Mixture Periodic GARCH Models: Theory and Applications - Archive ouverte HAL
Article Dans Une Revue Empirical Economics Année : 2018

Mixture Periodic GARCH Models: Theory and Applications

Saïd Souam
  • Fonction : Auteur
  • PersonId : 1039156
Faycal Hamdi
  • Fonction : Auteur

Résumé

This paper discusses mixture periodic GARCH (M-PGARCH) models that constitute very flexible class of nonlinear time series models of the conditional variance. It turns out that they are more parsimonious comparatively to high-order MPARCH models. We first provide some probabilistic properties of this class of models. We thus propose an estimation method based on the Expectation-Maximization (EM) algorithm. Finally, we apply this methodology to model the spot rates of the Algerian dinar against euro and U.S. dollar. This empirical analysis shows that M-PGARCH models yield the best performance among the competing models.

Mots clés

Fichier non déposé

Dates et versions

hal-01589209 , version 1 (18-09-2017)

Identifiants

  • HAL Id : hal-01589209 , version 1

Citer

Saïd Souam, Faycal Hamdi. Mixture Periodic GARCH Models: Theory and Applications. Empirical Economics, 2018, 55, pp.1925-1956. ⟨hal-01589209⟩
83 Consultations
0 Téléchargements

Partager

More