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Abstract—In pattern classification problem, different classifiers
learnt using different training data can provide more or less
complementary knowledge, and the combination of classifiers
is expected to improve the classification accuracy. Evidential
reasoning (ER) provides an efficient framework to represent and
combine the imprecise and uncertain information. In this work,
we want to focus on the weighted combination of classifiers based
on ER. Because each classifier may have different performance
on the given data set, the classifiers to combine are considered
with different weights. A new weighted classifier combination
method is proposed based on ER to enhance the classification
accuracy. The optimal weighting factors of classifiers are obtained
by minimizing the distances between fusion results obtained by
Dempster’s rule and the target output in training data space to
fully take advantage of the complementarity of the classifiers. A
confusion matrix is additionally introduced to characterize the
probability of the object belonging to one class but classified to
another class by the fusion result. This matrix is also optimized
using training data jointly with classifier weight, and it is used to
modify the fusion result to make it as close as possible to truth.
Moreover, the training patterns are considered with different
weights for the parameter optimization in classifier fusion, and
the patterns hard to classify are committed with bigger weight
than the ones easy to deal with. The pattern weight and the
other parameters (i.e. classifier weight and confusion matrix)
are iteratively optimized for obtaining the highest classification
accuracy. A cautious decision making strategy is introduced
to reduce the errors, and the pattern hard to classify will be
cautiously committed to a set of classes, because the partial
imprecision of decision is considered better than error in certain
case. The effectiveness of the proposed method is demonstrated
with various real data sets from UCI repository, and its per-
formances are compared with those of other classical methods.

Keywords: evidential reasoning, Dempster-Shafer theory
(DST), combination rule, classifier fusion, belief functions.

I. INTRODUCTION

Ensemble classifier has been considered as an efficient
way to achieve the highest possible accuracy in pattern clas-
sification problem [1]–[4]. The different classifiers usually
provide some complementary knowledge about the query
pattern, and the ensemble system can take advantage of such
complementarity to improve the classification accuracy. Thus,
the ensemble classifier produces a higher accuracy rate than
the best classifier in general. The ensemble classifier broadly

consists of two parts 1) the choice and implementation of
classifiers, like boosting and bagging, and 2) the combination
of classifiers in a particular way. In this work, we want to
focus on the second part about how to efficiently combine
the classifiers in the multi-class problem. The classifier fusion
methods can be generally divided into three groups according
to the type of the individual output [3], i.e. crisp labels, class
rankings and soft outputs. The class labels are often combined
by the voting methods. The class set reduction/reordering
methods are usually applied to merge the class rankings.
The soft output (e.g. probability, fuzzy membership, belief
functions) providing more useful classification information can
be combined by Bayesian rule [5], fuzzy integrals [6] and ER
[7], [8].

In the complex pattern classification problem, the classifi-
cation result produced by single classifier may be quite un-
certain due to the limitation of observed attributes. Evidential
reasoning also called Dempster-Shafer theory (DST) or belief
function theory [9]–[12] provides a theoretical framework
to model and combine the uncertain information [14]. In
the combination of sources of evidence (i.e. classifiers), the
reliability of each source can be considered via Shafer’s
discounting operation in ER. Particularly, the contextual dis-
counting operation (i.e. an extension of Shafer’s discounting
operation) has been further developed by Mercier in [27],
and it allows to take into account more refined reliability
knowledge conditionally on different hypotheses regarding the
variable of interest. ER has already been used successfully
in many fields of applications, e.g. information fusion [15],
pattern recognition [16]–[21], parameter estimation [23]–[26],
etc. Some evidential classification methods, e.g. Evidential K-
nearest Neighbors (EKNN) [22], Evidential Neural Network
(ENN) [16], have been proposed by Denœux based on DST,
and these evidential methods can well handle the uncertainty
in pattern classification for achieving a good performance. We
have developed several credal classifiers to further characterize
the partial imprecise information in different cases [17], [18],
and our previous methods allow the object to belong to not
only singleton classes but also meta-classes (i.e. the disjunction
of several singleton classes) with different masses of beliefs.

ER has been used for classifier fusion to improve the ac-
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curacy. Three classifier fusion techniques including Sugeno’s
fuzzy integral, the possibility theory and DST are applied for
Automatic Target Recognition (ATR) to improve the accuracy
of individual classifiers in [30], and it shows that DST usually
achieves the best performance. In [31], an interesting Basic
Belief Assignment (BBA) generation method is presented for
the combination of multiple classifiers based on DST. The
class decision of each classifier is described by a simple
BBA, and the mass of belief focusing on the singleton
class is calculated according to the distance between the
classifier output and the reference vector, which is obtained
by minimizing the mean square errors between combined
classifier outputs and the target values. A class-indifferent
method is developed in [8] for the classifier fusion based on
DST, and each classifier output is represented by evidential
structures of triplet and quadruplet, which can distinguish the
important classes from the trivial ones. The ignorant elements
have been employed to model the unknown and uncertain
class decisions. The parameterized t-norm based combination
rules are introduced in [7] for the fusion of non-independent
classifiers under belief functions framework, and it behaves
ranging between Dempster’s rule and the cautious rule by
tuning the parameters, which are optimized by minimizing an
error criteria. There are two fusion strategies (i.e. a single
combination rule and a two-step fusion method) investigated
for obtaining the optimal combination scheme. In [28], postal
address recognition method is developed based on the fusion
of the outputs from multiple Postal Address Readers (PAR,
regarded as classifier) using transferable belief model (TBM)
[12], and the PAR outputs can be properly converted into
belief functions according to the confusion matrix reflecting
the classification performance of PAR.

In the fusion of multiple classifiers, each classifier may play
a different role, since they often have different classification
performances. Thus the classification accuracy could be further
improved by assigning the appropriate weights to classifiers
in the fusion. ER provides an efficient tool for handling the
uncertainty in the multiple sources of information fusion, and
evidence discounting operation can well control the influence
of each source (i.e. classifier) in the fusion according to the
given weights. Hence, we want to develop a new weighted
combination method for different classifiers based on ER to
enhance the classification accuracy.

The weighted averaging combination rule has been widely
applied in classifier fusion, and the classifier weight is often
determined depending on the individual accuracy [32]. The
fusion method can improve the accuracy with respect to the
individuals mainly because of the complementarity of classi-
fiers. Nevertheless, the important complementary knowledge
cannot be efficiently taken into account if the classifier weight
is calculated only by the accuracy. There also exist some
other methods for optimizing the weights of classifiers, but
these methods are not applicable for ER combination scheme.
Moreover, the training patterns are often considered equal

in the calculation of classifier weight1. In fact, the tuning
of classifier weight has in general a very little influence on
the class decision making for the pattern that can be easily
classified. Whereas, the class decision for the pattern hard to
classify is usually sensitive to the changes of classifier weight.
As a result, the training patterns cannot be equally treated
in the optimization of classifier weight. In the class decision
making step, the hard classification usually assigns the object
to a singleton class with the biggest probability value, but
this strategy may cause high risk of error especially for the
object with high uncertainty of classification. Hence, it seems
interesting to develop a cautious decision making strategy to
reduce the number of classification errors.

We propose a new weighted combination method for mul-
tiple classifiers working with different features (i.e. attributes)
of pattern. The weight of each classifier is optimized by
minimizing an error criteria. A confusion matrix, which char-
acterizes the probability of the object belonging to one class
but classified to another class, is introduced to further improve
the classification performance. Moreover, the training patterns
are given different weights in the parameter optimization based
on the distances of their classification results to the truth. Thus,
the weights of training patterns and the fusion parameters (i.e.
the weights of classifiers and confusion matrix) are iteratively
optimized for achieving the best possible result.

This paper is organized as follows. After the brief intro-
duction of background knowledge of ER in section II, the
combination of classifiers with optimal weights is presented
in detail in section III. Then the cautious decision making
strategy is given in section IV for the final classification. The
performance of proposed method is tested in section V and
compared with other related fusion methods before giving our
concluding remarks in section VI.

II. BACKGROUND KNOWLEDGE OF EVIDENTIAL
REASONING

Evidential reasoning (ER) [9]–[12] also called belief func-
tion theory or Dempster-Shafer theory (DST) works with
a frame of discernment as Ω = {ω1, . . . , ωc} consist-
ing of c exclusive and exhaustive hypotheses (i.e. classes)
ωi, i = 1, . . . , c. The basic belief assignment (BBA) in ER
is defined over the power-set of Ω denoted by 2Ω, which
is composed of all the subsets of Ω. The power-set 2Ω

contains 2|Ω| elements including the empty set as 2Ω =
{∅, {ω1}, . . . , {ωc}, {ω1, ω2}, . . . ,Ω}. The cardinality of a set
as |A| denotes the number of elements included in A.

A BBA is represented by a mass function m(.) from 2Ω

to [0, 1] such that m(∅) = 0 and
∑

A∈2Ω
m(A) = 1. All the

elements A ∈ 2Ω such that m(A) > 0 are called the focal
elements of the BBA m(.). The set K(m) , {A ∈ 2Ω |
m(A) > 0} of all focal elements of the BBA m(.) is called
the core of m(.). The object is allowed to belong to not only
singleton classes (e.g. ωi), but also any subsets of Ω (e.g. A =

1In the Boosting approach, the training patterns are assigned with different
weights, but this method works with quite distinct principle. The different
classifiers are closely relevant in Boosting, whereas the classifiers are consid-
ered independent in this work.
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{ωi, ωj} with different masses of belief. The total ignorance
is represented by Ω.

The lower and upper bounds of probability associated with
a BBA respectively correspond to the belief function Bel(.)
and the plausibility function Pl(.) [10] defined by ∀A ⊆ Ω

Bel(A) =
∑

B∈2Ω|B⊆A

m(B). (1)

Pl(A) =
∑

B∈2Ω|A∩B ̸=∅

m(B). (2)

In pattern classification problem, the soft output of each clas-
sifier can be considered as one source of evidence represented
by a BBA, and the probabilistic output is considered as the
simple Bayesian BBA. Dempster’s rule (also called DS rule)
remains very popular in the combination of multiple sources
of evidence, because it is commutative and associative, which
makes it very appealing from implementation standpoint.
Let us consider two BBA’s m1 and m2 (mi , mi(.) for
conciseness) defined over 2Ω. The combination of m1 and
m2 by DS rule is defined by B,C ∈ 2Ω

m(A) = m1⊕m2(A) =


∑

B∩C=A

m1(B)m2(C)

1−K ,∀A ∈ 2Ω \ {∅}.
0, if A = ∅.

(3)
where K =

∑
B∩C=∅

m1(B)m2(C) measures the degree of

conflict between the BBA’s. The denominator 1−K is used for
the normalization of combination result. It is worth noting that
DS rule is applicable only if K =

∑
B∩C=∅

m1(B)m2(C) ̸= 1.

The vacuous BBA m(Ω) = 1 plays a neutral role in DS fusion,
and any BBA remains unchanged when combined by DS rule
with the vacuous BBA.

In the high conflicting cases and some special cases [33],
[34], DS rule may produce unreasonable results due to the
redistribution way of conflicting masses K. Thus, a number
of alternative combination rules have emerged to overcome
the limitations of DS rule, such as Yager’s rule, Dubois-Prade
(DP) rule, and Proportional Conflict Redistribution (PCR6)
rule [34]. Unfortunately these rules are not associative and
that is why they are not so appealing from the implementation
standpoint in the real applications. DS rule will be used in this
work to combine the classification results provided by different
classifiers because its associativity property makes it easier to
implement than other fusion rules.

The classifiers to combine may have different reliabilities
because they usually have different abilities of classification. A
particular discounting operation has been introduced by Shafer
in [10] for the combination of sources of information with
different reliabilities, and it discounts the masses of all focal
elements by a discounting (weighting) factor α ∈ [0, 1] to the
total ignorance. By doing this, one can efficiently control the
influence of each classifier in the fusion. More precisely, the
discounted mass is obtained by the formula{

αm(A) = α ·m(A), A ⊂ Ω, A ̸= Ω.
αm(Ω) = 1− α+ α ·m(Ω).

(4)

If the source of evidence is considered completely reliable,
one takes α = 1. Then, the BBA remains the same after the
discounting as αm(.) = m(.). If the evidence is not reliable
at all, we set α = 0, and the mass values of all the focal
elements will be discounted to the ignorance as αm(Ω) = 1.

In certain cases, the reliability of each source of evidence
can be expected to depend on the truth of the variable of
interest. In order to take into account such refined reliability
knowledge (i.e. conditionally on values taken by the variable
of interest), the contextual discounting operation has been
proposed by Mercier in [27], and the learning of discount
rates is also addressed by minimizing the discrepancy between
plausibility and observations. This contextual discounting op-
eration can properly redistribute the masses of belief according
to the reliability vector. The set of tools has been enlarged in
[29] to deal with the contextual knowledge about the source
quality in terms of relevance and truthfulness based on belief
function theory. The practical means to learn the contextual
knowledge from available labeled data are also introduced in
[29], and it makes the correction mechanisms interesting and
useful in practice.

In this work, we consider the simple case that each classifier
is given only one weight as normally done in the classifier
fusion problem, and Shafer’s discounting operation will be
adopted. The combination of a pair of discounted BBA’s (i.e.
α1m1 and α2m2) by DS rule with discounting factors α1 and
α2 is directly given for the convenience by αm = α1m1 ⊕
α2m2. For B,C ∈ 2Ω,

αm(A) =

∑
B∩C=A

α1α2m1(B)m2(C)

1−
∑

B∩C=∅
α1α2m1(B)m2(C) ,∀A ∈ 2Ω \ {∅,Ω}.

αm(Ω) = δ
1−

∑
B∩C=∅

α1α2m1(B)m2(C) .

αm(∅) = 0.
(5)

where δ = 1− α1[1−m1(Ω)]− α2[1−m2(Ω)] + α1α2[1−
m1(Ω)−m2(Ω) +m1(Ω)m2(Ω)].

III. OPTIMAL COMBINATION OF MULTIPLE CLASSIFIERS

Let us consider one object (say y) being classified over
the frame of discernment Ω = {ω1, . . . , ωc} according to the
proper combination of n classifiers (i.e. C1, . . . , Cn), which
are respectively trained by a set of labeled patterns (i.e.
X = {x1, . . . ,xK}) on n different attribute (feature) spaces
as S1, . . . ,Sn. The class label of pattern xk is represented by
L(xk). It is assumed that each classifier Cl, l = 1, . . . , n pro-
duces soft output represented by the probabilistic membership
(for classifier under probabilistic framework) or belief degree
(for evidential classifier working with belief functions) of the
object belonging to each class. The probabilistic output can
be always interpreted as Bayesian BBA [10], and the output
of evidential classifier is also denoted by BBA consisting of
some singletons ωi ∈ Ω, i = 1, . . . , c and the total ignorance
Ω as focal elements. Evidential reasoning (ER) providing
an efficient tool to deal with the uncertain information is
employed for combining classifiers.
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A. Combination of classifiers with different weights

The classifiers to combine are learnt based on different
attribute knowledge, and they may own different abilities of
classification. Thus, each classifier will be given an appropriate
weight in the fusion in order to achieve the best possible
classification result. In the traditional methods, the classifier
weight is usually determined according to its performance (e.g.
accuracy) on the training data set. The lower accuracy, the
smaller weight. By doing this, it can reduce the influence of
the classifier with low accuracy. In such methods, the weight
of individual classifier is calculated separately regardless the
complementarity among the different classifiers. Nevertheless,
the proper combination of different weak but complementary
classifiers (with low accuracy) may still produce good results
if we can take fully advantage of their complementary knowl-
edge via the fusion procedure.

In this work, the classifier weight will be calculated based
on the optimization procedure with DS combination, and the
optimal weight should make the combination results as close
as possible to the truth for the training patterns. This is a
classical optimization strategy in classification problems [16],
[27], [31]. Hence, the optimal classifier weighting vector α =
[α1, . . . , αn] (αl ∈ [0, 1], l = 1, . . . , n.) can be estimated by
minimizing the distance between the combination result and
the true class of the training patterns. Jousselme’s distance
dJ(·, ·) [13] taking into account both the differences of mass
values and the intersection of focal elements is often used to
measure the distance of a pair of BBA’s, and it is employed
here. Therefore, one must calculate

α̂ = argmin
α

K∑
k=1

dJ(
n⊕

l=1

αlmkl,Tk). (6)

The output of classifier Cl with respect to pattern xk is
represented by the BBA as mkl. The truth of classification of
the training pattern xk with label L(xk) is characterized by
the binary vector2 Tk = [Tk1, Tk2, . . . , Tkc]. All components
of Tk are equal to zero but Tkt = 1 for the class ωt = L(xk).
Jousselme’s distance for a pair of BBA’s m1 and m2 is defined
by:

dJ(m1,m2) ,
√

1

2
(m1 −m2)′D(m1 −m2). (7)

where D is a 2|Ω| × 2|Ω| positive matrix. Its components are
defined by Jaccard’s factors Dij , |Ai∩Bj |

|Ai∪Bj | , Ai, Bj ∈ 2Ω.
Because in this work the cores of αlmkl are restricted only to
singletons and to Ω, D matrix is restricted to a (|Ω| + 1) ×
(|Ω| + 1) matrix. This distance measure has been aplied for
the decision making in pattern classification problem [41].

The following lemma justifies the use of classifier weight
with discounting technique to reduce the errors in classifier
fusion.
Lemma 1. Let us consider a frame of discernment Ω =
{ω1, ω2, . . . , ωc} and n ≥ 2 discounted BBA’s αlml with
cores K(αlml) = {ωi ∈ Ω,Ω} and with weighting factors

2For the evidential classifier, the ignorant element Ω is a focal element of
the classifier output, and therefore one must include also an extra component
Tk,c+1 = 0.

(i.e. weights of classifiers) αl ∈ [0, 1] for l = 1, . . . , n.
The pattern will be classified based on the resulting BBA
as αm obtained by the combination of these n discounted
BBA’s using DS rule. It is assumed that one pattern to classify
truly belongs to ωt. It is possible to choose the weighting
factors {αl, l = 1, . . . , n} such that ωt = argmax

ωi

[αm(ωi)] if

@ ωi ̸= ωt,ml(ωi) ≥ ml(ωt) for all l = 1, . . . , n.

Under the above condition, this lemma states that the
suitable weighting factors corresponding to the weights of
classifiers can be chosen in such a way that the true class
(i.e. ωt) of the pattern gets the maximum mass value by the
combination of the discounted BBA’s with DS rule. Therefore,
the proper tuning of classifier weight is an interesting mean
to reduce the classification errors in the fusion3.

The combination of the discounted BBA’s with proper
weighting factors can produce the correct classification, and
the corresponding combination result is generally closer to the
truth of classification than the combination result leading to the
error with improper weighting factors. The optimal weighting
factors will be determined by minimizing the distance between
the combination result and the truth using training data, and
it will be presented in the sequel.

B. Confusion matrix for belief transformation
The weighting vector α is used to discount the classification

results produced by different classifiers in order to control the
influence of each classifier in the fusion procedure. Because
DS rule is based on conjunctive rule, the product of the mass
of non contradicting focal elements is committed to their inter-
section. For any class, if its plausibility value (upper bound of
probability) is nonzero in each BBA, the positive plausibility
will still be committed to this class whatever the classifier
weight α is. Thus, the positive probabilities (or beliefs) are
often committed to multiple classes in the combination result
of different classifiers for the uncertain pattern, which truly
belongs to only one class, and there usually exists more or
less bias between the weighted combination result and the
truth. If we want to make the classifier fusion result as close
as possible to truth, it is necessary to transfer (redistribute)
the beliefs among different classes judiciously. In fact, the
use of the classifier weight α only is insufficient for making
this judicious belief redistribution. That is why we also need
to introduce the confusion matrix, which is justified in the
following lemma.

Lemma 2. Let us consider that one pattern xk truly belonging
to ωt is classified by combining n pieces of classifier outputs
as ml, l = 1, . . . , n with cores K(αlml) = {ωi ∈ Ω,Ω}
and with weighting factors αl ∈ [0, 1] for l = 1, . . . , n. The
combination result of these n discounted BBA’s by DS rule
is denoted by αm. For any values of αl, l = 1, . . . , n, the
inequality dJ(

αm,Tk) > 0 holds if ∃ ωg ̸= ωt ∈ Ω such that
n∏

l=1

Pll(ωg) > 0.

Lemma 2 states that if the classifiers to combine commit
even little plausibility to a common element ωg (rather than

3The proof of Lemma 1 can be found in the supplementary materials online.
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the true class ωt) or to the total ignorance Ω, then their
combination result by DS rule will never achieve the truth
of classification whatever the values of the weighting factors
are4.

In order to make the combination result as close as possible
to the truth, we propose to introduce a confusion matrix
describing the prior probability of the object belonging to
one class when it is classified to another class based on the
classifier fusion result. One can transform (correct) the beliefs
of the different classes using this confusion matrix to improve
the accuracy of the classification. The confusion matrix is
denoted β = [βij ]c×c (c being the number of classes in the
frame of discernment), and each element βij represents the
conditional probability of the object (say x) belonging to class
ωj if it is classified to ωi according to the combination result
of classifiers. More precisely, βij , p(L(x) = ωj |L̂(x) = ωi),
where L̂(x) denotes the estimated class label of the object x
based on the combination of classifiers, and L(x) represents
the true label. Of course, the following equality must hold:
c∑

j=1

βij = 1. The weighted combination result of classifiers as
αm(.) are adjusted using β by

m(ωj) =
c∑

i=1

αm(ωi)βij . (8)

Hence, the confusion matrix5 β is also included in the objec-
tive function which is now expressed by eq. (9).

{α̂, β̂} = argmin
α,β

K∑
k=1

dJ((
n⊕

l=1

αlmkl)β,Tk). (9)

subject to constraintsαl ∈ [0, 1], l = 1, . . . , n.
c∑

j=1

βij = 1, i = 1, . . . , c.
(10)

Optimal parameters α and β can be found by minimizing this
objective function.

Lemma 3 is given to justify the use of the confusion matrix
for improving classification accuracy.

Lemma 3. A set of patterns is classified according to the
combination result of classifiers denoted by αm(.). Let us
consider the patterns belonging to a disjunction of two classes6

say ωi and ωj . A proper confusion matrix β can be found
under a certain condition to improve the accuracy of the fusion
of classifiers.

In Lemma 3, we discuss the conditions of existence of
the proper confusion matrix for the correction of BBA’s in
different cases to show the potential of this correcting step

4The proof of Lemma 2 is given in the supplementary materials online.
5The masses of beliefs of singleton elements will be redistributed according

to the matrix β. The mass of ignorance in evidential classifier is usually very
small, and it will be redistributed in the decision making step as done in
transferable belief model (TBM) model [12].

6In the classification of uncertain data, the different classes can partially
overlap. Each overlapping zone usually contains a few (e.g. two) classes. For
simplicity, we just consider here the case of misclassification between two
classes ωi and ωj . Other misclassified classes can be similarly handled by
the corresponding elements in the confusion matrix.

for the further improvement of classification accuracy7. The
optimal confusion matrix jointly with the classifier weight will
be calculated by minimizing the classification result and the
ground truth using training data, and it will be explained in
the next subsection.

C. Taking into account the pattern weight

In real applications, we usually classify the pattern to the
class with the biggest probability or mass of belief. For
the pattern easy to classify (e.g. each classifier assigns the
high probability to the correct class), its classification result
will be not very sensitive to the tuning of parameters (i.e.
classifier weight, confusion matrix) for making the correct
classification. Nevertheless, some other patterns with quite
uncertain classification results can be hard to classify. Their
classification results are usually very sensitive to the tuning
of parameters in the fusion, and a small change can turn the
correct classification to an error. We must pay more attention
to such pattern in parameter estimation for classifier fusion.
These uncertain patterns should be assigned with the bigger
weights in the parameter optimization procedure than the
patterns easy to classify.

The objective function taking into account the pattern
weight w = (w1, . . . , wK) is given by:

f =

K∑
k=1

wkdJ((

n⊕
l=1

αlmkl)β,Tk). (11)

subject to the constraints
αl ∈ [0, 1], l = 1, . . . , n;
c∑

j=1

βij = 1, j = 1, . . . , c;

wk ∈ [0, 1], k = 1, . . . ,K.

(12)

Because it is hard to determine the optimal parameters i.e.
α = (α1, . . . , αn), β = [βij ]c×c and w = (w1, . . . , wK)
by minimizing directly the objective function (11) under the
constraints (12), we use an iterative optimization procedure.
The detailed calculation of these parameters is presented
as follows. At the beginning, each training pattern will be
considered with equal weight as wk = 1, for k = 1, . . . ,K.
Then the classifier weight α and the confusion matrix β can be
obtained by minimizing the objective function (11). We use the
active-set algorithm [36] to solve this optimization problem.
One can compute the combination result of the n classifiers
for each pattern with the optimized parameters α and β.
Then the training pattern weight wk is modified according
to the distance between the combination result and the truth
of classification in training data space.

If the combination result is quite close to the ground truth
for the labeled training pattern, it implies that the parameters
obtained in last step can be tuned in some degree keeping
the correct decision for this pattern. Hence, this pattern will
receive a small weight. If the distance between the combi-
nation result and the ground truth is big, we must assign a
bigger weight to this pattern in the optimization procedure.

7The proof of Lemma 3 can be seen in the supplementary materials online.
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Generally, the bigger distance value, the bigger pattern weight.
Hence, the pattern weight wk ∈ [0, 1] should be a monotone
increasing function of the distance measure where dk ∈ [0, 1]
as wk = f(dk). If the distance dk is approximately zero,
it means the combination result is almost equal to ground
truth, and the weight wk value can be also close to zero. If
the distance reaches its maximum value dk = 1, this pattern
weight will be considered with the biggest value wk = 1.
The slope of increasing for the function f(.) mainly depends
on the actual application. Moreover, this function should be
simple for the convenience of application. According to this
basic principle, the pattern weight can be defined by

wk = dλk . (13)

where dk ∈ [0, 1] is the Jousselme’s distance [40] between
the combination result and the target value (i.e. truth of
classification) of training data involved in (11), and where
λ > 0 is a penalized coefficient which controls the slope
of increasing of pattern weight with the increasing of the
distance value. The bigger λ, the bigger slope. It will be tuned
according to the current context for the global improvement
of the classification accuracy.

Once the pattern weight is updated, we will recalculate
the classifier weight α and the confusion matrix β with
this updated pattern weight. Then the corresponding accuracy
will be computed according to the combination result. If the
accuracy becomes higher than before, this updated α and β
will be adopted. Otherwise, we will still keep the previous
estimation of the parameters. Such iterative procedure will be
stopped as soon as the accuracy cannot be improved.

The pseudo-code of the new method is given in Table I.

Table I
COMBINATION OF MULTIPLE CLASSIFIERS WITH OPTIMAL WEIGHT

Input: training patterns X = {x1, · · · ,xK}
trained classifiers C1, . . . , Cn

Initialization: w0 = ones(1,K),α0 = ones(1, n),
β0 = eye(c), AC0 = 0, Sgn = 1.

Implementation: t ← 0
While {Sgn}

t ← t+1
Compute αt and βt to minimize eq. (11) with wt−1;
Compute the classifier fusion result with αt and βt;
Compute the classification accuracy ACt for X;
If ACt −ACt−1 > 0

Compute pattern weight wt using eq. (13);
else

Sgn=0;
EndIf

Endwhile
Output: Classifier fusion result with optimized α and β.

D. Discussion on the parameter optimization procedure

Here we explain why both the BBA discounting opera-
tion using classifier weight α and the BBA correction via
confusion matrix β are included in the proposed optimal

combination method. In discounting operation, the masses of
belief on different classes for each classifier are proportionally
discounted and the mass left is committed to the total ignorant
element Ω according to the value of α. In fact, the discounting
operation is used to control the influence of each classifier
in the fusion by tuning the ignorance degree of each BBA.
This is helpful to take fully advantage of the complementary
information from different classifiers, and it can also reduce
the harmful influence of the quite unreliable classifier that
often produces errors. Nevertheless, the combination result
of these discounted BBA’s usually still has some discrepancy
with the truth. Hence, the confusion matrix β, which can be
considered as the prior knowledge derived from the training
data, is introduced to further modify the combination result by
a judicious transformation of masses of belief among different
classes. This BBA correction step can make the combination
result as close as possible to the truth. Of course, if the
combination result of the discounted BBA’s has already been
very close to the truth, then the confusion matrix β will be
close to identity matrix. The discounting operation and BBA
correction method work with quite distinct principles, and they
are complementary to improve fusion performance. So both of
them are necessary for achieving the best possible combination
result.

In this proposed method, the parameters α, β and the
pattern weight w are iteratively optimized using the training
data according to the minimization of criterion (11) under
constraints (12). This is a normal constrained nonlinear least
squares problem, and it can be solved by the active-set
algorithm8 [36]. The sequential quadratic programming (SQP)
method can be used, and it solves a quadratic programming
subproblem at each iteration. The estimate of the Hessian of
the Lagrangian is updated at each iteration using the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) formula (i.e. Quasi-Newton
Method) [35], which always converges when the function
has a quadratic Taylor expansion near an optimum. Once the
optimized α and β are determined, the pattern weight w is
calculated by formula (13). Then α and β will be optimized
again with the weighting vector. If the classification accuracy
can be improved in this round of optimization, the weighting
vector will be updated and the iterative optimization keeps
going. Otherwise, we keep the optimized parameters α, β and
w in last optimization step, and the optimization procedure
stops. Hence, the optimal value of w is determined depending
on the improvement of accuracy.

IV. CAUTIOUS DECISION MAKING SUPPORT

In the applications, the class decision is often required
for pattern classification according to the combination of
classifiers. There exist many tools to deal with the uncertainty
in decision making, such as probability, fuzzy sets [37], belief
functions [38], [39], and so on. In the traditional way, the
object is usually committed to the class with the biggest
probability or fuzzy membership. In DST, a BBA is usually
transferred into probability measure by pignistic probability

8In MatlabTMsoftware, the function fmincon is provided to solve such
constrained nonlinear optimization problem.
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transformation BetP (.) [12] for decision making, and the
pignistic probability of the singleton class ωi is defined by

BetP (ωi) =
∑

X∈2Ω

ωi∈X

1

|X|
m(X). (14)

The belief interval has been used in decision making under
uncertainty. DST is incorporated in the modified version of
the Analytic Hierarchy Process (AHP) [39], and it allows the
numerical measures of uncertainty to be assigned to subsets of
hypotheses as well as to individual hypothesis. The decision
can be derived based on the belief interval as [Bel(.), P l(.)].
In [38], DST has been also applied for the multi-attribute
decision analysis with uncertainty, and the utility intervals is
introduced to characterize the impact of ignorance due to the
incompleteness in the assessment.

The decision maker usually wants to reach a specific deci-
sion (i.e. singleton class) for pattern classification. However,
the hard decision often produces errors in the quite uncertain
cases (e.g. several classes may take the close probabilities),
and the error may yield dramatic consequences with important
collateral damages in some applications like the target iden-
tification. In such case, the partially imprecise decision (i.e.
set of several classes) must be preferable to a very prejudicial
classification error. Nevertheless, how to balance the error and
imprecision for pattern classification is not clearly addressed
in previous works. So a cautious decision making strategy is
introduced for the classification of uncertain data.

Let us consider an example to illustrate the problem.
Suppose the combination result of classifiers for one pattern
is p(.) , BetP (.): p(ω1) = 0.5, p(ω2) = 0.45, and
p(ω3) = 0.05. One sees that p(ω2) is very close to p(ω1),
and it means that ω1 and ω2 appear undistinguishable for this
pattern. If the pattern is classified to ω1 by the hard decision
making strategy, it will very likely cause an error. In such case,
it could be better to cautiously commit the object to the set of
classes {ω1, ω2}, because the partial imprecision is considered
better than error. Moreover, the imprecision reminds the user
that the available information is not sufficient for making a
specific classification, and some other techniques should be
included to make a clear decision. Nevertheless, the high
imprecision of classification is not a good solution either. If
one pattern can be classified to the singleton class with high
confidence, it does not necessarily include any imprecision
in decision. It seems interesting to find an efficient decision
making strategy with a good compromise between imprecision
and error.

An unified benefit value taking into account both the im-
precision and error is presented here. Let us consider that one
pattern belonging to a singleton class ω is classified to the
set A containing either a singleton class or several classes. If
{ω} ∩A = ∅, it means this class decision is an error, and the
benefit value of an error is considered as 0. If A = {ω}, it
is a correct decision, and the corresponding benefit value is
given by 1. If ω ∈ A, |A| ≥ 2, it indicates that the real class is
included in the decision set, but the decision is imprecise. The
bigger cardinality value of |A|, the higher imprecision degree
of decision. Of course, the high imprecision of classification

produces the small benefit value. Hence, the benefit value B
of the imprecision should be a monotone decreasing function
of the cardinality value |A|, and it is simply defined by ( 1

|A| )
γ

according to the above principle. The tuning parameter γ is
the imprecision penalizing coefficient. The benefit value of the
error, imprecision and correct classification can be defined by

Bk(A) ,
{
0, if {L(xk)} ∩A = ∅.
( 1
|A| )

γ , if L(xk) ∈ A.
(15)

The real class label of xk is denoted by L(xk). The
equality Bk(A) = 1 holds if the correct decision is drawn
as A = {L(xk)} since 1γ = 1. So the benefit value of
the imprecision and correct classification can be calculated
by the common formula (the second part of eq. (15)). For a
given imprecise decision set A, the benefit value will decrease
when γ increases. It is argued that the benefit value obtained
from the imprecise decision A (i.e. ( 1

|A| )
γ) should be no less

than that of random selection from A, such as ( 1
|A| )

γ > 1
|A|

(i.e. the probability of correct decision randomly selected
in the set of A is equal to 1

|A| ). Thus, γ must be smaller
than 1. Nevertheless, the benefit value of an imprecision
classification must be smaller than a correct classification.
Therefore ( 1

|A| )
γ < 1, and one gets γ > 0. Hence, γ ∈ (0, 1).

In fact, the exact value of γ must be selected depending on
the context of applications. If the error cost is rather large, one
can choose a small γ value, and it implies that an imprecise
classification is preferred to a classification error.

The expected decision strategy should make the total benefit
value BT as eq. (16) for the whole data set as big as possible.

BT =

K∑
k=1

Bk(A). (16)

One can see that the benefit value defined in eq. (16) is closely
related with the set A.

In this work, a simple decision criteria is adopted, and the
pattern will be committed to a class set A defined by A =
{ωi|p(ωi) ≥ ϵ ·max{p(.)}} with the threshold ϵ ∈ (0, 1]. The
class set A consists of classes having a probability close to the
maximum one in the classification result with respect to the
threshold ϵ. For each class ωi, i = 1, . . . , c, the parameter ϵi
corresponding to the maximum benefit value may be different.
Hence, the different optimal values of ϵi, i = 1, . . . , c will be
found to maximize the total benefit value defined in (16) using
each class of training data by a grid-search method9.

This cautious decision making strategy is chosen mainly to
draw a decision from the soft output of ensemble classifier.
The decision is just a binary value, and it cannot reflect
so much useful classification knowledge as the original soft
output of ensemble classifier. The decision making strategy is
generally not directly related with the design of (ensemble)
classifier. In this proposed method, we want the combination
result of classifiers as close as possible to the truth. Hence,
the parameters are obtained by minimizing the bias of the
soft combination results with respect to the ground truth. This
is a very often used optimization strategy to minimize the

9A proper interval of ϵ ∈ [0.5, 1] is recommended here.
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discrepancy between the system output and the expected value
in the classification problem [4], [16], [27], [31], and the
decision making is not involved in the parameter optimization
procedure. We also adopt such normal optimization way here.
It is worth noting that this cautious decision-making strategy
is very general and it can be used in all applications where a
decision must be made from the soft probabilistic output.

V. EXPERIMENT APPLICATIONS

The classification performance of this new method called
Optimal Weighted DS (OWDS) combination rule will be eval-
uated and compared with several other fusion methods, such
as simple and weighted averaging rule, simple and weighted
DS combination rule. The weight of each classifier is usually
determined according to the classification accuracy AC, and
the individual accuracy of the classifier Cl is ACl, l = 1, . . . , n
as ACl , Nl

NT
, where the number of patterns correctly

classified by Cl is Nl, and the number of total patterns is
NT . The commonly used classifier weight say αl ∈ [0, 1]
can be calculated by αl1 = ACl or αl2 = ACl−ACL

ACU−ACL
where

ACU = max
l

ACl and ACL = min
l

ACl. The normal hard
decision making strategy is used to calculate the accuracy,
and the object is assigned to the class with the maximum
probability.

For the simple weighted average combination rule, the sum
of normalized weighting factors of classifiers must be equal
to one. In DS combination, one does not need to consider
normalized weighting factors because the discounting is done
separately on the BBA output of each classifier. We can
directly use αl1 ∈ [0, 1] or αl2 ∈ [0, 1] as the weighting factor.

Five related fusion methods have been evaluated in this
work: 1) the simple Average Fusion (AF); 2) the Weighted
Average Fusion (WAF); 3) the Average Fusion with Learning
of Weight (AFLW); 4) Dempster’s fusion rule (DS); and 5)
the Weighted DS fusion rule (WDS). The brief description of
these methods is shown in Table II.

Table II
DESCRIPTION OF THE USED FUSION METHODS.

Name Calculation

AF p = 1
n

n∑
l=1

pl.

WAF p =
n∑

l=1

α̃lpl.

AFLW p =
n∑

l=1

α̂lpl.

DS m = m1 ⊕ . . .⊕mn.
WDS m = α1m1 ⊕ . . .⊕ αnmn.

In Table II, the meaning of the symbol is given by: pl

being probabilistic output of classifier Cl, α̃l being the normal-
ized weighting factors, α̂ being the optimal weighting factor
learned by minimizing the distance between the weighted
averaging combination result and the ground truth as done
in [4]. Both αl1 and αl2 will be used to calculate the classifier
weight in WAF and WDS rules, and the higher classification
accuracy is reported in following Tables IV–IX.

The base classifier can be selected according to the actual
applications. In this work, Support Vector Machine (SVM)
[42], naive Bayesian Classifier (BC) [43] and Evidential
Neural Network (ENN) [16] classifier are employed as the
base classifiers. In SVM, we use the one class versus the
others classification strategy, and the normal linear kernel is
adopted as κ(x,y) = xTy. The classifier output has been
transferred to the probability measure in order to preserve the
useful classification information as most as possible in the
combination procedure. In a c-class problem, the output of
SVM classifier for object y is denoted by f = (f1, f2, . . . , fc),
and fi represents the hyperplane function value of SVM for
class ωi versus the other classes. The transferred probability

is defined by p = (p1, p2, . . . , pc) with pi =
fi−min

j
fj

c∑
g=1

(fg−min
j

fj)
.

This transformation is similar to the max-min normalization
procedure, and thus the bigger hyperplane function value in
output corresponds to bigger probability value. The transferred

probabilities also satisfies the condition
c∑

i=1

pi = 1, pi ∈ [0, 1].

Of course, some other kernels and other probability trans-
formation methods can be selected according to the actual
application.

The BBA output of ENN consists of the singletons and the
total ignorance. The output of Bayesian classifier is a probabil-
ity measure. Both the BBA and probability can be directly used
in the proposed optimal combination of classifiers. The base
classifier(s) will be respectively trained using different subsets
of attributes, and the multiple classification results obtained
by different classifiers will be combined for classifying the
objects. The pignistic probability transformation BetP (.) is
used to transform a BBA into a probability measure for
making a decision. The hard decision-making approach and
the new cautious decision-making approach are both applied
and evaluated with the classifier fusion methods.

Twelve real data sets from UCI repository (http://archive.ics.
uci.edu/ml) have been used here to evaluate the performances
of our new OWDS method with respect to the other methods.
Each data set includes one or two cases (i.e. the attribute set is
divided into different subsets for different classifiers). Hence,
there are total twelve real data sets consisting of twenty cases
in the experiments. The basic knowledge of the used data
sets is shown by Table III. For each data set, the patterns
consist of multiple attributes, and these attributes will be
randomly divided into n distinct subsets without overlapping
attributes, and each subset of attributes will be respectively
used to train the base classifier (SVM, ENN and BC). The
k-fold cross validation is often used for the classification
performance evaluation, but k remains a free parameter. We
use the simple 2-fold cross validation here, since the training
and test sets are large, and each sample can be respectively
used for training and testing on each fold. For each fold, the
program is randomly run ten times. The average classification
accuracy and benefit values with the standard deviation for
different methods are reported in Tables IV–IX.

In the Tables IV–IX and figures 1–2, OWDS corresponds
to the proposed optimal weighted DS combination method
where each pattern is considered with same importance (i.e.
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all the training patterns have the same weight). OWDS-PW
corresponds to the Optimal Weighted DS combination method
where the Pattern Weight (PW) is automatically tuned using
the proposed method. The benefit value BT (defined in eq.(16))
for all the fusion methods on different data sets based on the
cautious decision making strategy is also reported for SVM
classifier and for the hybrid classifier (based on a random se-
lection of SVM, ENN and BC) in Tables V and IX. The lower
and upper accuracy (given by the average value over multiple
runs) of the singleton classifiers to combine are respectively
denoted by ACL = min

l
ACl and ACU = max

l
ACl, where

ACl for l = 1, . . . , n is the classification accuracy of the
individual classifier Cl. The average of accuracy (or benefit
value) denoted by Ave on different data sets with the same
fusion method is given in the second last row of the tables V–
IX to show the general performance of the method. Moreover,
Winning Times10 (denoted by WT) of each fusion method on
the twenty classification cases is also reported in the last row
of Tables V–IX.

The influence of the tuning of parameters λ and γ on the
classification result is evaluated at first in experiment 1, and
then the performance of different fusion methods are evaluated
and compared with different base classifiers in experiment 2.

A. Experiment 1: Test of parameter influence on fusion
performance

There are two parameters involved in the proposed method,
i.e. the distance penalizing coefficient λ associated with the
pattern weight as given in eq.(13), and the imprecision penal-
izing coefficient γ in eq.(15) for cautious decision making. In
this experiment we evaluate their influence on the classification
performance.

We take the following four real data sets from UCI to
show the parameter influence: 1) newthyroid; 2) knowledge;
3) pima; and 4) tae data sets. The attributes of each data set
is randomly divided into two different subsets for different

10If one method produces the maximum accuracy/benefit value for one
classification case compared with the other fusion methods, it wins one
time. Several different fusion methods may produce the same maximum
accuracy/benefit value, and they are all considered winner in such case.

Table III
BASIC INFORMATION OF THE USED DATA SETS.

Data Class Attribute Instance
newthyroid (new) 3 4 215
white Wine quality (wq) 7 11 4898
knowledge(kn) 4 5 403
Wbdc (Wb) 2 30 569
red wine quality (rwq) 6 11 1599
pima(pi) 2 8 768
tae(ta) 3 5 151
satimage (sat) 7 36 6435
magic (ma) 2 10 19020
vehicle (ve) 4 18 946
page-blocks (pb) 5 10 5472
texture (te) 11 40 5500

classifiers, and three base classifiers, i.e. SVM, ENN and BC
are randomly selected for each subset of attribute in a data set.
The classification accuracy (i.e. average value for ten-times
running) of the proposed method OWDS-PW with the tuning
of parameter λ is shown in Fig. 1 for different data sets.
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Figure 1. Classification accuracy on several data sets with different λ.

One sees that the accuracy changes with the tuning of λ
value, and the optimal λ values in different data sets are
different. Hence, it is difficult to give a common optimal value
for different applications. We can use the training data set to
seek the optimal λ value in each application, and the optimal
value should correspond to the highest accuracy. Nevertheless,
this optimization procedure could be time-consuming. One
observes in Fig. 1 that the proposed method generally produces
good performance if λ ∈ (0.2, 0.4). We find the high accuracy
usually can be reached when one takes λ = 0.25 and that is
why we recommend λ = 0.25 as the default value for λ. In
the following experiments, we have used this default value.

We have also tested the influence of tuning of γ on the
benefit value for cautious decision making with different data
sets. The change curves of benefit values of different methods
including OWDS, OWDS-PW, AFLW and WDS are shown in
Fig. 2.

We see that the benefit value of the four methods generally
decreases with the decreasing of γ value. This is reasonable
behavior because the smaller γ value yields the bigger benefit
value for the imprecise decision. The determination of γ
value mainly depends on the application. If the error cost is
quite large, then an imprecise classification decision must be
preferred to an error, and one can take the smaller γ value.
If the error cost is not very large, then one should take the
big γ value (i.e. close to one). We take γ = 0.8 in the
following experiments to test the performance of our proposed
method with respect to several other related methods, and the
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Figure 2. Benefit value of several methods with different γ.

imprecise classification decision strategy is preferred to the
random selection (corresponding to γ = 1) in decision making.

B. Experiment 2: Classification with different base classifiers

In this experiment, three base classifiers including SVM,
ENN and BC are used to test the performance of the proposed
fusion method with respect to the other related methods. The
classification accuracy (i.e. hard decision) of different fusion
methods with the singleton base classifier (i.e. SVM, ENN
or BC) is respectively given in Tables IV, VI and VII. The
common base classifier is operated on the different attribute
subsets for each data set. The hybrid base classifier fusion is
also tested, where the three base classifiers SVM, ENN and BC
are randomly selected for classifying each subset of attribute
in a data set. For example, the Wbdc data set consists of 30
attributes that are randomly divided into 3 subsets. Then, one
subset of attribute is classified by SVM, and another one is
classified by ENN, and the last one is classified by BC base
classifier. Then their classification results are combined by the
different methods, and the classification accuracy according
to the combination results is reported in Table VIII. In the
cautious decision making strategy, the benefit value of different
fusion methods with SVM base classifier and the hybrid base
classifier is respectively given in tables V and IX. In the
following tables, the maximum of accuracy and benefit value
is emphasized in boldface for convenience.

In the experiment 2, one sees that the proposed classifier
fusion methods (i.e. OWDS and OWDS-PW) with the opti-
mal classifier weight and confusion matrix generally produce
higher accuracy than other methods in most cases (according
to the average accuracy on different data sets Ave and the
winning times WT) as shown in last rows of Tables IV–VIII.
This is because the classifier weight is determined by globally
optimizing the fusion result as well as the confusion matrix. In
other methods, the classifier weight is calculated according to
the accuracy of individual classifiers, and the complementary
knowledge of different classifiers is not efficiently taken into

account. The training pattern weight is considered equal in the
traditional classifier weight determination methods. In the new
OWDS-PW method, the patterns hard to classify play a more
important role in the parameter optimization, and the pattern
weight is automatically tuned for obtaining the best possible
classification results. We find that the accuracy can be further
improved when the optimal (rather than equal) pattern weight
is employed in OWDS-PW with respect to OWDS according
to the Tables IV–VIII. Nevertheless, we also find that AFLW
and several other methods can produce a bit better performance
(higher accuracy and benefit value) than our proposed method
OWDS-PW in some cases (according to the winning times
WT). This is because AFLW and OWDS-PW work with
different combination rules. OWDS-PW working with DS
combination rule is suitable for dealing with the independent
and complementary sources of information, and it can produce
good performance taking advantage of the complementarity of
classifiers. AFLW can well handle the random cases to obtain
the average value. The performance of OWDS-PW may be not
as good as AFLW when the classification results provided by
different classifiers are not very complementary.

The accuracy is calculated based on the hard decision that
the object is assigned to the class with maximum probability.
If the proposed cautious decision making support strategy is
applied, the benefit value shown in Tables V and IX is usually
bigger than the accuracy value, and it implies that the error
has been reduced by the cautious decision making strategy.
This is because the partial imprecision is reasonably kept in
the cautious decision. It is considered that the imprecision is
preferred to error, and the imprecision gains bigger benefit
value than error. The partial imprecision can also warn the
user that the used knowledge is not sufficient for the specific
classification of pattern, and some other sources of information
are essential for making more specific (refined) classification.
The proposed method OWDS-PW produces bigger benefit
value than the other methods in most cases as shown in Tables
V and IX. This shows the effectiveness and potential interest
of this new method.

Nevertheless, the proposed method has bigger computation
complexity compared with the other related methods due to
the optimization of the classifier weight, confusion matrix and
the cautious decision threshold. Fortunately, these optimization
procedures can be done off-line using the training data, and it
can be easily implemented with some mathematical software
like MatlabTM. Generally speaking, the computation complex-
ity of the proposed method is the price to pay for improving
the classification accuracy. In our future works, we will try to
improve the calculation efficiency especially for dealing with
large data sets using new techniques, like random sampling.

VI. CONCLUSION

We have proposed a new weighted combination method
for multiple classifiers based on evidential reasoning. The
weighting factors of classifiers are globally optimized by
minimizing the error criteria, which is defined by the distance
between the combination result of classifiers and the target
value (i.e. truth of classification) in training data space. In
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order to achieve the best classification performance, a confu-
sion matrix is also introduced to characterize the probability
of the object belonging to one class but classified into another
class according to combination result. This matrix is used to
further modify the combination result for making it as close
as possible to the target value, and it is optimized using the
training data as well as the classifier weight. Moreover, the
training patterns hard to classify are considered playing a
more important role in the parameter optimization than the
patterns easy to classify. The pattern weight is automatically
tuned according to the distance between classification result
and the truth, and the bigger distance generally leads to the
bigger weight. A cautious decision making method has been
also presented. The partial imprecision is introduced to reduce
the error cost, because imprecise classification decision is
preferred to error. Various real data sets have been used to
test the performance of the new method, and our results and
analysis show that the new method can efficiently improve
the accuracy of the classification and provide a higher unified
benefit value than other related methods in most cases.

Acknowledgements
This work has been partially supported by National Natural

Science Foundation of China (Nos.61672431, 61403310) and
the Fundamental Research Funds for the Central Universities
– China (No.3102017zy020).

REFERENCES

[1] Z.-H. Zhou, J. Wu, W. Tang, Ensembling neural networks: Many could
be better than all, Artif. Intell., Vol. 137(1-2), pp. 239–263, 2002.

[2] L.I. Kuncheva, A Theoretical Study on Six Classifier Fusion Strategies,
IEEE Trans. on Pattern Anal. Mach. Intell., Vol. 24(2), 2002.

[3] D. Ruta, B. Gabrys, An Overview of Classifier Fusion Methods,
Computing and Information Systems, Vol. 7, pp. 1–10, 2000.

[4] J. Yang, X. Zeng, S. Zhong, Effective Neural Network Ensemble
Approach for Improving Generalization Performance, IEEE Trans.
Neural Networks and Learning Systems, Vol. 24 (6), pp. 878–887,
2013.

[5] L. Kuncheva, J. Bezdek, R. Duin, Decision templates for multiple
classifier fusion: an experimental comparison, Pattern Recognition,
Vol. 34(2), pp. 299–314, 2001.

[6] N.J. Pizzi, W. Pedrycz, Aggregating multiple classification results using
fuzzy integration and stochastic feature selection, International Journal
of Approximate Reasoning, Vol. 51(8), pp. 883–894, 2010.

[7] B. Quost, M.-H. Masson, T. Denœux. Classifier fusion in the Dempster-
Shafer framework using optimized t-norm based combination rules,
International Journal of Approximate Reasoning, Vol. 52(3), pp. 353–
374, 2011.

[8] Y.X. Bi, J.W. Guan, D. Bell, The combination of multiple classifiers
using an evidential reasoning approach, Artificial Intelligence, Vol.
172, pp. 1731–1751, 2008.

[9] J.B. Yang, D.l. Xu, Evidential reasoning rule for evidence combination,
Artificial Intelligence, Vol. 205, pp. 1–29, 2013.

[10] G. Shafer, A mathematical theory of evidence, Princeton Univ. Press,
1976.

[11] F. Smarandache, J. Dezert (Editors), Advances and applications of
DSmT for information fusion, American Research Press, Rehoboth, Vol.
1-4, 2004–2015.

[12] P. Smets, Decision making in the TBM: the necessity of the pignistic
transformation, International Journal of Approximate Reasoning, Vol.
38, pp. 133–147, 2005.

[13] A.-L. Jousselme, D. Grenier, É. Bossé, A new distance between two
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Table IV
CLASSIFICATION ACCURACY OF DIFFERENT COMBINATION METHODS WITH SVM BASE CLASSIFIER (IN %).

Data n [ACL, ACU ] AF WAF AFLW DS WDS OWDS OWDS-PW
new 2 [89.30, 90.32] 90.89±1.90 91.07±1.62 91.16±1.13 90.89±1.90 90.79±1.81 92.37±0.41 93.12±0.76
wq 5 [45.13, 46.76] 45.51±0.07 45.19±0.25 49.26±0.62 45.49±0.04 45.45±0.11 51.09±0.75 51.57±0.15
wq 2 [46.38, 49.69] 49.20±1.64 49.57±3.34 49.81±1.62 48.98±1.33 49.67±2.75 51.03±0.07 51.35±1.21
kn 2 [49.38, 56.94] 45.10±1.27 52.11±7.65 60.18±5.85 45.75±1.25 55.22±6.88 58.21±5.37 60.60±5.94
Wb 6 [89.61, 91.28] 93.48±0.96 90.14±2.49 91.85±2.78 87.79±2.52 92.98±1.40 93.90±1.42 93.90±1.42
Wb 3 [91.03, 91.60] 92.95±1.44 91.26±4.14 91.95±4.70 91.74±2.07 93.18±1.82 93.30±1.66 93.30±1.66
rwq 5 [47.05, 51.16] 55.24±0.69 52.39±1.32 53.47±0.78 55.56±0.57 55.41±1.10 56.29±0.62 56.97±0.55
rwq 2 [52.62, 53.10] 55.72±1.82 55.31±2.91 55.83±2.08 56.00±1.75 55.77±2.32 56.38±1.37 56.95±0.92
pi 4 [65.31, 74.74] 66.56±0.41 70.83±5.30 74.87±4.65 65.29±0.27 69.69±2.00 74.74±0.18 74.82±0.41
pi 2 [67.14, 74.71] 68.88±0.95 69.64±4.16 74.82±2.46 68.88±0.95 69.64±4.16 74.82±2.46 74.82±2.46
ta 2 [45.70, 46.23] 49.00±3.28 48.88±3.77 49.68±3.68 47.56±4.15 49.94±3.14 51.17±2.78 51.26±2.05
sat 6 [50.82, 70.51] 75.75±0.86 73.87±0.50 72.91±1.19 75.69±1.00 75.75±0.56 75.87±0.03 76.16±0.82
sat 3 [71.97, 73.94] 76.24±0.48 75.29±0.57 74.32±1.91 76.35±0.41 75.83±0.60 76.07±0.37 76.22±0.55
ma 5 [64.84, 74.60] 69.73±1.87 68.12±4.64 72.45±0.82 69.73±1.87 70.16±2.48 74.97±0.29 74.97±0.29
ma 2 [70.45, 78.87] 72.05±0.04 78.87±0.37 78.87±0.37 72.92±0.23 78.87±0.37 78.87±0.37 78.87±0.37
ve 6 [35.52, 50.30] 51.60±7.77 51.89±0.17 51.73±1.92 44.50±2.59 53.96±6.94 56.65±3.18 56.50±3.01
ve 9 [32.21, 47.52] 47.58±3.59 48.58±0.50 50.74±4.18 36.11±1.42 48.17±3.43 51.65±1.84 52.25±1.00
pb 5 [89.76, 90.57] 89.91±0.12 90.33±0.53 90.50±0.17 90.27±0.63 90.25±0.58 90.12±0.48 90.70±1.32
te 8 [69.37, 84.97] 93.68±0.35 90.95±1.14 72.75±2.21 93.85±0.28 93.67±0.41 93.85±0.28 93.85±0.28
te 4 [89.96, 94.04] 96.79±0.42 95.96±1.01 86.75±2.68 96.81±0.42 96.75±0.34 96.78±0.47 96.81±0.42
Ave [63.18, 63.18] 69.29±1.50 69.51±2.32 69.70±2.29 68.01±1.28 70.56±2.16 72.41±1.22 72.75±1.28
WT 0 1 3 3 1 7 17

Table V
BENEFIT VALUE OF DIFFERENT COMBINATION METHODS WITH SVM BASE CLASSIFIER (IN %).

Data n AF WAF AFLW DS WDS OWDS OWDS-PW
new 2 91.12±1.18 91.38±1.10 91.28±1.07 91.92±1.07 90.72±1.14 92.71±0.21 93.29±0.59
wq 5 49.87±0.08 49.98±0.96 50.45±0.07 46.57±0.17 49.91±0.11 52.24±0.10 52.34±0.30
wq 2 50.87±1.46 50.51±2.03 51.83±0.99 50.89±0.94 50.78±0.94 52.02±0.43 52.34±0.92
kn 2 51.05±0.95 58.71±4.38 68.76±5.62 50.04±1.75 61.89±5.23 63.69±4.63 66.54±5.35
Wb 6 93.38±0.57 90.14±2.49 92.77±2.35 85.27±2.74 93.23±1.86 93.90±1.42 94.01±1.36
Wb 3 93.28±1.73 92.05±5.04 92.86±4.65 92.11±3.52 93.15±1.76 93.33±1.75 93.29±1.56
rwq 5 57.02±0.85 53.65±1.57 55.77±0.75 57.23±0.36 57.68±1.05 58.55±0.92 58.79±0.46
rwq 2 55.88±1.97 55.71±3.01 56.29±2.13 56.71±1.59 56.92±2.13 57.70±1.25 58.26±1.10
pi 4 70.27±1.31 72.51±4.35 75.02±3.79 66.31±0.65 71.14±2.33 74.74±0.18 74.78±0.42
pi 2 73.34±0.89 73.88±3.05 74.82±2.46 73.02±1.21 74.13±3.75 74.82±2.46 74.82±2.46
ta 2 52.26±1.95 50.46±1.60 52.34±2.69 49.18±5.95 52.11±2.78 52.67±2.78 52.52±2.18
sat 6 76.22±0.61 74.29±1.19 73.70±1.38 75.81±0.75 76.59±0.61 76.37±0.40 76.89±0.57
sat 3 76.57±0.07 76.42±0.10 75.05±2.05 76.67±0.05 76.60±0.40 76.60±0.40 77.04±0.52
ma 5 71.50±1.11 70.05±3.48 73.86±0.70 69.73±1.87 70.16±2.48 75.11±0.41 75.91±1.04
ma 2 75.94±0.29 78.87±0.37 78.87±0.37 75.67±0.33 78.87±0.37 78.87±0.37 78.87±0.37
ve 6 52.41±5.60 53.83±1.07 53.47±1.03 46.96±1.58 54.68±3.55 58.48±3.23 59.71±0.75
ve 9 51.38±2.31 50.41±0.76 53.95±3.44 47.94±5.03 53.06±1.21 53.52±1.12 55.43±2.51
pb 5 90.59±0.15 91.09±0.66 91.12±0.32 90.41±0.83 90.65±0.75 91.21±0.53 92.47±0.59
te 8 93.91±0.89 91.73±1.12 75.56±2.00 93.94±0.58 93.84±0.62 93.94±0.58 94.15±0.25
te 4 96.81±0.38 96.08±1.00 87.90±1.75 96.96±0.22 96.94±0.18 96.85±0.41 96.85±0.41
Ave 71.18±1.22 71.09±1.97 71.28±1.99 69.67±1.56 72.15±1.64 73.37±1.18 73.92±1.19
WT 1 4 1 1 4 15
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Table VI
CLASSIFICATION ACCURACY OF DIFFERENT COMBINATION METHODS WITH ENN BASE CLASSIFIER (IN %).

Data n [ACL, ACU ] AF WAF AFLW DS WDS OWDS OWDS-PW
new 2 [86.79, 88.85] 92.10±0.57 91.26±1.79 92.50±0.32 92.06±0.70 92.01±1.01 92.81±0.33 93.22±0.25
wq 5 [45.22, 46.82] 45.75±0.90 46.07±1.09 48.97±0.25 45.62±0.77 45.84±0.87 48.80±2.95 49.67±3.10
wq 2 [45.27, 47.35] 47.24±1.90 46.62±1.17 46.55±1.75 46.86±1.25 46.92±1.44 47.22±2.92 47.71±2.04
kn 2 [34.05, 74.50] 70.60±5.57 70.15±6.21 72.76±5.98 67.21±4.99 73.87±6.17 74.93±5.35 75.95±5.46
Wb 6 [82.70, 87.57] 91.23±0.68 90.90±1.92 93.33±1.99 91.35±0.75 91.24±0.79 92.82±1.61 93.21±0.83
Wb 3 [83.64, 87.25] 90.63±0.78 90.47±1.15 91.53±0.91 90.73±0.92 90.70±1.03 90.86±0.99 91.93±1.11
rwq 5 [42.02, 51.57] 56.62±0.63 54.64±0.59 57.12±0.69 56.81±0.82 56.47±0.88 57.47±0.62 58.31±0.84
rwq 2 [47.82, 54.08] 55.31±4.14 54.26±3.93 54.15±4.22 54.87±3.86 55.01±4.03 55.11±3.52 55.62±4.26
pi 4 [64.97, 74.53] 70.21±1.01 70.05±3.09 74.92±3.31 72.03±0.92 72.53±1.25 76.04±1.10 75.98±0.09
pi 2 [65.10, 70.31] 70.68±4.97 69.17±3.62 70.72±4.28 70.63±4.76 70.73±4.94 71.46±4.33 71.72±4.65
ta 2 [38.17, 39.96] 45.02±3.45 43.04±4.04 43.03±3.76 45.46±4.71 44.58±4.42 46.78±2.99 46.78±2.99
sat 6 [70.63, 79.83] 82.86±0.51 79.11±0.14 82.87±0.42 82.56±0.44 82.72±0.57 83.18±0.45 83.59±0.48
sat 3 [77.47, 80.92] 82.51±0.06 81.86±0.49 82.60±0.87 82.18±0.12 82.29±0.21 82.48±0.01 82.89±0.07
ma 5 [64.84, 74.82] 70.91±0.07 73.20±4.13 72.99±2.97 71.40±0.39 71.54±0.50 77.17±0.16 77.44±0.13
ma 2 [64.83, 68.07] 67.45±3.68 67.67±4.01 67.74±3.24 67.56±3.85 67.58±3.87 67.78±4.73 67.99±4.46
ve 6 [37.77, 50.77] 56.32±2.59 53.37±0.92 56.09±2.93 57.45±1.84 57.39±1.59 58.33±1.09 58.63±0.84
ve 9 [34.69, 49.76] 56.15±1.84 50.47±4.01 58.46±4.47 55.97±1.76 55.73±1.59 59.63±2.59 60.34±2.26
pb 5 [89.77, 91.16] 89.77±0.00 89.77±0.00 92.51±1.34 89.77±0.00 89.77±0.00 91.08±0.03 91.08±0.03
te 8 [56.09, 72.39] 81.21±1.71 77.89±2.78 81.15±2.79 81.00±2.19 81.35±2.29 82.20±1.65 82.66±1.38
te 4 [67.76, 74.31] 77.55±1.27 76.48±0.35 78.65±1.21 77.46±0.91 77.57±0.96 78.83±0.42 80.20±0.23
Ave [59.98, 68.24] 70.01±1.82 68.82±2.27 70.93±2.39 69.95±1.80 70.29±1.92 71.75±1.89 72.25±1.78
WT 0 0 2 0 0 2 17

Table VII
CLASSIFICATION ACCURACY OF DIFFERENT COMBINATION METHODS WITH BAYESIAN BASE CLASSIFIER (IN %).

Data n [ACL, ACU ] AF WAF AFLW DS WDS OWDS OWDS-PW
new 2 [90.61,93.17] 95.68±0.22 93.17±1.20 93.97±1.96 95.82±0.00 95.68±0.44 95.82±0.01 95.82±0.01
wq 5 [42.44,47.49] 46.89±0.12 47.94±2.75 50.27±0.32 46.75±0.00 47.64±0.98 49.24±1.06 49.24±1.06
wq 2 [44.65,46.83] 47.75±0.06 46.84±0.38 48.29±0.07 48.00±0.01 47.74±0.13 50.04±0.12 50.19±0.01
kn 2 [57.59,57.81] 83.38±2.06 83.61±3.03 81.59±2.41 83.33±0.00 83.64±3.12 84.18±0.89 84.40±0.48
Wb 6 [89.73,91.76] 93.13±0.19 92.88±2.28 93.58±0.13 93.32±0.00 93.41±0.43 94.06±0.12 94.27±0.87
Wb 3 [91.93,92.41] 93.27±0.50 92.88±1.75 92.97±1.35 93.67±0.00 93.23±0.69 93.06±0.62 93.78±0.83
rwq 5 [45.55,50.03] 56.14±0.19 54.83±1.72 56.97±0.84 56.22±0.00 56.58±0.04 57.09±0.44 57.52±0.40
rwq 2 [51.32,53.78] 56.41±0.19 56.29±1.07 55.54±0.38 56.85±0.00 56.33±0.99 58.19±0.44 58.27±0.59
pi 4 [65.29,74.97] 72.08±0.27 71.93±2.20 76.07±0.83 72.79±0.00 72.89±1.35 76.17±0.75 76.17±0.75
pi 2 [68.31,75.57] 75.39±0.00 75.29±1.93 76.82±0.74 75.39±0.00 75.68±1.30 76.02±0.92 76.30±0.75
tac 2 [43.27,45.04] 49.43±1.02 49.44±3.13 50.45±0.94 50.32±0.00 50.10±2.52 51.99±0.47 53.42±1.37
sat 6 [75.20,78.68] 80.39±0.11 79.32±0.75 80.46±0.09 80.31±0.00 80.35±0.03 80.42±0.23 80.54±0.16
sat 3 [78.36,79.43] 80.06±0.00 79.69±0.53 79.66±0.59 80.00±0.00 80.11±0.04 80.20±0.26 80.20±0.26
ma 5 [65.04,76.03] 73.25±0.10 72.06±0.90 76.67±0.25 73.43±0.00 73.39±0.16 76.33±0.07 76.43±1.08
ma 2 [70.94,74.39] 72.96±0.00 72.66±0.98 73.26±0.62 72.96±0.00 72.81±0.67 74.09±0.25 74.37±0.72
ve 6 [35.76,46.10] 46.22±0.67 43.68±3.59 50.06±3.93 45.51±0.00 45.86±0.67 53.96±0.08 55.14±0.59
ve 9 [34.55,44.09] 45.19±0.45 42.32±1.39 52.72±1.34 45.04±0.00 45.04±0.66 55.91±2.00 56.50±1.45
pb 5 [85.08,92.34] 90.91±0.58 90.20±0.74 91.81±0.43 93.01±0.01 91.22±0.01 93.42±1.09 93.59±0.93
te 8 [61.11,75.90] 76.14±0.30 76.01±1.94 78.57±0.55 77.45±0.01 77.46±0.01 79.78±0.72 79.79±0.73
te 4 [69.25,78.10] 77.01±0.78 73.94±1.56 77.36±0.72 77.45±0.00 77.05±0.14 77.65±0.23 77.72±0.14
Ave [63.30, 68.70] 70.58±0.39 69.75±1.69 71.85±0.92 70.88±0.00 70.81±0.72 72.88±0.54 73.18±0.66
WT 0 0 3 1 0 3 17
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Table VIII
CLASSIFICATION ACCURACY OF DIFFERENT COMBINATION METHODS WITH HYBRID BASE CLASSIFIER (IN %).

Data n [ACL, ACU ] AF WAF AFLW DS WDS OWDS OWDS-PW
new 2 [89.76, 92.93] 93.68±2.07 93.77±2.02 93.12±2.45 93.68±1.82 93.59±2.14 93.86±1.81 94.05±1.99
wq 5 [44.33, 50.50] 46.41±0.23 47.14±2.28 51.52±0.16 46.78±0.13 47.12±0.38 50.55±1.79 50.70±2.01
wq 2 [43.17,48.69] 47.44±1.23 49.07±1.14 48.96±0.69 48.08±0.92 47.95±0.94 49.66±0.42 49.86±0.66
kn 2 [55.04,60.95] 78.56±5.18 82.27±4.91 83.18±3.89 78.23±5.90 84.16±6.47 84.15±4.95 85.57±5.58
Wb 6 [87.26, 92.88] 93.55±0.25 92.80±0.50 93.94±0.37 94.16±1.61 94.55±0.74 94.11±0.87 94.46±0.37
Wb 3 [89.28,92.70] 92.53±1.12 89.71±2.61 93.23±0.62 89.36±2.12 93.23±0.62 93.23±0.62 93.23±0.62
rwq 5 [39.65, 55.07] 56.66±0.18 56.07±0.40 57.54±1.94 56.54±0.00 56.97±0.62 57.63±1.10 57.72±1.50
rwq 2 [49.62,55.97] 55.88±2.17 57.26±0.75 57.22±0.44 56.50±0.84 56.38±1.46 57.66±0.88 58.57±1.02
pi 4 [65.17,75.33] 69.21±1.75 66.80±0.74 74.93±1.01 74.97±3.27 69.66±2.39 72.14±2.95 75.13±1.29
pi 2 [66.03, 73.26] 71.33±5.08 71.33±5.08 73.57±2.84 71.33±5.08 71.42±4.99 74.41±3.06 74.41±3.06
tac 2 [44.64,46.76] 50.33±3.14 47.69±3.57 51.52±1.29 49.67±1.93 50.93±3.43 52.32±1.62 53.25±2.59
sat 6 [58.90, 71.99] 75.56±0.27 69.31±1.69 67.57±2.75 75.18±0.24 75.63±0.08 75.45±0.00 75.94±0.07
sat 3 [71.58,74.05] 76.04±0.24 75.80±0.15 73.90±1.75 75.82±0.24 75.82±0.21 75.74±0.20 75.90±0.07
ma 5 [65.10, 73.93] 72.14±0.46 72.75±1.06 75.34±1.20 72.31±0.43 72.27±0.35 72.32±1.14 74.61±1.97
ma 2 [71.29, 74.84] 71.29±1.44 71.29±1.44 74.96±0.57 73.11±0.01 73.62±0.02 75.18±0.70 75.18±0.70
ve 6 [38.48, 53.13] 52.90±0.92 52.96±0.33 56.62±1.50 57.75±1.25 54.91±0.92 57.92±1.00 58.70±1.60
ve 9 [33.69,48.17] 53.49±4.26 44.68±2.60 56.15±1.00 46.22±5.68 53.15±4.10 60.64±2.17 61.29±2.42
pb 5 [88.53, 92.19] 89.81±0.68 89.37±1.03 90.17±0.85 90.82±1.56 90.02±0.75 91.34±1.27 91.38±1.28
te 8 [61.42, 78.48] 77.32±2.64 72.58±4.73 77.32±1.99 78.86±2.20 78.41±2.28 82.65±0.42 83.55±0.22
te 4 [68.25, 92.75] 73.22±0.10 73.90±0.48 75.45±1.98 75.57±0.22 79.12±2.28 82.23±1.48 83.25±1.93
Ave [61.56, 70.23] 69.87±1.67 68.83±1.88 71.31±1.46 70.25±1.77 70.95±1.76 72.66±1.42 73.34±1.55
WT 1 0 3 0 2 3 16

Table IX
BENEFIT VALUE OF DIFFERENT COMBINATION METHODS WITH HYBRID BASE CLASSIFIER (IN %).

Data n AF WAF AFLW DS WDS OWDS OWDS-PW
new 2 93.88±2.11 94.11±2.09 93.07±2.29 93.88±1.83 93.88±2.01 94.07±1.80 94.33±1.49
wq 5 50.26±0.05 50.43±1.29 52.55±0.24 48.34±0.45 50.98±0.11 51.71±1.45 51.75±1.50
wq 2 49.83±1.38 51.08±0.06 50.99±0.05 50.05±0.69 50.00±0.59 51.73±0.67 52.05±0.08
kn 2 80.97±3.92 83.06±3.36 84.66±3.58 80.76±3.93 86.78±4.30 86.90±3.08 87.95±4.67
Wb 6 94.34±0.05 93.03±0.43 94.40±0.27 92.16±2.03 94.71±0.51 94.11±0.87 94.46±0.37
Wb 3 92.53±0.84 91.91±0.68 93.44±0.98 89.33±2.06 93.20±0.07 93.33±0.73 93.33±0.73
rwq 5 57.84±0.52 56.91±0.01 58.26±1.70 57.42±0.47 57.89±0.51 58.33±0.57 58.70±1.06
rwq 2 57.91±1.68 57.56±0.88 58.01±0.60 57.91±0.59 57.92±1.54 58.42±0.34 58.81±0.53
pi 4 70.82±3.30 69.05±2.29 75.33±1.83 69.74±2.26 70.86±3.49 72.52±2.41 75.59±1.94
pi 2 72.41±3.82 71.75±4.64 74.68±2.86 71.33±5.08 71.79±4.56 75.13±2.91 75.15±2.78
tac 2 53.68±3.47 50.38±1.95 54.93±0.89 50.98±2.45 54.61±2.57 55.73±1.59 55.87±1.31
sat 6 76.33±0.13 70.12±2.17 68.96±1.94 75.82±0.08 76.39±0.13 76.11±0.23 76.62±0.10
sat 3 76.74±0.11 76.50±0.02 74.75±1.96 76.70±0.12 76.72±0.11 76.73±0.03 76.85±0.08
ma 5 74.62±2.11 74.20±0.92 76.09±0.63 72.31±0.43 72.88±0.06 73.10±2.03 76.26±2.67
ma 2 73.98±1.21 73.62±1.12 75.60±0.39 73.11±0.01 74.46±0.58 75.78±0.51 75.81±0.46
ve 6 56.72±1.44 56.57±1.52 60.61±1.40 53.56±0.20 58.52±0.20 59.03±1.49 60.21±1.49
ve 9 58.11±1.98 49.38±1.93 59.21±1.02 48.23±6.04 57.39±1.51 60.71±1.40 61.94±2.28
pb 5 90.27±0.79 89.56±1.09 90.52±0.84 90.83±1.61 90.13±0.76 91.49±1.23 91.54±1.26
te 8 78.34±1.94 73.39±4.92 77.95±2.24 79.13±2.18 79.04±1.96 83.05±0.12 83.92±0.47
te 4 76.02±0.02 78.11±0.23 76.55±2.05 76.01±0.29 80.97±1.67 83.28±1.78 84.50±2.37
Ave 71.78±1.54 70.54±1.58 72.53±1.39 70.38±1.64 72.46±1.36 73.56±1.26 74.28±1.38
WT 0 3 0 1 0 16


