with the following Neumann boundary conditions
δcfx φ


0,j−1/2 = g0,j−1/2

δcfx φ

nx,j−1/2 = gnx,j−1/2,


δcfy φ


i−1/2,0

= gi−1/2,0

δcfy φ

i−1/2,ny

= gi−1/2,ny .
(3)

Each discrete derivative δcfx(y) and δfcx(y) is discretized with the fourth-order compact finite-difference. The cell-to-face
derivative for the inner nodes is given by

1
24
φ′

i−1 +
11
12
φ′

i +
1
24
φ′

i+1 =
1
h
(φi+1/2 − φi−1/2)+ o


h4 , (4)

and the face-to-cell corresponds to the shift version of Eq. (4)

1
24
φ′

i−3/2 +
11
12
φ′

i−1/2 +
1
24
φ′

i+1/2 =
1
h
(φi − φi−1)+ o


h4 . (5)

The boundary nodes discretization of the face-to-cell derivative is

φ′

−1/2 + 23φ′

1/2 =
1
h
(26φ0 − 25φ1 + φ2)+ o


h3 . (6)

The cell-to-face derivative boundary relation is given by

φ′

0 =
1

24h
(−23φ−1/2 + 21φ1/2 + 3φ3/2 − φ5/2)+ o


h3 . (7)

Using Eqs. (4)–(7), each discrete derivative may be rewritten in the matrix form, viz.,

Mcf
x(y)φ

′
= Dcf

x(y)φ and M fc
x(y)φ

′
= Dfc

x(y)φ. (8)

With this notation,Mcf
x(y) andM fc

x(y) are tridiagonal non singularmatrices. The discrete fourth-order formulation of the Poisson
equation is then

L′φ = −


M fc

x

−1
Dfc
x


Mcf

x

−1
Dcf
x ⊗ I + I ⊗


M fc

y

−1
Dfc
y


Mcf

y

−1
Dcf
y


φ = f . (9)

The finite difference scheme for the boundary conditions Eq. (3) is

g0,j−1/2 =
1

24h
(−23φ−1/2,j−1/2 + 21φ1/2,j−1/2 + 3φ3/2,j−1/2 − φ5/2,j−1/2),

gnx,j−1/2 = −
1

24h
(−23φnx+1/2,j−1/2 + 21φnx−1/2,j−1/2 + 3φnx−3/2,j−1/2 − φnx−5/2,j−1/2),

gi−1/2,0 =
1

24h
(−23φi−1/2,−1/2 + 21φi−1/2,1/2 + 3φi−1/2,3/2 − φi−1/2,5/2),

gi−1/2,ny = −
1

24h
(−23φi−1/2,ny+1/2 + 21φi−1/2,ny−1/2 + 3φi−1/2,ny−3/2 − φi−1/2,ny−5/2).

(10)
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Non-uniform meshes are considered via the introduction of an analytic mesh mapping. If x(X) is a non singular mesh
mapping, with X referring to the uniform mesh coordinates, a derivative is evaluated as δx = x−1

X δX . For further details
see Ref. [24]. It should be noted that the discrete operator L′ is a dense matrix due to the inverses of Mcf

x(y) and M fc
x(y). This

makes difficult to develop efficient methods to solve Eq. (9), and specific strategies have to be drawn. The direct method of
diagonalization may be used to solve Eqs. (9) and (10) [21], or by its multidomain extension [22]. Few iterative methods of
solutions are available [30,24]. This way is investigated in the next section by considering an analysis of the multigrid defect
correction method applied to Eqs. (9) and (10).

2.2. Convergence analysis of the defect correction

The multigrid defect correction solves the problem L′φ = c by means of an auxiliary problem Lφ = c for which an
efficient solution is available [29,31]. In our formulation, L′ corresponds to the fourth-order discrete formulation described
by Eqs. (9) and (10),which can be represented by a densematrix, being evaluatedwith a linear time complexity. The auxiliary
discrete problem L refers to the standard five-points stencil resulting in the second-order finite differences discretization of
the Poisson equation Eq. (1). The defect correction method is based on the following iterative procedure

Lφ(k+1)
= Lφ(k) −


L′φ(k) − f


, 1 ≤ k ≤ n. (11)

The initial guess function φ(1) is arbitrarily chosen. At a first sight, each defect iteration requires the solution of the auxiliary
linear system L. However, as indicated in [31], one iteration of a multigrid solver is sufficient to ensure the convergence of
the iterative procedure. This has been confirmed by our experience. The analysis of the convergence factor of this iterative
process is based on the spectral radius of the iterationmatrixGstd = I−L−1L′. The convergence holds for a spectral radius ofG
strictly lower than 1, and the lowest spectral radius is suitable to obtain a better residual reduction rate, named convergence
factor. The analytical calculation of the spectral radius becomes rapidly a cumbersome task. This is addressed by considering
the following eigenfunctions [29]

ϕ(x, y) = eiθxx/heiθyy/h − π ≤ θx, θy ≤ π. (12)

If the periodic boundary conditions are assumed, the replacing (θx, θy) by (kxπh, kyπh) is equivalent to consider a discrete
spectrum, and the rigorous Fourier analysis theory is recovered. A direct computation of the eigenvalues of the five points
second order and the fourth order discretization gives, accordingly,

Lϕ =
4
h2


1 −

1
2
cos θx −

1
2
cos θy


ϕ =

4
h2

f2th(θx, θy), (13)

and

L′ϕ =
4
h2


sin2 (θx/2) 11

12 +
1
12 cos θx

2 +
sin2 θy/2 11

12 +
1
12 cos θy

2

ϕ =

4
h2

f4th(θx, θy). (14)

The eigenvalues λsf of the iteration matrix Gsf = I − L−1L′ are deduced from the relations

λsf (θx, θy) = 1 − f4th(θx, θy)/f2th(θx, θy). (15)

Fig. 1 represents
λsf  as a function of θx and θy.

This contour plot includes ten isovalues ranging from 0.05 to 0.40, which shows that the highest eigenvalues are located
on the nodes (θx, θy) = (0,±π) and (θx, θy) = (±π, 0). So the following inequality is readily deduced:λsf  ≤ |λ(0,±π)| = |λ(±π, 0)| =

11
25
. (16)

Since the eigenvalues are strictly lower than1, the defected correctionmethod is a convergent iterative procedure.Moreover,
the convergence factor qsf = 11/25 is independent of the grid parameter h. This feature is important to design an efficient
method of solution because this is a prerequisite for the linear time algorithm. According to Fig. 1, the convergence factor is
strongly governed by the high frequencies: the highest eigenvalues are located close to the domain’s boundaries. A classical
technique to improve the convergence factor consists in adding to the defect correction a smoothing sweep, which can be
viewed as a preconditioner. In this case, the iterative procedure Eq. (11) becomes

φ = φ(k) − T

L′φ(k) − c


, (17)

Lφ(k+1)
= Lφ −


L′φ − c


. (18)

The influence of the smoothing sweep T onto the convergence factor is examined for two cases: the damped Jacobi and ILU
factorization. The relaxation operator modifies the iteration matrix as G = (I − L−1L′)(I − TL). Its spectral radius governs
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Fig. 1. Eigenvalues plot of the iteration matrix for the smoother-free defect correction.

the convergence factor of the whole procedure. Here, the Jacobi relaxation [29] is considered. It is based on the diagonal of
the matrix L arising from the second-order discretization: ωh2/4. Indeed, the eigenvalues λjac are given by

λjac(θx, θy, ω) = λsf (θx, θy)

1 − ωf4th(θx, θy)


, (19)

whereω is the relaxation factor. In a similar way, the formal eigenfunctions of the ILU smoothing operator are given by [32]

4
h2


1 −

1
2
cos θx −

1
2
cos θy +

1

4 + 2
√
2
cos(θx + θy)


=

4
h2

filu(θx, θy), (20)

and, the eigenvalues of the iteration matrix are readily computed as

λilu(θx, θy, ω) = λsf (θx, θy)


1 − ω

f4th(θx, θy)
filu(θx, θy)


. (21)

Conversely, the calculation of the spectral radius of the iteration matrix is defined as

ρ(ω) = max
−π<θx,θy<π

λ(θx, θy, ω) , (22)

where the former notation holds for the damped Jacobi and ILU smoother. The spectral radius is a function of the relaxation
factor ω, and might admit an optimal value which minimizes it. In this work, a numerical study is carried out to evaluate
the optimal relaxation factor for the both smoothers. The convergence factor Eq. (22) is plotted in Fig. 2 for each smoother.

The figure clearly indicates the existence of a minimumwhich corresponds to the optimal relaxation factor. The spectral
radius of the Jacobi smoother is minimal forωjac = 0.4763, yielding a convergence factor qjac = 0.1635 which is lower than
the smoother-free method. The optimal relaxation factor of the ILU smoothing operator isωilu = 0.6751, and the associated
convergence factor is qilu = 0.0611. To complete the description of the convergence properties, the contour plot of the
eigenvalues for the optimal relaxation factor is represented in Fig. 3.

As the smoother-free method, these plots show that the highest eigenvalues are located in the high frequency range. It
should be noted that the introduction of the smoothing operator improves the reduction factor of the defect correction.
Thus, the ILU smoother gives a factor of improvement of 8 in comparison with the smoother-free method. We remind
that a uniform periodic mesh is assumed in the former analysis, and that the knowledge of the behavior with the
Neumann boundary conditions and non-uniform meshes is of major importance in practical applications. This aspect and
the implementation verification are addressed in the next section by means of various numerical experiments.

Implementation details

The Neumann boundary conditions lead to a singular problem: the solutions of Poisson’s equation are defined up to a
constant. There are several methods to consider this special feature. In this work, it is addressed by imposing the Dirichlet
condition on a unique boundary node in the auxiliary problem L. Next, both the discrete approximations L and L′ are scaled
by h2, and the stopping criterion is the L2-norm of the residual. The auxiliary problem L is not solved at each iteration of
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Fig. 2. Convergence factor q versus the relaxation factor ω.

Fig. 3. Eigenvalues plot of the iteration matrix for the Jacobi (a) and the ILU (b) smoothers.

the defect correction. More particularly, only one iteration of a multigrid method is sufficient to get the convergence of the
defect correction. Here, the AlgebraicMultigridmethod (AMG) provided by theHYPRE library is used. The ILU decomposition
smoother, is also provided by the HYPRE library. The fill-in level set to zero (ILU(0)) corresponds to the above mentioned
analysis. In the numerical experiments, the fill-in level dependency on the convergence factor is investigated, in this case
associated notation is ILU(k).

3. Numerical experiments

In this section, several numerical experiments are carried out to validate the proposed multigrid defect correction. The
fourth-order accuracy of the Poisson solver is first demonstrated. Then, the influence of the smoothing operator and the
relaxation parameter on the convergence factor are outlined. In the last section, the Hodge–Helmholtz decomposition is
considered to illustrate how the proposed defected correction is able to deal efficiently with the Poisson equation arising
from simulations of incompressible fluid flow.

3.1. Spatial accuracy

The multigrid defect correction introduces a second-order finite difference discretization for the auxiliary problem,
whereas the defect is evaluated via a higher accurate scheme. When the defect is converged, the high-order accurate
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Table 1
Numerical L2-error and order of accuracy with a uniform mesh.

N Problem 1 Problem 2 Problem 3 Problem 4
ϵ p ϵ p ϵ p ϵ p

128 2.63e−09 0.00 2.42e−08 0.00 4.77e−09 0.00 1.40e−07 0.00
256 1.60e−10 4.04 2.04e−09 3.57 3.89e−10 3.62 2.48e−08 2.50
512 9.85e−12 4.02 1.74e−10 3.55 3.25e−11 3.58 4.40e−09 2.50

1024 6.12e−13 4.01 1.50e−11 3.54 2.75e−12 3.56 7.78e−10 2.50
2048 2.12e−14 4.85 1.29e−12 3.53 2.16e−13 3.67 1.38e−10 2.50

Table 2
Numerical L2-error and order of accuracy with a non-uniform mesh.

N Problem 1 Problem 2 Problem 3 Problem 4
ϵ p ϵ p ϵ p ϵ p

128 6.51e−06 0.00 1.49e−05 0.00 1.28e−06 0.00 6.32e−07 0.00
256 3.99e−07 4.03 8.74e−07 4.09 3.95e−08 5.02 1.47e−07 2.10
512 2.44e−08 4.03 5.20e−08 4.07 1.93e−09 4.35 3.82e−08 1.95

1024 1.51e−09 4.02 3.14e−09 4.05 1.30e−10 3.89 8.68e−09 2.14
2048 9.33e−11 4.01 1.92e−10 4.04 8.73e−12 3.90 1.91e−09 2.18

approximation is expected. This important feature is assessed by computing the order of accuracy p from the numerical
errors computed with several mesh sizes. The following set of four problems is considered [27]:

1. φ (x, y) = (xy)3.5 [1 − cos (xy)] (five times differentiable),
2. φ (x, y) = x4.5 + y4.5 (four times differentiable),
3. φ (x, y) = (x + y)2.5 sin (x) (three times differentiable),
4. φ (x, y) = (x + y)2.5 (two times differentiable).

The order of differentiability of these solutions is between 2 and 5. The computations are performed on a unit square domain,
and both uniform and non-uniformmeshes are considered. The non-uniformmesh is obtained from the following analytical
mapping

x(X) = X + β sin [(8X + 1)π ] , (23)

where X stands for the uniform mesh of size h = n−1
= n−1

x = n−1
y and where the parameter β is determined to

prescribe the smallest space step hmin = 0.6h. The metrics xX = x′(X) and yY = y′(Y ) are determined from the analytical
mesh transform Eq. (23). The order of accuracy is computed from the L2-error denoted ϵn which is the root mean square
of the numerical error on a grid of size n. The order of accuracy p is computed as p = log10


ϵn1/ϵn2


/ log10 (n1/n2) for

the problems (1)–(4). Section 2 details three variants of the multigrid defect correction: the Jacobi and ILU smoothers and
the smoother-free one. Preliminary computations show that the three methods give identical solutions with the machine
accuracy precision. Thus, for the sake of clarity, only the numerical errors computed with the smoother-free version are
presented.

Tables 1 and 2 present the numerical error as a function of the mesh size for each problem. Table 1 refers to the error
computed on the uniform mesh. The numerical error shows that the order of accuracy achieves the expected fourth-order
only with the solution (1).

As noted by Zhuang and Sun [27], the order decreases accordingly to the order of differentiability of the solution in the
other cases. Table 2 lists the numerical errors on the non-uniform meshes.

As for the previous test with uniformmesh, the use of non-uniformmeshes and sufficiently finemeshes leads to a similar
conclusion: the scheme is fourth-order accurate except for the problem4. These findings demonstrate that the present defect
multigridmethod retains the fourth-order accuracy on both uniform and non-uniformmeshes. The next section investigates
the convergence factor of the three different versions of the defect correction method.

3.2. Convergence factor of the multigrid defect correction

Section 2 details themultigrid defect correction and the benefit on the convergence factor in introducing a smoother. The
theoretical convergence factor was derived from a uniform mesh and a periodic domain assumptions. The existence of an
optimal relaxation factor ω for the Jacobi and the ILU smoothers has been demonstrated. In this section, several numerical
experiments are first carried out to validate the theoretical predictions, and then to assess their validity out of the range
of validity inherent in postulated assumptions. Thus, the above discussion is based on the convergence properties which
include the convergence factor q, and the defect reductions dk at iterations k. The defect reduction is computed as suggested
by Trottenberg et al. [31]. The solution u = 0 of the homogeneous Poisson’s problem f = 0 is considered, and the initial
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Fig. 4. Convergence factor versus relaxation factor (a), defect reduction versus the iteration number (b) with periodic boundary conditions and uniform
meshes.

guess of the multigrid defect correction is initialized with a random field of zero mean value. The empirical convergence
factor is computed from the defects at the iterationsm0 = 10 and m1 = 20, with the relation

q =
m1−m0


dm1/dm0 . (24)

The optimal relaxation factor is computed from theminimumof the curve representing the convergence factor q as a function
of the relaxation factor ω. Once, the optimal relaxation factor is determined for the Jacobi and the ILU(0) smoothers, their
associated defect dk versus the iteration numbers are considered for the two grid sizes 128×128 and 1024×1024. The defect
of the smoother-free versionω = 0 is also considered on these two grids. This allows us to evaluate themesh-independency
of the present method. From the relaxation factor and the defect data, we are able to assess the convergence features of the
present multigrid defect correction.

Fig. 4 presents the convergence features, on a periodic domain with uniformmesh, of the multigrid defect correction for
smoother-free, Jacobi and ILU(0) smoothers. It should be noted from Fig. 4(a) that the convergence factor qwith respect to
the relaxation parameter ω is in good agreement with the predictions of Section 2. The computed convergence factors are
close to the analytical curves (full and dashed line) in the whole range of the relaxation factor. This allows us to validate the
value of the optimal relaxation factor and tour numerical implementation. Next, Fig. 4(b) outlines the mesh-independency
of the defect reduction for the three versions. Indeed, the defects reduction rate is identical regardless of the mesh size. It
can be stated that the ILU(0) has the best defect reduction factor, as demonstrated in the former section.

Fig. 5 presents the convergence features when the periodic boundary conditions are substituted by Neumann ones. So,
the assumptions made for the analytical derivation of the convergence factor are not valid. However, Fig. 5(a) shows that
the computed convergence factors fit with theoretical ones for the Jacobi and the ILU(0) smoothers. Fig. 5(b) also shows the
mesh-independency of the three implemented versions. From these remarks, the Neumann boundary conditions seem to
be effect-less on the convergence features.

Fig. 6 presents the convergence properties for a periodic domain with a non-uniform mesh. In this case this is the mesh
which does not fulfill the initial assumptions. This times, the convergence factor at the optimal relaxation factor is altered
for both the Jacobi and the ILU(0) smoothers. In fact, the convergence factor is, respectively, about 0.3 and 0.15 for the Jacobi
and ILU(0) smoothers in contrast to 0.18 and 0.08 as previously observed. Only the smoother-free version (ω = 0) conserves
a convergence close to 0.44. The defect convergence history for the Jacobi and ILU(0) smoothers are also affected: to reach
the stopping criteria, few iterations are needed. This feature involves a slight loss of the mesh-independency.

In the same way, Fig. 7 shows the influence on the convergence factor of the Neumann boundary conditions associated
with a non-uniform mesh. In this case all the initial assumptions are avoid. The curves follow the same trend observed in
the periodic/non-uniform configuration. The convergence factor at the optimal relaxation factor is degraded and a loss of
the mesh-independency of the defect reduction is noted. Thus it can be concluded that for the singular Poisson problem the
convergence factor is strongly influenced by a non-uniform mesh.

Here, the influence of the fill-in parameter for the ILU smoother is investigated.
The convergence properties as a function of the fill-in parameter are detailed in Fig. 8 when Neumann boundary

conditions and non-uniformmesh are considered. An important improvement is notedwhen the fill-in parameter increases.
In Fig. 8(a), ILU(2), ILU(4) and ILU(10) give a better convergence factor than the ILU(0). Moreover, the optimal relaxation
factor ωilu

opt = 0.6751 predicted by theory is recovered by using ILU(2). In comparison with ILU(2), ILU(4) and ILU(10) do not
lead to a more efficient scheme within the meaning of convergence factor.
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Fig. 5. Convergence factor versus relaxation factor (a), defect reduction versus the iteration number (b) with Neumann boundary conditions and uniform
meshes.

Fig. 6. Convergence factor versus relaxation factor (a), defect reduction versus the iteration number (b) with periodic boundary conditions and non-
uniform meshes.

Regardless of the computational cost issue, the following conclusions can be drawn. First, the numerical experiments
show that predicted optimal relaxation factors are in agreement with those computed, at least with non-uniformmeshes. If
non-uniformmeshes are considered the optimal relaxation factors are altered, but can be recovered if ILU(4) is considered for
the smoothing step. From the theory and the numerical experiments, there follows a clear conclusion: the defect correction
associated with the ILU(4) smoother is the best combination in the meaning of the convergence factor. The complementary
side of the computational cost issue is addressed in the next section. The computational time of the present multigrid
defect correction is analyzed within a framework closed to the computational fluid dynamics: the Hodge–Helmholtz
decomposition.

3.3. Hodge–Helmholtz decomposition of a vector field

A vector field can be decomposed as the sum of a divergence free vector field and a conservative vector field as follows

u⋆ = u + ∇φ, (25)

where ∇ · u = 0 and φ stands for a scalar field. In computational fluid dynamics of the incompressible flows, a such
decomposition is a key point to obtain an approximate velocity fulfilling divergence-free constraint with the machine
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Fig. 7. Convergence factor versus relaxation factor (a), defect reduction versus the iteration number (b) with periodic boundary conditions and non-
uniform mesh.

Fig. 8. Influence of the fill-in parameter; convergence factor versus relaxation factor (a), defect reduction versus the iteration number (b).

accuracy. Taking the divergence of the decomposition Eq. (25), the following Poisson equation is formulated

∇ · ∇φ = ∇ · u⋆. (26)

Here, homogeneous Neumann boundary conditions are considered. The computational efficiency of the multigrid defect
correction is evaluated with the decomposition of the following vector velocity field

u⋆ = (− cos(2πx) sin(2πy)+ π sin(4πx), sin(2πx) cos(2πy)+ π sin(4πy)) . (27)

The Hodge–Helmholtz decomposition is given by
φ = −

1
4
(cos(4πx)+ cos(4πy))

u = (− cos(2πx) sin(2πy), sin(2πx) cos(2πy)) .
(28)

The Neumann boundary conditions and the non-uniform mesh Eq. (23) are also considered. The stopping criterion is set
to 10−10. In order to investigate the performance of the multigrid defect correction, the absolute numerical error ϵ of the
pressure φ, is plotted as a function of the CPU-time in Fig. 9(a).

This figure provides two major informations: the order of accuracy of the scheme and the dependency of the
computational time with the grid size. For instance, if a scheme of order p (ϵ ∝ hp) has a linear complexity algorithm
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Fig. 9. Numerical error on φ versus cpu time, for different smoother (a), comparison with the second-order discretization (b).

(tcpu ∝ n2
∝ 1/h2), then the numerical error varies with the computational time according to ϵ ∝ t−p/2

cpu . Fig. 9(a) illustrates
this feature for the smoother-free, Jacobi, ILU(4) and ILU(10) smoothers. First, independently on the smoother, slopes range
in 1.8–1.9. This confirms the fourth-order accuracy of the scheme and the linear complexity algorithm of this method of
solutions. This figure also illustrates that the most efficient smoother is the ILU(4) one. For instance, an error of the order
of 10−7 is reached with the ILU(4) smoother with more than twice less computational resource than the smoother-free
version. It should be also noted that the ILU(10) smoother needs a slightly more computational resource than the ILU(4) one
for similar results for the largestmesh. This is in agreementwith the conclusion of the previous section. Finally, comparisons
between the ILU(4) smoother and a second order discretization of Poisson equation solved by the algebraic multigrid solver
of HYPRE are provided in Fig. 9(b). The numerical error as a function of the computational time is plotted. First, the slope
associated with the second order is about −1 as expected. Then, for this test case, the plot clearly shows the superiority of
the fourth-order defect correction with the ILU(4) smoother associated with a multigrid Poisson solver. Indeed, the error
level of the fourth-order is never achieved by the second-order discretization, at least with a reasonable cpu time.

4. Conclusion

In this work, amultigrid defect correctionmethod is investigated to solve a fourth-order compact scheme approximation
of the singular Poisson equation. An eigenvalues analysis of the iteration matrix is developed, and provides several insights
on the convergence factor and the mesh-independency of the spectral radius. It is demonstrated that the introduction of a
smoothing sweep improves the convergence factor of the iterativemethod, the latter being dependent on a relaxation factor.
A procedure is proposed to determine the optimal value of this relaxation factor both for the Jacobi and ILU smoothers. The
better convergence factor has been found for the ILU smoother: a factor of improvement of 8 is determined with the ILU
smoother in comparison with the smoother-free version. This analysis is based on the assumption of a periodic domain
and uniform mesh. Several numerical experiments were performed. First, the fourth-order accuracy is demonstrated on
the uniform and non-uniform meshes with the Neumann boundary conditions. Then, the experiments on the uniform
meshes corroborate the existence of an optimal relaxation factor for each smoother and the mesh-independency of the
convergence factor. It has been found that a non-uniform mesh alterates the optimal convergence factor and the mesh-
independency if the Jacobi and the ILU(0) smoothers are used. Furthermore, the smoother ILU(4) allows us to recover the
theoretical convergence factor and the mesh independency. Finally, the computational performance is assessed by means
of the Hodge–Helmholtz decomposition test case. It clearly shows that within the meaning of computational effort, the
fourth-order accurate scheme is better than second order, thanks to the proposed efficient multigrid defect correction.
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