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In this Supplementary Materials we detail the calculations useful to derive the quantum hamilto-
nian in the Poincaré (or multipolar) gauge. The commutation rules in this gauge are derived. We
show that the correct dynamical equations are recovered with the help of the Heisenberg equation
and the commutation rules. We start these Supplementary Materials by recalling some proper-
ties of gauge transformations in classical physics and in quantum physics. We highlight that the
minimal-coupling hamiltonian in the Poincaré gauge is not equivalent to the Power-Zienau-Woolley
hamiltonian neither through a gauge transformation nor through a unitary transformation.
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I. GAUGE TRANSFORMATION IN CLASSICAL PHYSICS: THE HAMILTONIAN IN THE
MULTIPOLAR GAUGE

In the main article, we have considered all dynamical variables as fields (Schrödinger field or electromagnetic field).
The equation of motion were obtained from a lagrangian density or a hamiltonian density. We can also consider a
theoretical modeling where only the electromagnetic field variables are fields. The particle dynamical variables are its
position and its momentum. In such a case, the equations of motion are obtained from a lagrangian function or from
a hamiltonian function.

The goal of this section is to show that the Power-Zienau-Woolley hamiltonian does not derive from the minimal-
coupling hamiltonian with the help of a gauge transformation on the opposite to the conclusion of the reference[1].
These results are reproduced in the textbook[2]. In order to explain the errors done in the reference[1], we first start to
review some results about gauge transformation both in the lagrangian formalism and in the hamiltonian formalism.
By writing the minimal-coupling hamiltonian in the multipolar gauge, we recover a result similar to the calculations
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that we have done starting from a lagrangian density. We do not recover the Power-Zienau-Woolley hamiltonian on
the opposite to ref[1]. The last subsection (I C) points out the main errors done in this reference[1].

A. Gauge transformation in the lagrangian formalism

In this section we review the main results about the minimal-coupling lagrangian and its transformation through a
gauge transformation at the classical level. We consider a single particle with electric charge q in a binding potential
V (~r). The minimal-coupling lagrangian in arbitrary gauge reads:

L(~r, ~A, φ) =
1

2
m~̇r 2 − V (~r) (1)

+

∫
d~x

1

2
ε0[(∂t ~A(~x, t) +∇φ(~x, t))2 − 1

2µ0
(~∇× ~A(~x, t))2] (2)

+ q~̇r. ~A(~r, t)− qφ(~r) (3)

The dynamical variables are the position of the particle ~r, its velocity ~̇r, the electromagnetic-field degrees of freedom

i.e. the vector-potential ~A(~x, t) and the scalar potential φ(~x, t). The first term eq:(1) is the lagrangian of the particle
evolving in the binding potential V (~r). The second term eq:(2) is the lagrangian of the free electromagnetic-field and
the third term eq:(3) describes the coupling between the particle and the electromagnetic-field. Note that in this
interaction term, the electromagnetic potentials are evaluated at the particle position ~r.

With the help of the Euler-Lagrange equations, this lagrangian ables to recover the dynamical equations of the
particle given by the Newton law and the dynamical equations for the electromagnetic field given by the Maxwell
equations. There are source terms given by a current density ~j = q~̇rδ(~x− ~r) and a charge density ρ(~x, t) = qδ(~x− ~r).

We now fix the gauge. Depending on the condition we choose, the potentials satisfy either the Coulomb-gauge

condition div ~Ac(~x, t) = 0 or the Poincaré-gauge condition ~x. ~Ap(~x, t). We denote Lc(~r, ~Ac, φc) the lagrangian written

in the Coulomb gauge and Lp(~r, ~Ap, φp) the lagrangian written in the Poincaré gauge. At the classical level, one can
pass from one gauge condition (e.g. the Coulomb gauge) to another (e.g. the Poincaré gauge) with the help of a
gauge-generating function χc→p(~x, t).

{ ~Ac(~x, t), φc(~x, t)}
χc→p(~x,t)−−−−−−→ { ~Ap(~x, t), φp(~x, t)}

Starting from the Coulomb gauge, the electromagnetic potentials in the Poincaré gauge are given by[3]:

~Ap(~x, t) = ~Ac(~x, t) + ~∇χc→p(~x, t)
φp(~x, t) = φc(~x, t)− ∂tχc→p(~x, t)

Now we replace these expressions in Lc(~r, ~Ac, φc):

Lc(~r, ~Ac, φc) =
1

2
m~̇r 2 − V (~r)

+

∫
d~x

1

2
ε0[(∂t ~Ap(~x, t) +∇φp(~x, t))2 −

1

2µ0
(~∇× ~Ap(~x, t))

2]

+ q~̇r . ( ~Ap(~r, t)− ~∇χc→p(~r, t))− q(φp(~r) + ∂tχc→p(~r, t))

We can rewrite the interaction term and the Lagrangian function reads:

Lc(~r, ~Ac, φc) =
1

2
m~̇r 2 − V (~r)

+

∫
d~x

1

2
ε0[(∂t ~Ap(~x, t) +∇φp(~x, t))2 −

1

2µ0
(~∇× ~Ap(~x, t))

2]

+ q~̇r . ~Ap(~r, t)− qφp(~r)
− q[~̇r . ~∇χc→p(~r, t) + ∂tχc→p(~r, t)]
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The last term is actually the total time-derivative of the gauge-generating function since the particle position ~r

depends on the time: d
dtχc→p(~r, t) = ∂tχc→p(~r, t) + ~̇r . ~∇χc→p(~r, t).

Defining, the lagrangian in the Poincaré gauge, Lp(~r,Ap, φp), as:

Lp(~r, ~Ap, φp) =
1

2
m~̇r 2 − V (~r)

+

∫
d~x

1

2
ε0[(∂t ~Ap(~x, t) +∇φp(~x, t))2 −

1

2µ0
(~∇× ~Ap(~x, t))

2]

+ q~̇r . ~Ap(~r, t)− qφp(~r)

One can relate the lagrangian written in the Coulomb gauge to the lagrangian written in the Poincaré gauge through
the relationship:

Lp(~r, ~Ap, φp) = Lc(~r, ~Ac, φc) +
d

dt
[qχc→p(~r, t))] (4)

Adding a total time-derivative does not change the Euler-Lagrange equations since the action remains extremal. So

the two lagrangians Lc(~r, ~Ac, φc) and Lp(~r, ~Ap, φp) are equivalent starting point to derive the dynamical equations.
The gauge transformation is then a canonical transformation[4] i.e. a change of variables. It even preserves the form
of the lagrangian (and of the hamiltonian as we will show in the following). The lagrangian or the hamiltonian in
the new gauge are simply obtained by substituting the old coordinates by the new ones. As a consequence, in the

Coulomb gauge, ~Ac and φc are the dynamical variables whereas ~Ap and φp are the dynamical variables in the Poincaré
gauge. As a result, the canonical-momentum conjugated to the potential vector is gauge independent. Indeed, in the
Coulomb gauge, it is calculated as:

~πc(~x, t) =
∂Lc

∂(∂tAc)
(~r, ~Ac, φc) = ε0[∂t ~Ac(~x, t) + ~∇φc(~x, t)] = −ε0 ~E(~x, t) (5)

And in the Poincaré gauge it reads:

~πp(~x, t) =
∂Lp

∂(∂tAp)
(~r, ~Ap, φp) = ε0[∂t ~Ap(~x, t) + ~∇φp(~x, t)] = −ε0 ~E(~x, t)

The canonical-momentum conjugated to the vector potential is equal to the electric field times ”−ε0” independently
of the choice of gauge. This is in agreement with the gauge invariance of the electric field whereas ref[1] has reached
an opposite conclusion (see subsection (I C) for more details).

B. Gauge transformation in the hamiltonian formalism

In this subsection, we first convert the lagrangian function to the hamiltonian function from a Legendre transfor-
mation. Next we show that the hamiltonian in the Poincaré gauge is not the Power-Zienau-Woolley hamiltonian in
the opposite to the conclusion of the ref.[1, 2].

In order to compute the hamiltonian, we need to know the canonical momentum conjugated to the particle position
~r. In the Coulomb gauge it reads:

~P =
∂Lc
∂ṙ

(~r, ~Ac, φc) = m~̇r + q ~Ac(~r, t) (6)

and in the Poincaré gauge,

~P =
∂Lp
∂ṙ

(~r, ~Ap, φp) = m~̇r + q ~Ap(~r, t) (7)

Note that the canonical conjugate momentum ~P depends on the gauge through the vector potential ~Ac(~r, t) 6=
~Ap(~r, t). The Legendre transformation converts the lagrangian function to the hamiltonian function:



4

H(~r, ~p, ~A, ~π) = ~P.~̇r +

∫
d~x~π(~x, t).∂t ~A(~x, t)− L(~r, ~A)

H(~r, ~p, ~A, ~π) =
1

2m
[~P − q ~A(~r, t)]2 + V (~r) +

∫
d~x[

1

2ε0
~π(~x, t)2 +

1

2µ0
(~∇× ~A(~x, t))2]

Obviously, in the Coulomb gauge, we find:

Hc(~r, ~p, ~Ac, ~πc) =
1

2m
[~P − q ~Ac(~r, t)]2 + V (~r) +

∫
d~x[

1

2ε0
~πc(~x, t)

2 +
1

2µ0
(~∇× ~Ac(~x, t))

2]

And, in the Poincaré gauge, the minimal-coupling hamiltonian reads:

Hp(~r, ~p, ~Ap, ~πp) =
1

2m
[~P − q ~Ap(~r, t)]2 + V (~r) +

∫
d~x[

1

2ε0
~πp(~x, t)

2 +
1

2µ0
(~∇× ~Ap(~x, t))

2]

In the Poincaré gauge, the potentials can be written with the physical fields,

Hp(~r, ~p, ~Ap, ~πp) =
1

2m
[~P + q~r ×

∫ 1

0

udu ~B(u~r, t)]2 + V (~r) +

∫
d~x[

1

2
ε0 ~E(~x, t)2 +

1

2µ0
B2(~x, t)]

Where we have used the link between the vector potential in the Poincaré gauge ~Ap and the magnetic field ~B [3]:
~Ap(~x, t) = −~r×

∫ 1

0
udu ~B(u~r, t). This result is similar to the results we have obtained in the main paper starting from

a lagrangian density.
We want to make three important remarks here:

• Firstly, the kinetic energy term K = 1
2m [~P+q~r×

∫ 1

0
udu ~B(u~r, t)]2 reads similarly in our result and in the Power-

Zienau-Woolley hamiltonian meaning that in both results the potential vector is ~Ap(~x, t) = −~r×
∫ 1

0
udu ~B(u~r, t).

As a consequence, the vector potential in the Power-Zienau-Woolley hamiltonian satisfies the Poincaré gauge

condition ~x. ~Ap(~x, t) = 0. This is not the conclusion of previous authors[1, 2, 5–12] for which the vector potential
satisfies the Coulomb gauge conditions.

• Secondly, on the opposite to the Power-Zienau-Woolley hamiltonian, there is no coupling term on the form

− 1
ε0

∫
d~x ~D(~x, t). ~P (~x, t) where ~D(~x, t) is the displacement vector and ~P (~x, t) is the polarization field. There is

also no contact term on the form 1
2ε0

∫
d~x~P (~x, t)2

• Thirdly, note the important point that the electromagnetic energy term remains equal to
∫
d~x[ 12ε0

~E(~x, t)2 +
1

2µ0
B2(~x, t)], independently of the gauge. This the electromagnetic field energy in vacuum. In the Power-Zienau-

Wooolley hamiltonian, previous authors [1, 2, 5–12] have found that the electromagnetic-field energy term reads∫
d~x[ 1

2ε0
~D(~x, t)2 + 1

2µ0
B2(~x, t)]. The physical interpretation of this expression is not straightforward since it is

neither the electromagnetic energy in vacuum nor in matter[3]. The following section explains in more details
the errors that lead to this inconsistent result.

C. Precautions in deriving the hamiltonian from the lagrangian

In the reference [1], Babiker and London derived the Power-Zienau-Woolley hamiltonian from a gauge transformation
performed on the lagrangian. Starting from the minimal-coupling lagrangian in the Coulomb gauge, they added the

total derivative of the gauge-generating function χ(~r) = −
∫ 1

0
~r. ~Ac(u~r)du [3]. This gauge-generating function ables to

pass from the Coulomb gauge to the Poincaré gauge[3]. The starting point used by Babiker and Loudon is the eq:(4)
of these Supplementary Materials. As explained previously this equation performs a gauge transformation but does
not modify the equations of motion:
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L′(~r, ~Ac, φc) = L(~r, ~Ac, φc)− q
d

dt
[~r.

∫ 1

0

~Ac(u~r)du]

= L(~r, ~Ac, φc)− q~̇r.
∫ 1

0

~Ac(u~r)du− q~r.
∫ 1

0

∂t ~Ac(u~r)du− q~r.
∫ 1

0

(u~̇r.~∇u~r) ~Ac(u~r)du (8)

We want to emphasize here that despite the gauge transformation they considered the potentials in the Coulomb

gauge ~Ac and φc as being the dynamical variables.

Then, they have computed the canonical momentum ~π conjugated to the vector potential ~Ac. They have found
with the help of equation eq:(8):

~π′(~x, t) =
∂L′[ ~Ac, ∂t ~Ac]
∂∂t ~Ac(~x)

= ε0[∂t ~Ac(~x, t) + ~∇φc(~x, t)]− q~r
∫ 1

0

δ(~r − u~x)du

= − ~D(~x, t) (9)

The first term is the electric field up to a constant ε0[∂t ~Ac(~x, t) + ~∇φc(~x, t)] = −ε0 ~E(~x, t) and the second term is

assumed to be the polarization field defined as ~P (~x, t) = q~r
∫ 1

0
δ(~r − u~x)du. This definition is said to embody the

contribution of all the electric multipoles moments [6] ( see also ref.[12, p.318] and ref.[2, p.283] ). The important
conclusion to previous authors[1, 2] is that the canonical momentum ~π′(~x, t) is identified to the opposite of the

displacement vector ~D(~x, t).

We think that this calculation is incomplete and that the authors of ref.[1, 2] have made some errors.

1. First, they did not realize that a gauge transformation is also a canonical transformation [4]. This means that
a gauge transformation is a change of variables. In such a case, it is not correct to consider that the potentials
in the Coulomb gauge remain the dynamical variables in the Poincaré gauge.

2. Secondly, even if they did not notice the change of dynamical variables, the canonical momentum conjugated
to the vector potential does not satisfy the constraints that act on the hamiltonian. Indeed, as we explain
in details later on, several constraints act to the {field+particle}-dynamics. One of them is the absence of
canonical momentum to the scalar potential πφ = 0. This constraint has to hold at any time. It induces

the following constraint ~∇.~π = −qδ(~x − ~r), which is nothing else but the Maxwell-Gauss equation. When

calculating the canonical momentum to the vector potential, the functional derivative with respect to ∂t ~A is
not well defined because the vector potential satisfies the gauge constraints (see ref.[13, p.348] ). We reproduce
here the reasoning of this book. We fix the gauge to be the Coulomb gauge. Coming back to the definition of

the functional derivative with respect to ∂t ~Ac, we can write that any variations of δ[∂t ~Ac] induce a variation of
the lagrangian given by:

δL′ =

∫
d~x

∂L′

∂∂t ~Ac
.δ[∂t ~Ac]

In the Coulomb gauge, the vector potential satisfies: ~∇. ~Ac(~x, t) = 0. Then, without changing the variations of
the lagrangian, one can add the gradient of any scalar function. Indeed,

δL′ =

∫
d~x(

∂L′

∂∂t ~Ac
+ ~∇F(~x)).δ[∂t ~Ac]

=

∫
d~x(

∂L′

∂∂t ~Ac
).δ[∂t ~Ac]−

∫
d~xF(~x)~∇.δ[∂t ~Ac]

=

∫
d~x(

∂L′

∂∂t ~Ac
).δ[∂t ~Ac] (10)
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The second line is obtained after an integration by part. The third line follows from the Coulomb gauge

condition ~∇. ~Ac = 0 implying that functional variations of the vector potential have to satisfy the Coulomb-

gauge conditions as well. So ~Ac → ~Ac + δ ~Ac implies that ~∇.( ~Ac + δ ~Ac) = 0 → ~∇.(δ ~Ac) = 0 since ~∇. ~Ac = 0.

Hence, we conclude that ~∇.δ[∂t ~Ac] = 0.

To summarize, following ref.[13], the conjugated momentum ~π′ is computed from the functional derivative up to
the gradient of a scalar function (in the Coulomb-gauge). This degree of freedom is fixed by the Maxwell-Gauss
equation.

The canonical momentum of the vector potential calculated by Babiker and Loudon ~π′(~x, t), i.e. eq:(9), does not

satisfy the constraint ~∇.~π′(~x, t) = −qδ(~x−~r) since from its definition [eq:(9)] and the Maxwell-Gauss equation,

one should have ~∇.~π′(~x, t) = ~∇. ~D(~x, t) = 0. Nevertheless, as just explained above, we are free to add the
gradient of any scalar function in order to recover the Maxwell-Gauss equation. Then we can choose to add
~∇F(~x) = q~r

∫ 1

0
δ(~r − u~x)du to ~π′(~x, t) without changing the lagrangian-variations δL′:

~π′′(~x, t) = ~π′(~x, t) + q~r

∫ 1

0

δ(~r − u~x)du

Finally, the canonical momentum of the vector potential that satisfies the constraint ~∇.~π′′(~x, t) = −qδ(~x − ~r)
reads:

~π′′(~x, t) = ε0[∂t ~A(~x, t) + ~∇φ(~x, t)]

This expressions is in agreement with our previous calculation [eq:(6)] and with the gauge invariance of the elec-

tric field (it remains ε0[∂t ~A(~x, t) + ~∇φ(~x, t)]). The derivation of the Power-Zienau-Woolley hamiltonian requires

~π′(~x, t) = − ~D(~x, t)[1, 2] that is not compatible with the gauge invariance of electromagnetism. So we conclude
that the Power-Zienau-Woolley hamiltonian cannot be obtained with the help of a gauge transformation.

II. GAUGE TRANSFORMATION AND UNITARY TRANSFORMATION AT THE QUANTUM LEVEL

Historically, the Power-Zienau-Woolley hamiltonian has been derived with the help of a unitary transformation
applied to the minimal-coupling hamiltonian written in the Coulomb gauge[5]. Even if this can always be done, we
will show in the following of these supplementary materials that some cares are required because electrodynamics is
a constraint theory. The unitary transformation should leave invariant the equations of constraints. This is not the
case for the Power-Zienau-Woolley unitary transformation. As a consequence, as we will show in the following, the
Power-Zienau-Wolley hamiltonian predicts unphysical photon-states (see section (IV) for more details).

A. Gauge transformation of the Schrödinger equation

At the quantum level, the gauge invariance manifests itself by a transformation of the wavefunction through a
unitary transformation. In order to get the measurements independent of the gauge conditions, the hamiltonian has
to be modified as well [14]:

ψp(~x, t) = exp[i
q

~
χ(~r, ~Ac, t)]ψc(~x, t) (11)

Ĥp = exp[i
q

~
χ(~r, ~Ac, t)]Ĥc exp[−i q

~
χ(~r, ~Ac, t)]− exp[i

q

~
χ(~r, ~Ac, t)]

∂

∂t
exp[−i q

~
χ(~r, ~Ac, t)] (12)

The gauge-transformation of the Schrödinger equation has been first exhibited by Weyl ([15] pp.100-101). It
corresponds to the multiplication of the wavefunction by a phase factor which is actually a unitary operator. Keep in

mind that the unitary operator Û = exp[i q~χ(~r, ~Ac, t)] changes the vector potential and the scalar potential from one
gauge to another.

At the quantum-field level, when both the Schrödinger field ψ̂(~x, t) and the electromagnetic field {Â(~x, t), φ̂(~x, t)}are
considered as operators, the equivalent of equation (12) does not exist (p.70 in [16]). One has to fix the gauge at
the classical level and then quantize the theory. As a consequence, one cannot change the gauge on the (quantum)
minimal-coupling hamiltonian by applying the eq:(12).
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B. Unitary transformation of the vector-potential operator and of the kinetic-energy operator

In this paragraph, we examine some details about the derivation of the Power-Zienau-Woolley hamiltonian from
a unitary transformation. We highlight that (i) a unitary transformation can change the potential vector operator,
the gauge transformation at the quantum level is indeed a unitary transformation (ii) as the unitary transformation
does not change the commutators (they are proportional to the identity operator in the Coulomb gauge), if the vector
potential operator is changed by the unitary transformation, it may satisfy some constraints that are no more reflected
by the commutators. As a consequence, cares are required when applying a unitary transformation to the quantum
minimal-coupling hamiltonian. The unitary transformation should not modify the equations of constraint satisfied by
the vector potential and the scalar potential. In the opposite case, if they are changed by the unitary transformation,
the new constraints are not taken into account by the commutators. This important point has not been recognized
by the previous authors[1, 2, 5, 7–10, 12, 17] since we will show that the unitary transformation used by Power et al.
indeed modifies the vector potential.

Let us illustrate our claims. Through a unitary transformation of the Schrödinger equation, the initial wavefunction
|ψ〉iand the hamiltonian Ĥi transform as:

|ψ〉f = Û |ψ〉i

Ĥf = ÛĤiÛ
† − Û d

dt
Û† (13)

Of course there are similarities between these equations [eq:(13)] and the equations of the gauge transformation of
the Schrödinger equation [eq:(12)]. Again, both the wavefunction and the hamiltonian have to be modified in order
to keep the measurements independent of the unitary transformation.

Power and coworkers extended the validity of the equation (13) to the case of the minimal-coupling hamiltonian
that describes both the particle and the electromagnetic field dynamics. Moreover they do not take into account the
contribution of Û d

dt Û
† because the operator U they considered does not depend explicitly on time ∂

∂t Û (see e.g. the
introduction of ref. [10]).

They started from the Coulomb gauge, the dynamical variables being the vector-potential operator Âc(~x, t) and the
transverse part of its canonical momentum π̂⊥c (~x, t). As a consequence, the minimal-coupling hamiltonian operator

Ĥmc
c and the canonical commutation relations satisfied by the field operators read[14]:

Ĥmc
c =

1

2m
[P̂ − qÂc(r̂, t)]2 + V (r̂) +

∫
d~x

{
1

2ε0
π̂⊥c (~x, t)2 +

1

2µ0

[
~∇× Âc(~x, t)

]2}
(14)

π̂⊥c (~x, t) = −ε0Ê⊥c (~x, t) (15)

[Âic(~x, t), Ê
⊥
j (~y, t)] = − i~

ε0
δTi,j(~x− ~y)1 (16)

where i, j = 1, 2, 3 and 1 is the identity matrix. This minimal-coupling hamiltonian eq:(14) described a single
electron evolving in the classical potential V (r̂) (e.g. created by the nucleus of the atom) and in interaction with a
quantum electromagnetic-field. The last relationship eq:(16) involves the transverse Dirac-distribution defined as

δTi,j(~x− ~y) = δijδ(~x− ~y)− ∂2

∂xi∂yj

1

4π|~x− ~y|

where δij is the Kroeneker symbol (see e.g. ref.[2] p. 38). The transverse Dirac-distribution selects the transverse
component of a vector function.

As a unitary transformation, Power al.[1, 2, 5, 17] have chosen Û = exp
[
i q~ χ̂(r̂, Âc, t)

]
with χ̂(r̂, Âc, t) =

−
∫ 1

0
r̂.Âc(u~x, t)du. Note that this last operator χ̂(r̂, Âc, t) is similar to the gauge-generating function of the Poincaré

gauge[3].

Then Power et al. [1, 2, 5, 17] transform the minimal-coupling hamiltonian operator Ĥmc
c with the help of the

unitary transformation Û .
This is done with the help of the Campbell-Baker-Hausdorff formula:

exp(−Ŝ)Ô exp(Ŝ) = Ô − [Ŝ, Ô] +
1

2!
[Ŝ, [Ŝ, Ô]] + ...
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With S = −i q~χ(~r, ~Ac, t) and recalling that in any gauge, the canonical variables {r̂, P̂} satisfied the canonical

commutation relations[18] [r̂µ, P̂ν ] = i~δµ,ν , Power et al. [1, 2, 5, 17] have found the following results:

Û r̂Û† = r̂ (17a)

Û ÂcÛ
† = Âc(r̂, t) (17b)

Û P̂Û† = P̂ − q~∇χ̂(r̂, Âc, t) (17c)

Û [Âic(~x, t), Ê
⊥
j (~y, t)]Û† = − i~

ε0
δTi,j(~x− ~y)Û1Û† = − i~

ε0
δTi,j(~x− ~y)1 (17d)

Note that the unitary transformation does not change the canonical commutation relation between the field oper-
ators [eq:(17d)].

Equations eq:(17b) and eq:(17c) help us to conclude that the linear momentum transforms as

Û†(P̂ − qÂc)Û = P̂ − q~∇χ̂(r̂, Âc, t)− qÂc
= P̂ − qÂp (18)

Here we have recognize the vector potential in the Poincaré gauge[3]: Âp(r̂, t) = Âc(r̂, t) + ~∇χ(r̂, t).
The analytical expression of the linear momentum ables to conclude that the potential vector after the unitary

transformation is Âp, the vector potential in the Poincaré gauge.
On the opposite, the previous authors have misinterpreted the eq:(17b) and they have concluded that the unitary

transformation does not change the vector potential. This is wrong since the quantity of physical interest is the linear
momentum of the particle position m ˙̂r. Indeed, it transforms under the unitary transformation as the corresponding
classical-quantity does through a gauge transformation[19]. As a consequence, the potential vector operator must be

extracted from the equation (18) and not from the equation (17b). Obviously Âp(r̂, t) doesn’t satisfy the canonical
commutation relations eq:(17d). This important conclusion has been missed by the previous authors[1, 2, 5, 8–
10, 17]. Because quantum electrodynamics is a constrained theory, cares should be taken before applying a unitary
transformation to the minimal-coupling hamiltonian. One should check that the unitary transformation does not
modify the constraints between the dynamical variables. The most important consequence is that the Power-Zienau-
Woolley hamiltonian produces unphysical results. For example, it leads to the creation of longitudinal photons in the
Coulomb gauge (see section (IV)). This remark leads to the important conclusion that the Power-Zienau-Woolley
hamiltonian cannot be considered to be unitarily equivalent to the minimal-coupling hamiltonian. Indeed, in phase-
space, the unitary transformation does not leave invariant the sub-manifold of physical states.

III. DERIVATION OF THE COMMUTATION RULES IN THE POINCARÉ GAUGE: THE DIRAC
BRACKETS IN THE POINCARÉ GAUGE

A. hamiltonian density

Following the notation used in the main article, we use the Einstein summation convention. Repeated indexes are
summed but we discriminate the time variable since we are working in a non-relativistic approximation. φ and ψ are
respectively the scalar potential and the Schrödinger field. As a consequence, πφ and πψ are the canonical momenta
conjugated respectively to φ and ψ . In the Dirac theory, the constraints acting on the dynamics applied effectively
at the end of the calculation. As a consequence the hamiltonian density derived from a lagrangian density reads:

H(~x, t) =
π̂†ψ(~x, t)

i~
{− ~2

2m
[∂µ −

iq

~
Âµ(~x, t)]2 + V (~x, t)}ψ̂(~x, t) +

1

2ε0
π̂µ(~x, t)π̂µ(~x, t) +

1

2µ0
B̂µ(~x, t)B̂µ(~x, t) +

[∂µπ
µ(~x, t) +

q

i~
πψ(~x, t)ψ(~x, t)]φ(~x, t)

This expression follows after having assuming that all fields vanish at infinities. The last term, which is the Maxwell-
Gauss equation, is not taken to be zero at the beginning of the calculations. Only at the end, after the computation
of the Dirac brackets, it will be assumed to be null.
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B. List of the constraints

We now enumerate the constraints that act on the dynamics of the system constituted by the particle and
the electromagnetic field. Four constraints acts on the dynamics of this system. These constraints defines a
sub-manifold by restricting the available phase-space spanned by the 5 couples of conjugated variables. They are:
(ψ, πψ), (φ, πφ), (Aµ, πµ)µ=1,2,3

1- The first constraint is the absence of momentum conjugated to the scalar potential φ(~x, t) since there is no term
proportional to ∂tφ(~x, t) in the lagrangian density. As a consequence, the canonical momentum πφ(~x, t) is identically
null. In the Dirac theory[20], πφ(~x, t) = 0 appears as one constraint that restricts the available phase-space. We note
χ1(~x, t) this first constraint:

χ1(~x, t) = πφ(~x, t)

2- The Maxwell-Gauss equation is the second constraint. It derives from the previous constraint.

Indeed, the previous constraint has to remain true at any time, so χ̇1(~x, t) = 0. The time derivative of χ1(~x, t) is
computed with the help of Poisson brackets defined as:

{F,G}(~x, t) =
δF

δψ

δG

δπψ
− δG

δψ

δF

δπψ

+
δF

δφ

δG

δπφ
− δG

δφ

δF

δπφ

+
δF

δAµ
δG

δπµ
− δG

δAµ
δF

δπµ

Where δF
δφ = ∂F

∂φ − ∂ν
∂F
∂νφ

is the functional derivative (or Frêchet derivative).

We have found as a second constraint:

χ2(~x, t) = {χ1,H}(~x, t) = −δH
δφ

δχ1

δπφ

= −[∂µπ
µ(~x, t) +

q

i~
πψ(~x, t)ψ(~x, t)]

χ2(~x, t) = +[∂µπ
µ(~x, t) +

q

i~
πψ(~x, t)ψ(~x, t)]

We can choose the positive sign since at the end of the calculations the constraint is forced to be zero.

3- The third constraint is the gauge condition.

The gauge condition constrains the dynamics by imposing some restricting conditions on the scalar and vector
potentials. We work in the Poincaré gauge where the potential vector is orthogonal to any of the observation points:

~x. ~A(~x, t) = 0. So the third constraint reads:

χ3(~x, t) = xµA
µ(~x, t)

4- The fourth and last constraint derives from the previous one since χ3(~x, t) has to remain true at any time:

χ4(~x, t) = {χ3,H}(~x, t) =
χ3

δAµ
δH
δπµ

=
1

ε0
xµπ

µ(~x, t)− xµ∂µφ(~x, t)
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C. The matrix of constraints C and its inverse K

In order to compute the time-evolution of any function in the phase-space restricted by the constraints, a redefinition
of the Poisson brackets is needed. This is done by computing the Dirac brackets. The first step for this computation
is to define the matrix of constraint C that takes into account for all the constraints. We also need to define the
inverse K of the matrix of constraints C.

The coefficients of the matrix of constraints C are defined through the Poisson brackets evaluated for two different
constraints as Ci,j(~x, ~y, t) = {χi(~x, t), χj(~y, t)} see p.314 in [14].

We need to define the Poisson brackets evaluated at two different points ~x and ~y:

{χ1(~x, t), χ2(~y, t)} =

∫
d~u
δχ1[ψ(~x), πψ(~x)]

δψ(~u)

δχ2[ψ(~y), πψ(~y)]

δπψ(~u)
− δχ2[ψ(~y), πψ(~y))]

δψ(~u)

δχ1[ψ(~x), πψ(~x)]

δπψ(~u)

+ (ψ → φ) ; (πψ → πφ)

+ (ψ → Aµ) ; (πψ → πµ)

The functionals χ1 and χ2 are defined on the phase-space and depend on all fields (including their gradients) and
their conjugated momenta (including their gradients).

The non-zero elements of the matrix of constraints C are:

C1,4(~x, ~z, t) = {χ1(~x, t), χ4(~z, t)} =

∫
d~u δ(~x− ~u)zµ∂

µ
~z [δ(~z − ~u)] = zµ∂

µ
~z [δ(~z − ~x)]

C2,3(~x, ~z, t) = {χ2(~x, t), χ3(~z, t)} = −
∫
d~u ∂~xµ[δ(~x− ~u)]zµδ(~z − ~u) = −zµ∂~xµ[δ(~x− ~z)]

C3,4(~x, ~z, t) = {χ3(~x, t), χ4(~z, t)} =
1

ε0

∫
d~u xµδ(~x− ~u)zµδ(~z − ~u) =

1

ε0
xµz

µδ(~x− ~z)

The inverse of the matrix of constraints K is defined in the following way (see p.314 in ref.[14]):∫
d~zC(~x, ~z, t).K(~z, ~y, t) = δ(~x− ~y)I4

where δ(~x− ~y) is the Dirac distribution and I4 is the 4× 4 identity-matrix.
The matrix K reads:

K(~z, ~y, t) =

 0 K1,2(~z, ~y, t) 0 K1,4(~z, ~y, t)
K2,1(~z, ~y, t) 0 K2,3(~z, ~y, t) 0

0 K3,2(~z, ~y, t) 0 0
K4,1(~z, ~y, t) 0 0 0


Its product with the matrix of constraints C leads to:

∫
d~zC(~x, ~z, t).K(~z, ~y, t) =


−∂µ[xµK4,1] 0 0 0

0 −∂µ[xµK3,2] 0 0
−∂µ[xµK2,1] + 1

ε0
xµx

µK4,1 0 ∂µ[xµK2,3] 0

0 ∂µ[xµK1,2]− 1
ε0
xµx

µK2,3 0 ∂µ[xµK1,4]


The diagonal terms comes from

∫
d~zCi,5−i(~x, ~z)K5−i,i(~z, ~y) = δ(~x − ~y) with i = 1...4, whereas the non-diagonal

terms come from
∫
d~z[C3,2(~x, ~z)K2,1(~z, ~y) + C3,4K4,1(~z, ~y)] = 0 and

∫
d~z[C4,1(~x, ~z)K1,2(~z, ~y) + C4,3K3,2(~z, ~y)] = 0.

Because the matrix of constraints C and its inverse are anti-symmetric, the following properties hold:

K4,1(~x, ~y) = −K1,4(~x, ~y) = K3,2(~x, ~y) = −K2,3(~x, ~y)

and

K1,2(~x, ~y) = −K2,1(~x, ~y)
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Finally, we have to solve only two equations:

∂~xµ[xµK2,3(~x, ~y)] = δ(~x− ~y) (19)

∂~xµ[xµK1,2(~x, ~y)] =
1

ε0
xµx

µK3,2(~x, ~y) (20)

The previous relations eq:(19) and eq:(20) are actually enough to compute the dynamical equations from the
commutators and the Heisenberg equation. We could stop here. Indeed, no explicit solution of these equations is
needed to compute the dynamical equations since the calculations only involve relationships between the elements of
the matrix K. See the paragraph ” III F: Dynamical equations” for illustrations.

Nevertheless, a solution to the equation eq:(19) can be found.
First we solve eq:(19) in spherical coordinates and finally express the solution in cartesian coordinates. Two points

namely X and Y are involved in this calculation. The point X is specified by its distance from the origin ~x = x~er
and the angles θx, ϕx whereas the point Y is specified by ~y = y~er and the angles θy, ϕy.

The equation eq:(19) actually involves the divergence operator:

~∇~x.[~xK2,3(~x, ~y)] = δ(~x− ~y)

that reads in spherical coordinates:

1

x2 sin θx
∂x[x2 sin(θx)xK2,3(~x, ~y)] =

1

x2 sin θx
δ(x− y)δ(θx − θy)δ(ϕx − ϕy)

The Dirac distribution is also written in spherical coordinates. This equation can be integrated. For simplicity we
assume no additional constant or function that could depend only on angular variables θx, ϕx :

x2 sin(θx)xK2,3(~x, ~y) = H(x− y)δ(θx − θy)δ(ϕx − ϕy)

Where H(x− y) is the Heaviside distribution.

K2,3(~x, ~y) =
1

x2 sin(θx)

1

x
H(x− y)δ(θx − θy)δ(ϕx − ϕy)

In cartesian units, points X and Y are specified respectively by a triplet of three numbers X = (x1, x2, x3) and
Y = (y1, y2, y3).

Knowing that θx = arccos( x3

|~x| ) and ϕx = arctan( x2

|~x| ), and remarking that the Jacobian is x2 sin(θx) the solution in

cartesian coordinates can be written as:

K2,3(~x, ~y) =
1

|~x|
H(|~x| − |~y|)δ(x2 − y2)δ(x3 − y3)

D. The Dirac brackets

We denote {., .}D the Dirac brackets. They derived from the Poisson brackets with the following definition[14, 20] :

{Aµ(~x, t), πν(~y, t)}D = {Aµ(~x, t), πν(~y, t)} −
4∑

i,j=1

{Aµ, χi}(~x, t)Ki,j(~x, ~y){χj , πν}(~y, t)

We now compute de Dirac brackets between the different dynamical variables.
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a. Dirac brackets between the potential vector Aµ(~x, t) and its conjugated momentum πν(~y, t).
The only non-vanishing Poisson brackets are the one between Aµ(~x, t) and χ2(~x, t) and the one between πν(~y, t)

and χ3(~y, t)

{Aµ, χ2}(~x, t) =
δAµ

δAµ
δχ2

δπµ
= −∂µ~x [.]

{χ3, πν}(~y, t) =
δχ3

δAν
δπν
δπν

= yν

The Dirac bracket is then:

{Aµ(~x, t), πν(~y, t)}D = {Aµ(~x, t), πν(~y, t)} − {Aµ, χ2}(~x, t)K23(~x, ~y){χ3, πν}(~y, t)
= δµν δ(~x− ~y) + ∂µ~x [yνK23(~x, ~y)]

{Aµ(~x, t), πν(~y, t)}D = δµν δ(~x− ~y) + yν∂
µ
~x [K23(~x, ~y)]

b. Dirac brackets between ψ(~x, t) and πµ(~y, t).
The only non-vanishing Poisson brackets between the dynamical variables and the constraints are {ψ, χ2}(~x, t) and
{χ3, π

µ}(~y, t). The Dirac brackets between ψ(~x, t) and πµ(~y, t) is finally:

{ψ(~x, t), πµ(~y, t)}D = {ψ(~x, t), πµ(~y, t)} − {ψ, χ2}(~x, t)K2,3(~x, ~y){χ3, π
µ}(~y, t)

{ψ, χ2}(~x, t) =
δψ

δψ

δχ2

δπψ
=

q

i~
ψ(~x, t)

Now we compute the other Poisson bracket:

{χ3, π
µ}(~y, t) =

δχ3

δAµ

δπµ

δπµ
= yµ

So the Dirac bracket is given by:

{ψ(~x, t), πµ(~y, t)}D = − q

i~
yµK2,3(~x, ~y)ψ(~x, t)

In the case of the field conjugated to the Schrödinger field, πψ(~x, t), a similar calculation leads to:

{πψ(~x, t), πµ(~y, t)}D =
q

i~
yµK2,3(~x, ~y)πψ(~x, t)

Note that in this gauge, the electromagnetic field degrees of freedom don’t commute with the matter degrees of
freedom. There is a similar result in the Coulomb gauge if one quantizes the total conjugated momentum (trans-
verse+longitudinal part) πµ. The coupling between field and matter degrees of freedom can be removed in the
Coulomb gauge by quantifying only the transverse part of the conjugated momentum πµ⊥ (see Weinberg[14] p.316).
In the Poincaré gauge, the Dirac brackets are non-vanishing because πµ and ψ are not independent variables. They
are link through de Maxwell-Gauss equation (constraint χ2).
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E. Commutation relations between quantum operators

The canonical quantization procedure to produce a quantum theory from a classical theory consists in assuming
that the commutator denoted [•, •] between two operators is given by the results of the Dirac brackets times i~. The

particles being fermions, we impose anti-commutator, denoted [•, •]+, between the Schrödinger field operator ψ̂(~x, t)
and its conjugated momentum π̂ψ(~x, t).

Finally, the commutation and anti-commutation rules in the Poincaré gauge are given by:

[Âµ(~x, t), π̂ν(~y, t)] = i~[δµν δ(~x− ~y) + yν∂
µ
~xK2,3(~x, ~y)]

[ψ̂(~x, t), π̂µ(~y, t)] = −qyµK2,3(~x, ~y)ψ̂(~x, t)

[π̂ψ(~x, t), π̂µ(~y, t)] = qyµK2,3(~x, ~y)π̂ψ(~x, t)

[ψ̂(~x, t), π̂ψ(~y, t)]+ = i~δ(~x− ~y)

The commutators between the physical fields can be deduced from the previous results. As an example, we derived
the commutator between B̂2(~x, t) and π̂1(~y, t):

[B̂2(~x, t), π̂1(~y, t)] = [∂~x3 Â1(~x, t)− ∂~x1 Â3(~x, t), π̂1(~y, t)]

= ∂~x3 [Â1(~x, t), π̂1(~y, t)]− ∂~x1 [Â3(~x, t), π̂1(~y, t)]

= i~∂~x3 [δ(~x− ~y) + y1∂
1
~xK23(~x, ~y)]− i~∂~x1 [y1∂

3
~xK23(~x, ~y)]

= i~∂~x3 δ(~x− ~y) + i~(y1∂
~x
3 ∂

1
~x[K23(~x, ~y)]− y1∂3~x∂~x1 [K23(~x, ~y)])

[π̂1(~y, t), B̂2(~x, t)] = −i~∂~x3 [δ(~x− ~y)]

[Ê1(~y, t), B̂2(~x, t)] =
i~
ε0
∂~x3 [δ(~x− ~y)] =

i~
ε0

∂

∂x3
[δ(~x− ~y)] (21)

[Ê1(~y, t), B̂2(~x, t)] = − i~
ε0
∂~y3 [δ(~x− ~y)] = − i~

ε0

∂

∂y3
[δ(~x− ~y)]

Cyclic permutations occurs.
This is exactly the same result as in the Coulomb gauge [2, 14]. As expected, the commutation relations between the
physical fields are independent of the gauge conditions.

F. Dynamical equations

The dynamical equations for the quantum operators are derived from the Heisenberg equations with the help of
the hamiltonian density operator Ĥ(~y, t). Since the commutators have been computed through the Dirac brackets,
they take all constraints into account. Then, the hamiltonian density operator can be simplify with the help of the
Maxwell-gauss equation (i.e. constraint χ2). It finally reads:

Ĥ(~y, t) =
π̂†ψ(~y, t)

i~
{− ~2

2m
[∂~yµ −

iq

~
Âµ(~y, t)]2 + V (~y, t)}ψ̂(~y, t) +

1

2ε0
π̂µ(~y, t)π̂µ(~y, t) +

1

2µ0
B̂µ(~y, t)B̂µ(~y, t) (22)

To simplify the writing, we define the differential operator F(•) = − ~2

2m [∂~yµ −
iq
~ Âµ(~y, t)]2 + V (~y, t) that applies to

the Schrödinger operator ψ̂(~y, t). The hamiltonian density reads:

H(~y, t) =
π̂†ψ(~y, t)

i~
F(ψ̂(~y, t)) +

1

2ε0
π̂2(~y, t) +

1

2µ0
B̂2(~y, t)
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1. The vector potential

We derive here the dynamical equation satisfied by the vector potential.

i~ ˙̂
Aµ(~x, t) =

∫
d~y[Âµ(~x, t), Ĥ(~y)]

=

∫
d~y[Âµ(~x, t), π̂ν(~y, t)]

π̂ν(~y, t)

ε0

= i~
∫
d~y
(
δµν δ(~x− ~y) + yν∂

µ
~x [K23(~x, ~y)]

) π̂ν(~y, t)

ε0

= i~
πµ(~x, t)

ε0
+ i~∂µ~x

[ ∫
d~yK23(~x, ~y)yν

π̂ν(~y, t)

ε0

]
(23)

To arrive at this equation we have used the following identity: [A,BC] = B[A,C] + [A,B]C.

From the constraint χ4, one has 1
ε0
yν π̂

ν(~y, t) = yν∂
ν
~y φ̂(~y, t). So the calculation leads to:

˙̂
Aµ(~x, t) =

π̂µ(~x, t)

ε0
+ ∂µ~x

[ ∫
d~yK23(~x, ~y)yν∂

ν
~y φ̂(~y, t)

]
=

π̂µ(~x, t)

ε0
− ∂µ~x

[ ∫
d~y∂ν~y [yνK23(~x, ~y)]φ̂(~y, t)

]
(24)

From the calculations of the Dirac brackets, the coefficient K23 satisfies ∂ν~y [yνK23(~x, ~y)] = ~∇~y.[~yK23(~x, ~y)] =

+δ(~y − ~x).
The dynamical equation satisfied by the vector potential is finally given by:

˙̂
Aµ(~x, t) =

π̂µ(~x, t)

ε0
− ∂µ~x φ̂(~y, t)

which is similar to the equation satisfied by the classical vector-potential. As noticed previously, only equation (19)
was needed to compute the dynamical equation and not the explicit expression of K2,3(~x, ~y).

2. The Schrödinger equation

With the help of the anti-commutation relation between ψ̂ and π̂ψ, i.e. [ψ̂(~x, t), π̂ψ(~y, t)]+ = i~δ(~x − ~y),

and the commutation relation between ψ and the electric field degrees of freedom π̂µ(~y, t), [ψ̂(~x, t), π̂µ(~y, t)] =

−qyµK2,3(~x, ~y)ψ̂(~x, t), the Schrödinger equation satisfied by the Schrödinger-field operator ψ̂(~x, t) can be found.
Indeed,

i~ ˙̂
ψ(~x, t) =

∫
d~y[ψ̂(~x, t), Ĥ(~y, t)]

=

∫
d~y[ψ̂(~x, t),

π̂†ψ(~y, t)

i~
F(ψ̂(~y, t)) +

1

2ε0
π̂2
µ(~y, t)]

=

∫
d~y[ψ̂(~x, t),

π̂†ψ(~y, t)

i~
]+ F(ψ̂(~y, t))−

π̂†ψ(~y, t)

i~
[ψ̂(~x, t),F(ψ̂(~y, t))]+ +

1

ε0
[ψ̂(~x, t), π̂µ(~y, t)]π̂µ(~y, t)

Here we have used the following relationship between commutators and anticommutators: [A,BC] = B[A,C]+ −
[A,B]+C.

We notice that [ψ̂(~x, t),F(ψ̂(~y, t))]+ = F([ψ̂(~x, t), ψ̂(~y, t)]+) = 0 since [ψ̂(~x, t), ψ̂(~y, t)]+ = 0. As a consequence,

recalling that [ψ̂(~x, t), π̂ψ(~y, t)]+ = i~δ(~x− ~y) the previous calculation simplifies as:
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i~ ˙̂
ψ(~x, t) =

[
− ~2

2m
(∂~xµ −

iq

~
Âµ(~x, t))2 + V (~x)

]
ψ̂(~x, t) +

∫
d~y[ψ̂(~x, t), π̂µ(~y, t)]

π̂µ(~y, t)

ε0

=
[
− ~2

2m
(∂~xµ −

iq

~
Âµ(~x, t))2 + V (~x)

]
ψ̂(~x, t)− qψ̂(~x, t)

∫
d~yyµK23(~x, ~y)

π̂µ(~y, t)

ε0

Again with the help of χ4(~y, t), 1
ε0
yµπ̂µ(~y, t) = yµ∂µ~yφ̂(~y, t)

i~ ˙̂
ψ(~x, t) =

[
− ~2

2m
(∂~xµ −

iq

~
Âµ(~x, t))2 + V (~x)

]
ψ̂(~x, t)− qψ̂(~x, t)

∫
d~yK23(~x, ~y)yµ∂

µ
~y φ̂(~y, t)

=
[
− ~2

2m
(∂~xµ −

iq

~
Âµ(~x, t))2 + V (~x)

]
ψ̂(~x, t) + qψ̂(~x, t)

∫
d~y∂µ~y [yµK23(~x, ~y)]φ̂(~y, t)

The calculation of the Dirac brackets leads to the result : ∂µ~y [yµK23(~x, ~y)] = δ(~y − ~x) which ables to recover the
Schrödinger equation satisfied by the Schrödinger-field operator.

i~ ˙̂
ψ(~x, t) =

[
− ~2

2m
(∂~xµ −

iq

~
Âµ(~x, t))2 + V (~x)

]
ψ̂(~x, t) + qφ̂(~x, t)ψ̂(~x, t)

3. The Maxwell-Ampère equation

The derivation is made easier if we integrate by parts the kinetic energy term of the equation:(22). Using the

definition of the canonical conjugate momentum π̂ψ(~y, t) = i~ψ̂†(~y, t), the hamiltonian density reads:

Ĥ(~y, t) =
~2

2m
[∂~yµ +

iq

~
Âµ(~y, t)]ψ̂†(~y, t)× [∂~yµ −

iq

~
Âµ(~y, t)]ψ̂(~y, t)

+ ψ̂†(~y, t)V (~y, t)ψ̂(~y, t)

+
1

2ε0
π̂µ(~y, t)π̂µ(~y, t) +

1

2µ0
B̂µ(~y, t)B̂µ(~y, t)

We introduce the following notation Dµ[ψ̂] = ∂~yµψ̂(~y, t) − iq
~ Âµ(~y, t)ψ̂(~y, t) and D?

µ[ψ̂†] = ∂~yµψ̂
†(~y, t) +

iq
~ Âµ(~y, t)ψ̂†(~y, t)

The calculation needs the following commutators:

[π̂ν(~x, t), ψ̂†(~y, t)] = −qxνK2,3(~x, ~y)ψ†(~y, t)

[π̂ν(~x, t), ψ̂(~y, t)] = qxνK2,3(~x, ~y)ψ(~y, t)

[π̂ν(~x, t), Âµ(~y, t)] = −i~{δνµδ(~x− ~y) + xν∂~yµK2,3(~x, ~y)}

First we compute the commutator between the canonical momentum π̂ν(~x, t) and the conjugate of covariant deriva-

tive D?
µ[ψ̂†]. One finds:

[π̂ν(~x, t), D?
µ[ψ̂†]] = ∂~yµ[π̂ν(~x, t), ψ̂†(~y, t)] +

iq

~
[π̂ν(~x, t), Âµ(~y, t)]ψ̂†(~y, t) +

iq

~
Âµ(~y, t)[π̂ν(~x, t), ψ̂†(~y, t)]

= −qxν∂~yµ[K2,3(~x, ~y)ψ†(~y, t)] + q{δνµδ(~x− ~y) + xν∂~yµK2,3(~x, ~y)}ψ̂†(~y, t)− q iq
~
Âµ(~y, t)xνK2,3(~x, ~y)ψ†(~y, t)

= −qxνK2,3(~x, ~y)∂~yµ[ψ†(~y, t)] + qδνµδ(~x− ~y)ψ̂†(~y, t)− q iq
~
Âµ(~y, t)xνK2,3(~x, ~y)ψ†(~y, t)

= −qxνK2,3(~x, ~y){∂~yµ[ψ†(~y, t)] +
iq

~
Âµ(~y, t)ψ†(~y, t)}+ qδνµδ(~x− ~y)ψ̂†(~y, t)

= −qxνK2,3(~x, ~y)D?
µ[ψ†] + qδνµδ(~x− ~y)ψ̂†(~y, t)
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Now we compute the commutator between the canonical conjugate momentum π̂ν(~x, t) and the covariant derivative

Dµ[ψ̂]. One finds:

[π̂ν(~x, t), Dµ[ψ̂]] = ∂~yµ[π̂ν(~x, t), ψ̂(~y, t)]− iq

~
[π̂ν(~x, t), Â(~y, t)]ψ̂(~y, t)− iq

~
Âµ(~y, t)[π̂ν(~x, t), ψ̂(~y, t)]

= qxν∂~yµ[K2,3(~x, ~y)ψ(~y, t)]− q{δνµδ(~x− ~y) + xν∂~yµK2,3(~x, ~y)}ψ̂(~y, t)− q iq
~
Âµ(~y, t)xνK2,3(~x, ~y)ψ(~y, t)

= qxνK2,3(~x, ~y)∂~yµ[ψ(~y, t)]− qδνµδ(~x− ~y)ψ̂(~y, t)− q iq
~
Âµ(~y, t)xνK2,3(~x, ~y)ψ(~y, t)

= qxνK2,3(~x, ~y){∂~yµ[ψ(~y, t)]− iq

~
Âµ(~y, t)ψ(~y, t)} − qδνµδ(~x− ~y)ψ̂(~y, t)

= qxνK2,3(~x, ~y)Dµ[ψ]− qδνµδ(~x− ~y)ψ̂(~y, t)

The Heisenberg equation, with the help of the hamiltonian density Ĥ(~y, t) will involve the two following commuta-
tors:

[
π̂ν(~x, t), D?

µ[ψ̂†]
]
Dµ[ψ̂] = −qxνK2,3(~x, ~y)D?

µ[ψ†]Dµ[ψ̂] + qδνµδ(~x− ~y)ψ̂†(~y, t)Dµ[ψ̂]

And,

D?
µ[ψ̂†]

[
π̂ν(~x, t), Dµ[ψ̂]

]
= qxνK2,3(~x, ~y)D?

µ[ψ̂†]Dµ[ψ]− qδνµδ(~x− ~y)D?
µ[ψ̂†]ψ̂(~y, t)

Finally, with the help of the previous results, the time-evolution equation of the canonical conjugate momentum
πν(~x, t) leads to the Maxwell-Ampère equation:

i~
d

dt
π̂ν(~x, t) =

~2

2m
q{ψ̂†(~x, t)Dν [ψ̂]−D?,ν [ψ̂†]ψ̂(~x, t)} − i~

µ0

~∇× B̂(~x, t)|ν

−ε0
d

dt
Êν(~x, t) = −i ~

2m
q{ψ̂†(~x, t)Dν [ψ̂]−D?,ν [ψ̂†]ψ̂(~x, t)} − 1

µ0

~∇× B̂(~x, t)|ν

The probability current is given by: ĵν(~x, t) = −i ~
2m{ψ̂

†(~x, t)Dν [ψ̂] − D?,ν [ψ̂†]ψ̂(~x, t)}, one can recognize the
Maxwell-Ampère equation:

~∇× B̂(~x, t)|ν = µ0qĵ
ν(~x, t) +

1

c2
d

dt
Êν(~x, t)

IV. THE POWER-ZIENAU-WOOLLEY HAMILTONIAN CREATES NON-PHYSICAL STATES.

We have shown in the main text of this article that the Power-Zienau-Woolley hamiltonian density reduces to an
expression involving terms written in the Poincaré gauge (the kinetic energy density term) and other terms written
in the Coulomb gauge (the electromagnetic energy density term). We recall here the expression of the Power-Zienau-
Woolley hamiltonian:

Ĥpzw = ξ̂†(~x, t){(− ~2

2m
)[~∇− iq

~
Âp(~x, t)]

2 + V (~x, t)}ξ̂(~x, t) + [
1

2
ε0∂tÂ

⊥
c (~x, t)2 +

1

2
ε0~∇φ̂c(~x, t)2 +

1

2µ0
B̂2(~x, t)]

With Âp(~x, t) = −~x ×
∫ 1

0
uduB̂(u~x, t), being the vector potential in the Poincaré gauge whereas Â⊥c (~x, t) is the

vector potential in the Coulomb gauge.
In the Power et. al derivation, the gauge is fixed to the Coulomb gauge[1, 2, 5, 7–10, 12, 17]. The vector potential

in the Coulomb gauge satisfied the wave equation ∆Âc = 1
c2

∂2

∂t2 Âc. The most general solution is given by a Fourier
transformation since this is a natural basis for the wave equation. Annihilation/creation operators are defined with
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the help of the canonical commutation relations. The expansion of the vector potential that satisfies the Coulomb

gauge condition ~∇.Â(~x, t) = 0 reads (see e.g. [14] p.320):

Â⊥c (~x, t) =
∑
ρ=1,2

∫
d~k

(2π)3/2
E~k~e~k,ρ[e

i(~k.~x−ωt)â~k,ρ + e−i(
~k.~x−ωt)â†~k,ρ

]

Where ~e~k,ρ are two orthonormal-polarization vectors (ρ = 1, 2) satisfying ~k.~ek,ρ = 0. The annihilation/creation

operator â~k,ρ, â
†
~k,ρ

respectively annihilates or creates modes with wavevector ~k and polarisation state ~e~k,ρ.

The mode volume is E~k =
√

ε0
2~ω . The angular frequency is given by ω = c|~k| where c is the speed of light in

vacuum.
In order to satisfy the canonical commutation rules in the Coulomb gauge [Â⊥µ (~x, t), π̂⊥ν (~y, t)] = i~δ⊥m,n(~x− ~y), the

annihilation and creation operators satisfy the following commutator:

[â†~k,ρ
, â†~k′,ρ′

] = δρ,ρ′δ(~k − ~k′)

The magnetic reads:

B̂(~x, t) = ~∇× Â⊥c (~x, t)

B̂(~x, t) = i
∑
ρ=1,2

∫
d~k

(2π)3/2
E~k(~k × ~e~k,ρ)[e

i(~k.~x−ωt)â~k,ρ − e
−i(~k.~x−ωt)â†~k,ρ

] (25)

The Fock space generated by the action of the creation operators on the vacuum state |0〉 contains only states with
transverse polarization. We call these states the physical states[16].

We will show now that the photonics operator Âp(~x, t) generates longitudinal electromagnetic states that do not
belong to the Fock space.

The photonics operator Âp(~x, t) can be expressed with the help of creation/annihilation operators as:

Âp(~x, t) = −~x×
∫ 1

0

uduB̂(u~x, t)

= i
∑
ρ=1,2

∫
d~k

(2π)3/2
~x× (~k × ~e~k,ρ)

∫ 1

0

uduE~k[ei(
~k.u~x−ωt)â~k,ρ − e

−i(~k.u~x−ωt)â†~k,ρ
]

We apply this operator to the vacuum state |0〉. Using ~x× (~k × ~e~k,ρ) = (~x.~e~k,ρ)
~k − (~x.~k)~e~k,ρ, we obtain:

Âp(~x, t) |0〉 = −i
∑
ρ=1,2

{∫
d~k

(2π)3/2
(~x.~e~k,ρ)

~k

∫ 1

0

uduE~ke
−i(~k.u~x−ωt) |1;~k, ρ〉 −

∫
d~k

(2π)3/2
(~x.~k)~e~k,ρ

∫ 1

0

uduE~ke
−i(~k.u~x−ωt) |1;~k, ρ〉

}
|1;~k, ρ〉 is a single photon state characterized by a wavevector ~k and the polarization vector ~eρ.

This expression holds for all positions ~x. So in the general case, ~x.~e~k,ρ 6= 0. The photonics operator Âp(~x, t) creates

electromagnetic states parallel to the wave-vector, i.e. longitudinal photon-states. Theses states don’t belong to the
Fock space. There are not physical states. So, this photonics operator creates non-physical states i.e. states that do
not satisfy the gauge constraints. We recall that the hamiltonian under study describes one single electron interacting
with the electromagnetic field. There is no longitudinal-polarization is such a situation.

These non-physical states with longitudinal polarization arises because in the Poincaré gauge, the vector potential
is neither transverse nor longitudinal. As a consequence, this photonics operator creates electromagnetic states that
do not belong to the Fock space generated by the annihilation/creation operators in the Coulomb gauge. This is a
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consequence of the Power-Zienau-Woolley derivation that breaks the gauge-symmetry of electromagnetism and does
not leave invariant the sub-manifold of physical states.
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