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We present a comprehensive review of the physical behavior of yield stress materials
in soft condensed matter, which encompass a broad range of materials from colloidal
assemblies and gels to emulsions and non-Brownian suspensions. All these disordered
materials display a nonlinear flow behavior in response to external mechanical forces, due
to the existence of a finite force threshold for flow to occur: the yield stress. We discuss
both the physical origin and rheological consequences associated with this nonlinear
behavior, and give an overview of experimental techniques available to measure the
yield stress. We discuss recent progress concerning a microscopic theoretical description
of the flow dynamics of yield stress materials, emphasizing in particular the role played
by relaxation time scales, the interplay between shear flow and aging behavior, the
existence of inhomogeneous shear flows and shear bands, wall slip, and non-local effects
in confined geometries.
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A SHORT INTRODUCTION TO YIELD STRESS
MATERIALS

Many of the materials that we encounter in our daily
life are neither perfectly elastic solids nor simple Newto-
nian fluids, and attempts to describe these materials as
being either fluid or solid often fail. Take, for instance,
whipped cream and thick syrup. When moving a spoon
through these two materials, one would conclude that
syrup is the more viscous fluid. However, when left at
rest, the syrup will readily flatten and become horizontal
under the force of gravity, while whipped cream will re-
tain its shape for a long time, suggesting that, actually,
the whipped cream is more viscous than syrup (Fig. 1).
This paradox stems from the fact that the syrup is a
Newtonian fluid, whereas whipped cream is not a simple
fluid at all, and its flow properties cannot be reduced to a
single number such as its viscosity. Whipped cream does
not flow if the imposed stress is below a threshold value
and flows rather easily after this value is exceeded. This
threshold rheology is the defining feature of yield stress
materials. Classical, everyday examples of yield stress
materials include paints, foams, wet cement, cleansing
creams, mayonnaise, and tooth paste.

Besides pharmaceutical and cosmetic applications,
yield stress materials are also used in the oil indus-
try, where estimating the minimum pressure required to
restart a gelled crude-oil pipeline is crucial (Chang et al.,

FIG. 1 Which fluid is more viscous: whipped cream or thick
maple syrup? Slowly stirring both materials with a spoon
suggests that syrup is more viscous, while observing the flat-
tening of piles of each material with time suggests the oppo-
site. In fact, the question is ill-posed. The flow properties of
whipped cream cannot be reduced to a single viscosity value
because it is a yield stress material, whereas syrup is simply
a very viscous fluid.

1999). The yield stress is also relevant to the concrete and
dairy product industries, where its value is related to the
size of air bubbles that may remain trapped in the ma-
terial and directly affect its properties (van Aken, 2001;
Kogan et al., 2013). In all these fields, it is of paramount
importance to characterize as quantitatively as possible
the force threshold needed to make the material flow, i.e.,
the yield stress.

We review recent progress concerning the fundamental
understanding of the yield stress as well as the physical
processes relevant to experimental studies of the yielding
transition in a broad range of materials across soft con-
densed matter. The existence of a threshold for flow sug-
gests that these materials respond in a highly nonlinear
manner, which has a dramatic impact on their dynamical
properties under flow, which we also discuss extensively.
Yield stress phenomena are of key importance both from
a fundamental point of view and for practical situations
involving amorphous solids, spanning a wide range of ma-
terials and spanning the fields of hard and soft condensed
matter physics.

There are a number of excellent topical reviews avail-
able dealing with specific aspects of yield stress materi-
als (Balmforth et al., 2014; Coussot, 2005, 2014; Denn
and Bonn, 2011; Mansard and Colin, 2012; Møller et al.,
2006). In addition, very recently a collection of relevant
papers appeared in a special issue celebrating the an-
niversary of the first paper by Bingham describing yield
stress fluids (Cloitre and Bonnecaze, 2017; Coussot, 2017;
Coussot et al., 2017; Dinkgreve et al., 2017; Ewoldt and
McKinley, 2017; Frigaard et al., 2017; Malkin et al., 2017;
Mitsoulis and Tsamopoulos, 2017; Saramito and Wachs,
2017). The present review attempts to give a concise
overview of the physics of yield stress materials taking
a very broad perspective encompassing fundamental, ex-
perimental and practical issues, along with a discussion
of some important open questions.

The review is organised as follows. In Sect. I, we give
a general overview of the various physical concepts and
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issues raised by the existence of a yield stress, with em-
phasis on model systems and theoretical approaches. In
Sect. II, we provide a critical review of the experimental
issues that arise due to the yield stress and of their physi-
cal causes, with emphasis on the ubiquitous phenomenon
of apparent slippage of yield stress materials at the walls.
Sect. III is devoted to the most recent developments and
emerging topics regarding flow dynamics of yield stress
fluids, including time-dependence and shear banding, as
well as the effects of confinement and transient fluidiza-
tion behaviors. We close our review with a brief summary
in Sect. IV.

I. GENERAL CONCEPTS ABOUT YIELD STRESS
FLUIDS

A. Popular rheological models for yield stress materials

Quantifying the steady-state flow properties of a non-
Newtonian fluid requires the measurement of its full flow
curve as the shear viscosity is not a unique number. For
a simple shear geometry, the flow curve is a representa-
tion of the dependence of the shear stress, σ, on the shear
rate, γ̇. For a Newtonian fluid, these functions are lin-
early related, σ = ηγ̇, where η is a constant viscosity. For
a yield stress material, the viscosity becomes formally a
function of the shear rate, σ = η(γ̇)γ̇, and the flow curve
σ = σ(γ̇) is not a simple straight line crossing the origin.
As discussed below, for a number of materials, the vis-
cosity also becomes a function of the entire measurement
procedure, resulting in a complex time dependence which
can make practical measurements challenging.

The most elementary model capturing the existence
of a finite yield stress is the Bingham model (Bingham,
1922):

σ < σy ⇒ γ̇ = 0, (1)

σ ≥ σy ⇒ σ = σy + ηpγ̇, (2)

where σy > 0 is the yield stress, and ηp a model param-
eter describing the slope of the flow curve in the fluid
region, which is defined by γ̇ > 0. The Bingham model
is equivalently described by an effective viscosity which
is asymptotically equal to ηp at large stresses, and di-
verges continuously as the stress decreases towards the
yield stress: ηeff(γ̇) ≡ σ/γ̇ = ηp + σy/γ̇. Its simplicity
stems from the fact that it uses only a single material-
dependent number, the yield stress σy, to describe com-
plex, nonlinear behavior incorporating a threshold force.

In Fig. 2 we return to the examples of whipped
cream and syrup, showing flow curves for both mate-
rials. Fig. 2(a) illustrates that the Bingham model gives
a reasonable description of the measured flow curve of
whipped cream with a yield stress of about σy ≈ 33 Pa,
while Fig. 2(b) shows that it makes little sense to com-
pare the viscosity of these two “fluids” as, in fact, only

FIG. 2 (a) The Bingham model (solid line) provides a rea-
sonable fit to the experimental flow curve of whipped cream
(crosses), with yield stress σy ≈ 33 Pa. (b) The flow curves
of syrup (plusses) and whipped cream (crosses) at low shear
rates. Data points are connected by lines as guides to the
eye. For stresses above 33 Pa, whipped cream flows more eas-
ily than syrup, while the opposite is true below 33 Pa. Using
this enlarged scale, one can see that the flow curve of whipped
cream below the yield stress is in fact not well described by
Eq. (1) of the Bingham model, which simply predicts zero
shear rate all the way up to σy.

one of them is really a fluid with a constant viscosity.
Fig. 2 also illustrates that, whereas the Bingham model

appears to be an excellent fit to the flow curve of whipped
cream [Fig. 2(a)], it actually fails at low shear rates,
which becomes obvious once the resolution is improved
[Fig. 2(b)]. From the latter plot, one would conclude that
the yield stress is about σy ≈ 10 Pa, rather than 33 Pa.
This highlights one of the many practical problems en-
countered when working with complex fluids: before a
question about the flow properties of a complex mate-
rial can be satisfactorily answered, one needs to carefully
consider the exact experimental protocol as well as the
range and resolution of shear rates/stresses over which
the data are analyzed.

Two popular generalizations of the Bingham fluid
model in shear flow are the Herschel-Bulkley (Herschel
and Bulkley, 1926) and Casson equations, given respec-
tively as

Herschel− Bulkley : σ = σy +Kγ̇n, σ ≥ σy, (3)

Casson : σ1/2 = σ1/2
y + (ηpγ̇)1/2, σ ≥ σy,(4)

where K and n are additional parameters. Obviously,
the Bingham model is a specific instance of the Herschel-
Bulkley equation, obtained by imposing n = 1.

The Herschel-Bulkley model is very popular as it of-
fers more flexibility for fitting experimental data than
the Bingham model. It describes both the yield stress
regime, σ ≈ σy, at low shear rate, and a power-law shear-
thinning behavior, σ ≈ Kγ̇n, with n < 1 for larger shear
rates. Across a large variety of systems, the shear thin-
ning exponent n is found to have a value in the range
n = 0.2 − 0.8, rather than the n = 1 value imposed in
the Bingham model. Frequently, n changes very little
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with either the density or the temperature of the mate-
rial (Vinogradov et al., 1978), so that it appears to be a
relevant “material parameter”, for instance for microgels
(Gutowski et al., 2012; Nordstrom et al., 2010; Oppong
et al., 2006; Roberts and Barnes, 2001), emulsions (Bécu
et al., 2006; Mason et al., 1996), and foams (Gilbreth
et al., 2006; Höhler and Cohen-Addad, 2005; Pratt and
Dennin, 2003; Princen and Kiss, 1989). As such, its de-
termination (or prediction) has become a question of the-
oretical interest as well, as discussed below.

The crossover between the yield stress and the shear
thinning regimes in the Herschel-Bulkley model occurs
for a typical shear rate γ̇? ≈ (σy/K)1/n. It is there-
fore tempting to interpret the corresponding time scale
1/γ̇? as a relevant microscopic time scale for the ma-
terial (Bonnecaze and Cloitre, 2010). The Herschel-
Bulkley equation also predicts the existence of a diverging
time scale τ governing the relaxation to steady state in
stress-controlled experiments in the vicinity of the yield
point, i.e. for σ & σy, since one gets: τ ∼ γ̇−1 ≈
[K/(σ−σy)]1/n, which readily suggests an interpretation
of the yielding transition observed in steady-state simple
shear flows in terms of a critical point (Chaudhuri and
Horbach, 2013; Divoux et al., 2012). This topic will be
discussed extensively in Sect. III.C.

B. Physical origin of the yield stress in soft materials

To elucidate the physical origin of yield stress rheology
in a given material, ideally one would like to know under
what conditions the material exhibits a yield stress, what
microscopic mechanisms are responsible for the emer-
gence of a yield stress, and whether general rules can be
formulated to predict the actual value of the yield stress
for instance as a function of the composition and struc-
tural organization (constituents, interactions) of the ma-
terial. The emergence of a finite yield stress is frequently
referred to as a “jamming transition” (van Hecke, 2010;
Liu and Nagel, 2001): a broad range of dense amorphous
materials (from foams and grains to dense liquids) share
the important similarity that they do not flow unless a
large enough shear stress is applied. This idea was pop-
ularised via a schematic jamming phase diagram in an
influential paper by Liu and Nagel (Liu and Nagel, 1998).

However, the existence of a similar type of transition
between fluid and amorphous solid states does not im-
ply that a single physical mechanism should be at work:
soft condensed materials may become solid by crossing
a variety of phase transitions, and the “jamming transi-
tion” is now understood as being only one of them (van
Hecke, 2010; Liu and Nagel, 2010). In the following,
we describe three important classes of yield stress ma-
terials whose solid behavior originates from qualitatively
different types of phase transitions (or sharp dynamical
crossovers) which are usually described by different types

of theoretical approaches as well.

1. Simple colloidal systems: soft glassy materials

Suspensions of nearly-hard-sphere colloidal particles
are among the most studied experimental systems in soft
condensed matter (Hunter and Weeks, 2012; Pusey and
van Megen, 1986), as they represent good model systems
to study a large variety of physical phenomena also oc-
curring in atomic and molecular systems, from first-order
crystallisation to glassy dynamics (Royall et al., 2013).
For colloidal particles, thermal fluctuations and Brow-
nian motion play key roles since they ensure that the
system can reach thermal equilibrium. However, when
the volume fraction φ of colloidal hard spheres is in-
creased, the system undergoes a colloidal glass transition
that shares important similarities with the glass transi-
tion observed upon decreasing the temperature in molec-
ular supercooled liquids (Pusey and van Megen, 1987).
Experimentally, above a “glass transition” packing frac-
tion of about φG ≈ 0.58 − 0.60 (in three-dimensional
suspensions), the equilibrium relaxation time of the col-
loidal suspension becomes so large that the particles do
not significantly diffuse over a typical experimental time
scale and the system is effectively dynamically arrested
(Brambilla et al., 2009). At packing fractions above
φG, colloidal particles simply perform localized back-
and-forth “vibrational” motion inside the cage formed
by their neighbors. This empirical definition of the glass
transition density demonstrates that its actual location
is not very well-defined experimentally, in the sense that
deciding whether a material is “solid” or simply “very
viscous” depends on the observation time scale or the
explored range of shear rates in steady-state flow curves.

The rheological consequences of the glass transition are
readily observed in the flow curves shown in Fig. 3(a) (Pe-
tekidis et al., 2004). An extended Newtonian regime is
observed for φ < φG, which defines a density-dependent
viscosity, η(φ) that is seen to increase very rapidly as
the density increases towards φG. A finite yield stress σy
emerges as the glass transition is crossed for φ > φG,
which increases as the colloidal glass concentration is
increased further. In the vicinity of the glass transi-
tion, φ ≈ φG, a shear-thinning regime is observed, where
σ ' γ̇n with n < 1, illustrating the general fact that the
rheology of glassy suspensions occurs mostly out of the
linear regime. In fact, accurate measurements of the lin-
ear viscosity in hard-sphere suspensions are scarce, and
often limited to a modest dynamic regime (Cheng et al.,
2002), precisely because it is challenging to access the lin-
ear rheological regime. In the glass phase, the flow curves
are typically well described by the Herschel-Bulkley law,
which efficiently incorporates both the yield stress and
shear-thinning behaviors in a single empirical model.

Similar flow curves are observed in many systems un-
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FIG. 3 (a) Soft glassy rheology. Evolution of the flow curves
across the thermal colloidal glass transition for a suspension
of PMMA hard spheres of size a ≈ 200 nm. Extracted from
(Petekidis et al., 2004). (b) Jamming rheology. Evolution
of the flow curves for an oil-in-water emulsion with droplet
size a ≈ 3.2 µm across the athermal jamming transition. Ex-
tracted from (Paredes et al., 2013). In both cases, a yield
stress appears above a certain critical density φc (marked with
a dashed line), which corresponds to the glass transition φG
for thermal systems in (a), and to the jamming transition φJ
for athermal particles in (b). Although the emergence of solid
behavior in both cases is conceptually very different, the flow
curves of both materials are surprisingly similar.

dergoing a glass transition, from dense molecular liquids
(Berthier and Barrat, 2002) to colloidal suspensions with
soft and hard repulsion between the particles (Nordstrom
et al., 2010; Petekidis et al., 2004; Siebenbürger et al.,
2012). In all these systems, a finite yield stress emerges
when the shear viscosity becomes so large (upon chang-
ing density or temperature) that the system cannot flow
anymore on experimentally accessible time scales. Phys-
ically, the yield stress results from the fact that parti-
cles move too slowly and cannot rearrange the structure
fast enough to relax the stress introduced by an exter-
nal deformation. Therefore, a simple criterion for the

emergence of a yield stress is when the time scale for
the spontaneous equilibrium relaxation, usually called
“alpha-relaxation” time scale, τα, becomes larger than
the time scale of the external deformation, given by 1/γ̇.
In the regime where ταγ̇ � 1, spontaneous relaxation
cannot occur over the rheologically relevant time window
and the system appears solid. Empirically, τα closely fol-
lows the behavior of the Newtonian viscosity, τα ∝ η(φ),
which explains why the linear regime ταγ̇ � 1 becomes
very difficult to study near the glass transition where the
viscosity increases dramatically.

In such glassy materials, the yield stress is typically a
function of temperature and density. This dependence
simplifies considerably for the hard-sphere model, be-
cause the hard-sphere potential contains no energy scale.
In that case, the relevant stress scale controlling solid-
ity is σT = kBT/a

3, where kB is Boltzmann’s constant,
T the temperature and a the particle diameter, so that
the yield stress can be rewritten as σy = σT f(φ), where
f(φ < φG) = 0. This behavior emphasizes the entropic
origin of the solidity in colloidal hard spheres, and there-
fore the crucial role played by thermal fluctuations in
the emergence of a yield stress in colloidal particles with
purely repulsive interactions (Ikeda et al., 2012; Petekidis
et al., 2004).

Finally, when the colloidal glass is compressed far
above the glass transition, the interparticle distance de-
creases and particles eventually come into near-contact
as the “random close packing” packing fraction is ap-
proached (Bernal and Mason, 1960). For rheology, this
critical packing fraction is more commonly called the
“jamming” density (Liu and Nagel, 2010). As a conse-
quence, the colloidal glass becomes stiffer when density
increases. For pure hard spheres, this results in a strong
increase of the yield stress, which appears to diverge as a
power law, σy ∼ σT (φJ − φ)−γ , with an exponent γ ≈ 1
and where the jamming density φJ > φG. This func-
tional form shows that the yield stress vanishes for fully
non-Brownian suspensions of hard particles due to the
entropic prefactor σT = kBT/a

3 which vanishes when
the particle size becomes macroscopic, a → ∞. There-
fore, suspensions of non-Brownian hard particles such as
granular particles do not belong to the family of yield
stress materials. The density dependence of mechani-
cal properties is much smoother for particles with non-
hard sphere interactions, such as soft repulsive particles
(Koumakis et al., 2012b; van der Vaart et al., 2013), for
which the concept of a sharp jamming transition cannot
be defined in the presence of thermal fluctuations (Ikeda
et al., 2013).

2. Non-Brownian suspensions: Jammed materials

When the typical size a of colloidal particles increases,
Brownian motion becomes negligible and thermal fluctu-
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ations are less relevant. This is because the typical time
scale for a Brownian particle to diffuse over a distance
comparable to its own size scales as a2/D0, where D0 is
the single-particle diffusion constant. For an observation
time scale of the order of 1 second, the crossover typically
occurs for a particle diameter of about a ≈ 1 µm.

Non-Brownian suspensions of soft particles, such as
foams and large emulsion droplets, become solid when
the density is increased above a critical packing fraction,
which corresponds to a genuine “jamming transition”; in
this case, glassy dynamics are not observed. For soft, re-
pulsive spherical particles in three dimensions, the tran-
sition takes place near the random close-packing density,
φJ ≈ 0.64−0.66. Apart from experimental difficulties, an
important source of the uncertainty concerning the jam-
ming density is size polydispersity. It is empirically found
that φJ increases systematically with the size polydisper-
sity of the sample (Hermes and Dijkstra, 2010; Torquato
and Stillinger, 2010).

In contrast with the glass transition, thermal fluctua-
tions play strictly no role in this process, and the emer-
gence of solid behavior can be obtained in model systems
directly at T = 0. If the packing fraction is large enough,
non-Brownian particles come into contact, and possibly
deform, therefore supporting local stresses. The key con-
cept for jamming is the existence of a sufficiently large
number of contacts between the particles such that me-
chanical equilibrium can be maintained throughout the
sample (van Hecke, 2010), but the detailed nature of this
geometrical transition is different from a simple percola-
tion transition.

A second major difference with the glass transition is
that the jamming transition can in principle be defined
and located with arbitrary precision, as its definition does
not rely on an observation time scale, although, of course,
additional experimental difficulties might intervene (van
Hecke, 2010; Ikeda et al., 2013). The reason is that the
emergence of solidity does not result from the competi-
tion between an equilibrium relaxation time scale defined
at rest and a finite shear rate, as for glasses, because
non-Brownian suspensions have no spontaneous dynam-
ics at rest. The jamming transition and existence of a
yield stress in soft materials can therefore be described
as “static” transitions resulting from a sharp qualitative
change in the microstructural properties of the mate-
rial (Parisi and Zamponi, 2010).

Another important consequence of the absence of ther-
mal fluctuations is the fact that the jamming transi-
tion, unlike the glass transition, necessarily takes place
far from thermal equilibrium. In particular, this implies
that the preparation protocol of the non-Brownian pack-
ings in the vicinity of the jamming transition becomes a
relevant parameter controlling the location of the tran-
sition (Berthier and Witten, 2009; Donev et al., 2004)
but, quite importantly, not its physical nature and prop-
erties (Chaudhuri et al., 2010a).

In experiments and model systems studied in computer
simulations, it is found that the yield stress emerges con-
tinuously with increasing packing fraction past the jam-
ming transition (Durian, 1995). This has been reported
for foams and emulsions, which are well-described (at
least near the transition) by simple models of soft re-
pulsive spheres interacting via truncated harmonic or
Hertzian potentials of the form

V (r < a) =
ε

α
(1− r/a)α, (5)

where ε is an an energy scale governing the mechanical
property (essentially, the softness) of the particles; the
potential is zero when particles are not in contact, V (r >
a) = 0. In that case, the relevant stress scale controlling
the behavior of the yield stress is of energetic (rather than
entropic) nature: σ0 = ε/a3. As a result, the yield stress
can now be written σy = σ0g(φ), where g(φ < φJ) = 0.
A robust finding for the behavior of the yield stress above
the jamming transitition is a power-law behaviour: σy =
σ0(φ−φJ)∆ for φ ≥ φJ (Durian, 1995; Olsson and Teitel,
2007). The exponent ∆ can be seen as a critical exponent
characterizing the rheology of jammed materials; we will
now discuss whether such scalings can be retrieved in
experiments, and how universal these would be.

Emulsions are systems for which the packing fraction
can be changed relatively easily, without changing other
system parameters much. Probably the first systematic
study of flow curves across a range of volume fractions
was performed by Mason et al. (Mason et al., 1996), us-
ing a droplet size which is however not quite large enough
for thermal fluctuations to be fully irrelevant. Fig. 3(b)
shows similar data taken over a broader range of param-
eters and larger droplets so that thermal effects are fully
irrelevant (Paredes et al., 2013). The similarity with the
soft glassy rheology in Fig. 3(a) is striking, as the mate-
rial crosses over from a Newtonian fluid at low enough
density and shear rate to a yield stress solid above jam-
ming, where the flow curves are again well-described by
the Herschel-Bulkley model with a shear-thinning expo-
nent n < 1. Exactly at the jamming density, a power-law
shear-thinning behavior is observed. A detailed discus-
sion of the exponent appearing in the Herschel-Bulkley
law can be found in (Olsson and Teitel, 2012a). A careful
determination of n requires a power-law fit of (σ−σy) as
a function of γ̇. It is found in simple numerical models
that such a plot actually displays two distinct power-law
regimes with two different exponents: n at small shear
rates, and n′ at larger shear rates (Kawasaki et al., 2015;
Lerner et al., 2012; Olsson and Teitel, 2011, 2012a). It
is likely that the fitting of experimental flow curves is
dominated by the second of these two exponents, and
comparison to theory is thus somewhat delicate. Addi-
tionally, at finite shear rates, it is also possible that other
ingredients, such as friction between particles (Bonnecaze
and Cloitre, 2010; Katgert et al., 2009, 2008) or energy
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dissipation of the interstitial liquid (or in Plateau bor-
ders for foams (Schwartz and Princen, 1987)) start to
play a significant role and also affect the value of the
shear-thinning exponent.

It is interesting to consider the limit of infinitely hard
non-Brownian (i.e., granular) suspensions, which are also
often described as possessing a yield stress. As should be
clear from the above discussion, a yield stress can only
exist in non-Brownian repulsive objects if they can be
compressed strictly above the jamming density, φ > φJ .
This is by definition not possible when particles are truly
hard, such as in granular suspensions that only exist in
the fluid state, φ < φJ (Andreotti et al., 2013). Careful
measurements on suspensions of spherical particles (Fall
et al., 2009, 2013) have indeed revealed that if the parti-
cles and suspending liquid are carefully density-matched,
there is no yield stress up to random close packing, where
all the particles start to touch each other. However, as
soon as there is the slightest density mismatch, the par-
ticles cream or sediment, so that φ → φJ , which is in-
deed the only density where hard particles can be fully
arrested. This makes non-density-matched suspensions
similar to dry granular systems: a sand pile has a clear,
finite angle of repose, which is equivalent to stating that
it has a yield stress (Vanel et al., 1999). As for sediment-
ing suspensions, this is due to the gravitational forces
that push the grains together and in this way activate
the frictional contacts between the grains (Vanel et al.,
1999).

A direct consequence of the hard-particle limit is then
that no time scale can be constructed from the parti-
cle interaction, and the flow curves obtained at constant
density therefore simplify considerably and become fully
Newtonian. Very different from the flow curves shown in
Fig. 3, the rheology of this regime is described by sim-
pler constitutive laws (with no yield stress) that have
been very carefully studied and validated by many exper-
iments in the community of granular media (Andreotti
et al., 2013; MiDi, 2004).

In Fig. 4 (Ikeda et al., 2013) we summarize the evolu-
tion of yield stress with temperature T and packing frac-
tion φ for several types of three-dimensional assemblies
of harmonic repulsive particles, determined using com-
puter simulations. It demonstrates the emergence of a
yield stress in thermalized colloidal assemblies at a pack-
ing fraction φG, which depends weakly on the particle
softness. This softness is quantified by the adimensional
temperature scale kBT/ε, which compares thermal en-
ergy to particle repulsion. Colloidal PMMA hard spheres
are typically characterized by kBT/ε ∼ 10−8, whereas
soft microgels are usually much softer, kBT/ε ∼ 10−4,
emulsions being typically intermediate, kBT/ε ∼ 10−6.
All these systems display a yield stress above the col-
loidal glass transition, and the yield stress increases with
density in the glass phase. For hard spheres, it diverges
at the jamming transition, for emulsions it shows a strong

FIG. 4 Three-dimensional “jamming phase diagram” showing
the reconstructed yield stress surface from numerical simula-
tions as a function of the thermodynamic parameters tem-
peratures and density in a dimensionless representation (par-
ticle softness kBT/ε, volume fraction ϕ, and stress σa3/ε)
for a model of soft harmonic particles (Ikeda et al., 2013).
The thick lines represent the location of typical experimen-
tal measurements in various materials: foams (rightmost line)
are mainly sensitive to jamming physics; PMMA hard spheres
(black line) to glass physics; emulsions display an interesting
interplay between glass and jamming transitions; PNIPAM
microgels (leftmost line) undergo a colloidal glass transition
far from the jamming limit with no particular signature across
the jamming density.

crossover behaviour, and it has a smooth density depen-
dence for soft microgels. In soft systems such as foams,
kBT/ε ∼ 10−8 is again small because thermal fluctua-
tions become irrelevant for such large particles, and the
emergence of the yield stress is associated with the jam-
ming transition, with no influence of thermal fluctuations
on the rheology. The jamming transition controls the
T → 0 limit of the jamming phase diagram in Fig. 4.
Such a diagram is experimentally useful as it allows one
to locate systems such as microgels, emulsions, foams and
colloidal hard spheres on the same graph, and to eluci-
date the origin of the yield stress observed in rheological
experiments.

3. Role of attractive forces: Colloidal gels

In the previous section, particle systems with solely
repulsive forces were described from a theoretical per-
spective, in which case temperature can only compete
with the particle softness, and the main control parame-
ter is the packing fraction. The situation becomes more
complex when attractive forces come into play. Adhesion
and attractive forces are relevant for a large number of
model systems and real materials. For instance, dense
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liquids do not interact via hard-sphere potentials, but
typically also possess longer-range attractive forces, mod-
eled for instance via a Lennard-Jones potential (Hansen
and McDonald, 2006). In colloidal systems, attractive
forces can be easily induced and tuned, using for instance
colloid-polymer mixtures (Royall et al., 2013). Many
real-material systems, such as clay suspensions or more
generally colloidal gels, are Brownian systems with at-
tractive interactions between the colloidal particles (Lar-
son, 1999).

Regarding the glass transition phenomenon in simple
systems, attractive forces only weakly affect the physics,
in the sense that they contribute quantitatively to the
relaxation dynamics and details of the phase diagram,
but do not change the physical behavior qualitatively
(Berthier and Tarjus, 2009, 2011).

Attractive forces in simple liquids start to change the
physics when they are strong enough to induce a nontriv-
ial dynamical arrest in a regime that would otherwise be
characterized by a simple fluid behavior. The simplest
case is when very strong bonds are present, which might
result in a percolating particle network that can sustain
a finite stress, very much as in chemical gels (Larson,
1999). Here, a yield stress emerges and coincides with
a percolation transition. When the gel is dense enough,
such a network can confer a macroscopic elasticity to the
system and hence be responsible for a yield stress. How-
ever, if the thermal energy is sufficient to break and re-
form bonds within the network, for a small applied stress
the system will eventually flow at long time scales, and
the system is simply viscoelastic (it is a “transient” gel).

Percolation only represents one of the possible routes
to the production of physical gels; several other exam-
ples have been studied in recent years (Zaccarelli, 2007).
Here, we briefly mention three examples.

a. Nonequilibrium gels. A well-described example con-
cerns colloidal gels that are formed by increasing the
strength of short-ranged adhesive depletion forces, start-
ing from an initially purely repulsive system. It has
been empirically found that “nonequilibrium gels” can
be formed over a broad range of densities as the adhe-
sion between particles is increased (Lu et al., 2008; Man-
ley et al., 2005; Royall et al., 2008). These gels are het-
erogeneous, dynamically arrested structures, which thus
behave mechanically as soft solids. The current under-
standing of the gelation process is that adhesion induces
the analog of a liquid-gas phase separation in the col-
loidal system, which may phase-separate into colloid-rich
and colloid-poor phases. However, because the attrac-
tion is very short-ranged, the coexistence curve on the
colloid-rich region at large density may hit the colloidal
glass transition. The emergence of slow, glassy dynamics
may be able, in some cases, to slow down dramatically
and even fully arrest the kinetics of the phase-separation

process (Foffi et al., 2005; Lu et al., 2008; Testard et al.,
2011). At long times, the system may thus acquire a
percolating bicontinuous structure which is mechanically
rigid and does not flow if a small shear stress is applied.
A consensus has been reached regarding the formation
of these non-equilibrium gels as reviewed in (Zaccarelli,
2007), whose structure can be controlled by tuning the
flow cessation dynamics (Helal et al., 2016; Koumakis
et al., 2015; Ovarlez et al., 2013b). However, the steady-
state rheology of attractive gels is still a topic of intense
research (Capellmann et al., 2016; Helgeson et al., 2014;
Romer et al., 2014; Zia et al., 2014). Indeed, colloidal
gels show a pronounced time-dependent response (Ovar-
lez and Chateau, 2008), and a strong propensity to wall
slip that appears to be non-trivially coupled to spatially
heterogeneous flows (Gibaud et al., 2008; Grenard et al.,
2014), which makes it difficult to measure flow curves,
and even questions the very existence of a unique consti-
tutive equation. The transient and steady-state rheology
of these systems are discussed in more details in Sec. III.

b. Attractive glasses. In addition to gels of repulsive col-
loids, the behavior of dense assemblies of attractive col-
loids has also attracted a large experimental interest in
the recent decade (Puertas and Fuchs, 2009; Sciortino
and Tartaglia, 2005). In this situation, a complex physi-
cal interplay is to be expected, due to the competition be-
tween the non-equilibrium kinetic arrest arising at mod-
erate densities (leading to nonequilibrium gelation) and
the glassy physics emerging at large densities without
adhesive interaction (leading to glass formation). Early
studies have advocated that this competition produces a
novel state of arrested matter, named “attractive glass”
(Dawson et al., 2000; Fabbian et al., 1999; Pham et al.,
2002; Sciortino, 2002), actively studied both numerically
and experimentally (Pham et al., 2004, 2002; Puertas
et al., 2005; Sciortino et al., 2003; Zaccarelli et al., 2005).
For a discussion on how to experimentally differentiate a
glass from both a gel and an attractive glass, see (Bonn
et al., 1999; Tanaka et al., 2004). Because the dynam-
ics is controlled by at least two microscopic lengthscales
(the adhesion range responsible for initiating phase sepa-
ration, and the cage size responsible for the glassy dy-
namic arrest), complex relaxation patterns have been
predicted (Dawson et al., 2000; Fabbian et al., 1999) and
observed (Pham et al., 2004; Zaccarelli et al., 2005), in-
cluding in rheological studies (Koumakis and Petekidis,
2011). Whereas early interpretation relied on the exis-
tence of an underlying peculiar form of glass singularity
predicted by mode-coupling theory (Dawson et al., 2000;
Fabbian et al., 1999), additional work has shown that
such singularity is not needed for complex time depen-
dences to occur (Chaudhuri et al., 2010b). The existence
of a genuine attractive glass phase has also been called
into question (Royall et al., 2015; Zaccarelli and Poon,



9

2009), and indeed the idea of a specific type of attractive
glass does not seem needed to interpret the rheology of
all concentrated attractive glasses, see e.g. (Data et al.,
2011) for the example of an attractive emulsion. From a
practical (rather than fundamental) viewpoint, the idea
that glasses with different types of frozen-in disorder may
exist in models with adhesive interections remains valu-
able (Pham et al., 2004).

c. Athermal adhesive systems. Finally, the role of attrac-
tive forces in non-Brownian suspensions is also relevant
but necessarily has a different nature, as the adhesive
forces, by construction, cannot compete with thermal
fluctuations. A few studies have explored the emergence
of solidity in athermal adhesive particle systems, to un-
derstand in particular how the jamming transition is af-
fected when adhesion is present (Chaudhuri et al., 2012a;
Irani et al., 2014; Lois et al., 2008). This point is relevant
for instance in the context of humid granular materials.

In particular, because adhesion creates bonds between
particles, it seems physically clear that adhesive forces
can only enhance solidity above jamming, and in this
dense regime, adhesion acts as a small perturbation. On
the other hand, it appears that solid behavior can be
maintained in a density range even below the jamming
transition, φ < φJ , which opens a novel regime for solid
behavior which has no analog for purely repulsive sys-
tems. In particular, a recent numerical study suggests
that a small amount of attractive force is indeed able to
generate a material with a finite yield stress below the
jamming transition, with a potentially interesting inter-
play between the imposed shear flow and the microstruc-
ture of the system, eventually giving rise to large-scale
flow inhomogeneities (Irani et al., 2014). This points to
a possible mechanism for shear banding, which is a topic
that we discuss further below.

C. Is the yield stress real?

1. A historical debate

For many years, there has been a controversy about
whether the yield stress marks a transition between a
solid and a fluid state, or between two fluid states with
drastically different viscosities (Astarita, 1990; Barnes,
2007, 1999; Evans, 1992; Hartnett and Hu, 1989; Schurz,
1990; Spaans and Williams, 1995). Numerous experi-
mental studies argued that yield stress materials actually
flow like very viscous Newtonian liquids at low stresses
(Barnes, 1999; Macosko, 1994). (Barnes and Walters,
1985) presented data on Carbopol microgels to demon-
strate the existence of a finite viscosity at very low shear
stresses (Fig. 5), rather than an infinite viscosity below
the yield stress, and later published a review with nu-

FIG. 5 Viscosity vs. shear stress in Carbopol. (a) From
(Barnes and Walters, 1985), (b) subsequent study of the same
system by (Møller et al., 2009a). The latter showed that the
values of the low-stress viscosity plateau increase with mea-
surement time (from 10 s to 3000 s; colored symbols). The
insets show that the plateau value increases as a power law
with time, with exponent ≈ 0.6, indicating that the measured
viscosities do not correspond to steady-state shear flows for
shear stresses below the yield stress.

merous flow curves suggesting that yield stress materials
should rather be described as Newtonian fluids with a
very large viscosity (Barnes, 1999).

(Møller et al., 2009a) reproduced the experiments used
to demonstrate Newtonian limits at low stresses and in-
deed observed finite apparent viscosities at low stresses,
see Fig. 5. However, while all measurements collapse
at high stresses, below the yield stress they no longer
do, and the apparent viscosity depends in fact on the
delay time t between the application of the stress and
the viscosity measurement. Each individual curve re-
sembles the curves of Barnes and others, but if all the
points that do not seem to correspond to a steady state
are removed, one is left with a simple Herschel-Bulkley
material with a well-defined yield stress. The large vis-
cosity values obtained at low stress in fact correspond
to shear rates of the order of 10−6 s−1 or less, which are
not only reaching the accuracy limits of ordinary rheome-
ters, but also show that within a reasonable experimental
measurement time, no steady state is reached where the
deformation increases linearly with time, and the total
deformation imposed on the sample remains well below
unity. Consequently, the instantaneous shear rate cannot
be interpreted as representative of a well-defined steady-
state viscosity.

Besides this fundamental problem, debates about the
existence of a yield stress demonstrate that the most
ubiquitous practical problem encountered by scientists
and engineers dealing with everyday materials such as
food products, powders, cosmetics, crude oils, or concrete
is that the yield stress of a given material is very difficult
to determine experimentally (Barnes, 1999; Møller et al.,
2006; Mujumdar et al., 2002). Indeed, (James et al.,
1987; Nguyen et al., 2006; Zhu et al., 2001) demonstrated
that a variation of the yield stress of more than one order
of magnitude can be obtained, depending on the way it
is measured. This cannot be attributed to different res-
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olution powers of different measurement techniques, but
hinges on more fundamental complexities resulting from
the physical processes responsible for the flow of yield
stress materials.

2. Theoretical considerations about the existence of a yield
stress

Can theory and simulations shed light on the debate re-
garding the existence of a true yield stress in amorphous
materials? This is a difficult question which cannot have
a simple generic answer, as it amounts to asking first
whether genuine amorphous solid states exist, and sec-
ond whether such states can support a finite shear stress
without flowing over arbitrarily-long time scales. More-
over, as detailed above, different materials exhibit solid
properties for distinct fundamental reasons under vari-
ous experimental conditions and due to various particle
interactions. Let us disentangle all these issues.

Clearly, the existence of a “real” yield stress in materi-
als undergoing a glass transition is at least as ambiguous
as that of a genuine fluid-to-glass phase transition, which
remains an open fundamental question. There exist theo-
retical approaches and simple models which describe the
glassy phase of matter as a genuine thermodynamic sin-
gularity accompanied by a diverging viscosity. However,
there are competing theoretical perspectives based on the
opposite idea that the glass region is accessed by a dy-
namic crossover, and where the equilibrium relaxation
time scale does not truly diverge (Berthier and Biroli,
2011). Therefore, the existence of glassy phases with
truly infinite viscosity is not settled theoretically, or, for
that matter, experimentally.

Of course, this fundamental question is not very rele-
vant in practice, as glassy phases are experimentally pro-
duced by going through a dynamic crossover in a non-
equilibrium manner, as explained in Sect. I.B.1. As a
consequence, in the vicinity of the experimental glass
transition, flow curves might display an apparent yield
stress value when measured over a given window of shear
rates, even though the material might eventually flow
at much longer timescales. Deeper in the glassy region,
when the relaxation time has become larger than any rel-
evant experimental time scale, the distinction between a
slowly flowing fluid and a kinetically arrested material is
essentially irrelevant, and the question of the existence
of a genuine glassy phase may appear rather academic.

In glassy materials, a system prepared in the glass re-
gion slowly ages with time because thermal fluctuations
allow for a slow exploration of its complex free-energy
landscape (Berthier and Biroli, 2011). Importantly, this
also implies that the rheological properties of glasses
might depend on the time scale used to perform the mea-
surements. For instance, the yield stress of the system
has been observed to increase logarithmically with the

preparation time in model systems (Varnik et al., 2004).
Additionally, the aging behavior observed in glasses at
rest might be affected in a nontrivial manner by an im-
posed shear flow, possibly resulting in a steady-state sit-
uation where aging is prevented by the external shear
flow, a situation coined “shear rejuvenation” (Bonn et al.,
2002b; Cloitre et al., 2000; Ianni et al., 2007; Viasnoff and
Lequeux, 2002). The roles played by the preparation pro-
tocol and by the aging dynamics are similarly crucial for
colloidal gels that might be formed through nonequilib-
rium processes, such as kinetically arrested phase separa-
tion. In that case, it is unclear how such a nonequibrium
competition is affected by an externally imposed shear
stress, which could for instance either “mix” the mate-
rial or break the bicontinuous structure and accelerate
the phase separation.

Assuming that genuine amorphous phases exist (where
for instance ergodicity is truly broken and the Newtonian
viscosity is infinite), is it necessarily obvious that such
phases should display a finite yield stress? To answer
this question one should ask whether there exists a phys-
ical dynamical process allowing the system to relax and
flow on a finite time scale after a finite shear stress has
been imposed. This problem was addressed in (Sausset
et al., 2010). Using a simple nucleation-type argument,
a stress-dependent free-energy barrier for relaxation was
constructed, which could then be crossed using thermal
fluctuations. By connecting the constructed activation
time scale to the imposed stress, a limiting flow curve
σ(γ̇) was obtained, which in three spatial dimensions is
of the form

γ̇ =
σ

Gτ0
exp

[
−c

(σ0

σ

)4
]
, (6)

where G is the elastic shear modulus, c a constant, τ0
a characteristic relaxation time, and σ0 a temperature-
dependent stress scale. Eq. (6) implies the existence of
a lower bound for the resulting shear rate for a finite
shear stress σ > 0, which in turn suggests that the shear
rate should actually be finite at any imposed shear stress
even in the “solid” phase. This result is not inconsis-
tent with the existence of measured flow curves with
an apparent yield stress, as it predicts that the shear
stress decreases logarithmically (very) slowly with the
shear rate. It might therefore be very difficult to de-
tect such behavior in an experiment and to discriminate
it, for instance, from a Herschel-Bulkley functional form
with a finite yield stress (where the yield stress value is
approached algebraically with decreasing γ̇). Interest-
ingly, the result is not specific to amorphous materials,
but applies equally to ordered systems such as crystalline
materials. This discussion shows that despite the trans-
lational symmetry breaking observed during the forma-
tion of the crystal, which contrasts with the absence of
such a symmetry breaking in amorphous solids, a yield
stress is conceptually not better defined in ordered sys-
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FIG. 6 (a) The behavior of 0.1% wt Carbopol microgel under
increasing and decreasing shear stresses shows that this mate-
rial is non-thixotropic (filled circles, up; open circles, down).
(b) Thixotropy of a 10% wt bentonite solution under an in-
creasing and then decreasing stress ramp.

tems. Therefore, the absence of a real yield stress is not
due to the “messy” nature of soft amorphous materials,
but has a more profound origin.

The reasoning leading to Eq. (6) and the conclusion
that a finite yield stress cannot exist even in dynamically
arrested phases rely heavily on a barrier-crossing argu-
ment, and therefore on the presence of thermal fluctua-
tions. Therefore, the situation might be different in non-
Brownian suspensions undergoing a jamming transition
at zero temperature. For soft jammed particle systems
such as foams and large-droplet emulsions, the transition
to the jammed phase is not a dynamic crossover and the
“solidity” is thus not destroyed by (non-existing) thermal
fluctuations. In this case, there is a priori no deep the-
oretical argument against the existence of a finite yield
stress, so that the flow curves shown in Fig. 3(b) might
be true examples of genuine yield stress materials. Of
course, as mentioned several times above, these experi-
mental results do not seem to differ dramatically from
measurements performed in thermal materials, which
suggests that the experimental debate regarding the ex-
istence of yield stress presumably revolves around very
practical issues, with little connection to the present dis-
cussion putting forward more fundamental arguments.

D. Thixotropy in yield stress fluids

Most yield stress fluids have an underlying microstruc-
ture that confers a macroscopic elasticity to the system.
This microscopic structure may be (partly) destroyed
by the flow, causing a reversible decrease of the viscos-
ity with time, in which case the system is said to be
thixotropic (Mewis and Wagner, 2009). The yield stress
will be different following flow application, with a value
that may be dependent on the rest time prior to shear-
ing, during which the structure may also reform. It is
therefore useful in practical terms to distinguish between
thixotropic and simple (non-thixotropic) yield stress flu-
ids:

FIG. 7 A colloidal gel at rest, with a percolated structure and
a yield stress of 5 Pa (A), and just after flow, with individual
flocs and no measurable yield stress (B). The gel is made up of
1.3 µm fluorescent PMMA particles and 3·107 Mw polystyrene
in a mixture of decalin and cyclohexyl bromide. From (Bonn
and Denn, 2009).

• “Simple” yield stress fluids: shear stress (and hence
the viscosity) depends only on the imposed shear
rate. Examples include non-adhesive emulsions,
foams and Carbopol microgels (Bécu et al., 2006;
Bertola et al., 2003; Møller et al., 2009b; Ovarlez
et al., 2013a).

• Thixotropic yield stress fluids: yield stress and vis-
cosity depend on the shear history of the sam-
ple. Examples include particle and polymer gels
(Møller et al., 2008), attractive glasses (Møller
et al., 2009b), “soft” colloidal glasses (Bonn et al.,
2002a), adhesive emulsions (Ragouilliaux et al.,
2007), non-Brownian gels (Kurokawa et al., 2015),
pastes (Huang et al., 2005), and hard-sphere col-
loidal glasses (Møller et al., 2009a).

The distinction is straightforward, at least in principle:
one can measure the flow curve by using up and down
stress ramps, for instance, and check for reproducibility
(Fig. 6). In Fig. 6(b), we show that if the material
is thixotropic, in general the flow will have significantly
“liquified” the material at high stresses, and the branch
obtained upon decreasing the stress is significantly below
the one obtained while increasing the stress. Hysteresis
is mostly negligible for simple yield stress fluids, see Fig.
6(a). The response of a thixotropic yield stress fluid will
depend on the rate at which the stress is ramped up and
down, and the rest time in between subsequent sweeps.

Figure 7 shows a direct qualitative observation of the
effect of stress-dependent structural organization in a col-
loidal gel. At rest (A), the gel exhibits a percolated struc-
ture and exhibits a yield stress of about 5 Pa. Just after
flow (B), the gel has broken up into individual flocs and
there is no measurable yield stress. Detailed images of
the shear-induced breakup of two-dimensional colloidal
gels at interfaces for different values of the shear rate
and strain were shown by (Masschaele et al., 2011), who
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quantified the effect of surface coverage and deformation
on the morphology (i.e., transient networks or individ-
ual deformed aggregates); the undeformed structures in
these experiments undoubtedly exhibit a yield stress, but
direct mechanical measurements are not available.

The distinction between the two main families of “sim-
ple” yield stress fluids and thixotropic yield stress fluids
is at present mostly driven by empirical considerations.
It would be interesting to understand if it can also be ra-
tionalised at a more fundamental level. Experimentally,
it would be useful to develop model systems allowing
both types of behaviors to be observed and controlled,
for instance by devising materials that are only weakly
thixotropic and where “simple” yield stress behavior can
be continuously recovered in some well-controlled limit.

E. Theoretical descriptions of yield stress materials

1. Why a theory of yield stress solids is difficult

While properly defining and measuring a yield stress
is a debated issue from an experimental point of view, as
emphasized throughout this review, in theoretical work
one usually identifies the yield stress as the shear stress
measured in steady-state shear flow in the limit where
the deformation rate goes to zero:

σy = lim
γ̇→0

σ(γ̇). (7)

Thus, the challenge for theoreticians does not lie in the
practical definition of the yield stress or its best quan-
titative determination, but in the conceptual difficulty
to describe the nonlinear mechanical properties of disor-
dered complex solids.

An additional difficulty can be appreciated by com-
paring the situation of disordered materials to that of
crystalline solids. Crystals are formed through a phase
transition across which translational invariance is bro-
ken. Because the broken symmetry is easily identified, it
is not difficult to recognize the associated defects (such as
dislocations) directly from the structure of an imperfect
crystalline system. It is well established that nonlinear
flow and mechanical deformation in crystalline materials
are mostly driven by these defects, so that an under-
standing of the flow defects of crystals is indeed the key
to understanding their rheology. So, we are led to ask
what the “defects” are in an amorphous material that
is formed without breaking any obvious symmetry. Are
there at least equivalent localized structures allowing us
to efficiently describe flow and mechanical deformation in
amorphous solids? These are two long-standing questions
in the area of amorphous material rheology, which have
received some constructive answers in the last decades,
mostly from numerical and experimental studies (Barrat
and Lemaitre, 2011).

It has been demonstrated in many different studies
that flow in amorphous materials occurs at the micro-
scopic scale in very localized “zones”, sometimes identi-
fied as “shear transformation zones” (Falk and Langer,
1998). These zones are best observed in studies of amor-
phous systems which are sheared so slowly that indi-
vidual events can be resolved in space and time, such
as computer simulations in quasi-static shear conditions
(Maloney and Lemaitre, 2006) or confocal microscopy ex-
periments on slowly deformed colloidal glassy systems
(Schall et al., 2007). It has been observed that flow oc-
curs mostly near zones comprising a small number of par-
ticles (say, 5 to 10) undergoing the largest irreversible
rearrangements. However, because the material is glob-
ally an elastic solid, these local plastic events additionally
induce a long-range redistribution of the stress field in
their surroundings (Picard et al., 2004), which, in turn,
can couple to a different zone, or trigger further relax-
ation elsewhere in the system. An example of such an
event detected in the numerical simulation of a slowly
sheared glass model (Tanguy et al., 2006) is shown in
Fig. 8. Notice however that both computational studies
and colloidal experiments are performed on disordered
systems that are prepared in physical conditions that are
vastly different from the ones relevant for molecular and
polymeric glasses (i.e. “hard” glasses), for which these
ideas remain to be experimentally validated.

2. Theoretical approaches

The previous section suggests that theory still has
trouble describing the transition between a fluid and an
amorphous solid (glass, gel, and jammed states), and
that describing the rheology of these materials requires
in addition a description of a non-linear response to flow,
which is typically accompanied by strong spatial fluctua-
tions and localized flow defects that may induce long-
range correlations, intermittent relaxations, and even
catastrophic responses with complex time dependencies.
It should therefore come as no surprise that no com-
plete, well-accepted, first-principle theoretical approach
exists that can account for all aspects of the rheology of
yield stress materials. Instead, several layers of (poten-
tially complementary) theoretical descriptions are found
in the literature. In the following, we distinguish two
main types of theoretical approaches.

a. Mode-coupling theories and trap models. In a first cat-
egory of theoretical models, the focus is primarily on a
detailed description of the rheological consequences of
the existence of a fluid-to-amorphous solid phase transi-
tion. In particular, numerous theoretical approaches to
the description of the glass transition in dense fluids and
colloidal systems have now been extended to account for
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FIG. 8 Changes in the local shear stresses (as indicated by the
color coding) during a localized plastic event (top); the color
coding gives the amplitude of the stress changes, and asso-
ciated displacement field (bottom) observed in the numerical
simulation of a quasi-statically sheared model of atomic glass.
Adapted from (Tanguy et al., 2006).

the mechanical properties in the vicinity of the glass tran-
sition (Berthier and Biroli, 2011), such as for instance
mode-coupling theories (Götze, 2008) and Bouchaud’s
trap model (Bouchaud, 1992). Even in this restricted
context, these approaches differ widely in their approach.

On the one hand, mode-coupling theories were devel-
oped as truly microscopic or “first-principle” approaches
to understand the dynamics of simple liquids near a glass
transition (Bengtzelius et al., 1984; Götze, 2008). A large
amount of work has been performed to develop tractable
equations of motion that can attack complex flow histo-
ries while retaining aspects of the driven dynamics of the
microscopic degrees of freedom.

On the other hand, trap models correspond to more
phenomenological descriptions of the glass phenomenon,
and have attracted a lot of attention in particular in the
context of aging phenomena inside glassy phases. The
rheological trap model is called the “soft glassy rheology
model” (SGR) and has been studied extensively (Sollich,
1998; Sollich et al., 1997), both in steady-state condi-
tions, in the context of rheological aging, and in even
more complicated time-dependent situations, with inter-

esting connections to the physics of thixotropic materials
(Fielding et al., 2000). By introducing spatial depen-
dences, the SGR model has also been studied to give in-
sight into spatially inhomogeneous flows (Fielding et al.,
2009; Moorcroft et al., 2011; Moorcroft and Fielding,
2013).

b. Shear-transformation zones and elasto-plastic models.

A second family of theoretical models actually postulates
from the start that a solid amorphous state exists, which
is characterized by a finite yield stress. These models are
then able to explore in more detail how such a solid sys-
tem might flow under an applied shear stress larger than
the yield stress.

The starting point for these models is the observation
that flow occurs in a spatially inhomogeneous manner,
and occurs mostly at localised shear transformation zones
as illustrated in Fig. 8. This empirically well-established
observation made in different systems suggests a theoret-
ical pathway to model the mechanical properties of yield
stress amorphous solids.

A well-studied model constructed in this manner is the
shear transformation zone model, pioneered by Falk and
Langer (Falk and Langer, 1998, 2011). Building upon
their numerical observations, they devised a set of min-
imal equations of motion for the dynamic evolution of a
sparse population of shear transformation zones. In later
refinements and theoretical reformulations of the model,
spatio-temporal aspects were introduced in the original
mean-field version of the model, allowing it to attack
a large variety of physical situations, from simple and
time-dependent flows to shear-banding phenomena and
fractures in amorphous materials (Manning et al., 2009,
2007). The shear transformation zone model has also
been used to understand the thermodynamic properties
of sheared amorphous solids (Bouchbinder and Langer,
2009a,b,c; Langer, 2004), and has been generalised to in-
clude also the effects of thermal fluctuations (Falk et al.,
2004; Langer and Manning, 2007). The model continues
to be actively developed to more complex situations, see
e.g. (Hinkle and Falk, 2016; Rycroft and Bouchbinder,
2012).

An alternative modeling effort gaining increasing at-
tention builds on the observation of localised shear trans-
formation zones to construct “mesoscopic” elasto-plastic
descriptions of the rheology of amorphous materials
(Baret et al., 2002; Bocquet et al., 2009; Cheddadi et al.,
2011; Picard et al., 2002, 2005; Rodney et al., 2011).
These models are coarse-grained descriptions in the sense
that no attempt is made to describe the microscopic ori-
gins of the yield stress. Instead, they assume that a yield
stress exists and directly explore the consequences of de-
forming a solid material. The clear advantage of such
models is that they open up the possibility to explore
large-scale consequences of the dynamics of shear trans-
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formation zones. For instance, numerical simulations
have revealed that elastic deformation in the vicinity of
a local rearrangement induces long-range spatial corre-
lations, which may induce correlations between plastic
events (Martens et al., 2012; Vandembroucq and Roux,
2011). These correlations have been observed to lead to
system-spanning avalanches in quasi-static deformations
that are sometimes also described as precursors for the
formation of permanent shear bands or strong flow lo-
calization (Barrat and Lemaitre, 2011; Falk and Langer,
2011; Falk et al., 2004; Maloney and Lemaitre, 2006; Shi
et al., 2007). The obvious drawback is that no informa-
tion can be gained about the dependence of the yield
stress on external control parameters, but these mod-
els can more efficiently explore the consequences of non-
linear flow curves, and might be able to describe in a
relevant manner more complex situations such as shear
bands, kinetic heterogeneties under flow, fractures, time-
dependent phenomena, or flow in confined geometries, as
discussed in more detail in Sect. III.

3. Theoretical flow curves

In the preceding section, we have described two broad
classes of methods to describe the fluid-amorphous solid
transition. In the following we ask how we can quantita-
tively describe and compare their outcomes. We consider
mode-coupling and soft glassy rheology-type “trap mod-
els” separately, and therefore consider three families of
theoretical paradigms to analyze steady-state flow curves
in yield stress materials. These approaches go beyond
(or in some cases justify) the popular Herschel-Bulkley
model described in Sect. I.A, which provides an efficient
fitting model but is essentially empirical.

It should be noted that flow curves in steady-state sim-
ple shear flows only represent one of the many aspects of
the rheology of yield stress materials, and some models
also make detailed predictions for, e.g., time-dependent
flows or more complex geometries. Reviewing model pre-
dictions for all these phenomena would however require
a review article on its own (Voigtmann, 2014).

a. Soft glassy rheology. The soft glassy rheology (SGR)
model is a direct extension of Bouchaud’s trap model
(Bouchaud, 1992) that incorporates mechanical degrees
of freedom in a minimal manner to describe the interplay
between glassy dynamics and shear deformation (Sollich
et al., 1997). The original trap model was mainly devised
to study the physics of the glass transition and the ag-
ing dynamics in systems quenched suddenly into a glassy
phase (Bouchaud, 1992; Bouchaud and Dean, 1995). The
SGR model provides an evolution equation for the prob-
ability distribution of the system in terms of energy and
stress variables. In the presence of a constant shear

stress, steady-state flow curves can be predicted, with
a behavior that is governed by the only control parame-
ter of the model, namely the “temperature” T . Whereas
the initial trap model for aging glasses explicitely refers
to T as the temperature of a thermal bath coupled to the
system, the SGR model differs somewhat on the precise
interpretation of the temperature and uses the words “ef-
fective temperature”, in order to include athermal mate-
rials such as foams or emulsions in the same framework.
The temperature T is then thought as quantifying the
strength of “mechanical noise” triggered by the flow it-
self. A more detailed discussion of effective temperatures
in driven materials can be found elsewhere: (Berthier
et al., 2000; Bouchbinder and Langer, 2009a,b,c; Cuglian-
dolo et al., 1997a; Sollich and Cates, 2012). Recent work
has critically revisited the properties of the mechanical
noise triggered by shear transformation zones (Nicolas
et al., 2014), offering in particular a detailed comparison
between the SGR model and an alternative mean-field
modeling proposed by Hébraud and Lequeux (Hébraud
and Lequeux, 1998), where a Langevin dynamics is stud-
ied in which noise is directly related to the amount of
plastic deformation generated in the material

Despite its simplicity, the SGR model offers a rich vari-
ety of possible flow curves, depending on the considered
temperature regime (Sollich, 1998). In the absence of
a flow, the system undergoes a glass transition at some
critical temperature Tc, below which ergodicity breaking
occurs. With an imposed shear flow, three temperature
regimes are observed:

• First, when T > 2Tc, the system exhibits a Newto-
nian flow, as expected for a simple fluid state.

• A second, somewhat unexpected regime occurs
when Tc < T < 2Tc, where the system displays a
pure power-law rheology of the form σ ≈ γ̇n, with
a “shear-thinning” exponent 0 < n = T/Tc − 1 <
1. This regime is peculiar as it corresponds to
a “solid” system with an infinite viscosity at rest
when γ̇ → 0, but with no yield stress. When
the shear-thinning exponent n becomes small, it
might be difficult to distinguish this behavior from
a Herschel-Bulkley functional form. A peculiarity
of this regime is the infinite shear viscosity for tem-
peratures that are strictly above the glass transi-
tion temperature where the system actually reaches
thermal equilibrium. See (Lequeux and Ajdari,
2001) for a detailed discussion of this curious issue.

• In the third regime, for temperatures below the
critical temperature, T < Tc, the rheology can
be described by the Herschel-Bulkley model, σ ≈
σy(T ) + γ̇n and the shear-thinning exponent obeys
0 < n = 1 − T/Tc < 1. A temperature-dependent
yield stress σy(T ) emerges continuously at the glass
temperature, with a linear onset σy(T . Tc) ≈
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1 − T/Tc and a smooth approach to a finite limit
at zero tempeature, σy(T → 0) > 0.

Overall, within the SGR model, the behavior of the
flow curves is smooth at the transition temperature, T =
Tc, where the system has no yield stress but the shear-
thinning exponent vanishes—a situation that could easily
be confused experimentally with a finite yield stress.

Moreover, since all the characteristic exponents of the
model are temperature-dependent quantities, they carry
no deep physical meaning but simply reflect the com-
plex interplay between the broad distribution of relax-
ation times in the equilibrium model and the external
mechanical forcing in the presence of thermal fluctua-
tions. This remark implies, in particular, that no partic-
ular scaling form is predicted to describe the flow curves
derived within the SGR model in any of the tempera-
ture regimes, or even in the close vicinity of the critical
temperatures of the model.

b. Mode-coupling theories. The mode-coupling theory of
the glass transition is now understood as a building block
of a larger theoretical construction to understand the
physics glassy materials called random first-order transi-
tion theory, which aims at describing dynamic and ther-
modynamic aspects of the statistical mechanics of mate-
rials undergoing a fluid-to-glass transition (Berthier and
Biroli, 2011; Lubchenko and Wolynes, 2007).

The mode-coupling approach itself is not a unique the-
ory, and several related lines of research coexist which
differ in their microscopic starting point but often pro-
vide similar predictions. A few of these approaches were
extended to also include mechanical degrees of freedom,
much in the spirit of the SGR model. There are at present
two main starting points for solving the dynamics in the
amorphous solid state.

• A first approach (Berthier et al., 2000; Cugliandolo
et al., 1997b) consists of solving exactly the driven
dynamics of simple, but rather abstract, glass mod-
els that are known to exhibit an equilibrium dy-
namics that is in the same universality class as
other mode-coupling approaches, like for instance
the p-spin glass models or other disordered models
(Kirkpatrick and Thirumalai, 1987).

• A second line of work starts from microscopic equa-
tions of motion for particles in a dense fluid, and
develops mode-coupling approximations to derive
closed, but approximate, dynamical equations for
microscopic correlation functions based on density
fluctuations (Brader et al., 2007; Fuchs and Cates,
2002, 2009; Miyazaki and Reichman, 2002).

Both approaches have been extended to include ex-
ternal driving forces and shear flows in order to study

the interplay between glassy dynamics and rheology. In
mode-coupling theories, the equilibrium dynamics (with-
out shear flow) is characterized by a critical temper-
ature Tc where the (alpha) relaxation time τα(T ), di-
verges as a power law. Near the glass transition, time-
correlation functions develop a two-step decay with an
intermediate plateau reflecting the transient caging of
the particles in the dense fluid. In rheological terms,
this simply signals that very viscous fluids near a glass
transition are viscoelastic and behave as solids at inter-
mediate time scales, and flow at long times, associated
to complex frequency spectra for the linear rheological
response. The approach to, and departure from, this
plateau regime involve non-trivial power-laws for time
correlation functions, which are characteristic signatures
of mode-coupling theories (Götze, 2008). A known limi-
tation of the theory is that the algebraic divergence that
it predicts for the equilibrium relaxation time is not ob-
served in experiments, where it is replaced by a smooth
crossover. The current view is that mode-coupling theo-
ries describe the initial regime of slow dynamics in glassy
materials well, but fail closer to the glass transition. In-
terestingly, this “mode-coupling” regime coincides with
the physically relevant one for colloidal systems (Götze,
2008; Siebenbürger et al., 2012), which justifies why the
mode-coupling approach is included in this soft-matter
review article.

In both mode-coupling approaches, the glass transition
is destroyed by the imposed shear flow, and the micro-
scopic relaxation time scale is never infinite in the pres-
ence of a finite driving force, but rather becomes depen-
dent on the imposed shear rate γ̇. However, the resulting
flow curves differ somewhat in their details as we discuss
in the following.

In the first class of models, namely schematic mean-
field models, the rheology exhibits Newtonian behav-
ior at temperatures above Tc at very low shear rates,
but the dynamics become strongly dependent on γ̇ when
the “dressed” Péclet number, Pe ≡ ταγ̇, becomes larger
than unity. Since the shear flow accelerates the micro-
scopic structural relaxation, the viscosity decreases as γ̇
increases, a shear-thinning behaviour. As a result, the
following scaling form for the flow curves,

η(γ̇, T ) =
η0(T )

[1 + γ̇/γ̇0(T )]1−n
, (8)

where η0(T ) ∼ τα(T ) is the Newtonian viscosity, and
γ̇0(T ) a critical shear rate separating Newtonian from
shear thinning regimes, and n the usual shear-thinning
exponent, whose value is n = 1/3 in the specific family
of models studied in (Berthier et al., 2000).

At the glass transition, a pure power-law rheology
is thus obtained, σ(γ̇, T = Tc) ∼ γ̇n, whereas a
temperature-dependent power-law rheology is obtained
in the glass phase: σ(γ̇, T < Tc) ∼ γ̇n(T ) with a shear-
thinning exponent decreasing from n(T = Tc) = 1/3 to
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n(T → 0) = 0, but with no finite yield stress. Therefore,
the rheology of the glass phase is very similar to the in-
termediate temperature regime of the SGR model with
the difference that here the viscosity divergence coincides
with the equilibrium glass transition of the model.

The absence of a yield stress is natural in the context
of mean-field approaches whose aging dynamics in the
glass phase is well understood (Cugliandolo and Kur-
chan, 1993). In the absence of external flow, the sys-
tem slowly relaxes along the flat or “marginal” regions of
its free-energy landscape, but does not penetrate deeper
free-energy minima. This is a general feature of mean-
field glassy dynamics (Kurchan and Laloux, 1996). The
power-law rheology found in the glass phase directly re-
sults from this marginal dynamics, and non-mean-field
effects are believed to manifest themselves by the emer-
gence of a finite yield stress, as explored in (Berthier,
2003).

Using liquid-state theory to derive mode-coupling
equations for glassy fluids under flow results in a set
of dynamical equations that reduce to the usual mode-
coupling phenomenology described above for the equi-
librium dynamics. However, the driven dynamics under
shear flow provides a set of predictions that differ some-
what from the schematic mean-field models, for reasons
that are more technical than physical and presumably
stem from the application of different types of “mean-
field” approximations. These mode-coupling equations
have been derived in a number of ways that are techni-
cally quite involved, but all derivations essentially pro-
vide similar predictions for the flow curves (Fuchs and
Cates, 2002, 2009; Miyazaki and Reichman, 2002). The
predicted flow curves in the vicinity of the glass tran-
sition closely reflect the complexity of the time regimes
observed for time correlation functions, as illustrated in
Fig. 9.

Specifically, the flow curves predicted by this second
class of models in the fluid region exhibit a Newtonian
regime at sufficiently small γ̇ followed by a strong shear-
thinning regime for large Peclet numbers Pe = γ̇τα, as
found in the mean-field and SGR models. The flow curve
at the critical temperature T = Tc obeys a Herschel-
Bulkley functional form with a finite yield stress, σy(T =
Tc) > 0, and a shear-thinning exponent that takes a non-
universal value [specific approximations give n ≈ 0.15
(Fuchs and Cates, 2003)]. The power-law approach to a
finite yield stress closely mimicks the power-law approach
to a finite plateau found for time-correlation functions.

Just below the glass transition, the yield stress
increases algebraically with decreasing temperature,
σy(T . Tc) ≈ σy(Tc) + c

√
Tc − T , which again mim-

icks the temperature behavior of the plateau in time-
correlation functions (indeed the two are intimately con-
nected within the theory). Note, however. that the yield
stress emerges discontinuously at the critical temperature
Tc, a prediction that seems unique to this approach. This

FIG. 9 Flow curves predicted for a range of temperatures T
across the mode-coupling critical temperature Tc; ε = (Tc−T )
is the distance to the critical temperature, and the shear rate
is rescaled by a microscopic time unit τ to form a Péclet num-
ber Pe0 = γ̇τ . The inset shows the discontinuous emergence
of the yield stress at Tc. From (Fuchs and Cates, 2003).

abrupt emergence of a yield stress can however not exist
in experiments where a true mode-coupling transition is
not observed. In practice it is replaced by a crossover
between flow curves where the Newtonian regime of the
flowing liquid slowly shifts outside the experimental time
window, so that by construction the “first” measurable
value of the yield stress must indeed be a finite num-
ber (Varnik and Henrich, 2006; Wittmer et al., 2013)).
Therefore, the question of the (dis)-continuous nature of
the emergence of a yield stress at the glass transition is
ill-posed. Of course, when analysing experimental and
numerical flow curves (which do not have a real tran-
sition) within the framework of the mode-coupling ap-
proach (which has a real transition), the discontinuous
emergence of a yield stress is needed (Siebenbürger et al.,
2012; Voigtmann, 2011).

In the glass regime, the flow curves are again well de-
scribed by a Herschel-Bulkley functional form. The limit
of low temperatures is, however, problematic within the
theory as it makes the unphysical prediction that the
yield stress eventually vanishes in the T → 0 limit (Ikeda
and Berthier, 2013). This implies that the theory is actu-
ally not well suited to describe the yield stress of glassy
systems deep in the glass phase, which is perhaps not
surprising, as its starting point is actually an equation of
motion for the fluid.

It should thus be kept in mind that mode-coupling
theories are to be used to describe the interplay of glassy
dynamics and shear flow in the immediate vicinity of ki-
netic arrest, over a modest window of shear rates. All
the detailed predictions of the theory have been tested in
great detail in both numerical and experimental studies
(Amann et al., 2013, 2015; Ballauff et al., 2013; Brader
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et al., 2010; Siebenbürger et al., 2012). We emphasize
that despite the presence of a genuine critical temper-
ature in the mode-coupling approach and the existence
of power laws controlling the divergence of the viscosity
and the discontinuous emergence of a finite yield stress,
no specific “critical data collapse” of the flow curves is
obtained within the theory.

The theoretical limitations of mode-coupling ap-
proaches are fully understood in the broader context of
random first-order transition theory, where the struc-
ture and dynamics of the glass phase are treated ana-
lytically using a completely different method based on
an approximate treatment (involving replica calculations
(Mézard et al., 1988)) to describe the complex free-energy
landscape characterizing glassy materials (Yoshino and
Mézard, 2010). Recent progress in this direction has
been substantial (Charbonneau, 2014; Parisi and Zam-
poni, 2010), as the nature of the equilibrium glass tran-
sition has been analytically elucidated for particle sys-
tems in the (abstract) limit of a large number of spatial
dimensions. This approach opens new ways to treat an-
alytically the nature of the glass phase, of the dynamics
of the viscous liquid near the glass transition, and poten-
tially of its rheological properties. Currently, the theory
is being developed to treat mechanical properties, such as
the shear modulus (Yoshino and Zamponi, 2014). Very
recently, stress-strain curves in quasi-static deformation
protocols have been obtained analytically (Rainone et al.,
2015), thus pushing the theory closer to being able to
describe the yielding transition in glassy solids (Urbani
and Zamponi, 2017). Reconciling these thermodynamic
replica calculations to dynamic equations derived within
mode-coupling theories remains an open issue (Szamel,
2010). Another promising route is the possibility to per-
form a systematic treatment of non-mean-field effects,
thus paving the way for a generalisation of mode-coupling
approaches that do not suffer from the shortcomings de-
scribed above.

c. Jamming rheology. In Sect. I.B.2, we provided a qual-
itative description of the flow curves obtained from sim-
ple computational models undergoing an ideal jamming
transition, in connection with the experimental results
displayed in Fig. 3(b) for emulsions with sufficiently large
(i.e. non-Brownian) droplets. In the vicinity of the jam-
ming transition, these flow curves can display a num-
ber of scaling features that are fully specific to non-
Brownian assemblies of particles. Upon compression to-
wards φJ , the system exhibits a Newtonian viscosity
that diverges algebraically, accompanied by a power-law
shear-thinning behavior. Above φJ , a finite yield stress
emerges continuously at the transition, and its increase
with packing fraction is also described by a power law.

We emphasize that the presence of these power law be-
haviors is unique to athermal rheology, and that the situ-

ation differs qualitatively from the behaviors observed in
Brownian systems sheared across their glass transition.
There has been some confusion in the literature about the
distinction between the two types of yield stress rheology.
The scaling behavior proposed for athermal systems has
for instance been incorrectly applied to Brownian and
thermal systems as well. As mentioned, the distinction
is readily made by looking at adimensional shear rates
(Peclet numbers) and stress scales (Ikeda et al., 2012,
2013, 2016).

The scaling properties of the jamming rheology near
the zero-temperature jamming transition have been fully
elucidated in computer simulations of soft repulsive po-
tential, such as harmonic or Hertzian pair potentials, see
Eq. (5). These flow curves have now been characterized
numerically in great detail (Hatano, 2010; Ikeda et al.,
2012; Olsson and Teitel, 2007, 2012a,b; Vagberg et al.,
2014).

An approximate scaling form similar to Eq. (8) is ob-
tained below the jamming transition in the non-Brownian
suspension regime, where the Newtonian viscosity di-
verges as η0(φ) ∼ (φJ − φ)−m, with m ≈ 1.5 − 2.5 (An-
dreotti et al., 2012; Boyer et al., 2011). A series of re-
cent large-scale numerical studies for non-frictional par-
ticles report m ≈ 2.55 (Kawasaki et al., 2015; Vagberg
et al., 2014), but it should be noted that this power law
only holds extremely close to the jamming density, with
strong corrections further away from the critical point,
which presumably explain the large spread in literature
values for the exponent m of the viscosity divergence. Be-
cause the Newtonian regime is reached at very low shear
stresses where particles barely overlap, the particle soft-
ness does not affect the value of m, which thus remains
pertinent to describe the hard sphere limit.

In the jammed region, the density increase of the
yield stress is well described by a power law, σy(φ) ∼
(φ− φJ)∆, where ∆ is a critical exponent. Because this
exponent describes the solidity of a compressed assembly
of soft overlapping particles, it is not surprising that it is
found to depend on the chosen form of the pair repulsion
between the particles. In particular, simulations show if
α is the exponent describing the pair repulsion V (r) in
Eq. (5) (with α = 2 for harmonic sphere, and α = 5/2
for Hertzian potential), then ∆ is very close to the value
∆ = α − 1, with small but measurable deviations from
this estimate (for instance ∆ ≈ 1.15 for harmonic spheres
(Olsson and Teitel, 2012b)). This estimate is reasonable
as (α − 1) is also the exponent controlling the increase
of the pressure in compressed packings, as predicted by
dimensional analysis (O’Hern et al., 2003). Systematic
deviations, ∆ & α−1, have now been reported in several
numerical studies (Hatano, 2010; Kawasaki et al., 2015;
Olsson and Teitel, 2011, 2012a,b).

Finally, above jamming, the flow curves are well de-
scribed by a Herschel-Bulkley model, with a shear-
thinning exponent n ≈ 0.38 which is also independent of
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the form of the soft potential (Olsson and Teitel, 2012b).
Exactly at the jamming transition, a pure power-law
rheology is obtained, σ ∼ γ̇n

′
, with another non-trivial

shear-thinning exponent, n′, which depends on the form
of the pair potential and is thus not universal (Olsson
and Teitel, 2012b). We emphasize that a precise deter-
mination of the various scaling regimes and the precise
values of all these critical exponents (m, ∆, n, n′) is a
difficult numerical task, which are in addition plagued by
strong finite size effects (Kawasaki et al., 2015; Vagberg
et al., 2010). These difficulties also suggest that direct
comparison to experimental results should be done with
some caution.

An important consequence of these multiple scaling
regimes is that despite the presence of power laws in
the rheology of model assemblies of soft particles, the
flow curves measured over a large domain of densities
and shear rates cannot be rescaled onto master curves,
as initially proposed in (Olsson and Teitel, 2007). These
deviations have been described with great analytic preci-
sion as a form of correction to scaling in a series of studies
(Vagberg et al., 2014, 2010); see (Kawasaki et al., 2015)
for a specific illustration of a “failed” data collapse for a
fully athermal assembly of soft particles.

In addition, there is currently a large theoretical ac-
tivity to better understand the physical origin of these
exponents and to relate them to more microscopic quan-
tities characterizing the structure of athermal packings
in the vicinity of the jamming transition (DeGiuli et al.,
2014; Lerner et al., 2012; Tighe et al., 2010; Yoshino and
Zamponi, 2014).

In experiments, these scaling forms have also been used
to analyze flow curves measured in a variety of systems.
Using the exponents defined above and assuming that
power laws hold for the entire range of explored densities
and shear rates, the flow curves measured for different
volume fractions of a given system can be collapsed onto
two master curves (one below and one above jamming) by
rescaling both the stress and the shear rate with appro-
priate powers of the distance to the jamming transition
(φ− φJ) (Dinkgreve et al., 2015; Nordstrom et al., 2010;
Paredes et al., 2013), as shown in Fig. 10. This type
of data collapse is empirically useful, as it organizes the
experimental data around the critical density φJ , while
using simple, but reasonable functional forms for their
density dependence. This strategy was first employed in
numerical work (Olsson and Teitel, 2007), for which it is
now understood to be only approximately correct.

In all published cases (Dinkgreve et al., 2015; Nord-
strom et al., 2010; Paredes et al., 2013), the rescaling ap-
pears to work well; ∆ ≈ 2 and the exponent for the rescal-
ing of the shear rate axis is Γ ≈ 4. The observation that
the rescaling collapses the Herschel-Bulkley flow curves
above jamming then immediately implies that the shear-
thinning exponent is n = ∆/Γ ≈ 1/2. The collapse of the
Newtonian flow regime curves at low shear rates below

FIG. 10 Master curves showing a good collapse of the flow
curves onto two branches, one for samples with φ < φJ and
one for φ > φJ , when stress and shear rate are rescaled with
the distance to jamming to a certain power. The lines are
supercritical and subcritical branches representing empirical
fits of the master curve, respectively. The inset shows a fit of
the the low-shear viscosity to a power-law divergence (Pare-
des, 2013). Flow curves were obtained for emulsions prepared
with different volume fractions of the dispersed phase.

jamming implies in turn that the exponent for the diver-
gence of the viscosity is m = Γ −∆ ≈ 2 (Paredes et al.,
2013), see the inset of Fig. 10. This rescaling with very
similar exponents has now been observed for soft poly-
mer particles (PNIPAM and Carbopol), emulsions with
mobile and immobile surfactants and foams (Dinkgreve
et al., 2015; Nordstrom et al., 2010; Paredes et al., 2013),
suggesting that either these systems have very similar in-
teractions, or that the exponents (∆, notably) do not sen-
sitively depend on the interactions, in contrast to theoret-
ical predictions (Tighe et al., 2010). Another possibility
for the difference between experiments and simulations
could be that the simulations and experiments use quite
different regimes to determine the critical exponents (in
general, in the simulations, one is much closer to the
jamming transition), so that experimentally determined
values could represent “effective” values. Moreover, some
of the analyzed systems (notably, microgels) are not fully
athermal and should perhaps be described by exponents
characteristic of the glass transition (if exponents exist
for this situation) which may be different from the expo-
nents from the thermal jamming transition.

Finally, it is worth mentioning that other scaling anal-
ysis have been proposed that are also based on experi-
mental data, e.g. for the evolution of the yield stress or
the shear modulus (Basu et al., 2014; Kim et al., 2016;
Mason et al., 1996; Mohan et al., 2013a; Scheffold et al.,
2014). These remain interesting open questions and we
refer to a recent publication (Dinkgreve et al., 2015) for a
compilation of the different jamming exponents in theory,
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experiment and numerics.

II. PHYSICAL INSIGHTS FROM YIELD STRESS
MEASUREMENTS

While the definition of the yield stress from a theoreti-
cal point of view, i.e., Eq. (7), looks very simple, its prac-
tical determination is known to raise challenging exper-
imental problems. As discussed above, aging and time-
dependences –most generically, thixotropy– have led to
long-standing controversies in the rheology community.
Other issues include instrument artifacts or slippage of
the material at the walls of the measuring device. Such
problems with the measurement of yield stress have been
reviewed from an engineering point of view for exam-
ple in: (Balmforth et al., 2014; Coussot, 2014; Møller
et al., 2009b; Nguyen et al., 2006; Uhlherr et al., 2005).
Here, we try to clarify what experimentalists call “the
yield stress,” what they exactly measure and what phys-
ical mechanisms they actually probe in the various clas-
sical techniques. We will ignore techniques that involve
complex geometries such as squeeze flows (Rabideau and
Coussot, 2009), penetrometry tests (Boujlel and Cous-
sot, 2012) or stop flows on inclined planes (Coussot and
Boyer, 1995; de Kee et al., 1990) in order to focus only
on techniques that rely on the drag flow produced by a
rheometer, and show how their diversity proves relevant
to address specific fundamental questions pertaining to
yield stress behavior.

In rotational shear rheometry a shear stress σ is im-
posed and the corresponding shear rate γ̇ (or strain γ)
is recorded, or vice-versa. Typical geometries used for
performing this type of measurement include concentric
cylinders, plate-plate and cone-plate geometries (Barnes
et al., 1989; Larson, 1999). In the following we first re-
view methods that involve liquid-to-solid transitions to
determine the yield stress and then those based on solid-
to-liquid transitions (see Fig. 11).

A. Experiments probing the liquid-to-solid transition

1. Extrapolating the flow curve in the limit of vanishing shear
rates

The experiment matching the definition of Eq. (7) con-
sists of measuring the flow curve (σ vs γ̇) by applying a
steady shear and progressively ramping down the shear
rate to reach the limit γ̇ → 0. The material, liquid-like at
first, is thus progressively brought into a solid-like state,
ideally through a series of steady states. The extrapo-
lation of the stress in the limit of vanishing shear rates
points towards a stress value that is generally referred
to as the dynamic yield stress. In practice, however, this
extrapolation can be problematic as it requires the estab-
lishment of a steady shear flow at arbitrarily low shear

(a)

(b)

(c) (d)(c) (d)

FIG. 11 Various methods to determine a yield stress experi-
mentally. (a) Extrapolation of the flow curve in the limit of
vanishing shear rates. Experiments performed on a Carbopol
microgel using roughened cone and plate fixtures. The black
line is the best Herschel-Bulkley fit. Extracted from (Dim-
itriou et al., 2013). (b) Sketch of the stress response to a
shear start-up experiment. The yield stress can be defined as
the stress corresponding to the end of the linear regime, as
the stress maximum, or as the equilibrium stress. Extracted
from (Barnes and Nguyen, 2001). (c) Strain response to step
stress experiments for various stresses ranging from 0.22 to
220 Pa. Extracted from (Coussot et al., 2006). (d) Oscilla-
tory stress sweep experiment performed on a 6% wt carbon
black gel at two different sweep rates: 7 (open) and 34 (filled)
mPa.s−1. Here, the yield stress, defined as the intersection of
G′ (blue/dark grey) and G′′ (red/light grey), depends on the
sweep rate. Extracted from (Perge et al., 2014).

rates. An alternative is to fit the flow curve to a rhe-
ological model, such as the Bingham, Herschel-Bulkley
or Casson models [see Fig. 11(a)] (Nguyen and Boger,
1992). As noted above, the Herschel-Bulkley model is ob-
served to fit the experimental data properly over several
decades in the case of dense assemblies of soft particles,
such as emulsions, microgels and foams (Ovarlez et al.,
2013a), and to provide a reproducible yield stress value.
For this model, the most convincing representation of the
flow curve is to plot the viscous stress, namely the dif-
ference between the stress and the yield stress, σ − σy,
vs the shear rate γ̇, which should show pure power-law
behavior, as reported for instance by (Fall et al., 2010b;
Katgert et al., 2009; Möbius et al., 2010; Shaukat et al.,
2012; Tighe et al., 2010).

However, the above methodology suffers from several
important limitations. First, wall slip can affect the flow
at low shear rates, an issue that will be discussed in more
details in Sect. II.C. Second, time-dependent phenomena
such as thixotropy cause the shape of the flow curve and
therefore its extrapolation in the limit of vanishing shear
rates to depend on the rate at which the shear rate is
swept (Divoux et al., 2013). For some materials such as
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various attractive colloidal gels (Ovarlez et al., 2013b),
this may even be a subtle function of the previous flow
history. The dynamic yield stress obtained for a time-
dependent material thus depends on the details of the
experimental protocol. Furthermore, from a theoretical
viewpoint it is unclear whether Eq. (7) strictly holds even
for simple types of glassy materials, whereas very little is
known for physical and non-equilibrium gels from com-
puter simulations. Even for athermal systems character-
ized by a genuine jamming transition, extracting the yield
stress using extrapolations to vanishing shear rates re-
quires rheololgical measurements over a very broad time
window.

2. Determining the residual stress after flow cessation

In order to minimize the influence of previous flow his-
tory and thixotropy, some researchers prefer switching off
the flow rather than progressively decreasing the shear
rate. In such a flow-cessation experiment, the sample is
sheared at a given shear rate long enough to reach steady
state. Then the shear rate is suddenly set to zero and the
initially liquid-like material turns into a solid while the
stress decreases towards a constant residual or internal
stress σr, see Fig. 12. Historically, this stress value has
also been coined a yield stress by several authors (Magnin
and Piau, 1990; Michaels and Bolger, 1962; Nguyen and
Boger, 1983; Tiu and Boger, 1974) but it was soon recog-
nized that this residual stress was always much smaller
than the dynamic yield stress (Keentok, 1982). In fact,
the residual stress decreases for increasing values of the
shear rate applied prior to flow cessation (Lidon et al.,
2016; Osuji et al., 2008). Therefore σr is not a material
constant but rather gives access to a history-dependent
frozen-in quantity that accounts for the microstructural
anisotropy imprinted to the material by previous shear.

Still, recent years have seen a renewed interest in inter-
nal stresses triggered by various theories for soft glasses
and their predictions of the dynamics upon flow cessa-
tion. In dense assemblies of soft particles, the stress has
been shown to relax through two distinct steps. A rapid
relaxation, interpreted as the ballistic motion of the par-
ticles in the framework of a micromechanical model (Seth
et al., 2011) is followed by a slower relaxation of the elas-
tic contact forces between the jammed particles (Mohan
et al., 2013a) [see Fig. 12(a)]. Whereas such a slow relax-
ation due to aging dynamics is expected for the Brownian
particles studied in these experiments, no such slow re-
laxation should exist for fully athermal soft particles, as
there is no mechanism to induce fluctuations that would
allow for a slow exploration of the complex free-energy
landscape of the material. Simulations of the behavior of
non-Brownian particles after shear is suddenly stopped
confirm the rapid convergence of the residual stress to a
finite value (Chaudhuri et al., 2012a), with no slow re-

(b)

FIG. 12 (a) Stress relaxation upon flow cessation: experi-
ments with microgels for different preshear stresses (from 60
to 443 Pa). The internal stress σr, defined by linear extrapola-
tion of the stress measured over a short time interval (< 50 s)
after flow cessation, is larger for smaller preshear stress and
becomes quite significant for pre-shear stresses approaching
the yield stress. From (Mohan et al., 2013a). (b) Evolution
of the stress after flow cessation normalized by the stress prior
to flow cessation (σss) as a function of γ̇ for a hard-sphere col-
loidal suspension. The curves correspond to various imposed
shear rates γ̇ prior to flow cessation, and different packing
fractions. Glass states are shown in red (light gray), liquid
states in blue (dark grey). From (Ballauff et al., 2013).

laxation involved in that relaxation process.

In hard-sphere colloidal glasses, the stress relaxes as a
power-law as predicted by the SGR model (Cates et al.,
2004), and is associated with subdiffusive motions of the
particles (Ballauff et al., 2013) [see Fig. 12(b)]. This is
not surprising because the model was initially devised as
a rheological model to study the interplay of aging dy-
namics and shear flow in glassy materials (Fielding et al.,
2000; Sollich, 1998). By contrast, the mode-coupling ap-
proach developed in (Fuchs and Cates, 2009) does not
include aging effects, and so it cannot describe the slow
relaxation of the stress after flow cessation or the sub-
diffusive particle displacements observed in experiments
(Ballauff et al., 2013; Fritschi et al., 2014), and predicts
instead a fast convergence to an arrested state with a
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finite residual stress.

Finally, aging laponite clay suspensions display a sig-
moidal stress relaxation upon flow cessation with a char-
acteristic time that scales inversely with the quench rate
(Negi and Osuji, 2010b). The latter behavior contrasts
with the simpler relaxation reported in dense systems
with strong aging and remains to be interpreted from
microscopic and/or theoretical points of view.

B. Experiments probing the solid-to-liquid transition

1. Analyzing the transient stress response during shear start-up

When an external shear rate γ̇ is imposed on a soft
solid at time t = 0, and is kept constant thereafter, the
stress σ(t) first increases linearly with the strain γ = γ̇t
which is indicative of elastic response [see Fig. 11(b)].
It then departs from linearity at intermediate strains,
typically γ ∼ 0.1 for bentonite suspensions (Nagase
and Okada, 1986) and 0.2 for microgels (Divoux et al.,
2011a). Although a characteristic stress associated with
departure from linearity can be inferred from this early-
time stress response (Lin and Brodkey, 1985; Nagase and
Okada, 1986), such a “yield stress” involves an arbitrary
definition of how far from linearity the system should
be. More importantly, this behavior may relate to lo-
cal yielding events rather than to global yielding of the
material. Nonetheless, this crossover from linear to non-
linear behavior is an interesting phenomenon for which
experiments can be confronted to theories and simula-
tions perhaps more easily than for larger strains.

Upon entering the fully nonlinear regime, σ(t) in gen-
eral goes through a maximum before decreasing toward
its steady-state value. Such a stress overshoot is observed
in a large number of yield stress fluids such as foams
(Khan et al., 1988), emulsions (Batista et al., 2006; Pa-
penhuijzen, 1972), microgels (Divoux et al., 2011a), clays
(Nagase and Okada, 1986) and attractive gels (Koumakis
and Petekidis, 2011; Lidell and Boger, 1996). The maxi-
mum value of the stress reached during shear start-up has
been widely used as an estimate of the yield stress. How-
ever, it does not coincide with the definition of Eq. (7)
and it is now referred to as the static yield stress (Varnik
et al., 2004) in order to clearly distinguish it from the
dynamic yield stress inferred from flow-curve measure-
ments measured in the flowing regime. In particular, as
they are performed at a finite shear rate, start-up exper-
iments introduce the additional time scale 1/γ̇ and the
subsequent nonlinear stress response is generally not a
function of γ only but also depends on γ̇. Although the
static yield stress is not a material constant, the stress
overshoot phenomenon still raises important fundamen-
tal questions: Does it have any simple microstructural
interpretation? Can it be predicted from theory? The
influence of the various experimental control parameters

FIG. 13 (a) Normalized off-diagonal component of the sec-
ond moment tensor of the dimensionless scattering vector q̂
weighted by the structure factor: < q̂q̂ >, and shear stress σxy
vs strain γ during a shear start-up experiment (γ̇ = 0.17 s−1)
for a DLCA polystyrene gel (φ = 10−3). (b) Contour plots of
a representative cascade of scattering patterns collected dur-
ing a start-up experiment (γ̇ = 0.56 s−1) with t = 0.1 [a], 1.1
[b], 2.2 [c], 3.5 [d], 6.3 [e], and 8.3 s [f]. Maximum anisotropy
is observed at t ' 3.5 s. (a,b) extracted from (Mohraz and
Solomon, 2005). (c) Evolutions of the shear stress and (d)
positions of the T1 events in a foam sheared in a 2D Couette
cell as a function of the applied strain during a shear start-up
experiment. Data from numerical simulations, extracted from
(Kabla et al., 2007).

on the stress maximum, reviewed below, might give some
clues.

First, if the effect of boundaries and the possibility of
wall slip (see Sect. II.C) are ignored, the stress overshoot
mainly depends on the value of γ̇ (Nguyen and Boger,
1983). Experiments performed on stabilized suspensions
of silica particles (Derec et al., 2003), Carbopol microgels
(Divoux et al., 2011a) and attractive gels (Koumakis and
Petekidis, 2011) report a power-law increase of the stress
maximum with external shear, with an exponent ν in the
range 0.1-0.5. This power-law scaling is captured by flu-
idity models (Derec et al., 2003), Stokesian simulations
(West et al., 1994) and Brownian dynamics simulations
of particle gels (Park and Ahn, 2013; Whittle and Dick-
inson, 1997), although the microscopic parameters con-
trolling the exponent ν are still unclear. Power laws also
contrast with the logarithmic increase reported for bidis-
perse Lennard-Jones mixtures for which the increase of
the stress maximum can be interpreted in the framework
of the Ree-Eyring viscosity theory (Rottler and Robbins,
2005; Varnik et al., 2004) and appears quite natural in
the context of aging studies of glassy materials, in which
slow aging dynamics very often leads to logarithmic time
dependences.

Second, for a given applied shear rate, the stress max-
imum increases with the “sample age,” i.e. the wait-
ing time tw between the preshear used to reset the fluid
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memory and the start-up of shear. The overshoot even-
tually disappears for waiting times shorter than 1/γ̇
(Derec et al., 2003; Divoux et al., 2011b; Letwimolnun
et al., 2007). Such a behavior is well captured by the
SGR model (Fielding et al., 2000) and the fluidity model
(Moorcroft et al., 2011), although both models predict
a logarithmic increase of the stress maximum with tw,
whereas experimental results rather point to a weak
power-law dependence.

Finally, regarding the local behavior of the fluid during
shear start-up, recent experimental and numerical stud-
ies have shed new light on the nature of the stress max-
imum. In Brownian colloidal systems, the stress maxi-
mum coincides with the maximum structural anisotropy
(Koumakis et al., 2012a; Mohraz and Solomon, 2005) [see
Fig. 13(a,b)]. For attractive gels, the stress maximum
corresponds to the rupture of the gel network, while for
dense hard-sphere-like systems, individual colloids expe-
rience an (apparent) superdiffusive motion as they are
being pushed out of their cage by shear (Koumakis et al.,
2012a; Zausch et al., 2008), which can be readily inter-
preted in terms of a delayed onset of diffusive behavior.
In the case of a jammed assembly of soft particles, the
deformation is almost elastic and only a few rearrange-
ments that are uniformly spatially distributed have been
reported in foams (Kabla et al., 2007) [see Fig. 13(c,d)],
while linear velocity profiles have been observed in mi-
crogels up to the stress maximum (Divoux et al., 2011b).
These recent local approaches clearly show that shear
start-up and more specifically the stress overshoot phe-
nomenon are powerful tools to finely distinguish between
various types of yield stress materials. Theoretical un-
derstanding of the full transient scenario is however still
far from reach.

2. Creep experiments

In a creep experiment, a constant shear stress σ is ap-
plied from time t = 0 and the strain response γ(t) is mon-
itored. Although also a shear start-up experiment, this
protocol does not necessarily fluidize the material which
may remain solid, and the results may be qualitatively
distinct from those discussed in Sect. II.B.1.

For stresses applied above the yield stress, the ma-
terial eventually flows, i.e. γ(t) increases linearly with
time, whereas for stresses lower than the yield stress,
the material behaves as a solid and γ(t) tends toward
a constant. Equivalently, the shear rate γ̇(t) reaches a
non-zero steady-state value in the former case, while it
vanishes in the latter case. Following the discussion in
Sect. II.B.1, the yield stress measured by this approach
should again provide an estimate of the static yield stress.

This “bifurcation” between a finite steady-state vis-
cosity and an apparently infinite viscosity in principle
provides a well-defined estimation of the yield stress as

FIG. 14 Shear rate responses vs time for creep experiments at
different imposed shear stresses in various materials: (a) poly-
crystalline hexagonal columnar phase, extracted from (Bauer
et al., 2006), (b) Carbopol microgel, extracted from (Divoux
et al., 2011a), (c) core-shell PS-PNIPAM particle glass, ex-
tracted from (Siebenbürger et al., 2012), and (d) carbon black
gel at 8 % wt, extracted from (Sprakel et al., 2011).

the critical stress separating these two regimes (Coussot
et al., 2002a,b, 2006; Cruz et al., 2002; Møller et al., 2006)
[see Fig. 11(c)]. This method is cumbersome, however, as
the yield stress is obtained by dichotomy, and for each ex-
periment the time for the material to flow increases as the
applied shear stress gets closer to the yield stress (Møller
et al., 2009a). The question of deciding whether a steady
state is reached and whether the system eventually flows
or not becomes even more important in the case of very
long transients and of so-called “delayed yielding,” where
no apparent flow can be detected for long times before
the material finally yields (Chaudhuri and Horbach, 2013;
Gibaud et al., 2010; Magda et al., 2009; Uhlherr et al.,
2005).

Besides the determination of the yield stress, the tran-
sient strain or shear rate responses also provide poten-
tially rich information on the physical processes at play in
soft solids under constant stress. In particular, a robust
feature of creep responses prior to fluidization is a power-
law decrease of the shear rate [see Fig. 14] that strongly
resembles the “Andrade creep” reported for hard solids
(da C. Andrade, 1910), which has been attributed to col-
lective dislocation dynamics (Csikor et al., 2011; Miguel
et al., 2008, 2002). Power-law creep has been reported
for cellulose gels (Plazek, 1960) and more recently for
various amorphous soft solids such as polycrystalline sur-
factant hexagonal phases (Bauer et al., 2006), Carbopol
microgels (Divoux et al., 2011a; Lidon et al., 2016), core-
shell p-NIPAM colloidal particles (Siebenbürger et al.,
2012), thermo-reversible protein gels (Brenner et al.,
2013) and colloidal glasses (Sentjabrskaja et al., 2015).
Yet, Andrade-like creep remains mostly unexplored in
soft materials such as yield stress fluids. Local velocime-
try suggests that the strain field remains macroscopi-
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cally homogeneous during this first regime (Divoux et al.,
2011a; Grenard et al., 2014). Still, characterizations at
finer –ideally microscopic– scales are needed to unveil
the presence of plasticity or microcracks during the ini-
tial loading phase and to make a clear link between the
physical mechanisms at play in the creep of ordered solids
and of disordered soft materials. New insights can also
be gained by adapting recent numerical models to creep
situations (Colombo and Gado, 2014; Fusco et al., 2014).

Finally, for stresses above the yield stress, the ini-
tial power-law creep is followed by a gradual accelera-
tion up to an abrupt fluidization of the material that
later reaches a steady state. The dynamics associated
to fluidization will be discussed in Sect. III.C.2 together
with the characteristic time scales involved in the yield-
ing process. For stresses below the yield stress, the inter-
play between creep deformation and aging leads to long-
time strain responses that are more complex than pure
power-laws and strongly depend on the sample age, as re-
ported for laponite clay suspensions (Baldewa and Joshi,
2012; Negi and Osuji, 2010a) and star glassy polymers
(Christopoulou et al., 2009).

3. Large-amplitude oscillatory shear experiments

So far, the yielding transition has only been considered
from the point of view of a steady external shear. Yet,
the solid-like vs liquid-like behavior of a complex material
can also be quantified through oscillatory shear experi-
ments. By imposing a sinusoidal shear strain of ampli-
tude γ0 and pulsation ω, given by γ(t) = γ0 sin(ωt),
and measuring the corresponding stress response σ(t),
the storage (G′) and loss (G′′) moduli can be defined
from the amplitudes of the stress response that are re-
spectively in phase and in quadrature with γ(t) at the
excitation pulsation ω (Ferry, 1980). The solid-to-liquid
transition of a yield stress material can thus be probed
by progressively increasing the amplitude γ0 of the os-
cillatory strain. At low strain amplitudes, the solid-like
material is elastically deformed and the storage modulus
G′ remains roughly constant and much larger than the
loss modulusG′′. This corresponds to the linear regime of
deformation referred to as “small-amplitude” oscillatory
shear (SAOS). At larger strain amplitudes, the material
response gets nonlinear. Under such “large-amplitude”
oscillatory shear (LAOS), G′ typically decreases, then
crosses G′′ and becomes much smaller than G′′ as the
material becomes liquid-like [see Fig. 11(d)].

LAOS experiments allow for a number of different es-
timations of the yield point. By plotting G′ and G′′ as
functions of either the strain amplitude γ0 or the shear
stress amplitude σ0, the stress amplitude σ0y at which
the material yields may be given by the point at which
G′ = G′′, which has been called “characteristic modulus”
by (Larson, 1999) [see Figs. 11(d) and 15(a)], or by the

FIG. 15 (a) Evolution of the shear moduli of a Pickering
emulsion stabilized by silica colloids during a LAOS strain
amplitude sweep. The volume fraction of the oil is 65%. (b)
Confocal images of the emulsion during shear taken 40 mm
into the sample to avoid wall effects and obtained at different
strains during the strain sweep. Scale bars correspond to
20 µm. For γ0 < 0.10, the droplets slide along each other
but remain trapped in the cages formed by their neighbors.
For γ0 ' 0.10, the moduli intersect and the droplets can be
seen to move irreversibly, although their displacement over a
period is much less than their diameter. For γ0 > 0.30, G′ and
G′′ increase due to jamming, which results in apparent shear-
thickening, and the droplets move rapidly during each period,
over distances larger than their own diameter. Extracted from
(Hermes and Clegg, 2013).

intersection of power-law fits of the moduli behaviors well
above and well below the yielding point (Rouyer et al.,
2005). Alternatively, σ0y can be estimated by plotting σ0

vs γ0 from the intersection between a linear behavior with
slope G′ at low strains and a power-law fit at high strains
(Mason et al., 1996; Saint-Jalmes and Durian, 1999).

Clearly, contrary to steady-shear measurements, all
LAOS estimates of the yield stress as σ0y involve the ad-
ditional time scale 1/ω and thus do not comply with the
definition of Eq. (7) unless vanishingly small frequencies
are considered. Moreover, as already addressed in several
rheology reviews (Hyun et al., 2011; Wilhelm, 2002), the
response to LAOS is intrinsically nonlinear and needs to
be analyzed considering the full spectrum of strain or
stress harmonics rather than the sole fundamental fre-
quency through G′ and G′′ only. The various estimates
of σ0y should depend on both ω and the harmonic con-
tent of the stress or strain response, and there is no par-
ticular reason why they should coincide and correspond
to the dynamic yield stress inferred from steady-state
measurements. Finally, in the case of strongly time-
dependent materials, the estimate of σ0y is most likely
to depend on the details of the LAOS ramp protocol, as
illustrated in Fig. 11(d). Wall slip and/or bulk hetero-
geneous flows may complicate yielding under oscillatory
shear even more (Gibaud et al., 2010, 2016; Perge et al.,
2014; Walls et al., 2003).

Interest in LAOS has grown, leading to a surge in the
number of experimental and theoretical studies over the
last decade. First, LAOS has been used to unveil a strik-
ing difference between attractive and repulsive colloidal
glasses. Whereas the elastic modulus decreases mono-
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tonically in dense hard-sphere-like systems, attractive
glasses display a two-step yielding, which results from
the existence of two distinct microscopic length scales in
the system: the adhesion range (responsible for initiating
phase separation) and the cage size in the dense glassy
phase (responsible for the dynamic arrest) (Chan and
Mohraz, 2012; Koumakis et al., 2013; Laurati et al., 2011;
Pham et al., 2006). Such a two-step scenario has been
observed through strain-step experiments (Koumakis and
Petekidis, 2011), but its interpretation still requires full
confirmation from direct local investigations. Of course,
this two-step yielding process immediately leads to the
question whether a yield stress or even two yield stresses
should be defined.

Second, physical insights into the microscopic dynam-
ics under LAOS have been gained by coupling oscilla-
tory shear to other characterization techniques, such as
structural measurements or local tracking of particle mo-
tion. The “light scattering (LS) echo” technique has
allowed the quantification of the global amount of irre-
versible rearrangements (Hébraud et al., 1997; Laurati
et al., 2014; Petekidis et al., 2003). Direct optical imag-
ing of the microstructure has recently been used to as-
sess the transition to irreversibility with emphasis on the
physical properties of rearrangements such as their cor-
relation length (Nagamanasa et al., 2014), the presence
of dynamical heterogeneities (Knowlton et al., 2014) and
cage breaking in repulsive vs attractive systems (Hermes
and Clegg, 2013) [see Fig. 15(b)]. Along the same lines,
time-resolved neutron and x-ray scattering now allows
one to follow the evolution of shear-induced anisotropy
in colloidal gels during one single LAOS cycle (Kim et al.,
2014; Min Kim et al., 2014; Rogers et al., 2014). Such
measurements come as a crucial complement to recently
proposed nonlinear analyses of rheological data during
one oscillation cycle (Dimitriou et al., 2013; Dimitriou
and McKinley, 2014; Ewoldt, 2013; Ewoldt et al., 2008;
Rogers et al., 2011), and can be used as an additional
tool to study the yielding behavior and hence the value
of the yield stress.

Third, from a more theoretical point of view, recent ad-
vances in modeling and simulation of LAOS flows have
also led to significant progress in unveiling the physi-
cal importance of caging effects in the yielding of both
hard-sphere glasses (Brader et al., 2010; Koumakis et al.,
2013) and dense assemblies of soft particles (Mohan et al.,
2013b), and this situation was analysed within a mode-
coupling approach (Seyboldt et al., 2016). The idea has
emerged that the yielding transition corresponds to a
change in the dynamics at the microscopic scale between
reversible particle trajectories at small applied stress, and
a chaotic dynamics beyond the yielding point (Fiocco
et al., 2013; Kawasaki and Berthier, 2016; Regev et al.,
2013). Whereas early numerical work seemed to predict
a continuous phase transition between the two regimes
characterized by power law divergences (Brader et al.,

2010; Perchikov and Bouchbinder, 2014), more recent
work (Kawasaki and Berthier, 2016) put forward the idea
that the transition is indeed sharp but discontinuous,
akin to a non-equilibrium first-order phase transition. In
experiments, contrasting evidences have been reported
on this point (Denisov et al., 2015; Hermes and Clegg,
2013; Knowlton et al., 2014). Therefore, the nature of
the yielding transition under oscillatory shear remains to
be fully elucidated.

4. Non-viscometric flows

Many flows encountered in practice are not simple vis-
cometric flows. A typical example is that of a sphere
falling through a yield stress fluid; this has often been
used as a benchmark, e.g. for numerics. The fluid around
the sphere will be set in motion because of the stress ex-
erted by the falling sphere, but the fluid far away will
remain motionless; the question is where the yield sur-
face (i.e., the transition from the flowing to the non-
flowing material) is localized in space. Experiments on
the flow of yield stress fluids around falling spheres far
from any boundaries have revealed the location of the
yield surface, but have also shown that the usual con-
stitutive equations are unable to describe this situation.
In a number of experiments, the loss of foreaft symme-
try (Gueslin et al., 2006; Putz et al., 2008) was observed.
For thixotropic fluids (Gueslin et al., 2006), this can eas-
ily be understood: where the sphere has passed through
the material, it has liquefied. However similar observa-
tions made on carbopol gels (Putz et al., 2008) cannot
be explained by properly invariant 3-D generalizations of
classical models like the Bingham and Herschel-Bulkley
fluids (Putz et al., 2008). Symmetry breaking may in
fact be an elastic effect: the resemblance between the
yield stress fluid flow around a sphere and the flow of
viscoelastic polymer solutions has been noted. The no-
tion of combining viscoelasticity and yield stress behavior
has spurred Saramito (Saramito, 2007) and de Souza and
Mendes (de Souza Mendes, 2009, 2011) to attempt to add
elasticity to the usual visco-plastic models and developed
properly invariant continuum elasto-viscoplastic consti-
tutive equations. There has been some success in simu-
lating the breaking of flow foreaft symmetry in (Cheddadi
et al., 2011; Fonseca et al., 2013; dos Santos et al., 2014).
Notably, Fraggedakis and coworkers (Fraggedakis et al.,
2016) have successfully simulated the flow of Carbopol so-
lutions past isolated spheres by incorporating the plastic
back pressure (Dimitriou et al., 2013) into the Saramito
model.
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C. Wall slip in yield stress materials

As briefly mentioned above, in the vicinity of a smooth
solid boundary, the velocity of a yield stress fluid (vsample)
may differ from the velocity of the boundary (vwall). One
may either observe vsample < vwall (e.g. in the case of
a shearing device driven at constant velocity vwall) or
vsample > vwall = 0 (close to a fixed surface or in capil-
lary or channel flows). In both cases, the apparent dis-
continuity in velocity at the wall is caused by a thin and
highly sheared region adjacent to the wall of lower viscos-
ity than the bulk material. This phenomenon, referred to
as apparent wall slip or more often simply as wall slip in
the literature, has been first described as an artifact that
experimentalists should get rid of in order to avoid mis-
interpretating rheological measurements (Barnes, 1995).
Although elucidating the exact microscopic structure of
the lubrication layer remains an experimental challenge
due to its small width (typically smaller than 1 µm), very
high local shear rate, and proximity to a solid boundary,
it is presumably composed of pure solvent in the case of
colloidal gels or suspensions (Hartman Kok et al., 2004,
2002) or of a film of continuous phase in emulsions (Prin-
cen, 1985). The emergence of local techniques to quantify
slip velocities have brought about a better understanding
of the behavior of yield stress materials near boundaries,
allowing the development of successful microscopic mod-
els in the case of dense assemblies of soft particles (Seth
et al., 2011). In the case of attractive gels, a recent body
of evidence strongly suggests that the dynamics close to a
wall may not be easily decoupled from the bulk dynamics
and that wall slip is not merely a rheometric complica-
tion, as recently pointed out by (Buscall, 2010). This
section addresses the various issues related to wall slip in
yield stress fluids in light of such recent developments.

1. Impact on flow curve measurements

In the presence of wall slip, the measured apparent
shear rate overestimates the true shear rate within the
material (or, correspondingly, the strain indicated by
a rheometer overestimates the true deformation experi-
enced by the bulk of the material). Consequently, the
apparent flow curve is shifted to higher shear rates com-
pared to the actual constitutive equation of the bulk ma-
terial. In general, at low shear rates, where wall slip
effects are most pronounced, the apparent flow curve
displays a kink and/or a plateau at a stress lower than
the yield stress estimated in the absence of wall slip [see
Fig. 16(a) for examples]. This signature has been re-
ported in the literature as early as 1975 in the pioneering
work of (Vinogradov et al., 1975) and, since then, for a
broad range of yield stress materials including colloidal
gels (Buscall et al., 1993; Mas and Magnin, 1994), dense
Brownian suspensions (Ballesta et al., 2008, 2012), emul-

(a)

(b) (c)

FIG. 16 (a) Stress σ vs the apparent shear rate γ̇app for a
microgel paste (◦, •) and an emulsion (4,N) of packing frac-
tion φ ' 0.77 obtained in a cone-and-plate device for smooth
(open symbols) and rough (closed symbols) surfaces. Regimes
I to III refer to microgel slip behavior discussed in the text.
The inset shows the velocity profile measured with rough sur-
faces for σ/σy = 1.05 ± 0.1. (b,c) Velocity profiles measured
with smooth surfaces for σ/σy = 0.9 ± 0.1 (b) and 1.3 ± 0.1
(c). Adapted from (Meeker et al., 2004b).

sions and microgels (Meeker et al., 2004a,b), and foams
(Marze et al., 2008). In particular, wall slip leads to sig-
nificant deviations from the Herschel-Bulkley behavior at
low shear rates, and the apparent flow curve is strongly
surface-dependent in this limit (Seth et al., 2008).

2. Physical origin of wall slip in yield stress fluids

Direct flow visualization coupled to rheology has made
it possible to go one step further in interpreting the ap-
parent lower stress plateau in the presence of wall slip.
The seminal work of (Magnin and Piau, 1990) on Car-
bopol microgels, coupling rheology to direct observations
of the strain field, has inspired numerous subsequent
studies coupling flow visualization to standard rheology
(Aral and Kalyon, 1994; Kalyon et al., 1993; Persello
et al., 1994). Subsequently, combinations of rheology and
other local measurement techniques, such as light scat-
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FIG. 17 (a) Slip velocity vs excess stress in a dense emulsion
for stresses below the yield stress in a plate-plate geometry.
The top plate is either coated with a weakly adhering poly-
mer surface (�,�) or a non-adhering glass surface (◦, •). The
wetting properties of the boundary conditions strongly im-
pact the behavior of the slip velocity. Extracted from (Seth
et al., 2012). (b,c) Slip velocity vs shear stress at the rotor (•)
and stator (◦) for (b) a dense emulsion φ = 0.75 and (c) a di-
lute emulsion φ = 0.2. The slip velocity is linear in the dilute
regime and quadratic for dense packing for stresses above the
yield stress. Extracted from (Salmon et al., 2003a). (d) Slip
velocity vs shear stress in a suspension of ammonium sulfate
particles in PBAN (poly(butadiene acrylonitrile acrylic acid)
terpolymer). Data obtained in capillary flows with dies (ex-
trusion nozzles) of various aspect ratios (◦,�,4) and a plate-
plate geometry (?). The solid line corresponds to a linear
behavior. Extracted from (Yilmazer and Kalyon, 1989).

tering velocimetry in a Couette geometry (Salmon et al.,
2003a) and particle tracking velocimetry in cone-and-
plate (Ballesta et al., 2008, 2012; Meeker et al., 2004a,b;
Paredes et al., 2011) and plate-plate geometries, (Seth
et al., 2012) have provided quantitative measurements of
slip velocities (defined as vs = |vsample − vwall|) and wall
slip scenarios for the different yield stress materials. Let
us first discuss the case of yield stress fluids composed of
soft deformable particles before turning to rigid particles.

a. Wall slip in case of soft particles. In yield stress fluids
made of soft particles, the solid behavior results from the
tightly packed structure of deformable objects, and the
lubrication layers that develop at smooth walls are inti-
mately related to the particle deformability. For shear
rates such that σ < σy [see regime III in Fig. 16(a)], the
bulk remains unsheared and the apparent motion is en-
tirely due to wall slip [see Fig. 16(b)]. This situation is
referred to as “total” wall slip or “plug-like” flow. In this
regime, vs has been shown to increase as a power-law of

the excess stress (i.e. the stress at the wall minus the
apparent yield stress σs inferred from the extrapolation
of the flow curve to vanishing shear rates in the smooth
geometry): vs ∝ (σ − σs)p, where the exponent p does
not depend significantly on the packing fraction but is
strongly influenced by the chemical nature of the walls.
The slip velocity vs displays a nearly quadratic scaling,
i.e. p ' 2, in the case of attractive/non-wetting surfaces,
whereas p = 1 for repulsive and/or wetting walls (Seth
et al., 2008, 2012) [see Fig. 17(a)]. Both exponents p = 1
and p = 2 have been successfully described at the scale of
single particles by elastohydrodynamic lubrication theory
as the result of a balance between bulk osmotic pressure
and viscous dissipation taking place in the thin lubri-
cation layer that separates the squeezed particles from
the wall (Meeker et al., 2004a; Seth et al., 2008). The
upper limit of this total wall-slip regime generally corre-
lates well with the stress drop or “kink” on steady-state
macroscopic measurements.

For larger shear rates such that σ > σy, the bulk mate-
rial is sheared but wall slip remains significant, at least for
σ & σy [see regimes I and II in Fig. 16(a) and Fig. 16(c)].
In this partial wall-slip regime, it appears that the slip
velocity scales as a power law of the slip stress only (i.e.
stress at the wall). Here, the physical picture is much less
clear. Both the absolute value of vs and the exponent p
depend strongly on the geometry. For instance, in sim-
ilar systems, p ' 1 has been reported for a plate-plate
geometry (Seth et al., 2012) while p ' 2 for a smooth
Couette cell (Salmon et al., 2003a) [see Fig. 17(b)] and
for rough microchannels (Geraud et al., 2013). We note
that in this regime, the influence of the packing fraction
in the glassy state and the impact of the chemical nature
of the walls have not been systematically explored. Yet,
as seen in Fig. 17(b,c), one finds p ' 2 above jamming to
p ' 1 for low packing fractions where soft particles are no
longer compressed against each other and the yield stress
vanishes. The exponent p = 1 is also found in liquid-like
suspensions of rigid particles as discussed in the following
paragraph. From a recent study on soft thermorespon-
sive particles conducted at different temperatures in a
Couette cell, it appears that the scaling of the slip ve-
locity depends mainly on the packing fraction (Divoux
et al., 2015). Nonetheless, more experiments in other ge-
ometries are required to provide a truly universal scaling
to the slip velocity across the jamming transition.

b. Wall slip in case of hard particles. Concerning wall slip
in suspensions of hard particles, a great deal of work
has been done on non-Brownian systems, which corre-
sponds to large Péclet numbers. Over a wide range of
packing fractions, wall slip is associated with a depletion
layer near the wall, which thickness depends on the par-
ticle size and decreases roughly linearly with increasing
bulk packing fraction (Kalyon, 2005). The latter result
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FIG. 18 Shear stress vs shear rate for a dense emulsion
(φ = 0.923) measured in a plate-plate geometry with smooth
boundary conditions for two different gap sizes (500 and
750 µm, respectively). The stress vs the shear rate com-
puted from the method developed by Mooney and extended
by Yoshimura and Prud’homme displays a yield stress, while
this is not obvious from the raw measurements. Extracted
from (Yoshimura and Prud’homme, 1988).

may not hold for polydisperse samples (Soltani and Yil-
mazer, 1998) and appears to be affected by migration
effects (Jana et al., 1995), which shows that the detailed
mechanism for slip in non-Brownian systems is not fully
understood. Nonetheless, the slip velocity at the wall
scales linearly with the slip stress in a remarkably ro-
bust fashion (Aral and Kalyon, 1994; Jana et al., 1995;
Soltani and Yilmazer, 1998; Yilmazer and Kalyon, 1989)
[see Fig. 17(d)]. The chemical properties of both the par-
ticle surface and boundary conditions seem to affect wall
slip (van Kao et al., 1975) although their quantitative
impact on vs(σ) remains to be determined.

For Brownian hard spheres, the thickness of the deple-
tion layer depends weakly on the Péclet number (Hart-
man Kok et al., 2004), and decreases for increasing pack-
ing fractions (Ballesta et al., 2008). The slip velocity
scales linearly with the slip stress for both dilute and
glassy assemblies. Moreover, wall slip in glassy samples
is characterized at low shear rates by a stress-kink on
the macroscopic flow curve together with plug-like veloc-
ity profiles (Ballesta et al., 2012). The latter result is
strikingly similar to the one reported for soft particles
in contact with non-adhering surfaces in Fig. 16(a), sug-
gesting that a common mechanism might be at work. At-
tractive colloidal gels display the same phenomenology as
glassy suspensions over a broader range of packing frac-
tions, down to very low values of φ. However, both the
kink and wall slip tend to disappear as the polydispersity
is increased (Ballesta et al., 2013). Particle migration is
also more likely to play a major role in these yield stress
fluids with low packing fractions by promoting concentra-
tion gradients and/or segregation. One can thus antici-
pate that wall slip in attractive gels originates from the
combined effects of migration and polydispersity, with a
strong dependence on the shearing geometry, including
stress gradients.

FIG. 19 Velocity profiles of a dense emulsion flowing in a rect-
angular microchannel (gap w = 400 µm). Images obtained by
confocal microscopy. Velocity profiles in blue (dashed lines)
correspond to smooth boundary conditions treated with a pi-
ranha solution. The oil droplets experience wall slip. Veloc-
ity profiles in red (continuous lines) correspond to smooth,
silanized boundary conditions. The oil droplets stick to the
surface, creating an effectively rough boundary condition.
Flow rates: 0.2, 0.5 and 1.2 10−2 mL/min. From (Paredes
et al., 2015).

3. Dealing with wall slip in practice

Two types of practical approaches towards wall slip
have been proposed in the literature: either to quan-
tify the effect of wall slip from the experimentally deter-
mined flow curve, or to eliminate it. An elegant solution
due to Mooney (Mooney, 1931) and further extended by
(Yoshimura and Prud’homme, 1988), (Kiljański, 1989)
and (Wein and Tovchigrechko, 1992) consists of deter-
mining the relationship between the apparent shear stress
and rate for gaps of different sizes. Combining at least
two measurements and assuming that (i) the slip veloc-
ity is a function of stress only and (ii) slippage is the
same at both walls, one can recover the constitutive re-
lationship σ(γ̇) corrected for wall slip (see Fig. 18). This
method has been applied to various yield stress fluids, in-
cluding emulsions (Yoshimura and Prud’homme, 1988),
microgels (Meeker et al., 2004a), and dense suspensions
(Hartman Kok et al., 2004, 2002; Kalyon, 2005; Kalyon
et al., 1993; Yilmazer and Kalyon, 1989) although the
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two assumptions on which it relies have been verified by
local measurements of slip velocities only in a few cases
(Meeker et al., 2004a; Salmon et al., 2003a).

To prevent wall slip, the nature of the wall needs to
be modified. The use of rough boundary conditions al-
lows to properly determine constitutive equations with-
out wall slip (Vinogradov et al., 1975). The roughness
of the wall has been tuned from a few microns to hun-
dreds of microns by using sandblasted surfaces (Buscall
et al., 1993), grooved surfaces (Magnin and Piau, 1990),
serrated tools (Nickerson and Kornfield, 2005), or by glu-
ing waterproof sand-paper (Seth et al., 2008, 2012) or a
monolayer of particles on the cell walls (Isa et al., 2007).
The accepted paradigm is that the roughness of the sur-
face should be comparable to the size of the microstruc-
ture, since a lower roughness would not be efficient, and
a higher roughness, including vane cup geometries, may
trigger secondary flows (Ovarlez et al., 2011). In that
respect, recent attempts to systematically explore the ef-
fect of the roughness-to-particle-size ratio (Mansard and
Colin, 2012) look promising in order to go beyond empir-
ical knowledge. Last but not least, the chemical nature
and wetting properties of the walls can be also tuned
to force the adhesion of the material even for smooth
interfaces. This has been successfully achieved for col-
loidal silica gels at low deformations using hydrophobic
boundaries (Walls et al., 2003) and for aqueous microgels
and oil-in-water emulsions using silicon boundaries (Seth
et al., 2008, 2012) and chemical treatment of PMMA
(Christel et al., 2012) or glass surfaces (Paredes et al.,
2015), as illustrated in Fig. 19.

III. STEADY-STATE FLOW DYNAMICS OF YIELD
STRESS FLUIDS: FLOW CURVES AND SHEAR
BANDING

This section is devoted to the dynamics of yield stress
materials in the case where a stress above the yield stress
is applied. After briefly reviewing methods to experimen-
tally distinguish between simple and thixotropic yield
stress fluids, we examine the current interpretations and
models for the steady-state shear-banding flows generally
observed in thixotropic materials. We close this section
with two emerging topics that have emerged within the
last few years on the flow of yield stress fluids under con-
finement and the time scales involved in transient regimes
of yield stress fluid flow.

A. Flow curves of simple and thixotropic yield stress fluids

As discussed in Sect. I.D, yield stress fluids can be
broadly divided into “simple” yield stress fluids (micro-
gels, dense emulsions and foams) and thixotropic yield
stress fluids (clays, fiber suspensions and colloidal gels)
(Bonn and Denn, 2009; Møller et al., 2009b; Ovarlez

et al., 2013a, 2009). Here, we briefly review how the
distinction can be made experimentally, before turning
to most recent ideas.

1. Distinction between flow curves

Steady-state flow curves σ(γ̇) can be used to distin-
guish between the two types of yield stress materials
(Møller et al., 2009b):

• Simple yield stress fluids exhibit a continuous and
monotonic constitutive equation, which is well fit-
ted by the phenomenological Herschel-Bulkley law
σ = σy+Aγ̇n [Fig. 20(a)]. As a consequence, what-
ever the applied shear rate, even in the limit of van-
ishing values, there is always a finite shear stress
above σy at which the material flows. Conversely,
whatever the applied shear stress above σy, there is
always a finite shear rate reached by the material.

• In contrast, thixotropic yield stress fluids are char-
acterized by a discontinuous underlying flow curve
[Fig. 20(b)] with a pronounced time-dependence
that is the definition of thixotropy. Indeed, in ad-
dition to a yield stress σy, these materials are also
characterized by a critical shear rate, γ̇c, below
which they cannot flow steadily in homogeneous
conditions when imposing the shear rate (Coussot
et al., 2002c).

At this stage, it is tempting to draw an analogy with
equilibrium phase transitions, where such a discontinu-
ous flow curve would correspond to a first-order solid-to-
fluid transition while a continuous flow curve would cor-
respond to a second-order solid-to-fluid transition. How-
ever, in practice it may be difficult to discriminate be-
tween these two categories on the sole basis of the steady-
state flow curve (Dennin, 2008). This is because the flow
may become unstable and heterogeneous at low imposed
shear rates (γ̇ < γ̇c), leading to an apparent flow curve
that does not necessarily reflect the unstable constitutive
behavior of the material.

2. Existence of a “viscosity bifurcation”

A practical consequence of the existence of a criti-
cal shear-rate γ̇c is the striking avalanche-like behavior
of thixotropic yield stress fluids under an applied shear
stress in the vicinity of the yield stress (Coussot et al.,
2002a,b; Cruz et al., 2002). Within a narrow range of
stresses of a few pascals around the yield stress, two
very different macroscopic responses can be observed [see
Fig. 21]: for σ < σy, the material deforms and pro-
gressively stops flowing as the viscosity takes up ever-
increasing values, whereas for σ > σy the material ex-
periences an abrupt fluidization, characterized by an in-
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FIG. 20 Representative flow curves for (a) a simple yield
stress fluid, here microgels of different cross-link densities
and concentrations. The solid line is the equation σ/σy =
1 + (γ̇τβ/γ0)0.45, where τβ is the fluid relaxation time [ex-
tracted from (Cloitre et al., 2003)]. (b) Three different
thixotropic materials. From top to bottom: a hair gel, a
commercial mustard, and a bentonite suspension. Note that
each of these materials displays a minimum shear rate γ̇c be-
low which no steady flow is possible. The horizontal dotted
lines indicate the yield stresses of the different materials. Ex-
tracted from (Coussot et al., 2006).

crease of the shear rate up to a finite steady-state value,
which recalls avalanche behavior.

The above behavior is characteristic of thixotropic
yield stress fluids and has been coined a “viscosity bi-
furcation” in the sense that the yield stress separates
two regimes characterized by widely different values of
the steady-state viscosity. The terminology is, however,
somewhat unfortunate since a divergence of the viscos-
ity is also expected for σ → σ+

y or γ̇ → 0 in simple
yield stress fluids. For these materials, the divergence is
continuous and any (arbitrarily large) value of the final
viscosity can be reached close to the yield stress with-
out any forbidden shear rate range. In the language of

FIG. 21 Temporal evolution of the apparent viscosity η =
σ/γ̇ of a drilling mud for various applied shear stresses below
and above the yield stress σy ' 2.82 Pa. The drastic change
of behavior within a range of less than 0.1 Pa around the yield
stress illustrates the viscosity bifurcation scenario. Extracted
from (Ragouilliaux et al., 2006).

bifurcations, yielding in simple yield stress fluids would
therefore be analogous to a supercritical bifurcation while
in thixotropic yield stress fluids it would correspond to a
subcritical bifurcation.

3. Consequences for local measurements

Within the last two decades, a number of different tools
have emerged to measure the local velocity field within
standard rheological geometries, including particle track-
ing, dynamic light scattering, magnetic resonance or ul-
trasonic imaging (Besseling et al., 2009; Bonn et al., 2008;
Callaghan, 2008; Gallot et al., 2013; Manneville, 2008;
Manneville et al., 2004; Salmon et al., 2003b). As re-
viewed elsewhere (Ovarlez et al., 2013a), local velocity
profiles under shear allow to make a clearer distinction
between simple and thixotropic yield stress materials. It
has been shown that, as expected from their monotonic
macroscopic rheology, simple yield stress fluids display
homogeneous velocity profiles in steady state, at least in
experimental geometries with small enough stress hetero-
geneity. In this case, the local rheology, given by the lo-
cal shear stress σ(r) as a function of the local shear rate
γ̇(r) derived from the velocity v(r), perfectly matches
the global rheology (Divoux et al., 2012; Ovarlez et al.,
2013a). In the case of wide-gap geometries, σ(r) may
vary so much that it falls below the yield stress. This
leads to a heterogeneous flow where a solid region char-
acterized by a pluglike flow (where σ(r) < σy) coexists
with a flowing region (where σ(r) > σy). Similar plug-
like flow is observed in the case of channel flows of simple
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(a)

(b)

FIG. 22 Example of shear-banded flows. (a) Velocity profiles
in a 4◦ cone-and-plate geometry of a colloidal silica suspension
(Ludox TM-40) for shear rates ranging from 15 to 105 s−1.
(b) Steady-state flow curve determined by two different types
of measurements. The branch at larger shear rates is obtained
under constant external stress. The branches at lower shear
rates are determined by estimating the minimum (resp. max-
imum) shear stress with (resp. without) flow. Extracted from
(Møller et al., 2008).

yield stress fluids, where the local stress necessarily van-
ishes in the center of the channel (Pérez-Gonzáles et al.,
2012; Poumaere et al., 2014). Such a shear localization
due to large stress heterogeneity does not contradict the
continuous solid–fluid transition of simple yield stress flu-
ids. It is now clearly distinguished from the intrinsic
shear localization, referred to as “shear-banding,” ob-
served in thixotropic yield stress fluids and discussed in
the next paragraph (Ovarlez et al., 2013a, 2009). Finally,
even more subtle effects were recently discovered in sim-
ple yield stress fluids that are made to flow in confined
geometries or during transient regimes close to the yield
stress. These effects are reviewed below, in Sect. III.C.

Contrary to simple yield stress fluids, thixotropic yield
stress materials have been shown either to flow homoge-
neously (for γ̇ > γ̇c) or to display heterogeneous velocity
profiles (for γ̇ < γ̇c). In the latter case, a solid-like re-
gion coexists with a liquid-like band sheared at γ̇ = γ̇c
(Møller et al., 2008) and the relative extent of both bands
ensures that the average shear rate coincides with the
macroscopic applied shear rate (Coussot et al., 2002c;
Ovarlez et al., 2009). As seen in Fig. 22(a) for the case
of a colloidal gel, the amount of fluid-like material in-

creases proportionally to the global applied shear rate
for 0 < γ̇ < γ̇c. This points to an equivalent of a “lever
rule” for solid–fluid coexistence and once again empha-
sizes the analogy between yielding in thixotropic mate-
rials and a first-order phase transition. It corresponds
to true shear localization, i.e. to shear banding, in the
sense that it is observed independently of any geometry-
dependent stress heterogeneity. Table I summarizes the
distinction between shear banding (due to the existence
of a critical shear rate) and shear localization (due to
stress heterogeneity). It also recalls that in both cases,
apparent slippage at the walls, which can be seen as an
extreme kind of shear localization, may come into play
as discussed in Sect. II.C.

Origin of shear localization Simple YSF Thixotropic YSF

from critical shear rate not possible possible

from stress heterogeneity possible possible

wall slip possible possible

TABLE I Different types of shear localization in simple and
thixotropic yield stress fluids (YSF).

B. Causes of steady-state shear banding

1. Competition between aging and shear rejuvenation

The existence of a critical shear rate γ̇c in thixotropic
yield stress materials has been explained in terms of an
underlying decreasing branch of the flow curve at low
shear rates (Divoux et al., 2016; Olmsted, 2008), as first
discussed for viscoelastic “wormlike micelle” surfactant
solutions (Spenley et al., 1993). In such a scenario, the
constitutive relation of the material is actually a decreas-
ing function for shear rates ranging from 0 to γ̇c. In this
shear rate range, the flow is mechanically unstable, which
leads to some sort of phase separation into an arrested
region that coexists with a flowing band sheared at γ̇c
(Picard et al., 2002). This coexistence is expected to cor-
respond to a flat portion of the steady-state flow curve,
analog to the Maxwell plateau in first-order phase tran-
sitions, where the size of the flowing band should follow
the “lever rule” mentioned in Sect. III.A.3. Transient
measurements in the unstable shear rate range can be
used to unveil the underlying decreasing flow curve [see
Fig. 22(b)].

The unstable part of the flow curve is most often inter-
preted and modeled as the result of competition between
spontaneous aging and shear-induced rejuvenation, al-
though only indirect evidence for such a competition has
been reported up to now. Aging processes arise from
particle aggregation in systems with microscopic attrac-
tive interactions, e.g. clays and attractive colloidal gels,
or from the thermally activated reorganization towards
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minimal energy in dense systems, such as dense emulsions
or microgels (Cloitre et al., 2000; Coussot, 2007; Sollich
et al., 1997; Viasnoff and Lequeux, 2002). Such phys-
ical aging may occur over a wide range of time scales
and is different in nature from the chemical aging due
to slow chemical reactions, such as the release of Na+

ions in laponite clays, which cannot be reversed by shear
(Shahin and Joshi, 2010, 2012). While attractive inter-
actions have been shown to be a sufficient ingredient to
induce shear banding (Bécu et al., 2006; Fall et al., 2010b;
Paredes et al., 2011; Ragouilliaux et al., 2007), the mini-
mal amount of attraction necessary to permanently form
banded profiles is still an open issue. A better under-
standing of the role of microscopic interactions should be
gained from experiments where the attraction between
microscopic constituents is continuously tuned, e.g. in a
model system of colloids or deformable droplets (Saun-
ders and Vincent, 1999).

The simplest phenomenological model based on the
idea of a competition between aging and shear rejuvena-
tion is the toy-model known in the literature as the “λ-
model” (Coussot et al., 2002a; Mujumdar et al., 2002).
The basic assumptions of this model are: (i) there exists
a structural parameter, λ, that describes the local degree
of interconnection of the microstructure, (ii) the viscosity
η increases with increasing λ, and (iii) for an aging sys-
tem at low (or zero) shear rate λ increases, while at suf-
ficiently high shear rates the flow breaks down the struc-
ture so that λ decreases to a low steady-state value. For
n > 1, this model is easily shown to predict flow curves
with a minimum at a critical shear rate γ̇c, therefore qual-
itatively reproducing the case of a thixotropic yield stress
material showing a viscosity bifurcation and steady-state
shear banding. More refined versions of the λ-model have
been proposed in the literature, e.g. for fractal colloidal
gels (Møller et al., 2008) and elasto-viscoplastic struc-
tured fluids (de Souza Mendes, 2011; de Souza Mendes
and Thompson, 2013), leading to similar results. The
kinematic hardening model used by (Dimitriou et al.,
2013) incorporates a back stress that evolves dynamically
and affects the mechanics in the neighborhood of yield-
ing. This back stress can be viewed as a λ parameter
in simple shear flow and causes the location of the yield
surface to adjust, depending on the deformation state.

In order to achieve a more realistic picture of the effects
of aging that accounts for the viscoelasticity of the mate-
rial, a simplified mean-field argument has recently been
proposed based on two time scales (Coussot and Ovar-
lez, 2010): a macroscopic relaxation time τrel, equivalent
to the viscoelastic time which can easily be measured
through step-strain or stress relaxation experiments, and
a microscopic restructuring time τage associated with the
fluid spontaneous aging. This model produces a simple

FIG. 23 Dimensionless flow curves (stress T vs shear rate
Γ) for different values of the ratio D of the fluid relaxation
time τrel over the restructuration time τage, i.e., the time for
a microscopic link to reform after being broken. Extracted
from (Coussot and Ovarlez, 2010).

expression for the flow curve:

σ

Gγc
= τrel

γ̇

γc
+

1

1 + τageγ̇/γc
, (9)

where G is the characteristic elastic modulus of elements
that break above a critical strain γc. Interestingly, the
predicted flow curve has a minimum at a critical shear
rate for τrel < τage, i.e. for a sufficiently long restruc-
turation time while simple yield stress behavior sets in
when restructuring becomes faster than viscoelastic re-
laxation, i.e. for τage < τrel (see Fig. 23). In this model,
one can thus continuously go from a monotonic flow curve
to a non-monotonic flow curve, i.e. from a simple to a
thixotropic yield stress fluid, by increasing the duration
of the restructuration time.

The idea of a competition between a restructuring time
scale and shear flow has recently been implemented in the
elasto-plastic coarse-grained modeling initiated by (Pi-
card et al., 2004). The influence of the time-scale com-
petition between structural rearrangement and elastic re-
covery has been explored in full detail in (Martens et al.,
2012); see also (Benzi et al., 2016). This study not only
confirms the non-monotonic character of the global flow
curves for a certain set of control parameters, but also ex-
plores the spatial consequences of the non-monotonicity
in a realistic geometry. In particular, the emergence of
a “phase separation” between flowing and non-flowing
regions in the system, i.e. permanent shear bands, was
clearly observed, thus putting the ideas of (Coussot and
Ovarlez, 2010) on firmer grounds. Similar ideas involving
a self-consistent dynamics following structural reorgani-
zation have been explored in various modeling contexts,
see for instance (Cheddadi et al., 2012; Fielding et al.,
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2009; Jagla, 2007; Joshi, 2015; Maki and Renardy, 2012).

Although these models all give a consistent picture of
a time scale competition leading to non-monotonic flow
curves in some well-chosen regimes, and thus may give
rise to shear bands and viscosity bifurcation, very little
progress has been made towards understanding at a more
microscopic level both the physical origin of these time
scales and how to control their evolution by tuning, for
instance, the interaction between colloidal particles. A
notable exception is recent work exploring the athermal
rheology of sticky particles in the vicinity of the jam-
ming transition (Irani et al., 2014). Here, it was shown
that stickiness may promote a yield stress even below
jamming, which is however easily disrupted by a slow
shear flow. At larger shear rate, particles are pushed
against each other, and therefore repulsive forces should
produce an increase of the shear stress. For a narrow
range of control parameters, this competition produces
a non-monotonic flow curve, very much in the spirit of
Fig. 23.

2. Static versus dynamic yielding

Whereas non-monotonic flow curves necessarily give
rise to shear bands (Olmsted, 2008), as observed in a va-
riety of complex fluids, a simpler scenario can also hold in
the specific context of yield stress materials. Because the
shear bands observed in a yield stress material delimit a
flowing phase from an arrested phase (and not two dif-
ferent fluids as in more traditional complex fluids), shear
banding can be explained by a simple picture where a
monotonic global flow curve of the Herschel-Bulkley type
with a finite dynamic yield stress σy [as in Eq. (3)] co-
exists with a static branch at γ̇ = 0 existing for σ < σsy,
where σsy is a static yield stress. In that case, a strict
inequality σsy > σy directly ensures the existence of a fi-
nite stress regime, σ ∈ [σy, σ

s
y] where the shear rate is

bi-valued, and can be either zero or finite, see Fig. 24.

This scenario was explored theoretically in (Berthier,
2003), where the two phases were shown to correspond
to two different families of dynamical solutions under
the same external stress values in the context of a spe-
cific driven glassy model. These solutions respectively
correspond to a fluid and an arrested phase. A simi-
lar explanation was shown to account for the presence
of permanent (or at least very long-lived) shear bands
in the computer simulation of a glass-forming liquid in
the glassy region below the glass transition temperature
(Varnik et al., 2003). There, again, a clear separation
was observed between the dynamic extrapolation of the
homogeneous flow curve and the direct determination of
the static yield stress value. Detailed numerical stud-
ies have shown, however, that carefully measuring these
two yield stress values is not an easy task (Peyneau and
Roux, 2008; Xu and O’Hern, 2006).
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FIG. 24 Scenario for shear banding in yield stress materials.
A monotonic flow curve with a finite dynamic yield stress σy
coexists with a static branch at γ̇ = 0 and σ < σsy, where
σsy is the static yield stress. The shear rate is bi-valued for a
range of shear stresses σ ∈ [σy, σ

s
y], which may lead to shear

bands. Adapted from (Berthier, 2003).

The validity of this scenario was demonstrated in a nu-
merical study of concentrated assemblies of soft particles
where the degree of particle adhesion was tuned contin-
uously (Chaudhuri et al., 2012a), in analogy with the
experimental investigations described above (Bécu et al.,
2006; Fall et al., 2010b; Ovarlez et al., 2008; Ragouilli-
aux et al., 2006). In this numerical study, the emergence
of flow inhomogeneity was again directly connected to
a discontinuity of the flow curve at γ̇ = 0, which was
moreover observed to be strongly enhanced by adhesive
forces, thus establishing a direct link between increas-
ing the adhesion and promoting shear-banding behavior
(Chaudhuri et al., 2012a).

Although the flow curves depicted in Figs. 23 and 24
appear qualitatively distinct at first sight, they may be-
come more similar in the case where the minimum of the
flow curves in Fig. 23 occurs at the lower end of the ac-
cessible experimental range, in which case the remaining
part of the flow curve at small γ̇ is “compressed” along
the γ̇ = 0 axis, very much as in Fig. 24. In addition,
in both cases a shear-band may appear where a slow (or
arrested) flowing phase and a fast flowing phase coexist,
and it may be experimentally challenging to distinguish
between both scenarios unless non-banded, steady-state
flows can also be characterized at very low shear rates.
The distinction could be easier in computer simulations,
where it is possible to impose a global shear rate and
follow either set of flow curves shown in Figs. 23 and 24
down to arbitrary low shear rates.
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3. Flow-concentration coupling

In the case of suspensions of dense and rigid non-
colloidal particles, shear banding may also result from
volume fraction heterogeneities. As particles are denser
than the surrounding fluid, there is a competition
between sedimentation and shear-induced resuspension
(Fall et al., 2009; Ovarlez et al., 2006). If shear-induced
resuspension is not efficient enough, contacts between
particles trigger the formation of a percolated network
and of heterogeneous volume fraction profiles, leading to
shear banding. Interestingly, such a flow-concentration
coupling argument has also been invoked recently to ac-
count for shear banding in colloidal glasses (Besseling
et al., 2010). The underlying idea is that, despite a homo-
geneous stress field, minute local variations of the volume
fraction φ may result in significant changes in the yield
stress value, which for a homogeneous system strongly
depends on the overall volume fraction φ. At low ap-
plied shear rates in sufficiently dense packings, the flow
may become unstable (Schmitt et al., 1995): fluctuations
trigger the jamming of a region of the material, which
further turns into steady-state shear banding. This type
of localization could therefore be interpreted as a pre-
cursor to shear-induced thickening (Fall et al., 2010a),
although more experimental work is needed to draw an
overall conclusion.

C. Emerging topics: confinement and transient regimes

In the following we focus on two questions that have
recently attracted growing interest, as examples of cur-
rent challenges towards understanding the dynamics of
yield stress fluids.

1. Yield stress materials in confined geometries

Flow properties of yield stress fluids have been dis-
cussed up to now in the context of “large” geometries,
i.e. with gaps much larger than the granularity of the
fluid microstructure, typically by at least two orders of
magnitude. In this limit, the macroscopic behavior does
not depend on the gap size. However, when the gap
size becomes comparable to the mesoscopic scale char-
acteristic of the fluid microstructure, i.e. in a confined
geometry, rheological data have been reported to depend
on the gap width (Clasen and McKinley, 2004; Davies
and Stokes, 2008; Yan et al., 2010). Accordingly, the lo-
cal rheology in confined geometries no longer follows the
Herschel-Bulkley model valid for large gaps [see Fig. 25],
as clearly demonstrated for emulsions (Goyon et al., 2010,
2008) and Carbopol microgels (Geraud et al., 2013) in
small microchannels.

a. Cooperative effects in simple yield stress fluids. In such
a confined geometry, the effect of shear-induced local re-
arrangement spans over a range larger than the single
grain/drop/bubble scale and can become comparable to
the gap size, in which case finite-size effects influence
the measured viscosity. The idea that the flow occurs
through successive, plastic events over a certain “cooper-
ativity” length ξ has led to the development of so-called
nonlocal models (Bocquet et al., 2009). The simplest such
model is a spatial version of the “fluidity model” (Derec
et al., 2003) where the number of plastic events per unit
time (or fluidity) taken as f = γ̇/σ is influenced both by
the local contribution of the flow and by plastic events
taking place at distances smaller than ξ. This leads to
the following simple differential equation for f :

ξ2 ∂
2f

∂x2
+ (fbulk − f) = 0 , (10)

where x is the direction of the stress gradient and fbulk

denotes the “bulk” fluidity value, i.e. the fluidity ex-
pected in a large-gap geometry in the absence of nonlocal
effects. Here “nonlocality” stems from the double spatial
derivative in ∂2f/∂x2 that involves the local fluidity over
a typical size ξ. The solution to Eq. (10) successfully ac-
counts for experimental flow profiles [see inset of Fig. 25]
and for dynamical arrest in confined geometries (Chaud-
huri et al., 2012b).

Recently the local fluidity has been related to the lo-
cal shear rate fluctuations δγ̇(x) (Benzi et al., 2014; Jop
et al., 2012). In particular, the study by Jop et al.
strongly suggests that the nonlocal rheology originates
in the mechanical noise induced by the flow. Such a
modification of the rheology due to confinement is not
specific to yield stress materials since it also affects for
instance the flow of surfactant wormlike micelles (Mas-
selon et al., 2008). In fact, the leftmost term in Eq. (10)
was first introduced to model shear banding in these sys-
tems (Dhont, 1999; Yuan, 1999). More details on cur-
rent issues raised by confinement of yield stress fluids are
summarized in the recent review by (Mansard and Colin,
2012). Here, we only emphasize that the question of
whether cooperative effects may be at play during start-
up flows should also be addressed. Indeed, in a partially
fluidized material undergoing a transient regime, the fluid
at rest is confined between the wall and the flowing band.
This point, which raises the question of whether the –
possibly slow– dynamics of cooperative effects might be
related to the diverging duration of transient regimes, is
discussed in the next section.

b. Shear-induced structuration of attractive yield stress flu-

ids. Another striking effect of confinement on yield
stress fluids is the spectacular shear-induced structura-
tion observed in the case of attractive particle systems
at moderate shear rates, typically 0.1 < γ̇ < 10 s−1. Ex-
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FIG. 25 Global and local flow curves (black solid line and
symbols respectively) for a dense emulsion (φ = 0.75 and
20% polydispersity). Global data are obtained in a wide-gap
Taylor-Couette cell, while local flow curves are deduced from
velocity profiles measured in a w = 250 µm thick microchan-
nel with rough surfaces, for various pressure drops ranging
from 300 to 900 mbar (inset). No overlap of the local flow
curves is observed. Dashed lines are predictions for the local
flow curves at the given pressure drop, as obtained from the
nonlocal rheological model [see Eq. (10)] with a flow cooper-
ativity length ξ = 22.3 µm. Inset: solid lines are the velocity
profiles predicted by the nonlocal rheological model. The y-
axis for the main figure is the stress in Pa and the figure thus
represents the flow curve; the important observation is that
the flow curves for different driving pressures no longer over-
lap due to collective effects. Extracted from (Goyon et al.,
2008).

amples include colloid polymer mixtures (DeGroot et al.,
1994), flocculated magnetic suspensions (Navarrete et al.,
1996), carbon nanotubes (Lin-Gibson et al., 2004), at-
tractive emulsions (Montesi et al., 2004), carbon black
and alumina dispersions (Grenard et al., 2011; Negi and
Osuji, 2009; Osuji et al., 2008), and microfibrillated cel-
lulose (Karppinen et al., 2012) [see Fig. 26]. In all these
thixotropic yield stress fluids, the microstructure fully re-
arranges into a striped pattern of log-rolling flocs aligned
along the vorticity direction, as demonstrated either in-
directly through light scattering measurements (DeGroot
et al., 1994) or through scanning electron microscopy
(Navarrete et al., 1996) and optical microscopy (Grenard
et al., 2011; Karppinen et al., 2012; Lin-Gibson et al.,
2004; Montesi et al., 2004; Negi and Osuji, 2009; Osuji
et al., 2008).

In some of the above attractive systems, shear-induced

structuration has been linked to the emergence of neg-
ative normal stresses (Lin-Gibson et al., 2004; Montesi
et al., 2004; Negi and Osuji, 2009) and it was proposed
to interpret vorticity alignment as the consequence of an
elastic instability of the elastic flocs, akin to a Weis-
senberg effect that would occur locally within individ-
ual flocs (Lin-Gibson et al., 2004; Montesi et al., 2004).
However, clear experimental evidence for such an inter-
pretation and a detailed theory to prove the link between
an elastic instability and shear-induced structuration are
still lacking.

Moreover, shear-induced structuration only occurs
within a certain range of shear rates. On the one hand,
for very low shear, wall slip becomes predominant and
generally prevents the system from being sheared in the
bulk so that it remains in a homogeneous solid-like state.
On the other hand, structuration does not occur above
some critical shear rate, most probably due to the pre-
dominance of viscous forces and particle resuspension by
shear. Coming up with a theory to provide a complete
physical mechanism for the present shear-induced pat-
tern formation and to predict both their characteristics
and the shear rate limits where they appear is an im-
portant future challenge. Indeed, the striking effect of
confinement not only affects the interpretation of rheo-
logical measurements but may also be of prime impor-
tance in applications involving confined flows of attrac-
tive particle systems. Finally, it is still unclear whether
the structural instability that leads to pattern formation
in attractive, thixotropic yield stress materials is related
in any way to the mechanical noise which triggers flow
cooperativity in simple yield stress fluids.

2. Origin and scaling of the yielding time scales

So far, emphasis has been put on the steady state
achieved by yield stress materials under a given shear rate
or shear stress. However, it is quite obvious that such
a steady state is not reached instantaneously and that
transient regimes, e.g. from solid-like behavior at rest to
liquid-like behavior above yielding, convey tremendous
physical information on the yielding process.

In particular, it can be expected that upon approach-
ing the yield stress the time needed to reach a flowing
steady state can grow longer and longer, possibly point-
ing to a divergence of some characteristic time scale. If
this time scale can be reliably estimated as a function
of the various control parameters (applied stress or shear
rate, packing fraction, temperature), then the question is
whether physically-relevant information can be inferred
on the yielding transition from such scalings. The aim
of this section is to review recent work focusing on the
time scales associated with yielding, open questions, and
opportunities for the future.
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FIG. 26 Shear-induced patterns observed in various yield
stress fluids under shear in confined geometries. (a) Carbon
black gel under simple shear with a gap thickness of 173 µm
as seen with optical microscopy with large and low magnifica-
tions (left and right respectively). Extracted from (Grenard
et al., 2011). (b) Suspension of micro fibrillated cellulose at
0.1 % wt after shearing 10 min at 0.5 s−1 in a Taylor Couette
cell. Extracted from (Karppinen et al., 2012). (c) Emulsions
under simple shear for a gap thickness of 12 µm. The ar-
row indicates the direction of shear. Extracted from (Montesi
et al., 2004). (d) Optical micrograph of a quiescent semidi-
lute non-Brownian colloidal nanotube suspension at 0.5 % wt.
The red scale bar is 10 µm and the gap thickness is 50 µm.
Extracted from (Lin-Gibson et al., 2004).

a. Power-law scalings of the fluidization time and tran-

sient shear banding. It has been reported that transient
regimes may become surprisingly long-lived in the vicin-
ity of the yield stress. As mentioned above, it is not
surprising that the dynamics becomes increasingly slow
upon approaching the yield stress, which has been re-
ported often (Aral and Kalyon, 1994; Caton and Bar-
avian, 2008; Gopalakrishnan and Zukoski, 2007; Rogers
et al., 2008). More quantitative and local insights have
been gained from recent velocimetry experiments dur-
ing shear start-up and creep experiments of simple yield
stress fluids, namely Carbopol microgels (Divoux et al.,
2011b, 2010, 2012) and, to a lesser extent, emulsions
(Bécu et al., 2005; Perge, 2014). These experiments have
revealed that the expected homogeneous velocity pro-
files are reached after a transient regime that involves
shear-banded velocity profiles [see Fig. 27]. In Carbopol
microgels, the fluidization time τf , i.e. the duration of
the transient shear banding regime, was shown to follow
power-law scalings τf ∼ A/γ̇α and τf ∼ B/(σ − σy)β

with α ' 2–3 and β ' 4–6 under imposed shear rate
and shear stress, respectively (Divoux et al., 2011a, 2010,
2012). In all cases, the final homogeneous flow is con-
sistent with the global steady-state rheology indicating
simple yield stress behavior [see Fig. 27(e)]. Interest-
ingly, assuming that the fluidization times under imposed
shear rate and shear stress are simply proportional, the
above power-law scalings naturally lead to a constitutive
equation σ(γ̇) that coincides with the Herschel-Bulkley

FIG. 27 Transient shear banding in a Carbopol microgel in
the Taylor-Couette geometry. (a)–(e) Velocity profiles v(r),
where r is the distance to the rotor, in a rough geometry at dif-
ferent times during the stress relaxation for an applied shear
rate of 0.7 s−1. Extracted from (Divoux et al., 2010). (f) Spa-
tiotemporal diagram of the local shear rate γ̇(r, t) in a smooth
geometry for an applied shear rate of 0.5 s−1. The white curve
traces the position δ(t) of the interface between the fluidized
band and the solid-like region. The vertical dashed line in-
dicates the fluidization time τf , i.e. the time at which the
shear rate field becomes homogeneous. Extracted from (Di-
voux et al., 2012).

equation [Eq. (3)] in which the phenomenological expo-
nent n is given by n = α/β ' 1/2 (Divoux et al., 2011a).
Therefore, the exponents governing the transient regimes
possess a striking link with the exponent that character-
izes the steady-state behavior. Such a link has been inter-
preted in terms of a critical-like phenomenon (Chaudhuri
and Horbach, 2013; Divoux et al., 2012).

It is important to clearly distinguish the transient
shear-banding phenomenology from the time-dependent
behavior of thixotropic materials. Here, rather than a
competition between aging and shear rejuvenation, the
transition from a solid-like to a liquid-like state seems to
involve plastic events and damage accumulation in a way
that resembles hard solids. Indeed, the flowing band can
be observed to slowly “erode” the material at rest be-
fore the whole material experiences a rather sudden flu-
idization. This induction phase suggests that erosion by
the fluidized band somehow fragilizes the bulk-arrested
microgel, bringing it to a critical state before complete,
sudden fluidization occurs. Such a critical state could be
analogous to the one reached by a colloidal gel experi-
encing “delayed sedimentation” right before its collapse
(Barlett et al., 2012; Buscall et al., 2009; Teece et al.,
2011). However, more experiments that provide access
to the structure of the band at rest are needed to con-
firm such a picture. Moreover, a systematic comparison
with recent molecular dynamic simulations of disordered
systems could help to bridge the gap between yield stress
fluids and amorphous solids (Fusco et al., 2014).

From a theoretical point of view, a general criterion
for the formation of transient shear bands has been pro-
posed (Moorcroft et al., 2011; Moorcroft and Fielding,
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2013), providing a connection with either the stress over-
shoot under an imposed shear rate or the delayed yield-
ing under creep in yield stress fluids or viscoelastic fluids.
In this approach the power-law scaling for the fluidiza-
tion time under creep is recovered, but with a smaller
exponent β ' 1 (Moorcroft and Fielding, 2013). An-
other promising approach consists of a structural model
of colloidal aggregates that incorporates viscoelasticity
(Illa et al., 2013; Lehtinen et al., 2013; Mohtaschemi
et al., 2014). Such a phenomenological model recovers
power-law scalings but only predicts trivial exponents
α = β = 1 and thus fails to capture the link between
both transients and the steady-state rheology observed
in microgels. Finally, theories at a more microscopic
level, such as the STZ theory, suggest that the tran-
sient shear banding and sudden fluidization is primarily
a result of microstructural disordering originating from
structural heterogeneities (Hinkle and Falk, 2016). The
latter results remain to be confirmed and extended by
supplemental measurements on purely repulsive systems
through simpler numerical approaches such as molecular
dynamics simulations.

b. Exponential scalings: activated processes and brittle-like

failure. Whereas rather few papers have focused on tran-
sient fluidization under an applied shear rate, creep ex-
periments have revealed long-lived transients in numer-
ous yield stress fluids, including attractive gels such
as carbon black gels (Gibaud et al., 2010; Grenard
et al., 2014), coated silica particles (Gopalakrishnan and
Zukoski, 2007; Sprakel et al., 2011) and colloidal glasses
(Siebenbürger et al., 2012). The time at which the strain
rate increases by several orders of magnitude defines a flu-
idization time τf which coincides with the establishment
of homogeneous velocity profiles (Gibaud et al., 2010;
Grenard et al., 2014). Interestingly, in attractive col-
loidal systems, τf generally decreases exponentially with
the applied shear stress (Gibaud et al., 2010; Gopalakr-
ishnan and Zukoski, 2007; Grenard et al., 2014; Sprakel
et al., 2011). Such a scaling τf ∼ exp(−σ/σ0) involves a
characteristic stress σ0, which has been interpreted and
modeled in the framework of bond breaking through ther-
mally activated processes (Gopalakrishnan and Zukoski,
2007; Lindström et al., 2012).

Alternative exponential scalings, such as the Griffith-
like scalings τf ∼ exp(σ0/σ)p with p = 1, 2 or 4 (Griffith,
1921; Lawn, 1993; Pomeau, 1992; Vanel et al., 2009), have
been proposed in the context of yield stress fluids (Caton
and Baravian, 2008) and transient networks (Mora, 2011;
Tabuteau et al., 2009). They hint to fracture-like dynam-
ics, although it may be difficult to discriminate between
various exponential –or even power-law– scalings due
to the limited range of experimentally accessible shear
stresses (Gibaud et al., 2016). This raises the question of
the “brittleness” of yield stress fluids: while the physics

of yielding in concentrated, jammed assemblies of soft
particles such as microgels or emulsions appears to rely
on (microscale) plasticity associated with (macroscale)
shear banding, early studies based on direct visualiza-
tion of the sample edges have shown some colloidal sys-
tems, such as Laponite suspensions (Magnin and Piau,
1990; Pignon et al., 1996) and concentrated suspensions
(Aral and Kalyon, 1994; Persello et al., 1994), to be
prone to fracture-like behavior. Revisiting these pioneer-
ing works with modern temporally and spatially resolved
techniques could classify such strain localization in terms
of fracture, wall slip or shear banding and sort out the
possible effects of the experimental geometry on the flow
dynamics.

c. Dynamics induced by wall slip in transient and steady-state

flows. In Sect. II.C we have considered wall slip only
through its effect on steady-state flow curves and velocity
profiles. However, it has long been known, most promi-
nently in the context of polymers, that wall slip often
comes with instabilities and complex time-dependences
(Denn, 2008, 2001; Graham, 1995). In light of the above
discussion on fluidization time scales, it also seems nat-
ural to ask whether slippage at the walls shows inter-
esting variations, both during transient regimes and at
steady state. Surprisingly only a handful of papers have
dealt with the dynamics of wall slip in yield stress flu-
ids. Various start-up experiments in smooth geometries,
e.g. on emulsions (Bécu et al., 2005), Carbopol micro-
gels (Divoux et al., 2010) and laponite clay suspensions
(Gibaud et al., 2009), have reported slip velocities that
are strongly correlated to the fluidization dynamics and
to the temporal evolution of the shear stress as well as
stick-slip oscillations in the steady state (Divoux et al.,
2011a; Ianni et al., 2008; Pignon et al., 1996). Recent
experiments of unsteady pipe flows reported a similar
coupling between the solid-to-fluid transition and wall
slip, including strongly fluctuating behaviors (Poumaere
et al., 2014).

Importantly, the work by (Gibaud et al., 2008, 2009) on
laponite suspensions illustrates that boundary conditions
not only strongly affect the transient fluidization process
but may also lead to totally different steady states—in
this case, shear banded flows vs homogeneous flows. Re-
cent numerical modeling suggests that the internal stress
distribution prior to shear start-up affects the steady
state (Cheddadi et al., 2012). These results reveal the
influence of both the boundary conditions and the initial
conditions on the steady state reached after yielding, an
issue that remains to be fully explored in experiments
and models.
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D. Open questions

We close this section by listing the open questions that
represent the most pressing issues in current research into
the dynamics of yield stress materials:

• How does nonlocality due to confinement set in dur-
ing transient material response?

• Is there any plasticity occurring during intial
Andrade-like creep? If so, where is it localized?

• What is the physical mechanism responsible for
shear-induced structuration in confined attractive
yield stress fluids?

• What are the differences (if any) between the mate-
rial microstructure in the transient shear band and
in the rest of the sample?

• What is the nature of the wall-fluid interactions
that drive slip phenomena and how can they affect
bulk flow?

IV. SUMMARY AND OUTLOOK

We have reviewed recent progress in the understand-
ing of yield stress fluids. Most of recent experimen-
tal advances are due to simultaneous measurements of
flow structure and mechanical properties. Techniques
that allow one to elucidate the flow structure such as
magnetic resonance imaging, ultrasound or optical mi-
croscopy techniques have revealed a richness in the be-
havior of yield stress materials that was hitherto unsus-
pected, and have allowed for some novel physical insights.

On the theoretical side, much progress has been ac-
complished to account for the physical origin of solid
behavior in amorphous materials across a broad range
of interparticle interactions producing glassy, jammed
and gel behaviors. Simultaneously, computer simula-
tions have demonstrated their efficiency in producing
convincing particle-based models of yield stress mate-
rials, and allowed detailed investigations of the rhe-
ological behavior of these systems in various geome-
tries. By construction, such simulations allow for a di-
rect study of both the macroscopic rheological response
and the microscopic dynamics. These studies have in
turn allowed the development of a new family of coarse-
grained elastoplastic models of yield stress materials,
where exploration of larger-scale phenomena (such shear-
banding and time-dependent flows) is better facilitated
than through particle-resolved simulations.

For many decades it has been questioned whether the
yield stress actually exists. It is now well-established
that it does, in any case on experimentally relevant time
scales. Different techniques of determining the yield
stress produce similar values — provided care is taken

to account for wall slip, flow heterogeneity and time-
dependences. Indeed, one of the novel insights is that
not all yield stress materials behave ideally and that a
distinction needs to made between two types of yield
stress fluids: simple and thixotropic ones. Simple yield
stress fluids show a flow behavior that is well reproduced
by the Herschel-Bulkley law, with no significant time-
dependence, while thixotropic ones show a pronounced
time-dependence that arises from aging and shear reju-
venation phenomena. Adequate experimental protocols
need to be employed that take into account the time evo-
lution of these materials in order to get reproducible ex-
perimental estimates for the yield stress.

Tied in with the discussion of the yield stress is the
shear localization that is generically observed in yield
stress fluids. For simple yield stress fluids, shear banding
is in general due to stress heterogeneity, and if not, it is
only transient. For thixotropic materials, the situation
is qualitatively different: due to the interplay between
aging and shear rejuvenation, there exists a critical shear
rate below which no stable homogeneous flow is possible.
If a shear rate is then imposed macroscopically within
the unstable regime, a shear band is formed in which the
material flows at the critical shear rate, the rest of the
material remaining motionless.

In addition, wall slip is commonly observed in yield
stress materials, and needs to be accounted for. In rhe-
ology, wall slip is usually defined as a viscosity that de-
pends on the size of the gap of the measurement geom-
etry, which distinguishes it from the two types of shear
localization discussed above; the correction can be done
by comparing measurements with different gap sizes, and
extrapolating to an infinite gap. Besides complicating
the interpretation of rheological measurements, wall slip
also raises fascinating fundamental questions. Reaching
a general understanding of the physics of slippage phe-
nomena in yield stress materials appears as a challenging
task for the future.

Recently, a different type of gap-dependent viscosity
was uncovered for very small gaps, e.g. for microchan-
nels with a size close to that of the microstructural ele-
ments. Here, gap-dependence was attributed to collective
effects or “spatial cooperativity” when the range of shear-
induced rearrangements span the whole system. There is
still a lot of discussion on this topic, but it may challenge
the simple view of yield stress materials sketched above.

One last burning issue concerns the full characteriza-
tion and understanding of the transient flow behavior of
both categories of yield stress fluids. The way such ma-
terials start to flow is indeed of great practical interest.
In spite of notable recent progress this question of the
yielding dynamics mostly remains to be explored both at
microscopic and mesoscopic levels, and both experimen-
tally and theoretically.

What is also crucial, especially for engineering pur-
poses, is to have a predictive constitutive equation that
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allows for a general description of the flow (or not) of
yield stress materials. For polymer systems a large num-
ber of such models have been derived from statistical
mechanical models and are extensively used in practice.
For yield stress fluids it is clear that three-dimensional
invariant versions of the inelastic Bingham and Herschel-
Bulkley models are inadequate, because they cannot re-
produce the loss of foreaft flow symmetry in geometries
with foreaft symmetry. Empirical models based on equa-
tions developed for polymeric liquids have shown promise
in a few applications to complex flows, especially creep-
ing flow past an isolated sphere, but, unlike the poly-
mer counterparts, these models are not based on mi-
crostructural considerations and have not been tested
against a full range of rheological measurements. Our
limited understanding of plasticity is also a factor in
incorporating pre-yield behavior into continuum mod-
els. One promising research direction to solve this prob-
lem is to borrow statistical mechanical models from the
glass-transition/soft-matter physics communities such as
mode-coupling theory or the soft glassy rheology model.
These would automatically also include ageing and shear
rejuvenation as these are general features of the glass
transition, and could thus in the end be the answer to
the many remaining questions posed in this review.
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G. Debrégeas (2002a), Europhys. Lett. 89, 786.

Bonn, D., and M. Denn (2009), Science 324, 1401.
Bonn, D., H. Kellay, H. Tanaka, G. Wegdam, and J. Meunier

(1999), Langmuir 15, 7534.
Bonn, D., S. Rodts, Groenink, N. S.-B. S. Rafäı, and P. Cous-
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Salmon, J.-B., L. Bécu, S. Manneville, and A. Colin (2003a),

Eur. Phys. J. E 10, 209.
Salmon, J.-B., S. Manneville, A. Colin, and B. Pouligny

(2003b), Eur. Phys. J. AP 22, 143.
dos Santos, D., S. Frey, M. Naccache, and P. de Souza Mendes

(2014), Rheol. Acta 53, 31.
Saramito, P. (2007), J. Non-Newtonian Fluid Mech. 145, 1.
Saramito, P., and A. Wachs (2017), Rheologica Acta 56 (3),

211.
Saunders, B., and B. Vincent (1999), Adv. Colloid Interface

Sci. 80, 1.
Sausset, F., G. Biroli, and J. Kurchan (2010), J. Stat. Phys.

140, 718.
Schall, P., D. A. Weitz, and F. Spaepen (2007), Science 318,

1895.
Scheffold, F., J. N. Wilking, J. Haberko, F. Cardinaux, and

T. G. Mason (2014), Soft Matter 10, 5040.
Schmitt, V., C. M. Marques, and F. Lequeux (1995), Phys.

Rev. E 52, 4009.
Schurz, J. (1990), Rheol. Acta 29, 170.
Schwartz, L., and H. Princen (1987), J. Colloid Interface Sci.

118, 201.
Sciortino, F. (2002), Nature Materials 1, 145.
Sciortino, F., and P. Tartaglia (2005), Adv. Phys. 54, 471.
Sciortino, F., P. Tartaglia, and E. Zaccarelli (2003), Phys.

Rev. Lett. 91, 268301.
Sentjabrskaja, T., P. Chaudhuri, M. Hermes, W. C. K. Poon,

http://dx.doi.org/10.1007/s003970100178
http://dx.doi.org/ 10.1007/s00397-016-0985-9
http://dx.doi.org/ 10.1007/s00397-016-0985-9


44

J. Horbach, S. U. Egelhaaf, and M. Laurati (2015), Sci.
Rep. 5 (January), 11884.

Seth, J., M. Cloitre, and R. Bonnecaze (2008), J. Rheol. 52,
1241.

Seth, J., C. Locatelli-Champagne, F. Monti, R. Bonnecaze,
and M. Cloitre (2012), Soft Matter 8, 140.

Seth, J., L. Mohan, C. Locatelli-Champagne, M. Cloitre, and
R. Bonnecaze (2011), Nature Materials 10, 838.

Seyboldt, R., D. Merger, F. Coupette, M. Siebenbürger,
M. Ballauff, M. Wilhelm, and M. Fuchs (2016), Soft Mat-
ter 12, 8825.

Shahin, A., and Y. Joshi (2010), Langmuir 26, 4219.
Shahin, A., and Y. Joshi (2012), Langmuir 28, 15674.
Shaukat, A., A. Sharma, and Y. M. Joshi (2012), Journal of

Non-Newtonian Fluid Mechanics 167–168 (0), 9.
Shi, Y., M. B. Katz, H. Li, and M. L. Falk (2007), Phys. Rev.

Lett. 98, 185505.
Siebenbürger, M., M. Ballauf, and T. Voigtmann (2012),

Phys. Rev. Lett. 108, 255701.
Siebenbürger, M., M. Fuchs, and M. Ballauff (2012), Soft

Matter 8, 4014.
Sollich, P. (1998), Phys. Rev. E 58 (1), 738.
Sollich, P., and M. E. Cates (2012), Phys. Rev. E 85, 031127.
Sollich, P., F. Lequeux, P. Hébraud, and M. E. Cates (1997),
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