
HAL Id: hal-01589285
https://hal.science/hal-01589285

Submitted on 30 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Numerical study of non-Boussinesq convection in a
ventilated cavity

Oussama Chabani, Stéphane Abide, Nacer Lamrous, Belkacem Zeghmati

To cite this version:
Oussama Chabani, Stéphane Abide, Nacer Lamrous, Belkacem Zeghmati. Numerical study of non-
Boussinesq convection in a ventilated cavity. Computational Thermal Sciences: An International
Journal, 2017, 9 (2), pp.135-149. �10.1615/ComputThermalScien.2017018912�. �hal-01589285�

https://hal.science/hal-01589285
https://hal.archives-ouvertes.fr


NUMERICAL STUDY OF NON-BOUSSINESQ CONVECTION IN A 
VENTILATED CAVITY

O. Chabani,1 S. Abide,2,∗ N. Lamrous,1 & B. Zeghmati2

1Laboratoire de Mécanique, Structure et Energétique, Université Mouloud MAMMERI de
Tizi-Ouzou, Tizi-Ouzou, Algérie

2Laboratoire de Mathématiques et de Physique, Université de Perpignan Via Domitia,
Perpignan, France

The non-Boussinesq convection in a ventilated square cavity is studied numerically. The flow is driven by a prescribed constant 
inlet velocity at the top-left wall and an outlet located at the bottom-right wall. The prescribed temperature difference, between 
the inlet flow and the walls of the cavity, involves buoyancy forces which modify the flow. The density variations are considered 
by means of a low-Mach-number formulation, which is discretized by a projection scheme based on a second-order finite-
difference discretization. The steady solutions associated to forced and mixed convection are presented. A discussion based on 
the flow and heat transfer features is proposed. Especially, the deviation from the Boussinesq model is highlighted in the case of 
mixed convection.
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1. INTRODUCTION

Convection heat transfer is dominant in several thermal engineering applications. Some examples include the cooling
of electronic devices and the design of greenhouses. Thus, in the last 40 years, a large number of numerical studies
have been reported in the literature to describe heat transfer coefficient exchange, particularly, for flows in wall
bounded domain, and precisely, flows in confined domain with several inlet/outlet ports such as ventilated cavity.

A ventilated cavity refers to flows in a rectangular or parallelepipedic domain having one or more inlet/outlet
ports. On the application sides, building ventilation motivates an important amount of experimental and numerical
studies. For instance, Nielsen et al. (1978) have investigated the turbulent flow in a parallelepipedic domain with an
inlet on the upper-left face and with an outlet port on the bottom-right face. This flow configuration has been consid-
ered for experiments (Nielsen et al., 1978), large Eddy simulations (Zhang and Chen, 2000), or RANS computation
(Limane et al., 2015). A flow in a cubical cavity has also been considered in the recent work of van Hooff et al.
(2014) or previously by Ezzouhri et al. (2009). These works highlight the specific features, such as transitional flows,
turbulence anisotropy, and adverse pressure gradient (van Hooff et al., 2014). Heat transfer also contributes to modify
the flow structure. For instance, Ezzouhri et al. (2009) have outlined the existence of two mean flows for an identical
flow configuration.

Laminar flows in rectangular domain are also of primary interest in the understanding of heat transfer mech-
anisms. Applications are encountered in electronic device cooling. Heat transfers in a cavity can be controlled by
introducing one or several inlet velocities; this is the consequence of the forced convection mechanism. Saeidi and
Khodadadi (2006) well illustrated this kind of investigation. They have proposed a parametric study to show the in-
fluence of the inlet and outlet locations on the flow features and heat transfers. Their results suggest that the Nusselt
number achieves the highest values for an outlet at the vicinity of the corner. The lowest one is achieved for an outlet
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NOMENCLATURE

Roman Symbols
Cp heat capacity, J/kg K

Gr Grashof number, H3ϵg/ν2

H cavity height, m

h opening height, m

Nu Nusselt number

Pth thermodynamic pressure, Pa

p dynamic pressure, Pa

Pr Prandtl number,ν/α

Ri Richardson number, Gr/Re2

Re Reynolds number,uiH/ν

T temperature, K

u dimensionless velocity vector

Greek Symbols
α thermal diffusivity

ϵ non Bousinesq parameter,∆T/Tc

γ Laplace coefficient (heat capacity fraction)

ν kinematic viscosity, m2/s

ρ density, kg/m3

τ dimensionless stress vector

θ dimensionless temperature

Subscripts
c cold

i inlet

h hot

port locatedat the middle of the cavity walls (Saeidi and Khodadadi, 2006). Saeidi and Khodadadi (2007) considered
a time-dependent sinusoidal inlet velocity and shown that a peak of the average Nusselt number is observed for a
Strouhal number close to 1.

More recently, Selimefendigil and̈Oztop (2014c) have investigated the flow in a ventilated cavity with two
symmetrical inlets and outlet ports, and by considering buoyancy effects. They have considered several variants such
as time forcing inlets and a stationary or rotating cylinder inside the cavity (Selimefendigil andÖztop, 2014c, 2015).
Nanofluid and ferrofluid have also been investigated (Selimefendigil andÖztop, 2014a,b). From the amount of results,
the rise of heat transfer with respect to Reynolds or Grashof numbers should be noted. Moreover, for a prescribed
harmonic inlet forcing, a periodic regime is noted (Selimefendigil andÖztop, 2014b). In this case, the lowest Nusselt
number is achieved for the highest frequency.

Based on the above literature review, all results involve incompressible flows with the Boussinesq approximation
for the buoyancy term. However, this assumption is valid for density nearly constant. Several works based on the
low-Mach-number model (Paolucci, 1982) show the importance of the density variation even at low speed flow. For
instance, Nicoud (2000) has performed a simulation of the turbulent flow and shown that the mean flow admits an
asymmetrical feature due to the mean gradient temperature. The low-Mach-number model has been also retained
to predict natural convection flow in a differentially heated cavity with prescribed large temperature gradients (Le
Quéŕe et al., 2005). More recently, Sun and Lauriat (2009) and Sun et al. (2010) have analyzed the heat and mass
transfers in a cavity based on the low-Mach assumption. Some discrepancies are noted for the local Nusselt and
Sherwood numbers, in comparison with the Boussinesq limit. In addition to mass or thermal Rayleigh numbers, the
low-Mach model introduces a parameter denotedϵ, which refers to the deviation from the Boussinesq assumption,
and a thermodynamic pressure for closed enclosures (Sun and Lauriat, 2009).

Regarding the present literature review, it appears that no work is reported for mixed convection in a ventilated
enclosure based on the low-Mach-number approach. So here we propose to investigate it. The geometrical configu-
ration of Saeidi and Khodadadi (2007) is retained with one inlet and one outlet port. Moreover, the buoyancy effect
and density variations are also considered to compute steady laminar flow. Section 2 describes the geometrical and
governing equations. Next, the numerical method for the computation of solutions is detailed. The numerical results,
including the code validation, are discussed in Section 4.
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2. PROBLEM FORMULATION

2.1 Flow Configuration

A sketch of the physical problem is shown in Fig. 1. A square cavity of heightH is considered with an inlet and
outlet ports located at the left-top and right-bottom walls, respectively. The size of these ports ish = 0.25H. The
temperatureTh at the walls is constant. At the inlet port, a uniform velocityui and temperatureTc are prescribed. It is
assumed that the incoming fluid flow temperature is lower than the wall temperatureTc < Th. The physical properties
of the fluid are assumed to be constant and determined at the reference temperatureTref = (Tc + Th)/2. Depending
on the inlet velocity and temperature gradient, the flow could be driven by forced, mixed, or natural convection. The
governing equations are described hereafter.

2.2 Governing Equations

The flow is assumed to be two-dimensional, and the low-Mach-number model is considered for density variation.
This formulation can deal with large temperature differences and/or large mass fraction differences in contrast to the
Boussinesq approximation. From a practical point of view, this model is more suitable than the compressible model
because acoustic waves are not considered. This relaxes the stability constraints of such numerical solvers (Paolucci,
1982). This model relies on the decomposition of the motion pressure into a fluctuating partp and a thermodynamic
pressurePth. The former satisfies the equation of state (ideal gas law). The dimensionless equations read

∂ρ

∂t
+∇ · ρu = 0 (1)

FIG. 1: Sketch of the ventilated cavity
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∂ρu

∂t
+∇ · ρu⊗ u = −∇p+∇τ+

Ri
ϵ

(ρ− 1)g (2)

ρ
∂θ

∂t
+∇ · (ρuθ) =

1
RePr

∇ · (∇θ) +
γ− 1
ϵγ

dtPth (3)

Pth = ρ (1+ ϵθ) (4)

where the vectoru = [u, v]
t stands for the dimensionless velocity andp for the dimensionless pressure. These

dimensionless equations are derived from the reference length and velocity,H andui, respectively. The dimensionless
densityρ stands for the ratio between the fluid density and the inlet densityρi. The dimensionless temperature is
defined byθ = (T − Tc)/(Th − Tc). The Reynolds and Grashof numbers are defined by Re =uiH/ν and Gr =
H3gϵ/ν2, respectively. The parameterϵ = 1 − Tc/Th is the deviation from the Boussinesq approximation. The
boundary conditions are described in Section 2.1, except for the outlet port, for which the homogeneous Neumann
boundary conditions are prescribed for each variable.

3. NUMERICAL METHODS

3.1 Method of Solutions

The numerical solution of the low-Mach-number formulation, Eqs. (1)–(4), is addressed by means of a fractional
step method for the incompressible Navier-Stokes equations. It should be noted that an interesting review has been
proposed by Knikker (2011). The main idea is to write the constraint on the divergence velocity and to enforce it with
a pressure correction equation. The constraint on the divergence velocity is

∇ · u =
1
V

1
Pth

(

1
RePr

∇ · ∇θ−
1
γ
dtPth

)

(5)

whereV is the volume of the enclosure.The volume integration of this constraint leads to a relation for the temporal
derivative of the thermodynamic pressure:

dtPth =
1
V

1
Pth

1
RePr

∫

V

∇ · ∇θdV (6)

In comparison with incompressibleNavier-Stokes equations, the two main differences involve the temperature equa-
tion and the velocity divergence. First, the temporal derivative of the thermodynamic pressure acts in the temperature
equation and the velocity divergence. Then, the diffusive terms of the temperature appear in the velocity divergence.
The procedure to solve the low-Mach-number formulation is based on the review of Knikker (2011). The implemented
algorithm involves the semi-explicit backward Euler/Adam Bashfort (EB2/AB) time scheme, which is second-order
accurate. The main steps are noted as follows:

1. Advance the temperature.The variableθn+1 is computed from the time-discretized temperature equation. The
new thermodynamic pressure is updated fromPth = M0/

∫

1/θdv.

2. Advance the density.The densityρn+1 is evaluated fromρn+1 = Pth/(1+ ϵθn+1).

3. Compute the provisional velocity.The momentum equations are advanced in time to provide a provisional
velocity field which does not fulfill the divergence constraint.

4. Pressure correction step.A pressure correction equation (Poisson) with variable coefficient is solved to enforce
the divergence constraint.

5. Velocity correction.In this final step the provisional velocity is corrected by means of the gradient of pressure
correction.
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The above procedure is detailed byKnikker (2011) and labeled “projection method with variable-coefficient Poisson
equation.” The time step is such that the CFL condition is always lower than 1/2. The staggered grid layout is retained
and combined with a second-order finite-difference discretization. The mesh can be stretched by means of analytic
mesh transformation (Vinokur, 1983). The solutions to the linear systems arising from the discretization of the tem-
perature, the momentum, and the pressure equations are tackled with a geometric multigrid solver. Particularly, the
solver provided by the HYPRE library (Falgout et al., 2006) has been used in this work.

3.2 Validation

The code validation is made by considering the benchmark of the differentially heated cavity with a large temperature
gradient (Bouafia et al., 2015; Knikker, 2011; Sun and Lauriat, 2009). The benchmark case is described by Le Quéŕe
et al. (2005) and consists in computing the natural convection in a two-dimensional square cavity for which the
isotherm left and right walls define the temperature gradient∆T = Th − Tc, while the top and bottom walls are
adiabatic. The working fluid is an ideal gas; its properties, except density, remain constant. The benchmark case is
uniquely defined if the Grashof, Prandtl, and the thermal expansion parameterϵ are known. A very fine mesh of
size 1024× 1024 refined at the vicinity of the walls is considered to calculate an accurate solution for the set of
parameters: Gr = 106, Pr = 0.71, andϵ = 0.6.H being the height of the cavity, the smallest and biggest cell sizes are
equal to 0.00049H and 0.00149H, respectively. Such a mesh refinement is achieved by using a tangent hyperbolic
mesh transformation (Vinokur, 1983). The isotherms and the streamlines are plotted in Fig. 2. This plot, for instance,
can be compared with Fig. 2 of the recent work of Bouafia et al. (2015). Regarding the general features of this flow,
the present results are in good agreement with previous works. A more specific comparison with the Nusselt number
and the thermodynamic pressure is proposed in the Table 1. The quantities of interest are the average, minimum, and
maximum Nusselt numbers on the hot and cold walls of the cavity. The first and second column provide the present
code and Vierendeels’ solutions, respectively. It should be pointed out that the data of Vierendeels are extracted
from the benchmark work detailed by Paillère et al. (2005). An excellent agreement is noted for all the heat transfer
characteristics computed with the present code. It can be concluded that the validation of the present numerical
method is satisfactory and thus can be used to evaluate the solutions of the low-Mach-number flow in a ventilated
cavity.

FIG. 2: Isotherms and streamlines of the heated cavity;Ra = 106 andϵ = 0.6
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TABLE 1: Nusselt number and thermodynamic pres-
sure;h andc referto the hot and cold wall, respectively

Present code Vierendeels
Mesh 1024× 1024 2048× 2048

Nuav (h/c) 8.8597/8.8601 8.85978/8.85978

Numin (h/c) 1.0735/0.8551 1.0735/0.8551

Numax (h/c) 19.5984/16.3656 19.5964/16.3623

Pth 0.856327 0.856340

4. RESULTS

In this section the flow and heattransfer features are discussed. The simulations of the ventilated cavity flow have
been carried out for the following range of dimensionless numbers: 1006 Re6 600, 06 Gr 6 105, and 10−3 6 ϵ 6

0.6.

4.1 Numerical Details

A set of simulations has been carried out to give numerical solutions of the flow for the range of parameters previously
mentioned. The criterion to stop the simulation is the residual of each variable: below 10−6 the solution is assumed
converged. The meshes are stretched such as the smallest cells are located at the vicinity of the walls, and the biggest
at the center of the cavity. The flow for Re = 500, Gr = 105, andϵ = 0.6 has been computed with four different mesh
grid sizes: 40× 40, 80× 80, 160× 160, and 320× 320. Then, the velocity and temperature profiles at the middle of
the cavity are plotted in Fig. 3.

Figure 3 indicates us that a grid size of 160× 160 is sufficient to accurately describe the flow. In this case, the
smallest and the biggest cell sizes are equal tohmin = 0.00315Handhmax = 0.00853H, respectively.

(a) (b)

FIG. 3: Mesh sensitivity analysis; velocity andtemperature horizontal profiles at the middle of the cavity; Re = 500, Gr = 105, and
ϵ = 0.6
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In the following, the discussions are based onstreamlines and iso-temperatures, velocity/temperature profiles,
and the Nusselt number. An illustration is given in Fig. 4 for the case Re = 400, Gr = 103, andϵ = 0.4. The local
Nusselt number is computed with:

Nu(s) =
∂θ

∂n

∣

∣

∣

∣

s

(7)

wheres is a curvilinear coordinate as depicted in Fig. 4(d),andn the normal of the wall. In this study, the average
Nusselt number is obtained by integration over the left and the bottom walls.

For this configuration, the main stream flow, formed between two circulation regions, connects the inlet and
the outlet ports. The presence of a primary vortex, 70% of characteristic lengthH, a secondary vortex next to the

(a) (b)

(c) (d)

FIG. 4: Ventilated cavity for the parameters Re= 400, Gr = 103, ϵ = 0.4: isotherms and streamlines (a), midline velocities (b),
midline temperatures (c), and Local Nusselt number profile (d)
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top-right corner part, and a much smallerone at the bottom-left corner is observed. Figure 4(b) shows the profile of
the velocitiesu andv at the vertical and horizontal midlines, respectively. Both velocities have negative sign in the
circulation regions and positive sign outside the circulation. The temperature in the two midlines is shown in Fig. 4(c).
It is observed that the temperature decreases forx andy values up to 0.5, which corresponds to the main stream. The
local Nusselt number profiles on the four walls of the cavity are plotted in Fig. 4(d). In this figure the curvilinear
coordinatess is introduced. It can be noted that the values of the local Nusselt number drop from the maximum
values at the openings to minimum values at the bottom-left and top-right corners (the circulation regions).

4.2 Heat Transfers

In this section, the heat transfers at the cavity’s left and bottom walls are discussed in order to compare the Boussinesq
and non-Boussinesq models. Thus the mean Nusselt number is computed from the simulations performed with the
Reynolds and Grashof numbers fulfilling the range 1006 Re6 600 and 06 Gr 6 105. As defined previously, the
non-Boussinesq parameter is set betweenϵ = 10−3 and 0.6. Such a choice allows us to consider the forced and the
mixed convection regimes, while requiring the Boussinesq (ϵ = 10−3) and the non-Boussinesq (ϵ = 0.6) models.

The mean Nusselt numbers gathered from the present simulations with the previously defined parameters are
represented in Fig. 5.

A specific format is retained in Fig. 5: the mean Nusselt number is plotted with respect to the Richardson number
and using a logarithmic scale. Using this data representation, four branches could be clearly revealed. Each branch is
associated to a Grashof number, as indicated in Fig. 5. It should be noted that the plot of the branch Gr = 0 is made
possible by substituting arbitrarily Gr = 0 with Gr = 10−2. This improves the analysis of the data without modifying
the results.

The pure forced convection regime is featured by Gr = 0. The mean Nusselt number associated to this regime
corresponds to the first branch at the left part of Fig. 5. The lowest and highest mean Nusselt numbers are associated
to the Reynolds numbers Re = 100 and Re = 600, respectively. The thermal expansion parameterϵ has no effect on
the mean Nusselt number for the lowest Reynolds number Re = 100. However, when the Reynolds number increases,

FIG. 5: Mean Nusselt number versus the Richardsonnumberfor the different flow parameters Re and Gr
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an influence is noted. Thus, for the highest Reynolds number Re = 600, the Nusselt numbers spread in the range
5.5≤ Nu ≤ 6, while the thermal expansion parameterϵ is comprised between 10−3 and 0.6. Moreover, the discrep-
ancies between the incompressible and quasicompressible flow are quite small. A similar analysis can be achieved
with the Grashof numbers Gr = 103 and Gr = 104.

A different behavior is noted for the fourth branch Gr = 105, except for the smallest Reynolds number Re =
100. For this value, the thermal expansion parameterϵ does not influence the mean Nusselt number. A significant
influence is observed for the other Reynolds numbers. Moreover, a particular behavior should be noted at Re =
600, where, unlike the other branches, the thermal expansion parameter has no significant influence. Irrespective of
the density variation model (Boussinesq or non-Boussinesq), the mean Nusselt number is around 5.25. The most
important influence of the thermal expansion parameter on the Nusselt number is achieved for the Reynolds numbers
comprised between 200 and 400. As can be seen in Fig. 5, the branch stretches into two curves associated to the
Boussinesq and the low-Mach approximations. This global analysis of the heat transfers leads us to consider the
present data in two groups: the mixed convection regime (Gr = 105) and the forced convection regime (Gr = 0, Gr =
103, Gr = 104). In the following section the flow is discussed for the mixed convection regime.

4.3 The Mixed Convection Regime

In this section, the mixed convection regime is considered. This corresponds to the simulations carried out with
the Grashof number Gr = 105. The present discussion on the influence of the parameterϵ focuses on the Reynolds
numbers Re = 100, Re = 600, and Re = 200. The chosen Reynolds numbers correspond to the bottom, top and middle
of the fourth branch presented in Fig. 5.

For the Reynolds number Re = 100, Fig. 5 exhibits a small influence of the parameterϵ on the mean Nusselt
number. In this case, the local Nusselt numbers at the left and bottom walls of the cavity are investigated. The local
Nusselt number is plotted in Fig. 6(a).

Its values, at the left wall, are smaller for the low-Mach approximation in comparison with the Boussinesq limit.
In contrast, at the bottom wall, greater values of the local Nusselt number are observed for the low-Mach regime. This
rise could be associated to the buoyancy forces induced by the temperature gradient. The balance of the local Nusselt
numbers at the left and the bottom walls of the cavity leads to a small variation of the mean Nusselt number. The
isotherms and the streamlines associated to the former parameters are presented in Figs. 7(a) and 7(b). The dominated
natural convection can be noted.

(a) (b)

FIG. 6
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(c)

FIG. 6: Local Nusselt number for the mixed convection regime (Gr = 105): Re = 100 (a), Re = 200 (b), and Re = 600 (c)

A recirculation region occurs at the center of the cavity while the main stream, which connects the inlet to the
outlet ports, filled the upper and right parts of the cavity. The size of the recirculation structures decreases for the
largest values of thermal expansion parametersϵ [Fig. 7(b)].

A similar analysis holds for the Reynolds number Re = 600. Figure 6(c) shows the local Nusselt number. At
the left wall of the cavity, the local Nusselt number values at the low Mach regime are smaller in comparison with
the Boussinesq limit, while greater values of the local Nusselt number at the low-Mach regime are observed at
the bottom wall. A new flow topology is noted on the left part of the cavity, Figs. 7(e) and 7(f). Two vortices are
observed at the left part of the cavity. The presence of these vortices is due to the interaction between the jet flow
and buoyancy forces. They represent about 80% of the cavity height (H). The dimensions of the cells change as
the thermal expansion parameter increases, whereas the total height of these two vortices remains constant. Another
recirculation zone is observed next to the top-right corner. Concerning the heat transfers at the left and bottom walls,
the present results highlight the effect of the recirculation zones on the local Nusselt number. Thus, in the Boussinesq
limit the bottom-left circulation is stronger than the non-Boussinesq approximation [Fig. 7(f)]. Indeed, at the left
wall of the cavity the local Nusselt heat transfer is higher for the Boussinesq limit. At the bottom wall the opposite
phenomena holds. In fact, the cell confined between the jet stream and the lower left circulation has become stronger
for the non-Boussinesq approximation. Moreover, its center has moved toward the bottom wall. The shear stress also
becomes important at the vicinity of the bottom wall, leading to a rise of the local Nusselt number.

Here, the local Nusselt number for Re = 200 is considered. According to Fig. 5, an influence of the thermal
expansion parameter is noted. To explain this, the local Nusselt numbers at the left and the bottom walls are consid-
ered [Fig. 6(b)]. The discrepancies between the Boussinesq limit (ϵ = 10−3) and the non-Boussinesq approximation
(ϵ = 0.6) originate from the left wall. In the first-half part of the bottom wall, the Nusselt number in the Boussinesq
limit is higher than the one computed with the non-Boussinesq approximation. In the second-half part of the bottom
wall, the opposite behavior is observed. Thus the average Nusselt number at the bottom wall is quite similar for the
two models. The discrepancies originate from the left wall, as noted in Fig. 6(b), on which the Nusselt number in the
Boussinesq limit is notably higher than the non-Boussinesq approximation. In the case of the non-Boussinesq model
(ϵ = 0.6) the secondary recirculation region, which occurs at the left wall below the flow inlet, is 3 times bigger
[Figs. 7(c) and 7(d)] than the one noted in the Boussinesq limit (ϵ = 0.001). The growth of this secondary recircula-
tion has for a consequence that the wall shear stress decreases and, in a similar way, the heat transfers. The tightened
isotherms in the Boussinesq limit [Fig. 7(c)], which are no longer observed in the non-Boussinesq approximation,
corroborate this analysis.
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(a) (b)

(c) (d)

(e) (f)

FIG. 7: Isotherms and streamlines for the mixed convection regime (Gr = 105): Re = 100 (a,b), Re = 200 (c,d), Re = 600 (e,f); left
columnϵ = 0.001 and right columnϵ = 0.6
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4.4 The Forced Convection Regime

This sectionis devoted to the description of the forced convection regime. This corresponds to the Grashof numbers
Gr = 0, Gr = 103, and Gr = 104, and the Reynolds numbers such as the Richardson number is lower than 1. Moreover,
the behavior of the flow and the heat transfers is quite similar for the three Grashof numbers at the lower Reynolds
numbers. A slight dependency with respect to the thermal expansion parameter is noted for increasing Reynolds
number (Fig. 5). So, in the following, the discussion focuses on the Grashof number Gr = 103 and for the Reynolds
numbers Re = 100, Re = 200, and Re = 600. First, for the Reynolds number Re = 100 there is no noticeable dependency
with respect to the thermal expansion parameterϵ. The local Nusselt number at the left and the bottom walls is plotted
in Fig. 8(a).

The local Nusselt number is very similar, whatever the thermal expansion parameterϵ. The flow consists of a
main stream connecting the inlet and the outlet ports, a main circulation at the bottom left of the cavity, and a small
one at the upper right [Fig. 9(a)]. The Boussinesq and non-Boussinesq flows are very similar [Figs. 9(a) and 9(b)].

(a) (b)

(c)

FIG. 8: Local Nusselt number for the forced convection regime (Gr = 103): Re = 100 (a), Re = 200 (b), and Re = 600 (c)
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(a) (b)

(c) (d)

(e) (f)

FIG. 9: Isotherms and streamlines for the forced convection regime (Gr = 103): Re = 100 (a,b), Re = 200 (c,d), Re = 600 (e,f); left
columnϵ = 0.001 and right columnϵ = 0.6
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A similar conclusion can be drawnfor the Reynolds number Re = 200; there is no significant effect of the density
variation modeling. In comparison with the Reynolds number Re = 100, the main recirculation at the bottom left is
bigger and the isotherms are more stiff at the left wall [Figs. 9(c) and 9(d)].

The more significant discrepancies occur for the Reynolds number Re = 600. In this case, the mean Nusselt
number is higher by using the Boussinesq model than the non-Boussinesq one. A Nusselt number Nu = 5.9 versus
Nu = 5.5 for the non-Boussinesq approach is noted. The flow is also slightly modified. The main difference with the
two other Reynolds numbers is that a small recirculation occurs at the vicinity of the bottom-left corner [Fig. 9(e)].
Moreover, at the left wall the isocontours of temperature are more tightened, which corroborates that the highest
Nusselt number is obtained for this Reynolds number. The discrepancies between Boussinesq and non-Boussinesq
come from the heat transfer at the left wall, for which the Boussinesq approach provides always a superior local
Nusselt number [Fig. 8(c)].

The average Nusselt number on the left and bottom walls and for the Reynolds number Re = 600 are summarized
in Table 2. This table clearly shows that there is a small influence of the density variation modeling up to Grashof
number Gr = 104. For the three Grashof numbers, the mean Nusselt number is around 6% more by considering
the Boussinesq model. For the highest Grashof number Gr = 105 there is no longer a noticeable discrepancy. The
difference is about 0.4%.

TABLE 2: Mean Nusselt number on the left
and bottom walls of the cavity (Re = 600)

Gr 0 103 104 105

ϵ = 10−3 5.87 5.87 5.85 5.21

ϵ = 0.6 5.53 5.52 5.50 5.23

5. CONCLUSION

A numerical study of a ventilatedcavity flow has been presented. The low-Mach-number formulation has been re-
tained to include buoyancy effects without the Boussinesq assumption. The governing equations have been discretized
by means of second-order finite-difference discretization. A projection scheme to deal with the velocity/pressure and
thermodynamic pressure coupling has been also considered. The method of solution has been successfully validated
by comparisons with the two-dimensional low-Mach-number differentialy heated cavity. Based on this solver, simu-
lations of the steady and two-dimensional flow in a ventilated cavity have been carried out. The range of parameters
100≤ Re≤ 600, 0≤ Gr≤ 105, and 0≤ ϵ ≤ 0.6 leads to forced and a mixed convection regimes. It has been mainly
shown that the thermal expansion parameter has a significant effect on mixed convection flow (Gr = 105 and 200≤
Re≤ 400). This study could benefit from including the thermal dependency of the fluid properties, and thus to assess
their influence on the heat transfers. Also, such a study could be extended to the moist air convection in order to
compare the Boussinesq and non-Boussinesq model when heat and mass transfer are combined.
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Le Qúeŕe, P., Weisman, C.,Paillère, H., Vierendeels, J., Dick, E., Becker, R., Braack, M., and Locke, J.C.W., Modelling of natural
convection flows with large temperature differences: A benchmark problem for low mach number solvers, Part 1. Reference
solutions,ESAIM: Math. Modelling and Numerical Analysis, vol.39, no. 3, pp. 609–616, 2005.

Limane, A., Fellouah, H., and Galanis, N., Thermo-ventilation study by openfoam of the airflow in a cavity with heated floor,
Build. Simul., vol. 8, no. 3, pp. 271–283, 2015.

Nicoud, F., Conservative high-order finite-difference schemes for low-Mach number flows,J. Comput. Phys., vol.158, no. 1, pp.
71–97, 2000.

Nielsen, P.V., Restivo, A., and Whitelaw, J., The velocity characteristics of ventilated rooms,J. Fluids Eng., vol.100, no. 3, pp.
291–298, 1978.
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