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Abstract—Combining visual information with inertial measure-
ments represents one popular approach to achieve robust and
autonomous navigation in robotics, specifically for low-cost aerial
vehicles in GPS-denied environments. In this paper, building upon
both the recent theory of Unscented Kalman Filtering on Lie
Groups (UKF-LG) and the theory of invariant Kalman filter
based SLAM we proposed recently, an innovative UKF for the
monocular visual inertial problem is derived, where the body
pose, velocity, and the 3D landmarks’ positions are viewed as a
single element of a (high dimensional) Lie group SE2+p(3), and
where accelerometers’ and gyrometers’ biases are appended to
the state and estimated as well. The efficiency of the approach is
validated on a real data set, where the proposed filter is shown to
compare favorably to the conventional UKF, and to some recent
UKF variants of the literature.

Index Terms—Lie groups, unscented Kalman filter, visual
inertial system, SLAM, sensor fusion, localization

I. INTRODUCTION

Fusion of visual and inertial measurements, albeit an old
field of research, is receiving increasing attention owing to the
development of highly manoeuvring autonomous robots able
to navigate in cluttered environments and solve tasks such as
mapping or search and rescue [1,2]. The monocular Visual
INertial System (VINS), which equips most of Micro Aerial
Vehicles (MAVs), consists of an Inertial Measurement Unit
(IMU) associated with a single camera, and constitutes an
attractive sensor suite both for accurate state estimation and
environment awareness, due to its low-cost, lightweight and
power characteristics. Indeed, the IMU measures noisy biased
accelerations and rotational velocities at high sampling time
(100−200 Hz) whereas camera provides rich information for
landmark visual tracking at lower rate (20 Hz).

Over the last decades, tremendous progresses have been
achieved in visual localization frameworks (e.g. [3]), whose
estimation and robustness can be improved by tightly coupling
visual and inertial information. Most approaches combine data
using filtering based solutions [4]–[8], or optimization/bundle
adjustment techniques, e.g., [9,10]. Optimization based meth-
ods are more efficient but generally come with higher compu-
tational demands, and filtering approaches are well suited to
real time.

In this paper, we tackle the problem of fusing IMU sig-
nals with monocular vision, also known as VINS or visual
featured-based Simultaneous Localization And Mapping (vi-
sual SLAM) where the odometer information is replaced by
inertial measurements. We propose a novel algorithm that

mainly builds upon two components. First, the recent Lie
group structure of SLAM advocated in the field of invariant
filtering, see [11]–[13]. Secondly, the UKF on Lie Groups
(UKF-LG), whose general methodology has been recently
introduced in [14]. The effectiveness of our algorithm is
tested on real data. The method favorably compares to the
conventional UKF, as well as to some state of the art Kalman
filter variants for the considered problem.

A. Links with Previous Literature and Contributions

In robotics, it has been long known that the Lie group
structure of the space of poses SE(3) plays an important role,
see e.g., [15,16]. More recently, probability distributions on
SE(3), and their role for control and estimation, have been
well studied, see e.g., [17]–[19], and the monographs [20,21].

In [11], we proposed the Right Invariant Extended Kalman
Filter (RIEKF) based SLAM. Letting the output function
h(.) of [11] be the projection onto the camera frame, we
readily obtain a RIEKF for visual SLAM, and this filter has
been described and advocated recently in [7] for 3D VINS.
However, in the implementation section of the latter paper, the
authors rather opt for a multi-state constrained RIEKF, which
is not the same as the RIEKF based SLAM, since in their RI-
MSCKF the landmarks are removed from the state (see eq.
21 therein). In Section V dedicated to experiments, we also
apply the framework [11] to the inertial and vision fusion,
to implement a RIEKF where the landmarks are part of the
state indeed. To our best knowledge this is the first published
implementation of RIEKF based inertial visual SLAM and
we demonstrate experimentally the efficiency of the approach,
notably its superiority over the conventional UKF based visual
inertial SLAM.

We also propose a Right-UKF-LG, which can be viewed
as an unscented-based transform alternative to the RIEKF, but
which has the advantage of being much more versatile than
the RIEKF, though. Indeed, it spares the user the computation
of Jacobians, that can prove tedious in the Invariant EKF
framework (the Jacobians are defined with respect to the Lie
groups structure, see e.g., [12]). As a result,
• the practitioner can readily implement our algorithm

when using, e.g., a different camera model, or if one
wants to add additional measurements such as GPS mea-
surements outdoors, or a complementary depth sensor;

• should additional parameters/variables be estimated, such
as IMU’s scale factors and/or harmonization angles, the



algorithm is straightforward to adapt following the state
augmentation technique of Section III-C3.

Moreover, the difference between the Right-UKF-LG and
the RIEKF echoes the difference between conventional UKF
and conventional EKF. In the experiments below, the noise
level is moderate, and both methods perform identically. This
is because under this level of noise the Jacobian approximation
is accurate indeed. However in the presence of stronger noise,
the unscented transform based method might prove more
robust, as demonstrated on a robot localization problem in
[14].

Note that, the present paper, even though concerned with
a particular application, also brings some improvements to
the general UKF-LG methodology, by presenting a state
augmentation technique at Section III-C3 to deal with state
spaces that are not exactly Lie groups, and a modification in
Section IV-F to deal with large updates, as well as a detailed
square-root form implementation in the Appendix.

In [8], the authors consider the same visual inertial fusion
problem, and devise an UKF that takes advantage of the
Lie group structure of the robot’s (quadrotor) pose SE(3).
The main differences are threefold. First, the Lie group we
use SE2+p(3), introduced in [11,22], is much bigger than
SE(3), and includes the pose but also the velocity and the
landmarks’ positions. Then, and more generally, the UKF-LG
[14] generates sigma points in the Lie algebra, and then uses
concentrated Gaussians (as in e.g., [18]) to map them onto the
group. In contrast, [8] uses a probability distribution directly
defined on the group (the distributions in [20]) to generate
the sigma points, which is akin to the general unscented
Kalman filtering on manifolds of [23]. Moreover, while [8]
uses parallel transport operations based on left multiplications,
we explore two variants based both on left and right mul-
tiplications, and the right one turns out to be better. Finally,
experiments in Section V suggest the Right-UKF-LG achieves
better performance than the SE(3)-based UKF of [8].

B. Paper’s Organization

The paper is organized as follows. Section II formulates the
fusion problem. Section III contains mathematical preliminar-
ies on unscented Kalman filtering on Lie groups. Section IV
describes the two proposed UKFs for monocular VINS. Sec-
tion V illustrates the performances of the proposed filters based
on real experiments. The Matlab code used for this paper is
publicly available at https://github.com/mbrossar/
ICRA2018.git.

II. PROBLEM MODELING

We recall in this section the standard kynodynamic model
for flying devices equipped with an IMU. We then detail the
visual measurement model, and we finally pose the filtering
(or more precisely the SLAM) problem we seek to address.

A. Variables of Interest and Dynamical Model

Let us consider an aerial body navigating on flat earth
equipped with an IMU, whose biases are modeled as random

walks. Assume moreover that p fixed landmarks of the scene
can be tracked visually, and that they constitute the map. The
state we want to estimate consists of the position x ∈ R3,
velocity v ∈ R3, orientation R ∈ SO(3) of the body (that
is, the rotation matrix that maps the body frame to the global
frame), the IMU biases bω ∈ R3 and ba ∈ R3, as well as the
3D positions p1, . . . ,pp ∈ R3 of the landmarks in the global
frame. The dynamics of the system read

body state


Ṙ = R (ω − bω + nω)×
v̇ = R (a− ba + na) + g

ẋ = v

, (1)

IMU biases

{
ḃω = nbω

ḃa = nba

, (2)

landmarks
{
ṗi = 0, i = 1, . . . , p , (3)

where the various white Gaussian noises can be stacked as

n =
[
nT
ω nT

a nT
bω

nT
ba

]T ∼ N (0,Q) , (4)

and where (ω)× denotes the skew symmetric matrix associated
with the cross product with vector ω ∈ R3. These equations
model the dynamics of small MAVs such as quadrotors where
the IMU measurements ω and a in (1) are considered as noisy
and biased inputs of the system.

B. Measurement Model

In addition to the IMU measurements used as input for
the dynamics, the vehicle gets visual information from a
calibrated monocular camera, observes and tracks the p land-
marks through a standard perspective projection model [24].
Landmark pi is observed through the camera as

yi =

[
yiu
yiv

]
+ ni

y, (5)

where yi is the measured pixel location of the landmark in
the camera, that is,

λ

yiuyiv
1

 = Π
[
RT

C

(
RT (pi − x)− xC

)]
, (6)

with λ the scale parameter, Π the calibration matrix of the
pinhole camera model, and the term in bracket corresponds
to the distance from the landmark to the camera expressed in
the camera frame with RC and xC the known rotation matrix
and translation mapping the body frame to the camera frame.
Finally, ny ∼ N (0,N) represents the pixel image noise.

C. Estimation/Fusion Problem

We would like to compute the probability distribution of the
system’s state (x,v,R,bω,ba,p1, . . . ,pp) defined through
an initial Gaussian prior and the probabilistic evolution model
(1)-(3), conditionally on the measurements of the form (5) for
1 ≤ i ≤ p. This is the standard probabilistic formulation of the
visual 3D SLAM problem, when the robot is equipped with
an IMU. The problem is also referred to as VINS, see e.g.,

https://github.com/mbrossar/ICRA2018.git
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[7], camera-aided navigation, fusion of inertia and vision, and
sometimes visual inertial odometry [8].

III. UNSCENTED KALMAN FILTERING ON LIE GROUPS

In this section we provide the reader with the bare minimum
about the UKF on Lie Groups (UKF-LG) introduced in [14].

A. Matrix Lie Groups

A matrix Lie group G ⊂ RN×N is a subset of square
invertible matrices such that the following properties hold

I ∈ G; ∀χ ∈ G,χ−1 ∈ G; ∀χ1,χ2 ∈ G,χ1
χ

2 ∈ G. (7)

Locally about the identity matrix I, the group G can be identi-
fied with an Euclidean space Rq using the matrix exponential
map expm(.), where q = dimG. Indeed, to any ξ ∈ Rq one
can associate a matrix ξ∧ of the tangent space of G at I,
called the Lie algebra g. We then define the exponential map
exp : Rq → G for Lie groups as

exp (ξ) = expm (ξ∧) , (8)

Locally, it is a bijection, and one can define the Lie logarithm
map log : G→ Rq as the exponential inverse, leading to

log (exp (ξ)) = ξ. (9)

B. Uncertainty on Lie Groups

To define random variables on Lie groups, we cannot apply
the usual approach of additive noise for χ ∈ G as G is not a
vector space. In contrast, we define the probability distribution
χ ∼ NL(χ̄,P) for the random variable χ ∈ G as [18,25]

χ = χ̄ exp (ξ) , ξ ∼ N (0,P) , (10)

where N (., .) is the classical Gaussian distribution in Eu-
clidean space Rq and P ∈ Rq×q is a covariance matrix. In
(10), the original Gaussian ξ of the Lie algebra is moved over
by left multiplication to be centered at χ̄ ∈ G, hence the letter
L which stands for “left”, this type of uncertainty being also
referred to as left-equivariant [14]. We similarly define the
distribution χ ∼ NR(χ̄,P) for right multiplication of χ̄, as

χ = exp (ξ) χ̄, ξ ∼ N (0,P) . (11)

In (10) and (11), χ̄ may represent a large, noise-free and
deterministic value, whereas P is the covariance of the small,
noisy perturbation ξ. We stress that we have defined these
probability density functions directly in the vector space
Rq such that both NL (., .) and NR (., .) are not Gaussian
distributions.

Remark 1: defining random Gaussians on Lie groups
through (10) and (11) is advocated notably in [18,25], and
the corresponding distribution is sometimes referred to as
concentrated Gaussian on Lie groups, see [26]. An alternative
approach, introduced to our best knowledge in [20], and used
in [19], consists of defining a (Gaussian) density directly on
the group using the Haar measure. In the latter case, the
group needs be unimodular, but such a requirement is in fact
unnecessary to define the random variables (10) and (11).

C. Unscented Kalman Filtering on Lie Groups

By representing the state error as a variable ξ of the Lie
algebra, we can build two alternative unscented filters for any
state living in Lie groups following the methodology very
recently introduced in [14]. Let us consider a discrete time
dynamical system of the form

χ
n+1 = f (χn,un,wn) , (12)

where the state χn lives in G, un is a known input variable
and wn ∼ N (0,Qn) is a white Gaussian noise, associated
with generic discrete measurements of the form

yn = h (χn,vn) , (13)

where vn ∼ N (0,Rn) is a white Gaussian noise. Essentially
two different UKFs follow from the above uncertainty repre-
sentation.

1) Left-UKF-LG: the state is modeled as χ
n ∼

NL(χ̄n,Pn), that is, using the left-equivariant formulation
(10) of the uncertainties. The mean state is thus encoded in
χ̄

n and dispersion in ξ ∼ N (0,Pn). The sigma points are
generated based on the ξ variables, and mapped to the group
through the model (10). Note that, this is in slight contrast
with [8,19], which generate sigma points through a distribution
defined directly on the group. The filter consists of two steps
along the lines of the conventional UKF: propagation and
update, and compute estimates χ̄n and Pn at each n.

2) Right-UKF-LG: the state is alternatively modeled as
χ

n ∼ NR(χ̄n,Pn), that is, using the right-equivariant for-
mulation (11) of the uncertainties.

3) UKG-LG with state augmentation: the paper [14] is
dedicated to the case where the state is a Lie group. However,
when the state consists of a matrix χ belonging to a Lie
group, and an additional vector, say b, the methodology can
be readily extended by augmenting the state space: vector b is
appended to the state which then becomes the couple (χ,b).
The Lie group variable χ is treated through the UKF-LG,
whereas the vector variable is treated through the conventional
UKF methodology. This is the approach advocated below,
where the vector variable correspond to the IMU biases.

D. The Special Euclidean Group SE2+p(3)

As early noticed in [22], the SLAM problem bears a natural
Lie group structure, through the group SE1+p(3), that is
properly introduced and leveraged for SLAM in [11], where
a Lie group based EKF (namely an Invariant EKF) is shown
to resolve some well-known consistency issues of EKF based
SLAM. Some other stochastic properties of the Invariant EKF
based SLAM have also recently been proved in [13].

Any matrix χ ∈ SE2+p(3) is defined as

χ =

[
R v x p1 · · · pp

02+p×3 Ip+2×p+2

]
, (14)

The dimension of the group, and thus of the Lie alge-
bra, is 3 + 3(2 + p). The uncertainties, defined as ξ =



[
ξTRξ

T
v ξ

T
x ξ

T
p1
· · · ξTpp

]T ∈ R9+3p, are mapped to the Lie
algebra through the transformation ξ 7→ ξ∧ defined as

ξ∧ =

[
(ξR)× ξv ξx ξp1 · · · ξpp

02+p×5+p

]
. (15)

The closed form expressions for exponential, logarithm and
Jacobian can be deduced along the lines of [11,25] and can
be found in the Matlab source code for the present paper.

IV. PROPOSED ALGORITHMS

To apply UKF on Lie groups methodology, the dynamics
must first be linearized, and the state space must be (partly)
embedded in a matrix Lie group.

A. Time Discretization

Equations (1) are standard navigation equations, and var-
ious methods exist to discretize them with respect to time.
The most common choice for a small time step ∆T is
to set R(t + ∆T ) = R(t)expm[(ω(t) − bω(t))∆T +

Cov (nω)
1/2

g
√

∆T )×], with g a standard 3-dimensional
Gaussian. The remaining equations of model (1)-(3) are dis-
cretized using the Euler-Maruyama method (see also [10]).

B. Lie Group Embedding

The state space can be partially embedded into a Lie group,
by letting χn be the matrix of the group G = SE2+p(3) that
represents the state variables (R,v,x,p1, · · · ,pp) at time step
n through representation (14). Using this embedding, the state
at time n can in turn be represented as (χn,bn), letting the
bias vector be b =

[
bT
ω bT

a

]T ∈ R6. The dispersion on χn

can be encoded using the left uncertainty (10) or the right
one (11), leading to two alternative filters (see Section III-C).
In the following, we detail the Right-UKF-LG which adopts
the right-equivariant uncertainties (11) of χn and we leave
to the reader the derivation of the Left-UKF-LG, based upon
left-equivariant uncertainties (10).

C. Final Retained Model and Filter Architecture

Defining the input vector u =
[
ωT aT

]T
, and gathering

the results of the two preceding subsections, we obtain the
following discrete time model associated to the Right-UKF-
LG:

state

{
χ

n = exp (ξ) χ̄n

bn = b̄n + b̃
,

[
ξ

b̃

]
∼ N (0,Pn) , (16)

dynamics
{
χn,bn = f (χn−1,un − bn−1,nn) , (17)

observations

{
Yn =

[
yT
1 · · · yT

p

]T
:= Y (χn,wn)

yi given in (5), i = 1, . . . , p
, (18)

such that
(
χ̄

n, b̄n

)
∈ R(15+3p) represents the mean (es-

timated) state at time n, Pn ∈ R(15+3p)×(15+3p) is the
covariance matrix that defines the state uncertainties

(
ξ, b̃

)
,

and the vector Yn contains the observations of the p landmarks
with associated Gaussian noise wn ∼ N (0,W). The filter
consists of two steps: propagation and update; as shown in
Algorithm 1. We detail these two main steps in the following

with the formalism of square-root implementation [27] where
S is the Cholesky decomposition of the covariance, sparing
the computation of covariance matrices and being numerically
more stable.

Remark 2: for the Left-UKF-LG, we define χ
n =

χ̄
n exp (ξ) and substitute it in (16). Albeit a seemingly minor

difference, both filters may exhibit quite different behaviors
(in [11] the RIEKF based SLAM is proved to come with
consistency properties that the Left-IEKF does not actually
possess).

Algorithm 1: Left and Right UKF on Lie groups

Input: χ̄, b̄,S = chol (P) ,u,Q,Y,W;
1 χ̄, b̄,S← Propagation

(
χ̄, b̄,S,u,Q

)
;

if received measurement then
2 χ̄, b̄,S← Update

(
χ̄, b̄,S,Y,W

)
;

Output: χ̄, b̄,S;

D. Propagation Step

The propagation step is described in Algorithm 2 and
operates as follow. The filter first computes the propagated
mean state, and then the 2J sigma points obtained at lines
3 and 5 are propagated at lines 6-7. It is then convenient
to view the propagated Cholesky factors S as an output of
the function qr(.). Details are provided in Appendix along
with the definitions of J and γ. Although more details on the
methodology can be found in [14] (see also [18] regarding
propagation), line 7 deserves a few explanations for the paper
to be self contained. According to uncertainty model (11),
dispersion around the mean is modeled as exp(ξ)χ, so if χ̄ de-
notes the propagated mean, and χj denotes a propagated sigma
point, then the corresponding sigma point in the Lie algebra
is defined through exp(ξj)χ̄ = χ

j , i.e., ξj = log
(
χ

j
χ̄−1

)
.

Algorithm 2: Propagation function for Right-UKF-LG

Input: χ̄, b̄,S,u,Q;
1 u← u− b̄ ; // unbiased input
2 Sa = blkdiag (S, chol (Q));
3 χ = χ̄ ; // save non propagated state
4 χ̄, b̄ = f (χ,u,0) ; // propagate mean
// step 5: sigma points generation

5
[
ξ∓j b∓j n∓j

]
= ∓γ colj (Sa) , j = 1, . . . , J ;

// steps 6-7: sigma point propagation
6 χ∓j ,b

∓
j ← f

(
exp

(
ξ∓j
)
χ,u− b∓j ,n

∓
j

)
, j = 1, . . . , J ;

7 ξ∓j ← log
(
χ∓

j
χ̄−1

)
, j = 1, . . . , J ;

8 S← qr
(
ξ∓j ,b

∓
j , j = 1, . . . , J,Q

)
;

// see Appendix for definition of qr
// the notation x∓ is used to to denote

the two variables +x and −x
Output: χ̄, b̄,S;



Algorithm 3: Update function for the Right-UKF-LG

Input: χ̄, b̄,S,Y,W;
1 Sa = blkdiag (S, chol (W));
2 Y0 = Y (χ̄,0); // see (18) and (5)-(6)
3
[
ξ∓j b∓j w∓j

]
= ∓γ colj (Sa) , j = 1, . . . , J ′;

4 χ∓j = exp
(
ξ∓j
)
χ̄, j = 1, . . . , J ′;

5 Yj = Y
(
χ∓

j ,w
∓
j

)
, j = 1, . . . , J ′;

6 δξ̄, δb̄,S← qr’
(
Y0,Y

∓
j , ξ

∓
j , j = 1, . . . , J ′,W

)
;

7 χ̄← exp
(
δξ̄
)
χ̄, b̄← b̄ + δb̄ ; // update mean

// See Appendix for definition of qr’
Output: χ̄, b̄,S;

E. Update Step

The update step incorporates the observation of the p
landmarks at time n and is described in Algorithm 3. It
operates as follow. The sigma points generated in the Lie
algebra at lines 3 are mapped to the group through model (11)
at line 4, and used to compute 2J ′ + 1 measurement sigma
points at line 5. The function qr′(.) then evaluates the updated
Cholesky factors and the innovation term

(
δξ̄, δb̄

)
used to

update the mean state, along the lines of the conventional UKF
methodology, and it is detailed in the Appendix. Line 7 is the
update of [14], see next subsection for more details.

Remark 3: following [28], the square-root implementation
can add or remove landmarks, initializing landmark position as
inverse depth point and allows computationally efficient prop-
agation steps. Sigma point selections [5] is also an interesting
issue left for future work.

F. Discussion on the Final Update

Let χ̄ denote the propagated mean, and P the propagated
covariance matrix of the state error. According to model (11), it
means the propagated state is approximately described by χ ≈
exp (ξ) χ̄, ξ ∼ N (0,P). The unscented transform and the
Kalman update then provide an approximation to the posterior
for ξ of the form ξ ∼ N (δξ̄,P+), i.e., ξ = δξ̄ + ξ+ with
ξ+ ∼ N (0,P+). Back to the Lie group this implies

χ ≈ exp
(
ξ+ + δξ̄

)
χ̄, where ξ+ ∼ N

(
0,P+

)
, (19)

Both correction δξ̄ and uncertainty ξ+ in (19) being generally
sufficiently small, the Baker-Campbell-Hausdorff (BCH)

exp
(
ξ+ + δξ̄

)
= exp

(
ξ+
)

exp
(
δξ̄
)

+O
(
δξ̄+, (ξ+)2, ξ+δξ̄

)
is sufficiently accurate to approximate the posterior as χ '
exp (ξ+) χ̄

+
, where χ̄+

= exp
(
δξ̄
)
χ̄, recovering the form

imposed by model (11). This is what is proposed in [14].
Alternatively, when the innovation δξ̄ is important, we

propose in the present paper to possibly use the more accurate
approximation of [20,29]

exp
(
ξ+ + δξ̄

)
= exp

(
Jξ+

)
exp

(
δξ̄
)

+O
(
ξ+
)
, (20)

where J is the left Jacobian. In this case we compute the
updated parameters as

χ̄+
= exp

(
δξ̄
)
χ̄, (21)

P+ ← JP+JT , (22)

When δξ̄ remains small, J ≈ I such that we can discard J in
(22) for computational efficiency, recovering the update [14].

V. EXPERIMENTAL RESULTS

To demonstrate the performances of the two proposed
filters (Right and Left UKF-LG), we evaluate and compare
them using Euroc public dataset [30] which collects real
IMU and camera measurements of a quadrotor in indoor
environments with available ground truth, and we select the
sequence V2_01_medium (see Figures 1 and 2) where the
flight dynamics and illumination conditions are judged as
moderately complex. Five different filters are compared:
• an UKF that considers the attitude as an element SO(3)

and the remaining variables as a vector space;
• the SE(3)-based UKF recently introduced in [8]. This

filter is an UKF which encodes body attitude and position
in SE(3) and uses parallel transport associated to left-
invariant vector fields of SE(3);

• the Right-Invariant EKF SLAM of [7,11];
• the proposed Right-UKF-LG described in Section IV;
• the proposed Left-UKF-LG, as an alternative to Right-

UKF-LG based on the left uncertainty representation (10).

A. Experimental Setting

The different filters are configured with the same parame-
ters, where we set p = 30 landmarks, IMU noise parameters
provided by [30] and 1 pixel standard deviation for the
landmark observations. The initial body pose corresponds to
the ground truth values and we compute an initialization
process based on [9] for IMU bias estimation and scale (i.e.,
landmarks) initialization. The filters obtain the same visual
measurements by tracking features as in Figure 2 via the
KLT tracker using minimum eigenvalue feature detection [31].
When a landmark is ceased to be observed, it is replaced
with a new one which is initialized following [5]. Source
code from our experiments is publicly available at https:
//github.com/mbrossar/ICRA2018.git.

B. Results

The different filters are thus launched on the real data and
we plot the different state errors, respectively, in Figure 3 for
the attitude, and in Figure 4 for the position. Performances
over the whole experiment are numerically summarized in
Figure 5. On this particular experiment, we see that
• the filters are rather equivalent regarding position esti-

mate, but behave differently regarding attitude estimate.
This is logical since orientation uncertainty is a key fea-
ture in SLAM inconsistency [32], and invariant Kalman
filtering based methods precisely aim at better coping
with non-linearities to improve consistency [11];

https://github.com/mbrossar/ICRA2018.git
https://github.com/mbrossar/ICRA2018.git
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Fig. 1. Ground truth trajectory provided by Euroc dataset [30].

Fig. 2. Landmark tracking in the experiment. Green crosses are the current
pixel locations of the landmarks and red circles are the pixel locations of the
landmarks five images (i.e., 1 s) earlier. Picture comes from the Euroc dataset
[30].

• various groups appear: the RIEKF and Right-UKF-LG
achieve the best results. This is logical as right-invariant
errors on SEp+2(3) are best suited to SLAM, as ex-
plained in [11,13]. The Left-UKF-LG achieves less ac-
curate performances but is better than conventional UKF
and the SE(3)-based UKF of [8];

• in terms of execution time, we indicate that our RIEKF
implementation is faster than the remaining filters (which
all exhibit similar complexity);

• due to the selection of 30 random landmarks at the
beginning of the experiment, when running our code
at https://github.com/mbrossar/ICRA2018.
git, slight modifications can be observed, although the
main tendencies remain unchanged. Notably, RIEKF and
Right-UKF-LG are always the best, and in turn the Left-
UKF-LG is always better than the conventional UKF, and
we observed that the performances of the SE(3)-based
UKF of [8] oscillates between those of Left-UKF-LG and
conventional UKF. Thus, one can safely claim the SE(3)-
based UKF is better than conventional UKF, although this
is not obvious in the present particular run.
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Fig. 3. Root Mean Square Error on attitude over time, based on real data
and ground truth. RIEKF and Right-UKF-LG outperform the other filters on
this dataset. Figure best seen in color.
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Fig. 4. Root Mean Square Error on position over time. The various filters
obtain similar errors. Figure best seen in color.

VI. CONCLUSION

Two novel UKFs for data fusion of inertial sensors and
monocular vision have been proposed. They build upon the
very recent theory of UKF on Lie groups of [14], and
have the merit of exploiting the full Lie group structure
underlying the SLAM problem introduced in [11,22]. As
such they can directly feed controllers that operate in the
same space. Another advantage is that the UKF approach
spares the user the computation of Jacobians inherent to
EKF implementation, and thus the proposed filters can be
readily adapted to small modifications in the model, estimation
of additional parameters, and/or addition of one or several
sensors. Results from real experimental data have shown the
relevance of the approach based on invariance, and notably
the Right-UKF-LG proposed here. Future works will focus on
extending the approach including keyframes and descriptors
in a complete (initialization, tracking, mapping, relocalization,

x (cm) R (◦)
Conventional UKF 6.3 0.45
SE(3)-UKF of [8] 6.0 0.44

RIEKF 5.9 0.17
Left-UKF-LG 6.0 0.24

Right-UKF-LG 5.9 0.15
Fig. 5. Root Mean Square Error with respect to ground truth over the complete
trajectory, on the body position and attitude, for the different filters. The
proposed Right-UKF-LG achieves the best results.

https://github.com/mbrossar/ICRA2018.git
https://github.com/mbrossar/ICRA2018.git


and loop closing) Visual INertial System, and will explore
the theoretical consistency properties that the proposed Right-
UKF-LG might possess along the lines of [11].
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APPENDIX

We give here the details of parameters and functions used
for LeF and RiF. We set the scale parameters γ and γ′ with
the scaled unscented transform [33], such that they depend on
the augmented covariance size J = 27 + 3p, J ′ = 15 + 5p
and are defined as

γ =
√
J/(1 +W0),W0 = 1− J/3,Wj =

1−W0

2J
, (23)

γ′ =
√
J ′/(1 +W ′0),W ′0 = 1− J ′/3,W ′j =

1−W ′0
2J ′

. (24)

The function qr(.) operates as taking the QR decomposition
of

QR ←

 ξ+1 · · · ξ+J ξ−1 · · · ξ−J
b+
1 · · · b+

J b−1 · · · b−J
0 chol (Q) 0 − chol (Q)

 , (25)

from which we can extract the Cholesky factor as

R =

[
S
0

]
. (26)

The function qr′(.) operates as follow: first, compute the
mean measurement and weighted deviation

Ȳ = W0Y0 +

J′∑
j=1

W ′i
(
Y+

j + Y−j
)
, (27)

e0 =
√
|W ′0|

(
Y0 − Ȳ

)
, (28)

e∓j =
√
|W ′j |

(
Y∓i − Ȳ

)
, j = 1, . . . , J ′, (29)



and compute the Cholesky factors of the measurement covari-
ance and the cross covariance as

QR ←
[

e+
1 · · · e+

J′ e−1 · · · e−J′

0 chol (W) 0 − chol (W)

]
, (30)

R =

[
S′

0

]
, (31)

S′ ← CholUpdate (S′, sign (W ′0) , e0) , (32)

P′ =

J′∑
j=1

√
W ′j

([
ξ+j
b+
j

]T
e+
j +

[
ξ−j
b−j

]T
e−j

)
, (33)

where W is a block diagonal matrix containing p times
the matrix N along its diagonal, and then compute gain,
innovation and covariance as

K = P′
(
S

′TS′
)

= PS
′−1S

′−T , (34)[
δξ̄
δb̄

]
= K

(
Y − Ȳ

)
, (35)

S← SeqCholUpdate
(
S,−1,KS

′T
)
, (36)

where SeqCholUpdate denotes repeated Cholesky updating
CholUpdate using successive columns of KS

′T as the updat-
ing vector. To finally consider the Jacobian (see Section IV-E),
we compute

S← SJT , (37)

letting S no longer triangular, but S keeps a valid matrix square
root which could be used to define the next set of sigma points
[28].
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