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NUMERICAL STUDY OF NON-BOUSSINESQ CONVECTION IN A VENTILATED CAVITY
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The non-Boussinesq convection in a ventilated square cavity is studied numerically. The flow is driven by a prescribed constant inlet velocity at the top-left wall and an outlet located at the bottom-right wall. The prescribed temperature difference, between the inlet flow and the walls of the cavity, involves buoyancy forces which modify the flow. The density variations are considered by means of a low-Mach-number formulation, which is discretized by a projection scheme based on a second-order finitedifference discretization. The steady solutions associated to forced and mixed convection are presented. A discussion based on the flow and heat transfer features is proposed. Especially, the deviation from the Boussinesq model is highlighted in the case of mixed convection.

INTRODUCTION

Convection heat transfer is dominant in several thermal engineering applications. Some examples include the cooling of electronic devices and the design of greenhouses. Thus, in the last 40 years, a large number of numerical studies have been reported in the literature to describe heat transfer coefficient exchange, particularly, for flows in wall bounded domain, and precisely, flows in confined domain with several inlet/outlet ports such as ventilated cavity.

A ventilated cavity refers to flows in a rectangular or parallelepipedic domain having one or more inlet/outlet ports. On the application sides, building ventilation motivates an important amount of experimental and numerical studies. For instance, [START_REF] Nielsen | The velocity characteristics of ventilated rooms[END_REF] have investigated the turbulent flow in a parallelepipedic domain with an inlet on the upper-left face and with an outlet port on the bottom-right face. This flow configuration has been considered for experiments [START_REF] Nielsen | The velocity characteristics of ventilated rooms[END_REF], large Eddy simulations [START_REF] Zhang | Large eddy simulation of indoor airflow with a filtered dynamic subgrid scale model[END_REF], or RANS computation [START_REF] Limane | Thermo-ventilation study by openfoam of the airflow in a cavity with heated floor[END_REF]. A flow in a cubical cavity has also been considered in the recent work of [START_REF] Van Hooff | Counter-gradient diffusion in a slot-ventilated enclosure assessed by LES and RANS[END_REF] or previously by [START_REF] Ezzouhri | Large eddy simulation of turbulent mixed convection in a 3D ventilated cavity: Comparison with existing data[END_REF]. These works highlight the specific features, such as transitional flows, turbulence anisotropy, and adverse pressure gradient [START_REF] Van Hooff | Counter-gradient diffusion in a slot-ventilated enclosure assessed by LES and RANS[END_REF]. Heat transfer also contributes to modify the flow structure. For instance, [START_REF] Ezzouhri | Large eddy simulation of turbulent mixed convection in a 3D ventilated cavity: Comparison with existing data[END_REF] have outlined the existence of two mean flows for an identical flow configuration.

Laminar flows in rectangular domain are also of primary interest in the understanding of heat transfer mechanisms. Applications are encountered in electronic device cooling. Heat transfers in a cavity can be controlled by introducing one or several inlet velocities; this is the consequence of the forced convection mechanism. [START_REF] Saeidi | Forced convection in a square cavity with inlet and outlet ports[END_REF] well illustrated this kind of investigation. They have proposed a parametric study to show the influence of the inlet and outlet locations on the flow features and heat transfers. Their results suggest that the Nusselt number achieves the highest values for an outlet at the vicinity of the corner. The lowest one is achieved for an outlet [START_REF] Saeidi | Forced convection in a square cavity with inlet and outlet ports[END_REF]. [START_REF] Saeidi | Transient flow and heat transfer leading to periodic state in a cavity with inlet and outlet ports due to incoming flow oscillation[END_REF] considered a time-dependent sinusoidal inlet velocity and shown that a peak of the average Nusselt number is observed for a Strouhal number close to 1.

More recently, Selimefendigil and Öztop (2014c) have investigated the flow in a ventilated cavity with two symmetrical inlets and outlet ports, and by considering buoyancy effects. They have considered several variants such as time forcing inlets and a stationary or rotating cylinder inside the cavity (Selimefendigil andÖztop, 2014c, 2015). Nanofluid and ferrofluid have also been investigated (Selimefendigil and Öztop, 2014a,b). From the amount of results, the rise of heat transfer with respect to Reynolds or Grashof numbers should be noted. Moreover, for a prescribed harmonic inlet forcing, a periodic regime is noted (Selimefendigil and Öztop, 2014b). In this case, the lowest Nusselt number is achieved for the highest frequency.

Based on the above literature review, all results involve incompressible flows with the Boussinesq approximation for the buoyancy term. However, this assumption is valid for density nearly constant. Several works based on the low-Mach-number model [START_REF] Paolucci | Filtering of sound from the Navier-Stokes equations[END_REF] show the importance of the density variation even at low speed flow. For instance, [START_REF] Nicoud | Conservative high-order finite-difference schemes for low-Mach number flows[END_REF] has performed a simulation of the turbulent flow and shown that the mean flow admits an asymmetrical feature due to the mean gradient temperature. The low-Mach-number model has been also retained to predict natural convection flow in a differentially heated cavity with prescribed large temperature gradients (Le [START_REF] Quéré | Modelling of natural convection flows with large temperature differences: A benchmark problem for low mach number solvers, Part 1. Reference solutions[END_REF]. More recently, [START_REF] Sun | On the heat and mass transfer analogy for natural convection of non-dilute binary mixtures of ideal gases in cavities[END_REF] and [START_REF] Sun | Transient double-diffusive convection in an enclosure with large density variations[END_REF] have analyzed the heat and mass transfers in a cavity based on the low-Mach assumption. Some discrepancies are noted for the local Nusselt and Sherwood numbers, in comparison with the Boussinesq limit. In addition to mass or thermal Rayleigh numbers, the low-Mach model introduces a parameter denoted ϵ, which refers to the deviation from the Boussinesq assumption, and a thermodynamic pressure for closed enclosures [START_REF] Sun | On the heat and mass transfer analogy for natural convection of non-dilute binary mixtures of ideal gases in cavities[END_REF].

Regarding the present literature review, it appears that no work is reported for mixed convection in a ventilated enclosure based on the low-Mach-number approach. So here we propose to investigate it. The geometrical configuration of [START_REF] Saeidi | Transient flow and heat transfer leading to periodic state in a cavity with inlet and outlet ports due to incoming flow oscillation[END_REF] is retained with one inlet and one outlet port. Moreover, the buoyancy effect and density variations are also considered to compute steady laminar flow. Section 2 describes the geometrical and governing equations. Next, the numerical method for the computation of solutions is detailed. The numerical results, including the code validation, are discussed in Section 4.

PROBLEM FORMULATION

Flow Configuration

A sketch of the physical problem is shown in Fig. 1. A square cavity of height H is considered with an inlet and outlet ports located at the left-top and right-bottom walls, respectively. The size of these ports is h = 0.25H. The temperature T h at the walls is constant. At the inlet port, a uniform velocity u i and temperature T c are prescribed. It is assumed that the incoming fluid flow temperature is lower than the wall temperature T c < T h . The physical properties of the fluid are assumed to be constant and determined at the reference temperature T ref = (T c + T h )/2. Depending on the inlet velocity and temperature gradient, the flow could be driven by forced, mixed, or natural convection. The governing equations are described hereafter.

Governing Equations

The flow is assumed to be two-dimensional, and the low-Mach-number model is considered for density variation. This formulation can deal with large temperature differences and/or large mass fraction differences in contrast to the Boussinesq approximation. From a practical point of view, this model is more suitable than the compressible model because acoustic waves are not considered. This relaxes the stability constraints of such numerical solvers [START_REF] Paolucci | Filtering of sound from the Navier-Stokes equations[END_REF]. This model relies on the decomposition of the motion pressure into a fluctuating part p and a thermodynamic pressure P th . The former satisfies the equation of state (ideal gas law). The dimensionless equations read

∂ρ ∂t + ∇ • ρu = 0 (1) FIG. 1: Sketch of the ventilated cavity ∂ρu ∂t + ∇ • ρu ⊗ u = -∇p + ∇τ + Ri ϵ (ρ -1) g (2) ρ ∂θ ∂t + ∇ • (ρuθ) = 1 RePr ∇ • (∇θ) + γ -1 ϵγ d t P th (3) 
P th = ρ (1 + ϵθ) (4) 
where the vector u = [u, v] t stands for the dimensionless velocity and p for the dimensionless pressure. These dimensionless equations are derived from the reference length and velocity, H and u i , respectively. The dimensionless density ρ stands for the ratio between the fluid density and the inlet density ρ i . The dimensionless temperature is defined by θ = (T -T c )/(T h -T c ). The Reynolds and Grashof numbers are defined by Re = u i H/ν and Gr = H 3 gϵ/ν 2 , respectively. The parameter ϵ = 1 -T c /T h is the deviation from the Boussinesq approximation. The boundary conditions are described in Section 2.1, except for the outlet port, for which the homogeneous Neumann boundary conditions are prescribed for each variable.

NUMERICAL METHODS

Method of Solutions

The numerical solution of the low-Mach-number formulation, Eqs. ( 1)-( 4), is addressed by means of a fractional step method for the incompressible Navier-Stokes equations. It should be noted that an interesting review has been proposed by [START_REF] Knikker | A comparative study of high-order variable-property segregated algorithms for unsteady low Mach number flows[END_REF]. The main idea is to write the constraint on the divergence velocity and to enforce it with a pressure correction equation. The constraint on the divergence velocity is

∇ • u = 1 V 1 P th ( 1 RePr ∇ • ∇θ - 1 γ d t P th ) ( 5 
)
where V is the volume of the enclosure. The volume integration of this constraint leads to a relation for the temporal derivative of the thermodynamic pressure:

d t P th = 1 V 1 P th 1 RePr ∫ V ∇ • ∇θdV (6) 
In comparison with incompressible Navier-Stokes equations, the two main differences involve the temperature equation and the velocity divergence. First, the temporal derivative of the thermodynamic pressure acts in the temperature equation and the velocity divergence. Then, the diffusive terms of the temperature appear in the velocity divergence.

The procedure to solve the low-Mach-number formulation is based on the review of [START_REF] Knikker | A comparative study of high-order variable-property segregated algorithms for unsteady low Mach number flows[END_REF]. The implemented algorithm involves the semi-explicit backward Euler/Adam Bashfort (EB2/AB) time scheme, which is second-order accurate. The main steps are noted as follows:

1. Advance the temperature. The variable θ n+1 is computed from the time-discretized temperature equation. The new thermodynamic pressure is updated from

P th = M 0 / ∫ 1/θdv.
2. Advance the density. The density ρ n+1 is evaluated from ρ n+1 = P th /(1 + ϵθ n+1 ).

3.

Compute the provisional velocity. The momentum equations are advanced in time to provide a provisional velocity field which does not fulfill the divergence constraint.

4. Pressure correction step. A pressure correction equation (Poisson) with variable coefficient is solved to enforce the divergence constraint.

5. Velocity correction. In this final step the provisional velocity is corrected by means of the gradient of pressure correction.

The above procedure is detailed by [START_REF] Knikker | A comparative study of high-order variable-property segregated algorithms for unsteady low Mach number flows[END_REF] and labeled "projection method with variable-coefficient Poisson equation." The time step is such that the CFL condition is always lower than 1/2. The staggered grid layout is retained and combined with a second-order finite-difference discretization. The mesh can be stretched by means of analytic mesh transformation [START_REF] Vinokur | On one-dimensional stretching functions for finite-difference calculations[END_REF]. The solutions to the linear systems arising from the discretization of the temperature, the momentum, and the pressure equations are tackled with a geometric multigrid solver. Particularly, the solver provided by the HYPRE library [START_REF] Falgout | The design and implementation of HYPRE, a library of parallel high performance preconditioners[END_REF] has been used in this work.

Validation

The code validation is made by considering the benchmark of the differentially heated cavity with a large temperature gradient [START_REF] Bouafia | Non-Boussinesq convection in a square cavity with surface thermal radiation[END_REF][START_REF] Knikker | A comparative study of high-order variable-property segregated algorithms for unsteady low Mach number flows[END_REF][START_REF] Sun | On the heat and mass transfer analogy for natural convection of non-dilute binary mixtures of ideal gases in cavities[END_REF]. The benchmark case is described by [START_REF] Quéré | Modelling of natural convection flows with large temperature differences: A benchmark problem for low mach number solvers, Part 1. Reference solutions[END_REF] and consists in computing the natural convection in a two-dimensional square cavity for which the isotherm left and right walls define the temperature gradient ∆T = T h -T c , while the top and bottom walls are adiabatic. The working fluid is an ideal gas; its properties, except density, remain constant. The benchmark case is uniquely defined if the Grashof, Prandtl, and the thermal expansion parameter ϵ are known. A very fine mesh of size 1024 × 1024 refined at the vicinity of the walls is considered to calculate an accurate solution for the set of parameters: Gr = 10 6 , Pr = 0.71, and ϵ = 0.6. H being the height of the cavity, the smallest and biggest cell sizes are equal to 0.00049H and 0.00149H, respectively. Such a mesh refinement is achieved by using a tangent hyperbolic mesh transformation [START_REF] Vinokur | On one-dimensional stretching functions for finite-difference calculations[END_REF]. The isotherms and the streamlines are plotted in Fig. 2. This plot, for instance, can be compared with Fig. 2 of the recent work of [START_REF] Bouafia | Non-Boussinesq convection in a square cavity with surface thermal radiation[END_REF]. Regarding the general features of this flow, the present results are in good agreement with previous works. A more specific comparison with the Nusselt number and the thermodynamic pressure is proposed in the Table 1. The quantities of interest are the average, minimum, and maximum Nusselt numbers on the hot and cold walls of the cavity. The first and second column provide the present code and Vierendeels' solutions, respectively. It should be pointed out that the data of Vierendeels are extracted from the benchmark work detailed by [START_REF] Paillère | Modelling of natural convection flows with large temperature differences: A benchmark problem for low Mach number solvers, Part 2[END_REF]. An excellent agreement is noted for all the heat transfer characteristics computed with the present code. It can be concluded that the validation of the present numerical method is satisfactory and thus can be used to evaluate the solutions of the low-Mach-number flow in a ventilated cavity.

FIG. 2:

Isotherms and streamlines of the heated cavity; Ra = 10 6 and ϵ = 0.6 

RESULTS

In this section the flow and heat transfer features are discussed. The simulations of the ventilated cavity flow have been carried out for the following range of dimensionless numbers: 100 Re 600, 0 Gr 10 5 , and 10 -3 ϵ 0.6.

Numerical Details

A set of simulations has been carried out to give numerical solutions of the flow for the range of parameters previously mentioned. The criterion to stop the simulation is the residual of each variable: below 10 -6 the solution is assumed converged. The meshes are stretched such as the smallest cells are located at the vicinity of the walls, and the biggest at the center of the cavity. The flow for Re = 500, Gr = 10 5 , and ϵ = 0.6 has been computed with four different mesh grid sizes: 40 × 40, 80 × 80, 160 × 160, and 320 × 320. Then, the velocity and temperature profiles at the middle of the cavity are plotted in Fig. 3. Figure 3 indicates us that a grid size of 160 × 160 is sufficient to accurately describe the flow. In this case, the smallest and the biggest cell sizes are equal to h min = 0.00315H and h max = 0.00853H, respectively. In the following, the discussions are based on streamlines and iso-temperatures, velocity/temperature profiles, and the Nusselt number. An illustration is given in Fig. 4 for the case Re = 400, Gr = 10 3 , and ϵ = 0.4. The local Nusselt number is computed with:

Nu(s) = ∂θ ∂n s (7)
where s is a curvilinear coordinate as depicted in Fig. 4(d), and n the normal of the wall. In this study, the average Nusselt number is obtained by integration over the left and the bottom walls. For this configuration, the main stream flow, formed between two circulation regions, connects the inlet and the outlet ports. The presence of a primary vortex, 70% of characteristic length H, a secondary vortex next to the 

Heat Transfers

In this section, the heat transfers at the cavity's left and bottom walls are discussed in order to compare the Boussinesq and non-Boussinesq models. Thus the mean Nusselt number is computed from the simulations performed with the Reynolds and Grashof numbers fulfilling the range 100 Re 600 and 0 Gr 10 5 . As defined previously, the non-Boussinesq parameter is set between ϵ = 10 -3 and 0.6. Such a choice allows us to consider the forced and the mixed convection regimes, while requiring the Boussinesq (ϵ = 10 -3 ) and the non-Boussinesq (ϵ = 0.6) models.

The mean Nusselt numbers gathered from the present simulations with the previously defined parameters are represented in Fig. 5.

A specific format is retained in Fig. 5: the mean Nusselt number is plotted with respect to the Richardson number and using a logarithmic scale. Using this data representation, four branches could be clearly revealed. Each branch is associated to a Grashof number, as indicated in Fig. 5. It should be noted that the plot of the branch Gr = 0 is made possible by substituting arbitrarily Gr = 0 with Gr = 10 -2 . This improves the analysis of the data without modifying the results.

The pure forced convection regime is featured by Gr = 0. The mean Nusselt number associated to this regime corresponds to the first branch at the left part of an influence is noted. Thus, for the highest Reynolds number Re = 600, the Nusselt numbers spread in the range 5.5 ≤ Nu ≤ 6, while the thermal expansion parameter ϵ is comprised between 10 -3 and 0.6. Moreover, the discrepancies between the incompressible and quasicompressible flow are quite small. A similar analysis can be achieved with the Grashof numbers Gr = 10 3 and Gr = 10 4 .

A different behavior is noted for the fourth branch Gr = 10 5 , except for the smallest Reynolds number Re = 100. For this value, the thermal expansion parameter ϵ does not influence the mean Nusselt number. A significant influence is observed for the other Reynolds numbers. Moreover, a particular behavior should be noted at Re = 600, where, unlike the other branches, the thermal expansion parameter has no significant influence. Irrespective of the density variation model (Boussinesq or non-Boussinesq), the mean Nusselt number is around 5.25. The most important influence of the thermal expansion parameter on the Nusselt number is achieved for the Reynolds numbers comprised between 200 and 400. As can be seen in Fig. 5, the branch stretches into two curves associated to the Boussinesq and the low-Mach approximations. This global analysis of the heat transfers leads us to consider the present data in two groups: the mixed convection regime (Gr = 10 5 ) and the forced convection regime (Gr = 0, Gr = 10 3 , Gr = 10 4 ). In the following section the flow is discussed for the mixed convection regime.

The Mixed Convection Regime

In this section, the mixed convection regime is considered. This corresponds to the simulations carried out with the Grashof number Gr = 10 5 . The present discussion on the influence of the parameter ϵ focuses on the Reynolds numbers Re = 100, Re = 600, and Re = 200. The chosen Reynolds numbers correspond to the bottom, top and middle of the fourth branch presented in Fig. 5.

For the Reynolds number Re = 100, Fig. 5 exhibits a small influence of the parameter ϵ on the mean Nusselt number. In this case, the local Nusselt numbers at the left and bottom walls of the cavity are investigated. The local Nusselt number is plotted in Fig. 6(a).

Its values, at the left wall, are smaller for the low-Mach approximation in comparison with the Boussinesq limit. In contrast, at the bottom wall, greater values of the local Nusselt number are observed for the low-Mach regime. This rise could be associated to the buoyancy forces induced by the temperature gradient. The balance of the local Nusselt numbers at the left and the bottom walls of the cavity leads to a small variation of the mean Nusselt number. The isotherms and the streamlines associated to the former parameters are presented in Figs. 7(a . Indeed, at the left wall of the cavity the local Nusselt heat transfer is higher for the Boussinesq limit. At the bottom wall the opposite phenomena holds. In fact, the cell confined between the jet stream and the lower left circulation has become stronger for the non-Boussinesq approximation. Moreover, its center has moved toward the bottom wall. The shear stress also becomes important at the vicinity of the bottom wall, leading to a rise of the local Nusselt number.

Here, the local Nusselt number for Re = 200 is considered. According to Fig. 5, an influence of the thermal expansion parameter is noted. To explain this, the local Nusselt numbers at the left and the bottom walls are considered [Fig. 6(b)]. The discrepancies between the Boussinesq limit (ϵ = 10 -3 ) and the non-Boussinesq approximation (ϵ = 0.6) originate from the left wall. In the first-half part of the bottom wall, the Nusselt number in the Boussinesq limit is higher than the one computed with the non-Boussinesq approximation. In the second-half part of the bottom wall, the opposite behavior is observed. Thus the average Nusselt number at the bottom wall is quite similar for the two models. The discrepancies originate from the left wall, as noted in Fig. 6(b), on which the Nusselt number in the Boussinesq limit is notably higher than the non-Boussinesq approximation. In the case of the non-Boussinesq model (ϵ = 0.6) the secondary recirculation region, which occurs at the left wall below the flow inlet, is 3 times bigger [Figs. 7(c) and 7(d)] than the one noted in the Boussinesq limit (ϵ = 0.001). The growth of this secondary recirculation has for a consequence that the wall shear stress decreases and, in a similar way, the heat transfers. The tightened isotherms in the Boussinesq limit [Fig. 7(c)], which are no longer observed in the non-Boussinesq approximation, corroborate this analysis. 

The Forced Convection Regime

This section is devoted to the description of the forced convection regime. This corresponds to the Grashof numbers Gr = 0, Gr = 10 3 , and Gr = 10 4 , and the Reynolds numbers such as the Richardson number is lower than 1. Moreover, the behavior of the flow and the heat transfers is quite similar for the three Grashof numbers at the lower Reynolds numbers. A slight dependency with respect to the thermal expansion parameter is noted for increasing Reynolds number (Fig. 5). So, in the following, the discussion focuses on the Grashof number Gr = 10 A similar conclusion can be drawn for the Reynolds number Re = 200; there is no significant effect of the density variation modeling. In comparison with the Reynolds number Re = 100, the main recirculation at the bottom left is bigger and the isotherms are more stiff at the left wall [Figs. 9(c) and 9(d)].

The more significant discrepancies occur for the Reynolds number Re = 600. In this case, the mean Nusselt number is higher by using the Boussinesq model than the non-Boussinesq one. A Nusselt number Nu = 5.9 versus Nu = 5.5 for the non-Boussinesq approach is noted. The flow is also slightly modified. The main difference with the two other Reynolds numbers is that a small recirculation occurs at the vicinity of the bottom-left corner [Fig. 9(e)]. Moreover, at the left wall the isocontours of temperature are more tightened, which corroborates that the highest Nusselt number is obtained for this Reynolds number. The discrepancies between Boussinesq and non-Boussinesq come from the heat transfer at the left wall, for which the Boussinesq approach provides always a superior local Nusselt number [Fig. 8(c)].

The average Nusselt number on the left and bottom walls and for the Reynolds number Re = 600 are summarized in Table 2. This table clearly shows that there is a small influence of the density variation modeling up to Grashof number Gr = 10 4 . For the three Grashof numbers, the mean Nusselt number is around 6% more by considering the Boussinesq model. For the highest Grashof number Gr = 10 5 there is no longer a noticeable discrepancy. The difference is about 0.4%.

TABLE 2:

Mean Nusselt number on the left and bottom walls of the cavity (Re = 600) Gr 0 10 3 10 4 10 5 ϵ = 10 -3 5.87 5.87 5.85 5.21 ϵ = 0.6 5.53 5.52 5.50 5.23

CONCLUSION

A numerical study of a ventilated cavity flow has been presented. The low-Mach-number formulation has been retained to include buoyancy effects without the Boussinesq assumption. The governing equations have been discretized by means of second-order finite-difference discretization. A projection scheme to deal with the velocity/pressure and thermodynamic pressure coupling has been also considered. The method of solution has been successfully validated by comparisons with the two-dimensional low-Mach-number differentialy heated cavity. Based on this solver, simulations of the steady and two-dimensional flow in a ventilated cavity have been carried out. The range of parameters 100 ≤ Re ≤ 600, 0 ≤ Gr ≤ 10 5 , and 0 ≤ ϵ ≤ 0.6 leads to forced and a mixed convection regimes. It has been mainly shown that the thermal expansion parameter has a significant effect on mixed convection flow (Gr = 10 5 and 200 ≤ Re ≤ 400). This study could benefit from including the thermal dependency of the fluid properties, and thus to assess their influence on the heat transfers. Also, such a study could be extended to the moist air convection in order to compare the Boussinesq and non-Boussinesq model when heat and mass transfer are combined.
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 3 FIG.3: Mesh sensitivity analysis; velocity and temperature horizontal profiles at the middle of the cavity; Re = 500, Gr = 10 5 , and ϵ = 0.6
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 4 FIG. 4: Ventilated cavity for the parameters Re = 400, Gr = 10 3 , ϵ = 0.4: isotherms and streamlines (a), midline velocities (b), midline temperatures (c), and Local Nusselt number profile (d)

  FIG. 5: Mean Nusselt number versus the Richardson number for the different flow parameters Re and Gr
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 7 FIG. 7: Isotherms and streamlines for the mixed convection regime (Gr = 10 5 ): Re = 100 (a,b), Re = 200 (c,d), Re = 600 (e,f); left column ϵ = 0.001 and right column ϵ = 0.6

  3 and for the Reynolds numbers Re = 100, Re = 200, and Re = 600. First, for the Reynolds number Re = 100 there is no noticeable dependency with respect to the thermal expansion parameter ϵ. The local Nusselt number at the left and the bottom walls is plotted in Fig.8(a).The local Nusselt number is very similar, whatever the thermal expansion parameter ϵ. The flow consists of a main stream connecting the inlet and the outlet ports, a main circulation at the bottom left of the cavity, and a small one at the upper right [Fig.9(a)]. The Boussinesq and non-Boussinesq flows are very similar [Figs. 9(a) and 9(b)].
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 89 FIG. 8: Local Nusselt number for the forced convection regime (Gr = 10 3 ): Re = 100 (a), Re = 200 (b), and Re = 600 (c)

  

  

TABLE 1 :

 1 Nusselt number and thermodynamic pressure; h and c refer to the hot and cold wall, respectively

		Present code	Vierendeels
	Mesh	1024 × 1024	2048 × 2048
	Nu av (h/c)	8.8597/8.8601	8.85978/8.85978
	Nu min (h/c)	1.0735/0.8551	1.0735/0.8551
	Nu max (h/c) 19.5984/16.3656 19.5964/16.3623
	P th	0.856327	0.856340