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Abstract— Temporal issues within modeling organizational 
systems are examined generally and with fuzzy cognitive maps. 
These maps give the opportunity to consider temporal factors 
when studying organizational models. The knowledge we gain 
about the system is useful when the aim is not to optimize time 
intervals in well-known and instrumented contexts, but also to 
discover the behavior of the system while different temporal fac-
tors are implemented by the management. We will present an 
adapted resolution for including these factors as key elements in 
organizational models with fuzzy cognitive map examples for 
middle and back office application.      
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I.  INTRODUCTION  
When modelling organizational and social systems, it is 

important to acknowledge the importance of temporal aspects, 
both in duration and pace, because some relationships not only 
base on the immediate causal interconnections but there may 
be a certain time interval between the causes and their effects. 
The identification of temporality in interrelationships are par-
ticularly challenging in model constructions.  

Minzoni and Mounoud provide in [7] an overview of the 
general methodological approach adopted for the system under 
study, viz., the middle and back office operations for banking 
services. It should to be recalled here that the operations are 
considered as embedded in their organizational context, i.e., 
including strategy, governance, procedures, etc. It is thus the 
behavior of the entire system which is considered, knowing 
that the available data are almost exclusively qualitative and 
that there are no tools giving a global picture of the necessary 
interconnections to carry out the operations. In our study fuzzy 
cognitive maps (FCM) have provided a method for experts to 
elicit and identify interrelationships between the given con-
cepts for understanding the features of the system when tem-
poral factors are introduced in the model. Thus, this is one 
approach to the complex mixture of human and artificial cog-
nitive capabilities in human computer interaction processes as 
well as to socio-cognitive ICT which utilizes or influences on 

collective knowledge [24]. The data and expertise presented 
below are thus originating from real back office operations. 

Our interrelationships are only approximately stated, weak 
(0.5) or strong (1), positive or negative, because our principal 
aim is not to support decision making but rather to provide 
more knowledge about the organizational system and the 
global view by uncovering previously unknown patterns to the 
management team. FCMs enable us to simulate temporal sce-
narios and to understand system’s global operational states by 
providing holistic information rather than to optimize its parts 
to the detriment of the whole.  

The FCMs thus seem to be viable models for examining 
the foregoing systems because they enable us to study the 
complex phenomena of the real world [1,6,8,11,14]. Their 
constructions usually base on human expertise or empirical 
(historic) data. Both numeric and linguistic models may be 
applied in this context [4,6]. However, the extended time in-
clusive approach is still quite rarely adopted within the FCMs 
even though it plays an important role particularly when or-
ganizational design aspects are involved in these systems 
[4,18,21].  

This study introduces temporal approach to FCM by repre-
senting relations that are not always active in a simulation. This 
method allows a direct modeling of real world situations that 
are not much currently addressed in FCM. Chapter 2 considers 
how temporal aspects have been considered within organiza-
tion studies. Chapter 3 considers the challenges of FCM con-
struction especially when time intervals are involved in these 
models, and detailed examples are provided. These considera-
tions are based on the FCM models and their computer simula-
tions carried out by Niskanen, following the initiatives and 
monitoring of Minzoni, and at the first stage, also by the work 
of the Hungarian research group under the supervision of 
Koczy [2,19]. Chapter 4 concludes our considerations. 

II. CONSIDERING TEMPORAL FACTORS IN ORGANIZATIONS 
Our study pivots on the problems of causality and tempo-

rality. In causality we may apply causa efficiens and causa 
finalis if Aristotle’s terms are used. The former is used in the 



Natural Sciences, whereas both of these are applied to the 
Human Sciences (this also including Economics).  

The final causes seem more challenging to dynamical sys-
tems because they represent teleological relationships which 
are typical of the human goal-oriented behavior, i.e., their pre-
sent acts are the effects caused by their goals located in the 
future. Also, unlike in the control applications based upon the 
deterministic efficient causes, the socio-economic systems 
often deal with relationships which are only probabilistic by 
nature. Various causal chains are also more usual and thus our 
systems may include delays and other temporal factors.  

When trying to understand the large corporations’ dynam-
ic organization, the temporal issue is a key concept. This issue 
is mostly considered by introducing “delay” that means time 
spans considered too long comparatively to the expected time. 
In order to estimate delays, the system needs to be understood 
well enough for knowing what normal and delayed time inter-
vals and durations are. Not all systems have already such a 
refined quantitative knowledge to estimate whether their 
cause-effect relations are delayed or immediate. When the 
behavioral pattern of the system is unknown, application of 
temporal factors in FCM calculations allows experts to dis-
cover this pattern, throwing new light on their system’s under-
standing and time span calibration [10,18,20-22].  

We can picture time in different ways according to cul-
tures and organizations, drawing on different sets of imagery, 
or using different metaphors [5]. Anthropologists have often 
described cultures as having either cyclical or linear notions of 
time. Cyclical time, naturally enough, emphasizes repetition 
and is very much influenced by the cycles of the natural 
world. The line and the cycle are the similar two key time 
metaphors by which time is thought in organization theory. In 
the history of organization, the focus has initially been upon 
linear time images that stem from the progressive commodifi-
cation of the labor process. An example is the homogeneous 
time-reckoning systems of Taylorism [16]. Taylor maintained 
time as a commodity to be factored into job design, organiza-
tion processes and control mechanisms.  

Hassard [5] has pointed out beyond the issues of clock-
time, the importance of what has been referred to as “instanta-
neous-time”, whereby organizational practices are based on 
time-frames that lie beyond conscious human experience. He 
associates this concept with the complex shifts from Fordism 
to the flexible accumulation of “post-Fordism”. Management 
and organization theory have viewed time as a significant re-
source and put forward multiple views as to how time is both 
managed and experienced [3]. The way we experience time is 
open to manipulation and specifically time compression that 
displaces critical reflection and may make individuals “man-
aged by (others’) time”. In [12] was developed the idea of the 
speed trap and showed how the need for fast action, tradition-
ally conceptualized as an exogenous feature of the surround-
ing context, is a product of an organization's own past empha-
sis on speed.  

More recently in [13] was studied the influence of clock-
time orientation market-based models for human development. 
While a linear, clock-time orientation optimized for markets is 
meant to enhance efficiency, coordination, and control, it may 
be unsuitable for managing emergent, complex, and indeter-
minate processes such as development. This work develops an 

agentic view of time, where time is used as a cultural resource 
to regulate attention and render social phenomena amenable to 
managerial action and how organizations accommodate seem-
ingly contradictory temporal orientations.  

In this study, we used FCM modeling to establish a col-
lective (and thus possible to share and discuss between organi-
zational members) overview on the interrelationships and oth-
er temporal issues, such as effects of speed, fire-fighting, esca-
lation and fast pace course of action [12]. FCMs were used to 
support the discovery of organizational hidden patterns. In our 
case this means the temporal patterns for providing ways of 
integrating each person’s personal schema as well as the back-
drop of the organization’s objectives. It helps both to interpret 
the information and to coordinate that information to make it 
meaningful for the members of the organization and its goals. 
It enables the sense-making process by which organizational 
members incessantly create and re-create conceptions of them-
selves and of the world all around them. As described in [17], 
sense-making is an action which involves turning circum-
stances into a situation that is comprehended explicitly in 
words or speech and that serves as a springboard to action. In 
[18], in turn, was noticed that research and theory on organiza-
tions are lacking a critical specification on time scale. Specifi-
cation of the relevant time scale is as critical as the specifica-
tion of the appropriate level or unit of analysis, a concept to 
which it is related. They showed how the choice of time scale 
has important implications for the development of organiza-
tion theory.  

After unfolding the simulation details by applying temporal 
factors in FCM, we will present a short reflection from the or-
ganizational science perspective. Within this context organiza-
tional patterns are understood as those internal relationships 
which provide the system with its coherence and keep it from 
being an accumulation of fragmented activities. 

III. MODEL CONSTRUCTION EXAMPLES ON TEMPORAL FUZZY 
COGNITIVE MAPS 

In our project, Niskanen, Koczy and Hatwagner carried out 
thorough analysis of expert-based FCM models which repre-
sented the middle and back office operations for banking ser-
vices in a private French bank (and thus certain confidentiality 
should be maintained below) [19].  

Standard methods were used in basic simulations, and thus 
the concept (node) values ranged from zero to unity and the 
weights or intensities of the interrelationships in the connection 
matrices belonged to the closed intervals from -1 to 1 [6,11,14]. 
Our FCM models contained 12 to 35 concepts, each of these 
being possible inputs and ouputs, and expectedly, especially 
the large connection matrices were particularly challenging in 
computations due to their many parameters.  

Hence, in the basic FCM computer simulations we applied 
the matrix product, *, 

Vt+1 = f(Vt*M),    (1) 

in which state vector, Vt, contains m concept values at time 
t, M is an m×m connection matrix, f is the transformation func-
tion and vector Vt+1 contains the new concept values at time 



t+1 [11]. One time unit of t denoted in our models one month. 
For function f we applied the usual sigmoid function, 

f(x) = 1 / (1+exp(-𝛌x)),    (2) 

in which exp is the exponential function and parameter 𝛌>0 
[11].  

Numerous simulations were performed when our models 
were studied [19]. First 1000 to 10 000 random initial concept 
vectors were used for each FCM model for examining their 
general variation in iterations. In this context, various lambda 
values were also tested for obtaining their optimal values, i.e., 
the values which caused large standard deviations to the output 
values [19]. In this manner, we also observed such variation as 
possible fixed-point attractors and examined statistical distribu-
tions of concept outcomes in our models.  

Various alternative initial state vectors and connection ma-
trices were also tested by using genetic and bacterial evolution-
ary algorithms in optimization. By assigning appropriate goal 
vectors, this method revealed us how fixed-point attractors or 
chaotic variation can be created, inter alia. We also examined 
how to reduce the converging speed of the state vectors to their 
fixed points. 

Below we focus on the above-mentioned temporal issues.  
We aimed to also apply such external temporal factors which 
could take into account the distinct time intervals between the 
causes and their effects in our FCM modeling.  This approach 
is thus a more challenging task than with those prevailing mod-
els which are based on historic data or do not deal with the 
extended temporal aspects [4,11,21].  

Our methods for temporal factors seem somewhat analo-
gous to those of in [20,22] from the theoretical standpoint, but 
in practice we used different calculations in the models. Hence, 
this paper provides a case study based on a real-world applica-
tion. 

According to the foregoing simulations, we used lambda 
value of 1 because then the outputs have larger dispersions in 
their transformed values even though value of 5 seems more 
frequent within the FCMs. The value of 1 is also used below. 

Since lack of space precludes wider analyses, we only focus 
below on a concrete example concerning our bank’s organiza-
tional FCM with its thirteen concepts, viz., 

1 = clients, 2 = rules & regulations, 3 = new IT solutions, 4 = 
funding, 5 = cost reduction, 6 = profit/loss, 7 = investments, 8 = staff, 
9 = new services, 10 = quality, 11 = client development, 12 = service 
development, 13 = productivity. 

In the real-world FCM applications the preceding values of 
concepts are usually relevant in the succeeding iteration. Thus, 
in our computations the diagonals of our connection matrices 
also contained nonzero values, and we mainly used the values 
of 1.  

Table 1 provides an example on a connection matrix which 
was specified according to bank’s experts (Fig. 1). One chal-
lenge in simulations was that the matrices only contained a 
quite small number of rounded weights which is a typical fea-
ture, and disadvantage, in expert-based models. Thus, with this 
matrix, our concept values may vary as presented in Tables 2 

and 3 when 1000 random initial concept vectors are used. The-
se statistics are only approximate by nature because, due to the 
combinatorial explosion, we were unable to use all combina-
tions of values as initial vectors.  

We notice in Table 2 that the ranges of some concepts val-
ues are so wide that it is justified to use small values of 𝛌	in	(2)	
because	then	the	corresponding	transformation	function	is	
not	 too	 steep. However, Table 3 presents, for example, that 
still small concept values are not obtained. In addition, our 
basic FCM models often yielded quite fast fixed-point attrac-
tors to our concept values (Fig. 2). In this case the fixed-point 
attractors were virtually attained in less than ten iterations. 
Most of the concepts also have values very close to the 
maximum of 1. However, these results still seemed to allow the 
managers to acknowledge the non-chaotic variation of their 
organization.  

Since we were unable to influence on the values of weights 
in computation, we do not consider below much the meaning-
fulness of our concepts or their interrelationships but rather we 
focus on their mere technical and computational aspects in or-
der to acquire information by examining their patterns of be-
havior and variation. MatlabTM and R with their Toolboxes 
were used in computations. 

TABLE 1. EXAMPLE OF OUR CONNECTION MATRIX, M. 

 1 2 3 4 5 6 7 8 9 10 11 12 13 
1 1 0 0.5 0 0 0.5 1 0.5 0 0.5 1 0.5 0 
2 1 1 0.5 1 0 0 1 1 0.5 0 1 1 0 
3 1 0.5 1 0 0 -1 0 -1 1 0 1 1 1 
4 0 0 0 1 0 0 0 0 0 0 0 0 0 
5 0 0 1 -0.5 1 0 0 -1 0 0 0 1 0 
6 0 0 0 0 -0.5 1 0 0 0 0 0 0 0 
7 0.5 0 0.5 1 0 0.5 1 0 0 -0.5 0 0 0 
8 0 0 0 0 0 -0.5 0 1 0 0.5 0 0 -0.5 
9 0 0 0 1 0 0.5 0.5 0.5 1 -0.5 0 0.5 0 

10 0.5 0 0 0 0 0 0.5 0.5 0.5 1 1 0 0 
11 0 0 0.5 0.5 0 0 0 0 0.5 0.5 1 0 1 
12 0 0 0.5 0.5 0 0 1 0 0.5 0 0.5 1 -0.5 
13 0 0 1 0 0 0.5 0 0 0 0 1 0 1 

 

 
Fig. 1. Fuzzy cognitive map based on Table 1 (self-loops are not 

presented). 

Moreover, generally in the human-scientific models, we 
should have both causal and teleological temporal interconnec-
tions. The latter factors, which comprise peoples’ intentions, 
motives and their other underlying causes, are more challeng-
ing than the causal effects. Thus, often in these real-world ap-



plications, the FCM models should also take into account the 
time spans, delayed effects and even the present goals of the 
decision makers, and these aspects have not been studied much 
thus far [4,10,18,20,21-23].  
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Fig. 2. Concept values in eight iterations when applying method 

(1), iteration 0 denotes random initial values. 

TABLE 2. POSSIBLE CONCEPT VALUES BY USING OUR CONNECTION MATRIX 
PRIOR TO TRANSFORMATION OF (2). 
 

 Range Min Max Mean Std. Deviation 
Clients 4 0 4 2.01 0.55 
Rules_regulations 1.5 0 1.5 0.77 0.32 
NewITsolutions 5.5 0 5.5 2.76 0.62 
Funding 4.5 0 4.5 2.25 0.67 
Cost_reduction 1.46 -0.46 1 0.26 0.32 
Profit_loss 2.96 -0.86 2.09 0.71 0.52 
Investments 5 0 5 2.48 0.64 
Staff 3.83 -1.26 2.58 0.73 0.64 
New_services 4 0 4 2.00 0.52 
Quality 2.51 -0.53 1.99 0.76 0.43 
Client_development 6.5 0 6.5 3.27 0.74 
Service_development 5 0 5 2.49 0.63 
Productivity 3.32 -0.59 2.72 1.03 0.54 

 
 
TABLE 3. POSSIBLE CONCEPT VALUES BY USING OUR CONNECTION MATRIX 
AFTER TRANSFORMATION (2). 

 Range Min Max Mean Std. Devia-
tion 

Clients 0.48 0.5 0.98 0.87 0.06 
Rules_regulations 0.32 0.5 0.82 0.68 0.07 
NewITsolutions 0.5 0.5 1 0.93 0.04 
Funding 0.49 0.5 0.99 0.89 0.06 
Cost_reduction 0.33 0.39 0.72 0.56 0.08 
Profit_loss 0.59 0.3 0.89 0.66 0.11 
Investments 0.49 0.5 0.99 0.91 0.05 
Staff 0.71 0.22 0.93 0.66 0.13 
New_services 0.48 0.5 0.98 0.87 0.06 
Quality 0.51 0.37 0.88 0.68 0.09 
Client_development 0.5 0.5 1 0.95 0.04 
Service_development 0.49 0.5 0.99 0.91 0.05 
Productivity 0.58 0.36 0.94 0.73 0.10 

 

For example, political decisions often have impacts in the 
long term, whereas in control applications immediate responses 
are usual.  One well-known resolution to temporal factors is 
suggested in [18] who, all in all, applied nonlinear, conditional 
and fixed time-delayed relationships. In [10] fixed time delays 
were also used. In [23] simple cause-effect, time-delay causal 
and conditional probabilistic relations, as well as sequential, 
special time-delayed, relations were suggested. These extended 
FCM models based on their manual developments, and thus 
more or less subjective values to the delays were also assigned.  
In [21] a genetic learning algorithm method with data, referred 

to as the higher order FCM, was introduced which was able to 
take into account the given number of the previous concept 
values when their current values were computed.  

As stated above, we also considered temporal factors in our 
framework.  In [20,22] three types of meanings for delay were 
presented, time delay between the cause and effect, the period 
of time when the cause is actualizing in the effect, and the 
combination of these two.  This approach to temporal aspects 
was somewhat analogous to our objectives below. Hence, we 
assumed in the simulations first that different time intervals 
may prevail between the causes and their effects, and second, 
that there are even different time intervals or periods of time 
for the process how certain causes will emerge. In practice, in 
our extended temporal models certain nonzero links were al-
ways active, whereas others were inactive except in the given 
iterations. A simple real-world example would be the quarterly 
changes of Central Bank’s interest rates to the markets because 
they stay fixed or inactive in certain iterations.  

The use of time intervals and other additional temporal fac-
tors opens new prospects for examining the FCM models. For 
example,  then the concept values may start oscillating, and this 
type of variation often corresponds better to the daily variation 
between busy and more relaxed time periods in the company or 
organization. 

We used our own matrix-based calculation methods in 
computing because this approach may be more user-friendly 
when time intervals are specified and simpler in computations. 
Thus, we designed first an additional m×m matrix, D, which 
controlled the actions of the concepts (Table 4). This matrix 
represented the time intervals within the impacts of the con-
cepts. Hence, if the link from concept Ci to Cj is only active in 
every kth iteration, then D(i,j) = k. If link Ci to Cj is always ac-
tive, D(i,j) = 1. Otherwise D(i,j) = 0 when i and j = 1, 2, 3, …, 
m. In computations, in each iteration, k, we created with D 
such m×m indicator matrix, IMk, in which IMk(i,j) = 1 when 
D(i,j) = k or 1, otherwise IMk(i,j) = 0. We now replaced in (1) 
the operation Vt*M by Vt*(M·IMk) in which M·IMk means the 
cell-by-cell multiplication of M and IMk. Hence, in iterations k 
≥ 1,  

Vt+1 = f(Vt*(M·IMk))    (3) 
TABLE 4. EXAMPLE OF OUR MATRIX, D. 

 1 2 3 4 5 6 7 8 9 10 11 12 13 
1 1 0 1 0 0 36 1 18 0 36 36 1 0 
2 1 1 1 1 0 0 1 1 1 0 1 1 0 
3 1 1 1 0 0 1 0 1 1 0 1 1 1 
4 0 0 0 1 0 0 0 0 0 0 0 0 0 
5 0 0 1 1 1 0 0 18 0 0 0 18 0 
6 0 0 0 0 1 1 0 0 0 0 0 0 0 
7 36 0 1 1 0 36 1 0 0 18 0 0 0 
8 0 0 0 0 0 1 0 1 0 36 0 0 18 
9 0 0 0 1 0 36 1 1 1 36 0 6 0 

10 36 0 0 0 0 0 18 36 36 1 36 0 0 
11 0 0 1 1 0 0 0 0 36 60 1 0 18 
12 0 0 1 1 0 0 1 0 36 0 1 1 36 
13 0 0 1 0 0 36 0 0 0 0 3 0 1 

  

 We also applied the m×m frequency matrix, F, which 
controlled the frequencies of taking action in the occasional 



links in matrix D (Table 5). Hence, F(i,j) > 1 when D(i,j) > 1, 
otherwise F(i,j) = 0. Now the actual initial values for the time 
intervals were D = D + F. In each iteration, k > 1, we applied 
method (3) and then updated those cell values of D in which 
D(i,j) = k, 

D(i,j) = D(i,j) + F(i,j); i, j = 1, 2, …, m.  

For example, if originally D(i,j) = 6 months and F(i,j) = 3 
months, then first IMk(i,j) = 1 (and the link M(i,j) is thus ac-
tive) in iteration k = 6+3 = 12.  After this, M(i,j) is again active 
when k = 9+n·3 and n = 2, 3, …  

TABLE 5. EXAMPLE OF OUR MATRIX, F. 

 1 2 3 4 5 6 7 8 9 10 11 12 13 
1 0 0 0 0 0 3 0 3 0 3 3 0 0 
2 0 0 0 0 0 0 0 0 0 0 0 0 0 
3 0 0 0 0 0 0 0 0 0 0 0 0 0 
4 0 0 0 0 0 0 0 0 0 0 0 0 0 
5 0 0 0 0 0 0 0 3 0 0 0 3 0 
6 0 0 0 0 0 0 0 0 0 0 0 0 0 
7 3 0 0 0 0 3 0 0 0 3 0 0 0 
8 0 0 0 0 0 0 0 0 0 3 0 0 3 
9 0 0 0 0 0 3 0 0 0 3 0 3 0 

10 3 0 0 0 0 0 3 3 3 0 3 0 0 
11 0 0 0 0 0 0 0 0 3 3 0 0 3 
12 0 0 0 0 0 0 0 0 3 0 0 0 3 
13 0 0 0 0 0 3 0 0 0 0 3 0 0 

 

Fig. 3 depicts in a simplified form this variation of the prof-
it/loss concept when only the link from investment has the time 
interval of 6 and frequency of 3 months. Hence, this link is first 
active in 6+3 = 9th iteration, and after this in every 3th iteration. 
We notice that instead of converging to the fixed point, the 
profit/loss concept now has more limit-cycling variation. Intro-
ducing time through time intervals and frequencies provides a 
different viewpoint on the system. It enables the system to os-
cillate. This variation is consistent with the daily experience of 
ups and downs, the alternation of fast pace and more relaxed 
periods in the company.  
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Fig. 3. Variation of profit/loss 

concept values with method (3) 
when investments have time 
interval of 6 and frequency of 3 
months (iteration 0 denotes ran-
dom initial values). 

Fig. 4. Example on the variation 
of profit/loss concept with 
method (3) when time intervals 
and frequencies in Tables 4-5 
are used (iteration 0 denotes 
random initial values). 

Fig. 5 depicts this variation with all our concepts together. 
We notice limit-cycling, or even chaotic, variation compared to 
Fig. 2, as was expected in these conditions. Table 6 presents 
the possible concept values within 60 iterations when 1000 
random initial concept vectors were used. We notice somewhat 

more variation in the concept values than in Table 3, but still 
small values are not obtained.  

Also, depending upon the values of frequencies and time 
intervals, the amplitude of oscillations can change dramatically, 
and for example Fig. 4 illustrates well an idea on the above-
mentioned speed trap in [12]. It reveals the impacts of the acti-
vating links with higher frequency than desired and the types of 
their outcomes. We thus may observe how the crests and 
troughs, traditionally conceptualized as an exogenous feature 
of the surrounding context, are a consequence of frequently 
activating links and thus being a result of organizational 
behavior. In the manner of ECG curve revealing the 
functioning of the heart, Fig. 4 is revealing in the transactions 
system the changing values of our concepts. We may thus 
diagnose if any ‘tachycardia’ is affecting on the system. 
TABLE 6. POSSIBLE CONCEPT VALUES WHEN MATRICES D AND F ARE ALSO 
USED IN 60 ITERATIONS. 

 
Range Min Max Mean Std. Deviation 

Client 0.47 0.5 0.97 0.94 0.02 
Rules_regulations 0.32 0.5 0.82 0.78 0.02 
NewITsolution 0.5 0.5 1 0.99 0.01 
Funding 0.49 0.5 0.99 0.99 0.02 
Cost_reduction 0.34 0.39 0.72 0.61 0.02 
Profit_loss 0.51 0.2 0.72 0.32 0.15 
Investments 0.49 0.5 0.99 0.98 0.01 
Staff 0.6 0.29 0.9 0.73 0.03 
New_services 0.47 0.5 0.97 0.91 0.03 
Quality 0.23 0.5 0.73 0.64 0.04 
Client_development 0.5 0.5 1 0.97 0.02 
Service_development 0.49 0.5 0.99 0.97 0.02 
Productivity 0.42 0.5 0.92 0.87 0.03 

 

Fig. 5 also provides an overview of the system and shows 
the multiple oscillations that create crests and troughs in the 
model.  It highlights the importance to coordinate frequencies 
in relation to time intervals for avoiding (uncomfortable when 
experienced) huge variations in too many domains in the 
organization.  
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Fig. 5. Concept values when also time intervals and frequencies in 
Tables 4-5 are used (iteration 0 denotes random initial values). 

The numeric FCM approach which we have adopted thus 
far is not the only possibility to operate with temporal aspects  
[4,18]. In the numeric case, we will meet additional challenges 
due to their mathematical properties [18]. One central 
challenge to us was how we can optimize the connection 
matrix weights from the mathematical standpoint if historic 
data is unavailable? The human experts can only assign a more 
or less limited number of subjective and rounded values, and 
this may naturally affect on the goodness of the outcomes. This 
question still arises even though certain resolutions have been 



suggested already [20,21]. This was one study area in which 
we also tested with evolutionary computing such alternative 
connection matrices which yielded lower concept values or 
attained with reduced speed the fixed-point attractors [19]. 
Various values of parameter 𝛌	were	also	 tested	 in	 this	 con-
text.	We	examined	each	tentative	model	with	1000	random	
initial	 vectors	 for	 finding	 their	 essential	 characteristics	
[19]. 

IV. CONCLUSIONS 
In the last decade, management sciences have become in-

creasingly interested in and influenced by operations research, 
in particular intensive data acquisition and computing capabili-
ties. The organizations nevertheless encounter such situations 
in which, prior to operationally optimizing their existing prac-
tices, they instead of only performing these operations in a fas-
ter or cheaper manner, have to consider new ways of organi-
zing operations within broader conceptual frameworks. 

When having this type of wide problem area, the available 
data are highly heterogeneous and we often lack appropriate 
historic data. In such cases FCMs may still provide a particu-
larly suitable method when elaborating macro models for de-
livering such provisional assumptions. These models, in turn, 
help the Managers to keep a prospective attitude while running 
their daily operations.  

There may also be various time intervals between the caus-
es and their effects, and these temporal factors in interrelation-
ships are particularly challenging in model construction. This 
issue was studied in the light of FCM modeling above. Since 
only a few studies have examined this type of temporal aspects, 
one new method was suggested and used in our applications. It 
applied both time intervals and their frequencies, and a con-
crete example was presented. Thus, we could identify which 
impulses were sent too frequently, and this enabled us to cali-
brate managerial actions and objectives in necessariy time ra-
ther than disrupting the system by over-sending impulses.  

Our temporal effects caused more variation to the model’s 
concept values, as was expected. Another interesting feature 
was that the systems could oscillate and reveal different oscilla-
tion amplitudes for concept value’s, while keeping their stabil-
ity. This oscillatory variation may be compared to the ECG-
type results in cardiology.  

Our FCM modeling thus seems to shed new light for organ-
izing and monitoring such operations which comprise long 
time intervals and presuppose the project members to respond 
in good time and with full understanding of the organization’s 
dynamics. Such time patterns contribute to reflexive practices 
within the organization, saving energy and preventing stress. 
More generally, such socio-cognitive ICT and computational 
intelligence was applied which both utilized and influenced 
upon collective knowledge in an organization. 

Our innovative results address the capital issue of introduc-
ing explicit temporalities in the FCM. However, the computeri-
zation of time intervals in the complex dynamical systems is 
still a quite a new frontier, and thus further studies are expected 
in this area. 
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