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Introduction

In his seminal paper [START_REF] Yor | On some exponential functionals of brownian motion[END_REF] (see also the related survey work [START_REF] Matsumoto | Exponential functionals of Brownian motion, I: Probability laws at fixed time[END_REF]), M. Yor studied the distribution density and the moments for the particular following exponential functional of the Brownian motion (B s ) s≥0 :

(1.1)

A ν t = t 0 exp(2B s + νs)ds, which corresponds, up to a normalization in t -1 to the quantity appearing in the Asian options in the Black and Scholes setting (see again [START_REF] Yor | On some exponential functionals of brownian motion[END_REF]). The general case ν = 0 can be reduced to ν = 0 using the Girsanov theorem and the central object will be from now on the functional A t = t 0 exp(2B s )ds. This functional appears in several different situations, including the study of the Brownian motion on the group Aff(R) of the affine transformations of R : x → ax + b, a, b ∈ R, a > 0. This group can be isomorphically represented in the upper triangular 2 × 2 matrices setting g = a b 0 1 , a > 0. The affine group provides the simplest example of solvable Lie group. We announced several results on the Brownian motion x t := a t , b t on Aff(R) in the short communication [START_REF] Konakov | Diffusion processes and their approximation for solvable groups of upper triangular 2×2 matrices[END_REF] which partly rely on the results by Yor [START_REF] Yor | On some exponential functionals of brownian motion[END_REF].

The central result of [START_REF] Konakov | Diffusion processes and their approximation for solvable groups of upper triangular 2×2 matrices[END_REF] is the following Theorem.

Theorem 1.1. Let p(t, •, •) be the transition density of the Brownian motion x t = a t , b t on Aff(R) w.r.t. the corresponding Riemannian volume. Then, for all g ∈ Aff(R):

(1.2) p(t, g, g) = p(t, e, e) ∼ t→+∞ π 2

1 t 3 2
, where e = I is the neutral element of Aff(R).

The note [START_REF] Konakov | Diffusion processes and their approximation for solvable groups of upper triangular 2×2 matrices[END_REF] contains similar results for other solvable Lie groups. We will prove Theorem 1.1 in Section 2.

The most interesting fact in Theorem 1.1 is the slow decay of p(t, g, g), t → +∞, which looks contradictory to the exponential growth of Aff(R). Observe that such an exponential growth occurs for all non trivial finitely generated countable solvable groups, see e.g. Milnor [START_REF] Milnor | Growth of finitely generated solvable groups[END_REF].

We will establish that the random walks on the subgroups of Aff(R) cannot directly give a good approximation of the Brownian motion (x t ) t≥0 on Aff(R).

More precisely, if (x ε n ) n∈N is the Markov chain corresponding to a symmetric random walk on the subgroup G ε ⊂ G generated by the matrices exp(+ε) 0 0 1 = g +ε 1 ;

1 +ε 0 1 = g +ε 2 with step ε 2 in time, ε ∈ Q, then for t = nε 2 ∈ R + we have that:

(1.3) P ε (t, g, g) := P ε (n, g, g) = P g (x ε n = g) ≤ exp(-cn Let us stress that the exponential estimation P ε (n, g, g) ≤ exp(-cn), c > 0, which one could expect due to the exponential growth of the group cannot hold. Indeed, the solvable groups are amenable and it therefore follows from Kesten [START_REF] Kesten | Symmetric random walks on groups[END_REF] that P ε (n, g, g) decays at a sub-exponential rate. We will establish in Section 3 by direct elementary arguments this estimate which is a particular case of the typical asymptotics obtained for the return probabilities of random walks on general solvable groups studied e.g. by Pittet and Saloff-Coste [START_REF] Pittet | Random walks on finite rank solvable groups[END_REF] and Tessera [START_REF] Tessera | Isoperimetric profile and random walks on locally compact solvable groups[END_REF]. The striking point is here that the return probability has fractional exponential decay and does not behave as c t 3 2 as one could have expected from Theorem 1.1. The cause of this phenomenon is the special nature of the subgroup G ε (which is dense but again highly chaotically distributed).

Note that for the nilpotent groups, like e.g. the Heisenberg one H 3 , the corresponding local limit theorems hold, see e.g. Breuillard [START_REF] Breuillard | Local limit theorems and equidistribution of random walks on the Heisenberg group[END_REF] (like in the case of the random walk on Z d see [START_REF] Ibragimov | Independent and stationary sequences of random variables[END_REF], [START_REF] Petrov | Sum of Independent Random Variables[END_REF], [START_REF] Bhattacharya | Normal approximations and asymptotic expansions[END_REF]). We also mention that for absolutely continuous innovations, a local Theorem on Aff(R), with the expected rate in n -3/2 , matching the diagonal decay of the heat-kernel in (1.2) for large times, was proved by Bougerol [START_REF] Bougerol | Exemples de théorèmes locaux sur les groupes résolubles[END_REF].

In this work, we will establish what we call quasi-local theorems for the previously described random walk on the discrete subgroup. Our first quasi-local theorem gives the estimation of the probability that x ε n belongs to a small neighborhood of the unit element e = I which shrinks to e when n → +∞. We establish that the corresponding limit theorem holds with the expected convergence rate (see Section 4). It will be specified as well in Section 4.1 how such phenomena, i.e. the dramatic difference between the super-exponential decay of return probabilities stated in (1.3) and the polynomial one appearing when taking into account an associated neighborhood (which precisely corresponds to the large time behavior in (1.2)), already occur for a specific simple random walk on the dense locally uniformly distributed subgroup of R (generated by finitely many rationally independent numbers +α i , i ∈ {1, • • • , N }). Roughly speaking, this dichotomy emphasizes that the paths of the random walk on the subgroup are quite dense. We will then eventually show that introducing (partially) an absolutely continuous component in the Markov chain x ε n on Aff(R), one can check that the densities of the finite dimensional distributions of x ε n converge uniformly to the corresponding densities of the diffusion on Aff(R).

Diffusion on Aff(R) and similar groups

We briefly recall the construction of the Brownian motion on Aff(R), see e.g. McKean [START_REF] Mckean | Stochastic Integrals. Probability and Mathematical Statistics; A Series of Monogra[END_REF], Ibéro [START_REF] Ibéro | Intégrales stochastiques multiplicatives et construction de diffusions sur un groupe de Lie[END_REF] or Rogers and Williams [START_REF] Rogers | Diffusions and Markov processes[END_REF]. The Lie algebra A(Aff(R)) consists of the matrices of the form x y 0 0 ,

x, y ∈ R. The metric on this algebra (i.e. in each plane of the tangent bundle of Aff(R)) has the form ds 2 = dx 2 + dy 2 . The exponential mapping Exp from the algebra A(Aff(R)) to the group Aff(R) then writes:

(2.1)

g = Exp x y 0 0 = a b 0 1 = k≥0 1 k! x y 0 0 k = e x e x y 0 1 , i.e. x = ln(a), y = be -x = b a so that (2.2) ds 2 = dx 2 + dy 2 = da 2 + db 2 a 2 ,
i.e. the Riemannian metric on Aff(R) is given by the same formula as the hyperbolic metric on the Poincaré model of the Lobachevskii plane (i.e. upper half plane of C):

C + = {b + ia, a > 0}.
The ball of radius R in this metric has an exponentially growing volume, i.e. V ol(B(R)) = 2π cosh(R) -1 (see e.g. Gruet [START_REF] Gruet | Semi-groupe du mouvement Brownien hyperbolique[END_REF]).

In Section 3 we will consider the symmetric random walk on the finitely generated subgroups G ε ⊂ G. We consider the simplest subgroups with two generators:

g ε 1 = exp(ε) 0 0 1 , g ε 2 = 1 ε 0 1 . (2.3)
The number of different words of length n with the alphabet {g ε 1 , g -ε 1 , g ε 2 , g -ε 2 } again grows exponentially with n from Milnor [START_REF] Milnor | Growth of finitely generated solvable groups[END_REF] (non-niplotent or non-abelian solvable groups with finite number of generators have exponential growth).

The symmetric Brownian motion on G can be constructed as the exponential mapping in the Stratonovich sense of the Brownian motion B 1 t , B 2 t , i.e. B 1 , B 2 are two independent scalar Brownian motions, on A(Aff(R)):

(2.4)

g t = a t b t 0 1 = • t s=0 (1 + dB 1 s ) dB 2 s 0 0 = exp(B 1 t ) t 0 exp(B 1 s )dB 2 s 0 1 .
The generator of a t , b t t≥0 writes for all ϕ ∈ C 2 (R + \{0} × R, R):

(2.5) Lϕ(a, b) = 1 2 a 2 ∂ 2 a + ∂ 2 b ϕ + a∂ a ϕ (a, b) =: ∆ Aff(R) ϕ(a, b),
where ∆ Aff(R) stands for the Laplace-Beltrami operator on Aff(R). Observe that the diffusion matrix a 2 I 2 is indeed the inverse of the Riemannian metric tensor a -2 I 2 .

To find the fundamental solution of the parabolic equation ∂ t p = Lp, i.e. the transition density of the Brownian motion on Aff(R), we will apply the Doob transform to the well known density of the Brownian diffusion on the hyperbolic space, see Karpelevich et al. [START_REF] Karpelevich | Limit theorems for the compositions of distributions in the lobachevsky plane and space[END_REF] and Gruet [START_REF] Gruet | Semi-groupe du mouvement Brownien hyperbolique[END_REF] for multi-dimensional generalizations. We also refer to Bougerol [START_REF] Bougerol | Matsumoto-Yor process and infinite dimensional hyperbolic space[END_REF] for other applications of Doob transforms on algebraic structures.

Proposition 2.1 (Transition Density of the Brownian Motion on the hyperbolic plane H 2 ). The density of the diffusion with generator

Lϕ(a, b) = 1 2 a 2 ∆ϕ(a, b)
w.r.t. the corresponding Riemann volume dadb a 2 is given by:

(2.6) p H 2 (t, x, y) = √ 2 exp(-t 8 ) (2πt) 3/2 +∞ r u exp(-u 2 2t ) cosh(u) -cosh(r) du, where r = d H 2 (x, y) is the hyperbolic distance between x = (a 1 , b 1 ), y = (a 2 , b 2 ) ∈ H 2 , namely: d H 2 (x, y) = arcosh 1 + |x -y| 2 2a 1 a 2 ,
where |x -

y| 2 = |a 1 -a 2 | 2 + |b 1 -b 2 | 2 is the usual squared Euclidean distance in R 2 .
Now we want to use the Doob transform. The following Proposition holds, see e.g. Pinsky [START_REF] Pinsky | Positive Harmonic Functions and Diffusion[END_REF].

Proposition 2.2 (Doob transform). Let M be a Riemannian manifold with metric ds 2 = g ij dx i dx j and corresponding Laplace-Beltrami operator

∆ M f (x) = 1 det(g) ∂ xi g ij det(g)∂ xj f (x).
Let p(t, x, y) be the fundamental solution of the heat equation

∂ t p = 1 2 ∆ M p = -1 2 ∆ * M p and ψ(x) > 0 be the positive λ-harmonic function, i.e. it solves 1 2 ∆ M ψ = λψ. Put p λ (t, x, y) = exp(-λt) p(t, x, y) ψ(x) ψ(y).
Then, p λ (t, x, y) is the transition density of a new diffusion on M with generator:

L λ f (x) = 1 2 ∆ M (f ψ)(x) ψ(x) -λf (x) = 1 2 ∆ M f (x) + ∇ M f (x) • ∇ ln(ψ(x)).
Here ∇ M stands for the Riemannian gradient, and the densities are always intended to be w.r. (2.7)

p Aff(R) (t, g, h) = exp t 8 p H 2 (t, g, h) ψ(g) ψ(h) = exp t 8 p H 2 (t, g, h) a 1 2 c 1 2 , g = (a, b), h = (c, d).
with p H 2 as in (2.6). For t → +∞ one has for all g ∈ Aff(R):

p Aff(R) (t, g, g) ∼ 1 (2πt) 3 2 +∞ 0 u sinh( u 2 ) du = π 2 1 t 3 2
.

The previous theorem has an important application in spectral theory (together with the remark that p Aff(R) (t, g, g) ∼ C t as t → 0, since dim(Aff(R)) = 2, see e.g. [START_REF] Molchanov | Diffusion processes and Riemannian geometry[END_REF]). Theorem 2.4. Consider on Aff(R) the Schrödinger operator with non-positive fast decreasing potential W (g):

H = -∆ Aff(R) + W (g), ∆ Aff(R) = 1 2 a 2 ∂ 2 a + ∂ 2 b + 1 2 a∂ a ,
and the spectral problem Hψ = λψ. Then, since operator H has at most a finite negative spectrum {λ j ≤ 0}, one has:

N 0 (W ) := ♯{j : λ j ≤ 0} ≤ C 1 g∈Aff(R):0≤|W (g)|≤1 |W (g)| 3 4 σ(dg) + C 2 g∈Aff(R):|W (g)|>1 |W (g)|σ(dg),
where for g = (a, b), σ(dg) = dadb a 2 is the Riemannian volume element on Aff(R). Also, the constants C 1 , C 2 here are independent of the considered potential W and can be computed directly.

The previous Theorem is a direct consequence of the work by Molchanov and Vainberg [START_REF] Molchanov | Estimates for the counting function of the Laplace operator on domains with rough boundaries[END_REF].

Eventually, we can also refer to Melzi [START_REF] Melzi | Large time estimates for non-symmetric heat kernel on the affine group[END_REF] for a global upper bound of the density of the Brownian motion on AffR. This work provides a tractable control for the diagonal and off-diagonal behavior of the heat-kernel in large time.

Approximation of Diffusion by Random Walks and Associated Return Probability Estimates

In this section, we are interested in the approximation of the Brownian motion on Aff(R) by a discrete random walk. Let now ε be a given small parameter. The time step of our random walk (x ε n ) n≥0 will be ε 2 (with the usual parabolic scaling). In particular for a given time t > 0, it makes

(3.1) n ε (t) = ⌊ t ε 2 ⌋ steps on the interval [0, t]. Set x ε 0 = 1 0 0 1
, and for all n ≥ 1:

x ε n+1 = x ε n A ε,n+1 , A ε,n+1 = exp(εX n+1 ) εY n+1 0 1 ,
where the (X i ) i∈N * , (Y i ) i∈N * are independent symmetric random variables, defined on some given probability space (Ω, A, P), sharing the moment of the standard Gaussian law up to order two. Hence, the above dynamics rewrites at time n:

x ε n := a ε n b ε n 0 1 = e ε n i=1 Xi ε n i=1 Y i exp(ε i-1 j=1 X i ) 0 1 =: e εSn ε n i=1 Y i exp(εS i-1 ) 0 1 , (3.2)
where we use the usual convention 0 j=1 = 0. We will consider here mainly two cases. -The Bernoulli Case: both (X i ) i∈N * , (Y i ) i∈N * are independent sequences of independent Bernoulli random variables, i.e. P[

X 1 = 1] = P[X 1 = -1] = P[Y 1 = 1] = P[Y 1 = -1] = 1 2 .
In such case, it is easy to see that the random walk stays on the subgroup G ε . 1 -The mixed case: (X i ) i∈N * , (Y i ) i∈N * are independent sequences. The (X i ) i∈N * are still Bernoulli random variables whereas the (Y i ) i∈N * have an absolutely continuous law.

In the first case we give an elementary proof that the return probability behave at least as exp(-Cn

1 3 ln(n) 2 
3 ) for large n (see (1.3) and Theorem 3.1). We emphasize as well with the second case that, the density assumption for the (Y i ) i∈N * is sufficient to restore the LLT (see Theorem 4.8).

3.1. The Bernoulli Case. In this case, the idea is to express the non-

diagonal element b ε n in (3.2) in terms of the local times L(a, n) of the random walk (S k ) k≥0 at level a ∈ [M - n , M + n ],
where

M - n := min k≤n S k ≤ 0, M + n := max k≤n S k ≥ 0.
We also precisely define:

L(n, a) := ♯{k : S k = a, 0 < k ≤ n}.
With these notations, we readily derive the following discrete occupation time formula:

(3.3) b ε n = ε M + n a=M - n k∈[[1,n]]:S k-1 =a Y k exp(εa).
The simplest (and yet very important) local theorem for x ε n concerns the asymptotic behaviour of the return probability

π 2n = P e [x ε 2n = e] = P [S 2n = 0, 2n k=1 Y k e εS k-1 = 0].
The exact asymptotic convergence rates of π 2n can be found in [START_REF] Pittet | On random walks on wreath products[END_REF], [START_REF] Pittet | Random walks on finite rank solvable groups[END_REF]. Precisely, the following Theorem holds.

Theorem 3.1 (Asymptotics of the return probabilities on the subgroup). Assume that e ε is transcendental. Then, there exists c ≥ 1 s.t. for n large enough:

c -1 n 1 3 (ln(n)) 2 3 ≤ -ln(π 2n ) ≤ cn 1 3 (ln(n)) 2 3 .
In the quoted articles, the authors actually consider ε = 1, which readily gives the transcendence property. In our work, we are interested in Donsker-Prokhorov type results (see Proposition 4.1 below), which will require the previous scaling of (3.1). This leads us to consider the previous transcendence condition. Namely, if e ε is transcendent, and since (S i ) i∈N is Z valued, we will have that:

2n i=1 Y i exp(εS i-1 ) = a∈[[M - 2n ,M + 2n ]] k∈[[1,2n]],S k-1 =a Y k exp(εa) = 0 ⇐⇒ ∀a ∈ [[M - 2n , M + 2n ]], k∈[[1,2n]],S k-1 =a Y k = 0.
We now mention that, from the Lindemann-Weierstrass theorem, a sufficient condition for e ε to be transcendental is that ε is algebraic, which for instance happens if ε ∈ Q.

In the previously quoted article [START_REF] Pittet | Random walks on finite rank solvable groups[END_REF], the lower bound of Theorem 3.1 follows from the Nash-Moser approach to heat kernel estimates. We now provide a proof for this lower bound, which relies on stochastic analysis arguments associated with some controls for the local time of the simple random walk, see e.g. [START_REF] Revesz | Random Walk in Random and Non-random Environments[END_REF].

Proposition 3.2. If e ε is transcendental then there exists c ≥ 1 s.t. for n large enough:

π 2n ≤ exp(-c -1 n 1 3 ln(n) 2 3 ).
In particular, the proof emphasizes that the upper bound of the return probability does not depend on ε as soon as it is algebraic.

Proof. The numbers e kε , k ∈ Z being rationally independent the probability π 2n rewrites:

π 2n = P ∩ a∈[[M - 2n-1 ,M + 2n-1 ]] L(2n -1, a) = 0 Mod 2, S 2n = 0, ∀a ∈ [[M - 2n-1 , M + 2n-1 ]] k∈[[1,n]]:S k-1 =a Y k = 0 . (3.4) Set now, A := {∩ a∈[[M - 2n-1 ,M + 2n-1 ]] L(2n -1, a) = 0 Mod 2, S 2n = 0}.
We can thus write:

π 2n = E      a∈[[M - 2n-1 ,M + 2n-1 ]] L(2n -1, a) L(2n-1,a) 2 2 L(2n-1,a) I A      . (3.5) Observe that, on the considered event A, for a ∈ [[M - 2n-1 , M + 2n-1 ]], the local time L(2n -1, a) is even. The con- tribution   L(2n -1, a) L(2n-1,a) 2   2 L(2n-1,a)
then corresponds to the probability that a symmetric Binomial law with parameter L(2n -1, a) is equal to 0. This exactly describes the event k∈

[[1,n]]:S k-1 =a Y k = 0.
Observe importantly that on A: L(2n -1, a)

L(2n-1,a) 2 2 L(2n-1,a) ≤ 1 2 .
Let us now localize w.r.t. the position of the minimum M - 2n-1 and maximum M + 2n-1 . Namely, we want to get rid of the large deviations for our current problem. Introduce the set ≤ exp(-C 1 0 m n ). On the other hand, we can as well derive the required control provided the extremas are small with the previously emphasized threshold. Namely, introducing:

D α := {M - 2n-1 ≤ -α} {M + 2n-1 ≥ α}. Observe that T Dα 2n := E      a∈[[M - 2n-1 ,M + 2n-1 ]] L(2n -1, a) L(2n-1,a) 2 2 L(2n-1,a) I Dα∩A      ≤ 1 2 α 2P[M + 2n-1 ≥ α] ≤ 4 exp(-α ln 2) exp(- α 2 
T S 2n := E      a∈[[M - 2n-1 ,M + 2n-1 ]] L(2n -1, a) L(2n-1,a) 2 2 L(2n-1,a) I |M - 2n-1 |≤ mn ln(n) ,|M + 2n-1 |≤ mn ln(n) I A      ≤ P |M - 2n-1 | ≤ m n ln(n) , M + 2n-1 ≤ m n ln(n) , S 2n=0 ≤ P ∀k ∈ [[0, 2n]], S k √ n ∈ [- m n √ n ln(n) , m n √ n ln(n)
] .

(3.6)

To control the last inequality we use the following important Lemma concerning tube estimates for the random walk:

Lemma 3.3 (Tube Estimates for the Random Walk). There exists constants c ≤ 1, C ≥ 1 s.t.:

P[∀k ∈ [[1, 2n]], |S k | ≤ m n ln(n) ] ≤ C exp(-cn 1 3 ln(n) 2 3 ), mn a=-mn P[L(2n -1, a) > c -1 n 2 3 ln(n) 1 3 ] ≤ C exp(-cn 1 3 ln(n) 2 3 ).
The above result can be viewed as a discrete analogue of the tube estimates for the Brownian motion that can be found in [START_REF] Ikeda | Stochastic differential equations[END_REF]. The proof is postponed to the end of the Section for the sake of clarity.

From Lemma 3.3 and (3.6) we get T S 2n ≤ C exp(-cn

1 3 ln(n) 2 3
). Thus, it suffices to restrict to the study of:

T M 2n := E a∈[[M - 2n-1 ,M + 2n-1 (2n-1)]] L(2n -1, a) L(2n-1,a) 2 2 L(2n-1,a) I |M - 2n-1 |≤mn,M + 2n-1 ≤mn × I M + 2n-1 > mn ln(n) + I |M - 2n-1 |> mn ln(n) I A .
Fix now a δ ∈ (0, 1) and introduce the random set:

A δ := {a ∈ [[M - 2n-1 , M + 2n-1 ]] : L(2n -1, a) > n δ }. Let us now fix c ∈ (0, 1). If ♯A δ ≥ c mn ln(n)
, then:

T M,1 2n := E a∈]M - 2n-1 ,0[∪]0,M + 2n-1 [ L(2n -1, a) L(2n-1,a) 2 2 L(2n-1,a) I |M - 2n-1 |≤mn,M + 2n-1 ≤mn × I M + 2n-1 > mn ln(n) + I |M - 2n-1 |> mn ln(n) I ♯A δ ≥c mn ln(n) I A ≤ CE[ a∈A δ 1 L(2n -1, a)
1 2

I |M - 2n-1 |≤mn,M + 2n-1 ≤mn I M + 2n-1 > mn ln(n) + I |M - 2n-1 |> mn ln(n) I ♯A δ ≥c mn ln(n) I A ] ≤ C( 1 n δ 2 ) c mn ln(n) = C exp(- δ 2 ln(n) × c m n ln(n) ) = C exp(- δ 2 cm n ),
where on the event A δ , we used the Stirling formula for the first inequality. It remains to handle:

T M,2 2n := E a∈[[M - 2n-1 ,M + 2n-1 ]] L(2n -1, a) L(2n-1,a) 2 2 L(2n-1,a) I |M - 2n-1 |≤mn,M + 2n-1 ≤mn I M + 2n-1 > mn ln(n) + I |M - 2n-1 |> mn ln(n) I ♯A δ <c mn ln(n) I A .
The first point to note is that, on the event

{♯A δ < c mn ln(n) } ∩ {|M - 2n-1 | ≤ m n , |M + 2n-1 | ≤ m n },
necessarily the occupation measure of A δ is large. Precisely, we have that defining:

A C δ := {a ∈ [[ -m n , m n ]], a ∈ A δ }, ♯A C δ ≥ 2m n -c m n ln(n) .
On the other hand, the total local time generated by the points in A C δ is less than 2m n n δ = 2n

1 3 +δ ln(n) 2 3 < n, for δ ∈ (0, 2 
3 ) and n large enough. Hence, the occupation time of

A δ is s.t.: |{i ∈ [[1, 2n]] : S i ∈ A δ }| > n.
Since we also know that on the considered event {♯A δ < c mn ln(n) }, we derive that there necessarily exists a level a ∈ A δ s.t.

L(2n -1, a) > n c mn ln(n)

.

We obtain:

T M,2 2n ≤ P[|{i ∈ [[1, 2n]] : S i ∈ A δ }| > n, ♯A δ < c m n ln(n) , |M - 2n-1 | ≤ m n , M + 2n-1 ≤ m n ] ≤ P[∃a ∈ A δ , L(2n -1, a) > c -1 n 2 3 ln(n) 1 3 , ♯A δ < c m n ln(n) , |M - 2n-1 | ≤ m n , M + 2n-1 ≤ m n ] ≤ mn a=-mn P[L(2n -1, a) > c -1 n 2 3 ln(n) 1 3 ] ≤ C exp(-cn 1 3 ln(n) 2 
3 ), using again Lemma 3.3 for the last inequality.

Proof of Lemma 3.3 (Tubes for the random walk). Let us begin the proof observing that since,

P[∀k ∈ [[1, 2n]], |S k | ≤ m n ln(n) ] ≤ P[∃a ∈ [[ - m n ln(n) , m n ln(n) ]], L(2n, a) ≥ n mn ln(n) ] ≤ mn ln(n) a=-mn ln(n) P[L(2n, a) ≥ n 2 3 ln 1 3 (n)],
it suffices to prove the second statement of the Lemma. To this end, observe first that from Theorem 9.4 in Revesz [START_REF] Revesz | Random Walk in Random and Non-random Environments[END_REF], we get for all a > 0, k ∈ N:

(3.7) P[L(2n, a) = k] =            1 2 2n-k+1 2n -k + 1 (2n + a)/2
, if a is even,

1 2 2n-k 2n -k (2n + a -1)/2
, if a is odd.

By symmetry we also derive that for a < 0, the above expression holds replacing a by |a| (recall indeed that

L(2n, a) (law) 
= L(2n, -a)). Eventually, for a = 0, Theorem 9.3 in [START_REF] Revesz | Random Walk in Random and Non-random Environments[END_REF] yields:

(3.8) P[L(2n, 0) = k] = 2 -2n+k 2n -k n .
Hence,

P mn := mn a=-mn P[L(2n, a) > c -1 n 2 3 ln(n) 1 3 ] = P[L(2n, 0) > c -1 n 2 3 ln(n) 1 3 ] + 2 mn a=1 P[L(2n, a) > c -1 n 2 3 ln(n) 1 3 ].
Note as well from (3.7) that, in agreement with the intuition,

P[L(2n, 0) = k] > P[L(2n, a) = k], a > 0, k ∈ N.
We therefore derive:

P mn ≤ (1 + 2m n )P[L(2n, 0) > c -1 n 2 3 ln(n) 1 3 ].
Write now from (3.8):

P mn ≤ (1 + 2m n ) n k=⌊c -1 n 2 3 ln(n) 1 3 ⌋ 2 -2n+k 2n -k n . (3.9)
By the Stirling formula, we obtain that for k ∈

[[⌊c -1 n 2 3 ln(n) 1 3 ⌋, n -1]], (3.10) P[L(2n, 0) = k] = 2 -2n+k 2n -k n ≤ e π √ 2n n -k 2 √ n -k exp (2n -k) ln(1 - k 2n ) -(n -k) ln(1 - k n ) .
The contribution for k = n gives P[L(2n, 0) = k] = 2 -n and therefore a negligible term in the r.h.s. of (3.9). We will now split the summation in (3.9) according to k ∈

[[⌊c -1 n 2 3 ln(n) 1 3 ⌋, n 1-η ]] and k ∈ [[n 1-η , n]
] for η > 0 small enough to be specified later on. Observing that P[L(2n, 0) = k] is a decreasing function of k we obtain:

(3.11)

P mn ≤ (1 + 2m n ) ≤ (1 + 2m n ) n 1-η k=⌊c -1 n 2 3 ln(n) 1 3 ⌋ P[L(2n, 0) = k] + n η P[L(2n, 0) = n 1-η ] .
From (3.10) it can be deduced from usual computations that there exists C > 0 s.t. uniformly on k ∈

[[⌊c -1 n 2 3 ln(n) 1 3 ⌋, n 1-η ]],
for n large enough:

P[L(2n, 0) = k] ≤ C √ n exp - k 2 5n .
Plugging this estimate in (3.11) yields:

P mn ≤ C(1 + 2m n ) c -1 n 1 6 ln(n) 1 3 < k √ n ≤n 1/2-η 1 √ 2πn exp - 1 5 k √ n 2 + n η-1 2 exp - n 1-2η 5 ≤ C(1 + 2m n ) 1 √ 2π +∞ c -1 n 1 6 ln(n) 1 3 exp(- x 2 5 )dx + exp - n 1-2η 6 ≤ C(1 + 2m n ) exp(-c -1 n 1 3 ln(n) 2 3 ) + exp - n 1-2η 6 ≤ C exp(-c -1 n 1 3 ln(n) 2 
3 ), taking η ∈ (0, 1 3 ) and up to modifications of C, c for the last inequality. This completes the proof.

Quasi-Local Theorems

We first mention that the integral theorem (which is an obvious corollary of the functional Donsker-Prokhorov Central Limit Theorem (CLT) for the random walks) of course applies. Namely, we have the following result.

Proposition 4.1 (Donsker-Prokhorov approximation). Fix t > 0. If ε → 0, n ε (t) := ⌊ t ε 2 ⌋ → +∞, then (a ε ⌊sn ε (t)⌋ , b ε ⌊snε(t)⌋ ) s∈[0,1] (law) -→ ε→0 (a(st), b(st)) s∈[0,1] ,
where a and b are defined in (2.4).

On the other hand, we are going to prove that some quasi-local Theorems as well hold. By quasi-local Theorem, we mean here that we consider a suitable renormalization of a neighborhood of the origin. Our main result in that direction is the following Theorem.

Theorem 4.2. Let g be a smooth test function s.t. its Fourier transform is compactly supported in [-1, 1] and s.t. R g(x)dx = 1. Denote, for a given δ > 0, by g δ (x) := 1 δ g( x δ ) its rescaling. Fix t > 0, possibly large, and define for n ∈ 2N, ε n = t n 1 2 . Then, for δ n := t 1 2 n -1 2 +γ , γ ∈ (0, 1 2 ), we have:

(4.1) E I Sn=0 g δn ε n n j=1 Y j exp(ε n S j-1 ) ∼ n 2ε n t 1 2 √ 2π • p 2 (t, 0).
Here, we denote for t > 0 by p 2 (t, •) the density of the random variable bt := t 0 e B1 s dB 2 s where B1 s s∈[0,t] is a usual Brownian Bridge independent of the Brownian motion B 2 . The subscript 2 in p 2 (t, •), is here to recall the considered random variable is associated with the second component of the Brownian motion on the group. Also,

(4.2) p 2 (t, 0) = E 1 2π t 0 e 2 B1 s ds ∼ t→+∞ π t , 1 √ 2πt p 2 (t, 0) = p Aff(R) (t, e, e).
Hence, we find the expected asymptotics in large time. We have a normalization in ε n and not in ε 3 n in (4.1), because we had already normalized our approximation of the stochastic integral in our scheme (3.2).

We proceed to its proof in Section 4.2.

To illustrate the phenomenon that appears on Aff(R), i.e. the tremendous different rates between the pointwise return probabilities, and the quasi-local Theorem, we consider a rather simple model which already enjoys such properties. Basically, this dichotomy emphasizes that, the discrete subgroups are in some sense very dense, in the sense that they allow to have the expected convergence rates towards the densities of the limiting objects when integrated on a suitable neighborhood.

4.1. Quasi-local CLT: the toy model. We discuss in this section some points related to the local CLT on a dense subgroup G ε of a Lie group G in the simplest possible case, taking The subgroup G 1 is not only dense in R but is also in some sense locally uniformly distributed. This can for instance be seen from Herman Weyl's classical result (see e.g. [START_REF] Stein | Fourier analysis[END_REF]). Consider for a fixed non negative integer L, the sequence

G = R, G 1 = {x : x = N i=1 n i α i } (or more generally G ε = {x : x = ε N i=1 d i α i }, ε > 0). Here, N ∈ N is a fixed given integer, α = (α 1 , • • • , α N ) is s.t. the α i , i ∈ {1, • • • , N }
xd = N i=1 α i d i Mod L = α, d Mod L,
where here the notation Mod L stands for the remainder term of the division by L. Then, for an arbitrary continuous and L periodic function f we have:

(4.3) lim M→+∞ d∈Z N :|d|≤M f (x d ) ♯{d ∈ Z N : |d| ≤ M } = 1 L L 0 f (x)dx,
where | • | stands here for the Euclidean norm of R N . Consider now the symmetric random walk (x n ) n∈N on R, s.t. x 0 = 0, x n = n j=1 u j where the (u j ) j∈N * are i.i.d. real-valued discrete random variables with law:

u 1 (law) = p 0 δ 0 + 1 2 N i=1 p i (δ αi + δ -αi ), ∀i ∈ {1, • • • , N }, 0 < p i < 1, N i=0 p i = 1.
We can as well consider the auxiliary random walk (X n ) n∈N on R N s.t. X 0 = 0, X n = n j=1 U j where the (U j ) j∈N * are i.i.d. R N -valued discrete random variables with law:

U 1 (law) = p 0 δ 0 R N + 1 2 N i=1 p i (δ αiei + δ -αiei ), ∀i ∈ {1, • • • , N }, 0 < p i < 1, N i=0 p i = 1.
In the above expression the (e i ) i∈{1,••• ,N } denote the canonical basis vectors of R N .

Observe that the relation between the random variables (u j ) j∈N * and ((U j ) j∈N * ), and therefore between x and X is summarized as follows:

(4.4) ∀j ∈ N * , u j = U j , N k=1 e k = U j , 1 , x n = X n , N k=1 e k = X n , 1 ,
where 1 := N k=1 e k = (1, • • • , 1) * . Introduce now for notational convenience:

P[x n = 0] = r n ,
i.e. r n denotes the return probability to 0 at time n. We want to emphasize the following fact. Even though, from the standard CLT:

(4.5) x n √ n -→ n N (0, σ 2 ), σ 2 = E[u 2 1 ] = N i=1 p i α 2 i , we do not have r n ∼ n c √ n but instead r n ∼ n c n N/2
. The result can be intuitively justified from the fact that from the rational independence of the

{α i } i∈{1,••• ,N } , (4.6) r n = P[x n = 0] = P[X n = 0 R N ].
For the latter event, this means that in each direction the same number of positive and negative transitions are the same, and the asymptotics for this return probability corresponds to the product of the return probabilities in each direction. This fact can be formalized with the following proposition.

Proposition 4.3 (Asymptotics for the return probability). As n → +∞, the following result holds: -If p 0 > 0, then:

r n = P[x n = 0] ∼ n C(p) n N 2 , C(p) := N i=1 1 √ 2πp i .
-If p 0 = 0, then: r n = 0 if n is odd and for n even:

r n = P[x n = 0] ∼ n 2C(p) n N 2 . Proof. Observe that X n is lattice valued. For a given n ∈ N, defining L n := {(ξ 1 , • • • , ξ N ), ∀i ∈ {1, • • • , N }, ξ i ∈ {-nα i , • • • , nα i }}, we have P[X n ∈ L n ] = 1. Actually supp(X n ) ⊂ L n
, where the inclusion is strict. Write then for all t ∈ R N :

(4.7) E[exp(i t, X n )] = ξ∈Ln P[X n = ξ] exp(i t, ξ ).
Introducing the rescaled torus

T α N := [-π αi , π αi ], we get that for all (ξ, ζ) ∈ L n , 1 |T α N | T α N exp(-i t, ξ ) exp(+i t, ζ )dt = δ ξ,ζ . Hence, for any ξ 0 ∈ supp(X n ): (4.8) P[X n = ξ 0 ] = 1 |T α N | T α N exp(-i t, ξ 0 )E[exp(i t, X n )]dt = N j=1 α j (2π) N T α N exp(-i t, ξ 0 )ϕ n (t)dt,
where ϕ(t)

:= E[exp(i t, U 1 )] = p 0 + N j=1 p j cos(t j α j ) = 1+ N j=1 p j cos(t j α j )-1 = 1-2 N j=1 p j sin 2 tj αj 2 .
Recalling (4.6), we thus readily get from the inversion formula (4.8) taking ξ 0 = 0, and changing variable to

s j = α j t j , j ∈ {1, • • • , N } r n = P[X n = 0 R N ] = 1 (2π) N TN ϕ n s 1 α 1 , • • • , s N α N ds = 1 (2π) N TN 1 -2 N j=1 p j sin 2 s j 2 n ds,
where

T N := [-π, π] N .
For small values of |s| we then get that:

(4.9) ϕ s 1 α 1 , • • • , s N α N = 1 + N j=1 p j - s 2 j 2 + O(s 3 j ) = exp - 1 2 N j=1 p j s 2 j + O(|s| 3 ) . Set δ n := c ln(n) n 1/2 , c > N min j∈{1,••• ,N } pj 1/2 . We now introduce B N (δ n ) := {s ∈ T N : |s| ∞ ≤ δ n } (ball of radius δ n around the origin) and C N (δ n ) := {s ∈ T N : ∀j ∈ [[1, N ]], s j ∈ [-π, -π + δ n ] ∪ [π -δ n , π]} (corners of radius δ n of the torus T N ). Set M N (δ n ) := B N (δ n ) ∪ C N (δ n ). Observe that for s ∈ T N \M N (δ n ), we have either: (a) ∃j 0 ∈ {1, • • • , N }, cos(s j0 ) -1 = -2 sin 2 ( sj 0 2 ) ∈ [-2 + δ 2 n 2 + o(δ 2 n ), - δ 2 n 2 + o(δ 2 n )]. (b) K S := {j ∈ {1, • • • , N } : |s j | ≤ δ n } and K L := {j ∈ {1, • • • , N } : (π -|s j |) ≤ δ n } are non empty.
In case (a), we readily get |1 -2

N j=1 p j sin 2 sj 2 | ≤ 1 -p j0 δ 2 n 2 + o(δ 2 n ) .
In case (b), we derive:

|1 -2 N j=1 p j sin 2 s j 2 | ≤ |1 -2 k∈KL p k | + δ 2 n 2 + o(δ 2 n ) := c L,S (n) ≤ 1 - 1 2 min j∈{1,••• ,N } p j ,
for n large enough. We can therefore rewrite:

r n = 1 (2π) N MN (δn) 1 -2 N j=1 p j sin 2 s j 2 n ds + R n N , |R n N | ≤ C TN \MN (δn) 1 -p j0 δ 2 n 2 + o(δ 2 n ) n + c L,S (n) n ds ≤ Cn - p j 0 c 2 2 = o(n -N/2 ).
Let us discuss now the contribution associated with

C N (δ n ). For s ∈ C N (δ n ), one has for all j ∈ {1, • • • , N }: -2 sin 2 s j 2 = -2 1 - π -|s j | 2 2 + O (π -|s j |) 3 , so that 1 -2 N i=1 p j sin 2 sj 2 = -1 + 2p 0 + N j=1 p j (π-|sj |) 2 2 + O (π -|s j |) 3 . Hence, -if p 0 = 0, we thus readily get 1 (2π) N CN (δn) 1 -2 N j=1 p j sin 2 sj 2 n ds = o(n -N/2
). -if p 0 = 0, by symmetry, we get r n = 0 if n is odd and

1 (2π) N MN (δn) 1 -2 N j=1 p j sin 2 s j 2 n ds = 2 (2π) N BN (δn) 1 -2 N j=1 p j sin 2 s j 2 n ds,
if n is even. Recall now from (4.9) that:

1 (2π) N BN (δn) 1 -2 N j=1 p j sin 2 s j 2 n ds = 1 (2π) N BN (δn) exp -n N j=1 p j s 2 j 2 + O(|s| 3 ) ds = 1 (2πn) N 2 N j=1 √ p j N j=1 |sj |≤ln(n) 1/2 p 1/2 j exp - 1 2 N j=1 s2 j + O ln(n) 3/2 n 1/2 ) ds (2π) N 2 ∼ n 1 n N 2 N i=1 1 √ 2πp i = C(p) n N 2
.

This gives the stated result.

We can as well refer more generally to the proof of the classical local CLT (see e.g. [START_REF] Petrov | Sum of Independent Random Variables[END_REF] or Chapter 5 in [START_REF] Bhattacharya | Normal approximations and asymptotic expansions[END_REF] for the multidimensional case).

Observe that the asymptotic of the return probability r n does not depend on the rationally independent numbers (α j ) j∈{1,••• ,N } chosen. We simply used the fact that, to return to 0, we must have over the considered time interval, for all j ∈ {1, • • • , N }, the same numbers of random variables taking the values -α j e j and α j e j .

Hence, the bigger N , the smaller the exact return probability. Similarly, from (4.8) we can extend the previous proposition with the following result.

Proposition 4.4 (Deviation bounds for the LLT). Let n → +∞ and y ∈ R N ∩ supp(X n ) be s.t. its Euclidean norm |y| ≤ n 2 3 -γ , γ > 0 (which is meant to be small). Then, for p 0 > 0, recalling as well that X 0 = 0, we obtain:

P[X n = y] ∼ n N j=1    exp(- y 2 j 2α 2 j pj n ) (2πp j n) 1 2    .
Proof. We indicate that starting from (4.8), proceeding as in the previous proof of Proposition 4.3 and considering a localization with respect to a ball of radius δ n = n -1/3+γ/3 , we derive:

P[X n = y] = 1 (2π) N B(δn) exp -i y 1 α 1 , • • • , y N α N , s exp(- n 2 N j=1 p j s 2 j )ds + R n N =: M n N + R n N , |R n N | ≤ C TN \B(δn) (1 -p j0 δ 2 n 2
) n + c L,S (n) n ds ≤ C exp(-cn 1/3+2γ/3 ).

On the one hand, it is clear that

M n N ∼ n N j=1   exp(- y 2 j 2α 2 j p j n ) (2πpj n) 1 2   .
On the other hand, on the considered range set for y, we have that |R n N | ≤ C exp(-cn 1/3+2γ/3 ). Hence, this term can indeed be seen as a global remainder uniformly in y. This yields the result. Observe as well that for y ∈ supp(X n ), y1 α1 , • • • , yN αN ) ∈ Z N . Observe now that from the previous definition of x n , for any Γ ⊂ R, (4.10)

P[x n ∈ Γ] = P[ X n , 1 ∈ Γ] = y∈Z N , y,α ∈Γ P[X n = N i=1 α i y i e i ].
From equation (4.10) in Proposition 4.4, we derive the following theorem.

Theorem 4.5. For a given γ ∈ (0, 1 2 ), and a positive sequence δ n → n 0 and s.t. δ n ≥ n -( 1 2 -γ) , we have for p 0 > 0:

P [x 2n ∈ (-δ -1 n , δ -1 n )] ∼ n 2δ -1 n 1 2π(2n)σ ,
where as in the usual CLT stated in (4.5), σ 2 = N i=1 p i α 2 i . From Proposition 4.3 and Theorem 4.5, we precisely see that, the integrated probability gives the expected usual rate in n -1/2 . Actually, this is precisely due to the last part of Proposition 4.4, we integrate in a neighborhood of a hyperplane of R N , whereas the pointwise return probabilities might have arbitrarily polynomial decay in function of the chosen N . We will now show a similar behavior for our random walk on Aff(R). 4.2. Proof of Theorem 4.2. We first need the following auxiliary lemma concerning the maximum of the conditioned random walk.

Lemma 4.6 (Maximum and Minimum of the conditioned random walk). Let n ≥ 0 be given and consider the conditioned random walk Sj j∈[[0,n]] , Sj = j i=1 X i s.t. S0 = Sn = 0. We recall here that (X i ) i∈N * is a sequence of i. 

E exp θ M + n √ n + E exp θ M - n √ n ≤ c exp(cθ 2 ).
Proof. It is well known from the Donsker invariance principle that M + n , Mn respectively converge in law towards the maximum and the minimum of a standard Brownian bridge on [0, 1] (see e.g. Liggett [START_REF] Liggett | An invariance principle for conditioned sums of independent random variables[END_REF] or Vervaat [START_REF] Vervaat | A relation between Brownian bridge and Brownian excursion[END_REF]). For the rest of the proof we focus on M + n , the results for Mn can be derived similarly by symmetry. For any A > 0, denoting by M + := sup s∈[0,1] Bs where B s∈[0,1] is a standard Brownian bridge, we get that for all θ ≥ 0:

E exp θ M + n √ n I M + n √ n ≤A -→ n E exp(θ M + )I | M+ |≤A ≤ E exp(θ M + ) .
Letting A → ∞, we then obtain by usual uniform integrability arguments that:

E exp θ M + n √ n -→ n E exp(θ M + ) .
Therefore, there exists C := C(θ) ≥ 1 s.t. for all n ≥ 0,

E exp θ M + n √ n ≤ CE exp(θ M + ) ≤ C exp(cθ 2 ),
where the last inequality simply follows from the exact expression of the joint law of the Brownian motion and its running maximum, see e.g. [START_REF] Revuz | Continuous Martingales and Brownian Motion[END_REF].

Proof of Theorem 4.2. We have first, for even n:

E I Sn=0 g δn ε n n j=1 Y j exp(ε n S j-1 ) = P[S n = 0]E g δn ε n n j=1 Y j exp(ε n S j-1 ) |S n = 0 = P[S n = 0]E g δn ε n n j=1 Y j exp(ε n Sj-1 ) ,
where ( Sj ) j∈[[1,n]] stands for the random walk conditioned to be at 0 at time n. Then:

E I Sn=0 g δn ε n n j=1 Y j exp(ε n S j-1 ) ∼ n 2 √ 2πn E 1 2π R ĝ(δ n x) exp -iε n x n j=1 Y j exp(ε n Sj-1 ) dx .
Taking the conditional expectation w.r.t. to ( Sj ) j∈[[1,n]] and using the symmetry of the i.i.d random variables (Y j ) j∈[[1,n]] , we derive: 

E I Sn=0 g δn ε n n j=1 Y j exp(ε n S j-1 ) ∼ n 2 √ 2πn 1 2π R ĝ(δ n x)E n j=1 cos ε n x exp(ε n Sj-1 ) dx.
P[| M + n | ≥ cn 1 2 ln(n) 1 2 ] = E[I |M + n |≥cn 1 2 ln(n) 1 2 I Sn=0 ] P[S n = 0] ≤ Cn 1 2 P[|M + n | ≥ cn 1 2 ln(n) 1 2 ] 1 p P[S n = 0] 1 q , p, q > 1, 1 p + 1 q = 1, so that: |∆ n (t, x)| := exp - x 2 2 ( Ãn (t) + Rn (t)) -exp - x 2 2 Ãn (t) ≤ 1 0 exp - x 2 2 ( Ãn (t) + λ Rn (t)) x 2 2 | Rn (t)|dλ, ≤ (4.16) C exp - x 2 4 Ãn (t) x 2 2 Ãn (t)β n ≤ C exp - x 2 8 Ãn (t) β n .
Thus, exploiting that ĝ is bounded we get:

ĝ(δ n x)E ∆ n (t, x)I M + n ≤cn 1 2 ln(n) 1 2 dx ≤ Cβ n E[| Ãn (t)| -1/2 ]. (4.17)
We now state a useful Proposition, whose proof is postponed to the end of the section for the sake of clarity.

Proposition 4.7. For θ ∈ { 1 2 , 1} and n ≥ 1, there exists C ≥ 1 s.t.:

(4.18) E[| A n (t)| -θ ] ≤ Ct -1 .
Let us now prove that Proposition 4.7 and (4.17) yield (4.15). We first split the term I n introduced in (4.13) and equivalent to the r.h.s. of (4.15) into two parts.

I 1 n := 1 2π |x|≤ 1 √ δn ĝ(δ n x)E[exp(- 1 2 x 2 Ãn (t))I M + n ≤c(n ln(n)) 1 2 ]dx ∼ n ĝ(0) 1 2π |x|≤ 1 √ δn E[exp(- 1 2 x 2 Ãn (t))I M + n ≤c(n ln(n))
1 2 ]dx =: Īn . Now, from the Fubini theorem, we get:

Īn := ĝ(0) 1 2π E R exp(- 1 2 x 2 Ãn (t))dx I M + n ≤c(n ln(n)) 1 2 - |x|> 1 √ δn E[exp(- 1 2 x 2 Ãn (t))I M + n ≤c(n ln(n)) 1 2 ]dx = E[ 1 2π Ãn (t) I M + n ≤c(n ln(n)) 1 2 ] + O E[exp(- 1 4 Ãn (t) δ n ) 1 Ãn (t) 1/2 ] = E[ 1 2π Ãn (t) I M + n ≤c(n ln(n)) 1 2 ] + O δ 1/2 n E[( Ãn (t)) -1 ] .
From Propositions 4.1 and 4.7 and Fatou's lemma, we obtain: 

Īn ∼ n E 1 2π Ã(t) = p 2 (t, 0) ∼ t→+∞ π t , ( 

  inequality for the last control. Now in order to equilibrate the contributions of these large deviations w.r.t the stated bound in Proposition 3.2 we want to solve the equation α 2 n + α ln 2 = n 1 3 ln(n) 2 3 . It is then easily checked that the positive root α n of the equation is s.t. α n ∼ =: m n . It thus follows that there exists C 1 0 s.t. for n large enough: T Dm n 2n

  are rationally independent real numbers and d = (d 1 , • • • , d N ) ∈ Z N encodes the coordinates/displacements associated with the entries of α.

  i.d. Bernoulli random variables. Denoting by M + n := max i∈[[0,n]] Si , Mn := min i∈[[0,n]] Si we have that for all θ > 0 there exists c := c(θ) ≥ 1 s.t.

  Let now M - n , M + n denote the respective minimum and maximum values of the conditioned random walk (bridge) ( Sj ) j∈[[1,n]] . We can assume w.l.o.g. that | M + n | ≤ cn 1 2 ln(n) 1 2 for a sufficiently large constant c. Indeed,

  v u∈[0,t] ,where (B u ) u≥0 is a standard Brownian motion. Hence: computation then shows that (1u)ut 0 dBv t-v u∈[0,1]

= t - 1 .

 1 2 (b u ) u∈[0,1] . Thus, from (4.21) and (4.20):On the other hand, recall that: p Aff(R) (t, e, e) = p B 1 asymptotic behavior of the return density for the Brownian motion on the group given in Theorem 2.3 (see also (4.2)) yields:Let us now detail how the statement (4.18) of Proposition 4.7 can be derived from the previous controls (4.23), (4.22) on the continuous objects through convergence in law arguments. Starting from our simple random walk S 0 = 0, S k = k j=1 X j , k ≥ 1 we first introduce for any fixed n ∈ N the random polygonal functionx n (u) := S ⌊nu⌋ + (nu -⌊nu⌋)X ⌊nu⌋ , u ∈ [0, 1],where we recall that ⌊•⌋ stands for the integer part. Introducing the rescaled conditioned process θ n (u) u∈[0,1] := 1 √ n x n (u)|S n = 0 u∈[0,1] , we derive from Theorem 2 in [Ver79] that θ n (u) u∈[0,1] ⇒ b u u∈[0,1] , standard Brownian bridge on [0, 1] with canonical measure µ on C([0, 1]). Considering now the stepwise constant approximation: xn (u) := S ⌊nu⌋ , u ∈ [0, 1], and its associated rescaled conditioned process θn (u) u∈[0,1] := 1 √ n xn (u)|S n = 0 u∈[0,1] , it is easily seen that the corresponding measures μn on D([0, 1]) converge weakly in D[0, 1] to the distribution µ (canonical measure of the Brownian bridge on C([0, 1])). From the definition of Ãn (t) in (4.14), recalling a well that ε n = t n 1/2 , we thus rewrite: Ãn (t) := ε 2 n n j=1 exp(2ε n Sj-1 ) = t n 1/2 θn (u) du.

  Theorem 2.3 (Density of the Brownian motion in Aff(R) and Diagonal behavior in long time). The density p Aff (t, e, •) of the Brownian motion in Aff(R) writes for all (t, g, h) ∈ R * + × Aff(R) 2 :

	sponding Riemannian volume	√	det gdy.	t. the corre-
	Observe now that for ψ(a, b) = a	1 2 , simple computations give that
		1 2	∆ H 2 ψ(a, b) =	a 2 2	a	1 2

  Wiener integral). The last equivalence in (4.19) can be derived directly from Proposition 6.6 in[START_REF] Matsumoto | Exponential functionals of Brownian motion, I: Probability laws at fixed time[END_REF]. Another derivation, exploiting the explicit large time behavior of the return probability on Aff(R) given in Theorem 2.3, is proposed in equation (4.23) below. The term I 1 n ∼ n Īn is the main contribution of I n . The other contribution is small and can be treated as the above remainder. Let us write:Proof of Proposition 4.7. We recall from Donati-Martin et al.[START_REF] Donati-Martin | On striking identities about the exponential functionals of the Brownian bridge and Brownian motion[END_REF] (see alsoChaumont et al. [CHY01]) that for a standard Brownian bridge (b u ) u∈[0,1] on [0, 1], it holds that for α ∈ R + , We now detail how the indicated convergence rate in time can be deduced for θ = 1 and the limit Brownian bridge from (4.20). Recall that if ( Bu ) u∈[0,t] is a standard Brownian bridge on [0, t], then ( Bu ) u∈[0,t] 

	(4.20)	E	1	exp(αb u )du	-1	= 1.
			0			
	4.19)					
	where Ã(t) = (4.2)). Indeed, conditionally to {( B1 t 0 exp(2 B1 s )ds and p 2 (t, .) stands for the density of s ) s∈[0,t] } the law of t 0 exp( B1 s )dB 2 t 0 exp( B1 s )dB 2 s at time t and point 0 (see s is a centered Gaussian with variance Ã(t) (|I 2 n | := 1 2π |x|> 1 √ δn |ĝ(δ n x)|E[exp(-1 2 x 2 Ãn (t))I M + n ≤c(n ln(n)) 1 2 ]dx
	≤ CE[exp(-	1 4	Ãn (t) δ n	)	1 Ãn (t) 1/2	] ≤ δ 1/2

n E[( Ãn (t)) -1 ].

This completes the proof of Theorem 4.2.

Observe that this would as well be the case for any integer valued independent sequences (X i , Y i ) i∈N * of independent random variables sharing the two first moments of the Gaussian law.

The study has been funded by the Russian Science Foundation (project n • 17 -11 -01098). ′′ = -1 8 ψ(a, b), λ = -

using the lower bound of the control

which follows from the Stirling formula, for the last inequality. The upper bound and the Bernstein inequality 2 for the standard random walk on Z then yield:

which again gives a negligible contribution w.r.t. to the scale n -3 2 for c large enough. Recalling as well that we have assumed ĝ to be compactly supported in [-1, 1], we get that we only have to consider the integration variable x in the range |x| ≤ 1 δn . Recall from the statement of Theorem 4.2 that

→ n 0.

On the associated sets, we will therefore obtain that the arguments in the cosines are uniformly small. Precisely:

.

Hence,

where,

where the constant C in absolute constant, which in particular does not depend on x, t or n. Now, we derive from (4.12) that

Indeed, for all λ ∈ [0, 1],

(4.16)

exp(2ε n Sj-1 ) = 1 2 Ãn (t).

2

We can also refer here to formula (2.16) of Theorem 2.13 in [START_REF] Revesz | Random Walk in Random and Non-random Environments[END_REF] for a more precise result which is not needed for our current purpose.

Hence, from the previous convergence in law Ãn (t)

The statement (4.18) now follows from the above equation and the previously established estimates (4.23), (4.22), noting as well that, since Ãn (t) -θ ≤ (t exp(2t = N (0, 1). This modification is precisely enough to restore the "expected" local limit theorem.

Theorem 4.8. For the previously described random walk, taking ε n = t n 1 2 and for n ∈ 2N:

We indeed have a result similar to Theorem 4.2, except that no integration with respect to the previous mollifyer g δn is needed.

Proof. Note that the random variable b ε (n) now has a conditional Gaussian density (for fixed trajectory (S k ) k∈N ). We thus readily get: