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Abstract. Cellular reprogramming, a technique that opens huge op-
portunities in modern and regenerative medicine, heavily relies on iden-
tifying key genes to perturb. Most of computational methods focus on
finding mutations to apply to the initial state in order to control which
attractor the cell will reach. However, it has been shown, and is proved in
this article, that waiting between the perturbations and using the tran-
sient dynamics of the system allow new reprogramming strategies. To
identify these temporal perturbations, we consider a qualitative model of
regulatory networks, and rely on Petri nets to model their dynamics and
the putative perturbations. Our method establishes a complete charac-
terization of temporal perturbations, whether permanent (mutations) or
only temporary, to achieve the existential or inevitable reachability of
an arbitrary state of the system. We apply a prototype implementation
on small models from the literature and show that we are able to derive
temporal perturbations to achieve trans-differentiation.

1 Introduction

Regenerative medicine is gaining traction with the discovery of cell reprogram-
ming, a way to change a cell phenotype to another, allowing tissue or neuron
regeneration techniques. After proof that cell fate decisions could be reversed
[17], scientists need efficient and trustworthy methods to achieve it. Instead of
producing induced pluripotent stem cells and force the cell to follow a distinct
differentiation path, new methods focus on trans-differentiating the cell, without
necessarily going (back) through a multipotent state [9,8].

This paper addresses the formal prediction of perturbations for cell repro-
gramming from computational models of gene regulation. We consider qualita-
tive models where the genes and/or the proteins, notably transcription factors,
are nodes with an assigned value giving the level of activity, e.g., 0 for inactive
and 1 for active, in a Boolean abstraction. The value of each node can then
evolve in time, depending on the value of its regulators.

The attractors, or long term dynamics, of qualitative models typically corre-
spond to differentiated and stable states of the cell [13,18]. In such a setting, cell
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reprogramming can be interpreted as triggering a change of attractor: starting
within an initial attractor, perform perturbations which would de-stabilize the
network and lead the cell to a different attractor.

Current experimental settings and computational models mainly consider
cell reprogramming by applying the set of perturbations simultaneously in the
initial state. However, as suggested in [14] and as we will demonstrate formally
in this paper, considering temporal reprogramming, i.e., the application of per-
turbations in particular moments in time, and in a particular ordering, brings
new reprogramming strategies, potentially requiring fewer interventions.

Contribution This paper establishes the formal characterization of all possible
reprogramming paths between two states of asynchronous Boolean networks by
the means of a bounded number of either permanent (mutations) or temporary
perturbations. Solutions account both for perturbations applied only in the ini-
tial state, and perturbations applied in a specific ordering and in specific states.
Moreover, the solutions can guarantee that the target state may be reached, or
will be reached inevitably.

Our method relies on a Petri net modelling jointly the asynchronous dynamics
of the Boolean network and the candidate perturbations. The reprogramming
solutions are identified from the state transition graph of the resulting model.
We apply our approach on biological networks from the literature, and show that
the temporal application of perturbations brings new reprogramming solutions.

Related work The computational prediction for reprogramming of Boolean net-
works has been addressed mainly by considering mutations to be applied in the
initial state only, letting then the system stabilize itself in the targeted attrac-
tor [6,19,15,1,7,16]. Our method includes temporal perturbations, which none of
these methods do: perturbations which takes into account the latent dynamics
of the system for the reprogramming, allowing more solutions to be found, and
possibly some needing fewer nodes to be perturbed.

Other approaches consider stochastic frameworks for exploring by simulation
potential reprogramming event in Boolean networks, such as [10] for stochastic
transitions between cell cycles. Statistical methods are also used to extract com-
binations of transcription factors that are key for cellular differentiation from
gene expression data [14,3]. In [14], starting from expression data, they derive
a continuous dynamical model from which control strategies for reprogramming
can be computed. They show that time-dependent perturbations can provide
potential reprogramming strategies.

Most of mentioned methods provide incomplete or non-guaranteed results.
Our aim is to provide a formal framework for the complete and exact character-
isation of the initial state and temporal reprogramming of Boolean networks.

Outline Sect. 2 details an example of Boolean network which motivates temporal
reprogramming. Sect. 3 introduces our model of temporal reprogramming, Sect. 4
establishes the identification of temporal reprogramming strategies, and Sect. 5
applies it to biological networks from the literature. Sect. 6 concludes the paper.



Notations: The set {1, ..., n} is noted [n]; Given x ∈ {0, 1}n and i ∈ [n], x̄{i} ∈
{0, 1}n is such that for all j ∈ [n], x̄

{i}
j

∆
= ¬xj if j = i and x̄

{i}
j

∆
= xj if j 6= i.

2 Background and Motivating Example

This section illustrates the benefit of temporal reprogramming on a small Boolean
network in order to trigger a change of attractor. We consider both perturba-
tions to be applied solely in the initial state, and perturbations to be applied
in a specific sequence in specific states. We show that, in the first setting, 3
perturbations are always required for the reprogramming, whereas the temporal
approach necessitates only 2.

2.1 Boolean networks

A Boolean Network is a tuple of Boolean functions giving the future value of
each node with respect to the global state of the network.

Definition 1 (Boolean Network (BN)). A Boolean Network of dimension
n is a function f such that:

f : {0, 1}n → {0, 1}n

x = (x1, ..., xn) 7→ f(x) = (f1(x), ..., fn(x))

The dynamics of a Boolean network f are modelled by transitions between
its states x ∈ {0, 1}n. In the scope of this paper, we consider the asynchronous
semantics of Boolean networks: a transition updates the value of only one node
i ∈ [n]. Thus, from a state x ∈ {0, 1}n, there is one transitions for each vertex i
such that fi(x) 6= xi. The transition graph (Def. 2) is a digraph where vertices are
all the possible states {0, 1}n, and edges correspond to asynchronous transitions.
The transition graph of a Boolean network f can be noted as STG(f)

Definition 2 (Transition graph). The transition graph (also known as state
graph) is the graph having {0, 1}n as vertex set and the edges set {x → x̄{i} |
x ∈ {0, 1}n, i ∈ [n], fi(x) = ¬xi}. A path from x to y is noted x→∗ y.

The terminal strongly connected components of the transition graph can be
seen as the long-term dynamics or “fates” of the system, that we refer to as
attractors. An attractor may model sustained oscillations (cyclic attractor) or a
unique state, referred to as a fixpoint, f(x) = x.

2.2 Cell reprogramming: the advantage of temporal perturbations

Let us consider the following Boolean Network:

f1(x) = x1 f2(x) = x2 f3(x) = x1 ∧ ¬x2 f4(x) = x3 ∨ x4



Fig. 1 gives the transition graph of this Boolean Network, and the different
perturbation techniques. To understand the benefit of temporal perturbations,
let us consider the perturbations to apply in the fixpoint 0000 in order to reach
the fixpoint 1101.

Because 0000 is a fixpoint, there exists no sequence of transitions from 0000
to 1101. It can also be seen that if one or two vertices are perturbed at the same
time, by affecting them new values, 1101 is not reachable, as shown in Fig. 1(top).
However, if two vertices are perturbed, but the system is allowed to follow its own
dynamics between the changes, 1101 can be reached, as shown in Fig. 1(bottom),

by using the path 0000
x1=1−−−→ 1000 → 1010 → 1011

x2=1−−−→ 1111 → 1101, i.e. we
first force the activation of the first node, then wait until the system reaches (by
itself) the state 1011 before activating node 2. From the perturbed state, the
system is guaranteed to end up in the wanted fixpoint, 1101.

Inevitable and existential reprogramming Thus, this example shows that some
attractors may be reached by changing the values of vertices in a particuliar
order and using the transient dynamics. We remark that there exists another
reprogramming path, where node 2 is perturbed when the system reach 1010.
Note that, in this case, after the second perturbation, the system can reach
1101, but it is not guaranteed. We say that, in the first reprogramming path,
the reprogramming is inevitable, whereas it is only existential in the second case.

Permanent and temporary solutions The previous example shows the difference
between what we will call temporal and initial reprogramming. How perturba-
tions are made has also to be considered. The model can either only be slightly
perturbed, by changing the value of a vertex i for a time (setting i to 0 or 1), or
the change can be permanent, by changing the function of the vertex (setting fi
to 0 or 1). On the example above, making permanent changes would not change
the solutions found. However, if the initial state is 1011 and the target state is
1100, then it has different solutions (Fig. 2).

Indeed, if the objective is to go from 1011 to 1100 in the same transition
graph using only permanent perturbations, then their order does not matter.
Perturbating x2 and x4 from the initial state is enough to make 1100 the only
reachable state. On the other hand, if the perturbations are temporary, x2 has
to be perturbed first, then when 1101 is reached, x4 can be perturbed. If this
order is not followed, 1101 is reachable as well as 1100.

In most case, the perturbations done in permanent reprogramming and the
ones done in temporary reprogramming can be on different nodes.

3 Modelling Temporal Reprogramming with Petri Nets

In this section, we introduce a new model for the temporal reprogramming of
Boolean Networks (BNs) using Safe (1-bounded) Petri nets [2]. We take ad-
vantage of the transition-centred specification of Petri nets and their ability to



0000 0001

0010 0011

0100 0101

0110 0111

1000 1001

1010 1011

1100 1101

1110 1111

0100

0000 0001

0010 0011

0101

0110 0111

1000 1001

1010 1011

1100 1101

1110 1111

x1 = 1

x2 = 1x2 = 1

Fig. 1. Transition graph of f and candidate perturbations (magenta) for the repro-
gramming from 0000 to 1101: (top) none of candidate perturbations of one or two
nodes in the initial state allow to reach 1101; (bottom) sequences of two temporal
perturbations allow to reach 1101.
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Fig. 2. Right part of the transition graph of f from initial state 1011 to 1100, with
permanent perturbations (left) and temporary ones (right)



define specific coupled transitions (the simultaneous change of value of several
components) to model the candidate perturbations.

Definition 3 (Safe Petri Net). A Petri net is a tuple (P, T,A,M0) where
P and T are sets of nodes, called places and transitions respectively, and A ⊆
(P × T ) ∪ (T × P ) is a flow relation whose elements are called arcs. A subset
M ⊆ P of the places is called a marking, and M0 is a distinguished initial
marking.

For any node u ∈ P ∪ T , we call pre-set of u the set •u = {v ∈ P ∪ T |
(v, u) ∈ A} and post-set of u the set u• = {v ∈ P ∪ T | (u, v) ∈ A}.

A transition t ∈ T is enabled at a marking M if and only if •t ⊆ M . The
application of such a transition leads to the new marking M ′ = (M \•t)∪ t•, and

is denoted by M
t−→M ′. A marking M ′ is reachable if there exists a sequence of

transitions t1, . . . , tk such that M0
t1−→ . . .

tk−→M ′.
A Petri net is safe if and only if any reachable marking M is such that for

any t ∈ T that can fire from M leading to M ′, the following property holds:
∀p ∈M ∩M ′, p ∈ •t ∩ t• ∨ p /∈ •t ∪ t•.

Less formally, a safe Petri Net is a Petri Net where in all reachable markings
from the initial marking, all places have at most one token. A subset of places
{p1, . . . , pk} ⊆ P is mutually exclusive if every reachable marking M contains at
most one these place.

3.1 Encoding asynchronous Boolean networks

The equivalent representation of the asynchronous semantics of a Boolean net-
work of dimension n f = (f1, · · · , fn) in Petri net has been addressed in [4,5].
Essentially, to each node i ∈ [n] of the Boolean network f is associated two
places, i0 and i1, acting respectively for the node i being inactive and active.
Then, transitions are derived from clauses of the Disjunctive Normal Form (DNF;
disjunction of conjunctive clauses) representation of [¬xi∧fi(x)] for i activation,
and from [xi ∧ ¬fi(x)] for i inactivation.

Given a logical formula [e], we write DNF[e] for its DNF representation.
DNF[e] is thus a set of clauses, where clauses are sets of literals. A literal corre-
spond to the state of a node, and is either of the form xi (node i is active), or ¬xi
(node i is inactive). Given such a literal l, place(l) associates the corresponding

Petri net place: place([xi])
∆
= i1 and place([¬xi])

∆
= i0.

The safe Petri net encoding the asynchronous semantics of a Boolean network
f is defined as follows.

Definition 4 (PN(f)). Given a Boolean network f of dimension n and an ini-
tial state x ∈ {0, 1}n, PN(f) = (Pf , Tf , Af ,M0) is the corresponding Safe Petri
Net such that:

– Pf =
⋃
i∈[n]{i0, i1} is the set of places,

– Tf and Af are the smallest sets which satisfy, for each i ∈ [n],



• for each clause c ∈ DNF[¬xi ∧ fi(x)], there is a transition ti,c ∈ Tf with
Af such that •ti,c = {place(l) | l ∈ c} and ti,c

• = {i1} ∪ •ti,c \ {i0};
• for each clause c ∈ DNF[xi∧¬fi(x)], there is a transition t¬i,c ∈ Tf with
Af such that •t¬i,c = {place(l) | l ∈ c} and t¬i,c

• = {i0} ∪ •t¬i,c \ {i1},
– M0 = {ixi | i ∈ [n]} is the initial marking.

Note that [5] also extends the encoding to multi-valued networks into 1-
bounded Petri nets (contrary to the encoding of multi-valued networks of [4]
which does not result in a safe Petri net). For the sake of simplicity, we re-
strict the presentation to Boolean networks. However, our encoding of temporal
perturbations can be easily extended to multi-valued networks.

Example 1. Fig. 3 gives the resulting Petri net encoding of the Boolean function
f3(x) = x1 ∧ ¬x2. In this case, DNF[¬x3 ∧ (x1 ∧ ¬x2)] = {{¬x3, x1,¬x2}} and
DNF[x3 ∧ (¬x1 ∨ x2)] = {{x3,¬x1}, {x3, x2}}.

3.2 Encoding temporal perturbations

Perturbations are modelled as additional transitions which modify the state of
nodes of the BN f . These perturbations can be performed at any time during
the transient dynamics, and independently of the current state of the network.

In the scope of this paper, we consider two kinds of perturbations: tempo-
rary perturbations induce a state change of nodes, but these nodes can later
be updated according to their Boolean function. Such perturbations can model,
for instance, the transient activation of transcription factor through a signalling
pathway. Permanent perturbations induce a permanent state change of nodes.
These perturbations model mutations (loss or gain of functions).

In both cases, we consider a limited amount of allowed perturbations: only
up to k successive perturbations can be performed.

Temporary perturbations In addition to the places for the BN node values,
we add k mutually exclusive places c1, . . . , ck and two mutually exclusive places
p0 and p1. Essentially, cj is marked if the next perturbation is the j-th; and p0

is marked if the j-th perturbation is yet to be performed, and p1 is marked if
the j-th perturbation has been performed.

The transitions are the same as in PN(f), with additional transitions ti,0 and
ti,1 for each node i ∈ [n] which set their value to 0 and 1 respectively. To be
enabled, these transitions need p0 to be marked, and after the transition, p1 is
marked. Finally, a transition tcj re-enabling p0 is defined for each cj , j ∈ [k−1],
which moves the marking of cj to cj+1.

Definition 5. Given a Boolean network f of dimension n, the Petri net (P, T,A,M0)
modelling its k temporary perturbations is given by

– P = Pf ∪ {p0,p1, c1, . . . , ck},
– T and A are the smallest sets which satisfy
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(a) BN transitions Tf ⊆ T , Af ⊆ A;
(b) Perturbation transitions for i ∈ [n],

ti,0 ∈ T with •ti,0 = {i1,p0} and ti,0
• = {i0,p1}

ti,1 ∈ T with •ti,1 = {i0,p0} and ti,1
• = {i1,p1};

(c) Perturbation enabling for j ∈ [k − 1],
tcj ∈ T with •tcj = {p1, cj} and tcj

• = {p0, cj+1},
– M0 = {ixi

| i ∈ [n]} ∪ {p0, c1},

where (Pf , Tf , Af ,M
′
0) = PN(f).

Example 2. Fig. 4(top) shows part of the transitions added by the modelling of
k = 2 temporary perturbations in the example of Fig. 3. In the given marking,
the perturbation are enabled, therefore, any of the 3 shown perturbation tran-
sitions can be applied. The application of one such transition disable the other
perturbation transitions (as p0 is no longer marked). By applying the transition
tc1, the perturbations transitions are then re-enabled, allowing a second (and
last) one to be applied.

Permanent perturbations (mutations) Contrary to temporary perturba-
tions, once a node has been (permanently) perturbed, its state should no longer
change. This is modelled by locks: if the i-th lock is active the node i cannot
perform any transition. In addition to the places introduced for temporary per-
turbations, our encoding add mutually exclusive places locki0, locki1 for each
each node i ∈ [n], locki0 being marked if the node i has not been perturbed,
locki1 being marked otherwise.

The transitions of the BN are then modified so that a transition changing
the state of node i requires the place locki0 to be marked. For each node i, 4
perturbations transitions are defined: two for the value changes (0 to 1 and 1 to
0) also inducing the marking of locki1; and two for the marking of locki1 without
value change: indeed, a mutation does not necessarily have to change the current
value of the node, but it prevents any further evolution of it.

Definition 6. Given a Boolean network f of dimension n, the Petri net (P, T,A,M0)
modelling its k permanent perturbations is given by

– P = Pf ∪ {p0,p1, c1, . . . , ck} ∪
⋃
i∈[n]{locki0, locki1}

– T and A are the smallest sets which satisfy
BN transitions ∀tl,c ∈ Tf , with l = i or l = ¬i, i ∈ [n],

t′l,c ∈ T with •t′l,c = •tl,c ∪ {locki0} and t′l,c
• = tl,c

• ∪ {locki0}
Perturbation transitions for i ∈ [n],

ti,0 ∈ T with •ti,0 = {i1,p0, locki0} and ti,0
• = {i0,p1, locki1}

ti,0′ ∈ T with •ti,0′ = {i0,p0, locki0} and ti,0′
• = {i0,p1, locki1}

ti,1 ∈ T with •ti,1 = {i0,p0, locki0} and ti,1
• = {i1,p1, locki1}

ti,1′ ∈ T with •ti,1′ = {i1,p0, locki0} and ti,1′
• = {i1,p1, locki1}

Perturbation enabling for j ∈ [k − 1],
tcj ∈ T with •tcj = {p1, cj} and tcj

• = {p0, cj+1}



– M0 = {ixi | i ∈ [n]} ∪ {p0, c1}

where (Pf , Tf , Af ,M
′
0) = PN(f).

Example 3. Fig. 4(bottom) shows part of the transitions added by the modelling
of k = 2 permanent perturbations. The transition t3,{¬x1} of Fig. 3 is modified
so that it is enabled only if lock30 is marked, i.e., the node 3 has not been
perturbed yet. Permanent perturbation transitions t3,1 and t3,1′ lock the node 3
to its value 1. Once applied, none of the transitions modifying the value of node
3 can be enabled. Transitions for re-enabling perturbations are identical to the
temporary case.

3.3 State Transition Graph

Given a BN f and an initial state x, the above modelling allows to compute
all the states reachable by any combination and succession of k perturbations,
temporary or permanent.

The next section establishes the complete characterisation of perturbations
for the existential and inevitable reprogramming of f from x. It relies on an
explicit state transition graph which is composed of two classes of transitions: the
transitions induced by BN f , and the transitions induced by the perturbation.

It can be remarked that our encoding uses an additional kind of transition:
the transitions for re-enabling the perturbation transitions, when strictly less
than k perturbations have been applied (transitions noted tcj , j ∈ [k−1]). These
transitions are artefacts of the modelling, and can be skipped during the state
transition graph construction.

Let us define a state transition graph among states S with two classes of
transitions E (induced by f) and M (induced by the perturbations), as the
smallest digraph (S, E ,M) such that M0 ∈ S, and for each M ∈ S, for each
t ∈ T such that •t ⊆M , let M ′ = (M \ •t) ∪ t•,

– if p1 ∈M and ck /∈M , then ∃j ∈ [k] : •tcj ∈M ′; let M ′′ = (M ′ \ •tcj)∪ tcj•,
M ′′ ∈ S and (M,M ′′) ∈ E,

– otherwise, M ′ ∈ S, and if t = tl,c, then (M,M ′) ∈ E , else (M,M ′) ∈M.

Given any marking M ∈ S of the resulting state transition graph, the number
of perturbations applied to reach M is given by j+b where cj ∈M and pb ∈M .

4 Complete Identification of Temporal Reprogramming
Strategies

This section explains how, from the transition graph obtained by the model of
Sect.3, the complete set of reprogramming solutions leading to a set of final
states F ⊆ S can be identified.

The Perturbation Transition Graph (Def. 7) gathers the transitions of the
Boolean network from the state x, and the perturbation transitions with a label



specifying the performed perturbation. Each node of the original transition graph
have multiple copies, given how many perturbations are used to reach it: thus, a
state of the perturbation transition graph is composed of the state of the Boolean
network and a perturbation counter. A transition of the Boolean network is
necessarily between two states with the same counter; a perturbation transition
is necessarily between a state with counter i to a state with counter i + 1. This
Perturbation Transition Graph can be directly computed from the Petri net
of Sect. 3. Given a subset M of perturbation transitions, a Perturbation Path
(Def.8) is a sequence of Boolean networks transitions and transitions in M .

Definition 7 (Perturbed Transition Graph). Given a Boolean network f of
dimension n and a maximum number of allowed perturbations k, the Perturbed
Transition Graph is a tuple (S0, E0,M0) where

– S0 = {0, 1}n × {0, .., k} is the set of states;
– E0 ⊆ {(s, i) → (s′, i) | i ∈ [0; k], (s → s′) ∈ Ef}, where STG(f) =

({0, 1}n, Ef ), is the set of normal transitions, which corresponds to a subset
of the asynchronous transitions of the Boolean network f ;

– M0 ⊆ {(s, i)→ (s′, i + 1) | i ∈ [0; k − 1], s, s′ ∈ {0, 1}n} × L is a set of per-
turbation transitions, where L is the set of labels describing the perturbation.

Definition 8 (Perturbation path (→∗M)). Given a Perturbation State Graph
(S, E ,M) and a set of perturbation transitions M ⊆M, →∗M⊆ S×S is a binary
relation such that

(s, i)→∗M (s′, i′)
∆⇔ (s, i) = (s′, i′) or ∃(s′′, i′′) ∈ S with

(s, i)→ (s′′, i′′) ∈ E ∪M and (s′′, i′′)→∗M (s′, i′)

4.1 Complete identification of reprogramming solutions

In the scope of this paper, we consider two classes of reprogramming solutions:
the reprogramming solutions which build a path that reaches one of the final
states, referred to as existential reprogramming (Def .9); and the reprogram-
ming solutions which ensure that a final state is always reached, referred to as
inevitable reprogramming (Def. 10)

Definition 9 (Existential Reprogramming). Given a Perturbation Tran-
sition Graph (S, E ,M) of a Boolean network f , a state (s0, i0) ∈ S has an
existential reprogramming to a set of states F ⊆ S if and only if there exists a
set of perturbation transitions M ⊆M such that there is a path from (s0, i0) to
a state w ∈ F using only E and M transitions, i.e., (s0, i0)→∗M w.

Definition 10 (Inevitable Reprogramming). Given a Perturbation Tran-
sition Graph (S, E ,M) of a Boolean network f , a state (s0, i0) ∈ S has an
inevitable reprogramming to a set of states F ⊆ S if and only if there exists
a set of perturbation transitions M ⊆ M such that from any state (s, i) ∈ S
reachable from (s0, i0) using E and M transitions, there exists a path from (s, i)
to a state in F using E and M transitions: ∀(s, i) ∈ S with (s0, i0) →∗M (s, i),
∃w ∈ F such that (s, i)→∗M w.



Given a reprogramming property, the set of nodes that verify it (called “valid
nodes” below) can be computed iteratively, by browsing the transition graph in a
reverse topological order of the strongly connected components. As a topological
order is used, the complexity is linear in the number of states in the Perturbed
Transition Graph.

It can be noted that all strongly connected components have the same value
of perturbations counter, as there are no edges that decrease the counter. As a
consequence, all edges between two strongly connected components are either
only normal edges, or only perturbation edges.

In the following part, we only consider the condensed graph G = (S, E ,M)
of the perturbed transition graph. For a graph G0 = (S0, E0,M0), the condensed
transition graph G, is defined by:

– A set of strongly connected components of the states. ∀u ∈ S0,∃s ∈ S, u ∈ s.
S is a partition of S0.

– A set of normal edges between the strongly connected components: E =
{((s, i) → (s′, i)) | s, s′ ∈ S, ∃s0 ∈ s, s′0 ∈ s′ such that ((s0, i) → (s′0, i)) ∈
E0}

– A set of perturbation edges between the strongly connected components:

M = {((s, i) l−→ (s′, i + 1)) | s, s′ ∈ S, ∃s0 ∈ s, s′0 ∈ s′ such that ((s0, i)
l−→

(s′0, i + 1)) ∈M0}

Given the construction of the graph, G is a Perturbed Transition Graph as well.

Existential Reprogramming: In the case of existential reprogramming, a
node is valid if it is one of the final nodes or if it has an edge (a normal edge or
a perturbation edge) that leads to a valid node.

Definition 11. Given a Perturbation Transition Graph (S, E ,M), the set of
valid nodes for existential reprogramming VE ⊆ S is defined by:
VE = {(u, i) ∈ S | ∃M ⊆M, ∃(v, j) ∈ F , (u, i)→∗M (v, j)}

Inevitable reprogramming: In the case of inevitable reprogramming, a valid
node is either: a) a final node, b) a node from which all children through nor-
mal edges are valid nodes, or c) a node that reaches a valid node through one
perturbation edge.

Definition 12. Given a Perturbation Transition Graph (S, E ,M), the set of
valid nodes for inevitable reprogramming VI ⊆ S is defined by:
VI = {(u, i) ∈ S | ∃M ⊆ M, ∃(v, j) ∈ F , (u, i) →∗M (v, j) and ∀(u′, i′) ∈
S verifying (u, i)→∗M (u′, i′), ∃(v′, j′) ∈ F , (u′, i′)→∗M (v′, j′)}

Validity of the initial node: If the initial node is not valid as defined above,
then there is no reprogramming solution given the settings. Otherwise, there
exist one or more paths that correspond to reprogramming solutions. This will
be illustrated on examples from the literature in Sect. 5.
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Fig. 5. The perturbation path returned by the algorithm on the example of Sect. 2

4.2 Example

Applied on the example of Sect. 2 for the inevitable reprogramming from 0000 to
1101 with k = 2, the algorithm returns the graph of Fig.5, with nodes verifying
the reprogramming property in black and the other ones in gray.

The temporal reprogramming path identified in Sect. 2 is the only strategy
for inevitable reprogramming.

4.3 Initial Reprogramming vs Temporal Reprogramming

In most other works, perturbations are performed only in the initial state. Our
method allows finding temporal perturbations paths, which accounts for the
transient dynamics of the system between the perturbations. We also capture
perturbations of the sole initial state: they correspond to paths where all the
first edges are perturbation edges, only followed by normal edges.

We consider that temporal reprogramming can return new reprogramming
strategies when the perturbations act on different nodes than perturbations of
the initial state only. Given the Perturbation Transition Graph, one can first
compute the reprogramming solutions for the initial state, and then enumerate
the perturbation paths that use different sets of perturbations.

5 Case studies

5.1 Identifying reprogramming paths

The set of reprogramming paths can be summarized by the perturbations they
involve and their ordering. These perturbations can be extracted from the valid
node computation introduced in Sect. 4 as follows.

To each valid node u ∈ VE or VI of the Peturbation Transition Graph,
we associate a set Su of sequences of perturbations, specified by the label of
perturbation transitions. Su gathers all possible perturbations to get from the
node u to a final state in F .
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Fig. 6. Simplification of a perturbation path for T-helper cells

If u ∈ F , Su = {∅}, i.e., no perturbation is necessary. Otherwise, Su consists
of the union of Sv for every children v where (u → v) ∈ E and of the union of

{l⊕ s | s ∈ Sv} for every children v where u
l−→ v ∈M, and l⊕ s is the sequence

starting with l and followed by s.
To get a minimal set of temporal perturbations, every perturbation sequence

that is equal or a superset of initial perturbations are removed, and only the
smallest sub-sequences (in terms of sequence inclusion) are kept.

5.2 T-helper cells

We applied a prototype implementation of our algorithm3 on the model of the
multi-valued T helper regulatory network introduced in [12].

The initial model has 17 nodes, with 2 or 3 possible values for each. We
applied the identification of inevitable reprogramming of the initial state where
all the nodes are inactive, except GATA3, IL4, IL4R and STAT6 that have
an initial value of 1, to any attractor where Tbet is active, using at most 2
permanent perturbations. The Perturbed Transition Graph has 21,647 nodes,
and 20,941 connected components. The set of temporal reprogramming paths
uses the following perturbations:

– IFNg=2, then, after several transitions, IFNgR=0
– IFNg=2, then, after several transitions, STAT1=0
– IFNgR=2, then, after several transitions, STAT1=0

The graph in Fig. 6 gives an example of a possible perturbation path that
uses INFg=2 and STAT1=0:

From the initial state, a permanent perturbation (INFg=2) is performed. The
new perturbed state, 1, has several possible futures, one of which leads to the
state 4 in the graph. From this state, the system can continue to follow its usual
dynamics, or can be perturbed again with STAT1=1 to go to the state 5, that
will always reach the final state. It can be seen that there are branching paths:
our method guarantees that from each reachable node there is perturbation path
leading to the final state, using one the three perturbation paths given above.

If one applies these perturbations (IFNg=2 and STAT=1) directly in the
initial state, the attractor where Tbet is active is not reachable. Therefore, this

3 Scripts and models available at http://www.lsv.fr/~mandon/CMSB2017.zip

http://www.lsv.fr/~mandon/CMSB2017.zip


perturbation path gives a new reprogramming strategy. Moreover, the temporal
reprogramming solutions returned by our method are complete.

5.3 Cardiac Gene Regulatory Network

The same algorithm has been applied to the Boolean model of the cardiac gene
regulatory network built in [11]. The Boolean network has 15 nodes. Its Per-
turbed Transition Graph with at most 3 permanent perturbations has around
60,000 reachable states.

In this example, we computed the fixpoints of the Boolean network and
identified reprogramming solutions to change from one fixpoint to another.

For some cases, we observe that temporal reprogramming provides solutions
requiring only two perturbations when at least three perturbations are required
when applied only in the initial state.

For instance, let us consider the inevitable reprogramming from the fix-
point where all nodes are active except Bmp2, Fgf8, Tbx5, exogen BMP2 I,
and exogen BMP2 II to the fixpoint where all nodes are inactive but Bmp2,
exogen BMP2 I, and exogen BMP2 II. Our method identifies 1 set of 3 pertur-
bations to apply in the initial state; and 14 sequences of temporal perturba-
tions, one of which requires only 2 perturbations (the loss of function of exo-
gen CanWnt I, followed later by the gain of function of exogen BMP2 I).

6 Discussion

Temporal reprogramming consists in applying perturbations in a specific order
and in specific states of the system to trigger and control an attractor change.

This paper establishes the complete characterization of temporal perturba-
tions for Boolean networks reprogramming. Perturbations can be applied at the
initial state, and during the transient dynamics of the system. This later feature
allows to identify new strategies to reprogram regulatory networks, by providing
solutions with different targets and possibly requiring less perturbations than
when applied only in the initial state.

Our method relies on a Petri net modelling the combination of Boolean net-
work asynchronous transitions with perturbation transitions. The identification
of temporal reprogramming solutions then relies on a explicit exploration of
the resulting state transition graph. Our framework can handle temporary (e.g.,
through signalling) and permanent (e.g., mutations) perturbations for the exis-
tential and inevitable reprogramming to the targeted state.

Future work will focus on increasing the scalability of temporal reprogram-
ming predictions. Notably, we aim at using partial order exploration and unfold-
ing of the Petri net model in order to exploit the concurrency of transitions.
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