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A novel differentiator:

A compromise between super twisting and linear algorithms

M. Ghanes1, J.P. Barbot2 L. Fridman3 and A. Levant4

Abstract— Based on the frequency argument, a novel second
order sliding mode differentiator with a variable exponent α

is proposed in this article. The super twisting differentiator
(α = 0, 5) is not sensible to perturbation but its accuracy is
degraded when the signal is affected by the noise. The linear
observer (α = 1) has better property in the presence of noise
but is less robust to perturbations. The goal of this paper is
to propose a trade-off between the exact differentiator and
linear observer. To reach this objective, the parameter α is
made variable. In the absence of noise α goes to 0, 5 and
tends to 1 when the noise increases. In free-noise case and
with or without perturbation, the novel differentiator behaves
as a super twisting differentiator (exact differentiation). When
the signal is affected by noise, only a practical stability of the
differentiator is ensured. Finally simulation results are given
to show that the novel differentiator has better performances
compared to differentiators having α fixed.

I. INTRODUCTION

The problem of real-time signal differentiation in finite

time has been investigated since at least last two decades [2],

[9], [10], [11], [12], [13], [14], [17], [19], [22]. To the best

of our knowledge, one of the first work in the framework

of control theory, was proposed in [7] where the signal

trajectory is approximated by a polynomial during a frame

time and after that this polynomial is differentiated. Nowa-

days two main approaches are used, the algebraic one [15]

and the second one based on sliding mode or homogeneous

techniques. With respect to the differentiator design proposed

by Levant [14], there exist several types of sliding mode or

homogeneous differentiators (see for example [9] and [22]).

The main advantage of such differentiators according to the

algebraic [15] or polynomial [7] algorithms is to give an

estimation without delay. Nevertheless, even if differentiators

are not sensible to perturbations, their accuracy is degraded

when the signal is affected by a noise. On another hand,

it is well known that the linear differentiators have good

properties with respect to the measurement noise but they

are sensible to perturbations and does not ensure a finite-

time convergence. To make a trade off between accuracy

and noise sensibility, a first work dealing with a variable

exponent law α was designed in [10] according to the output

error, which means that any qualitative noise property is

considered. Nevertheless, in [10] and the present work, it

is important to highlight that the variable exponent gain α is

between 0.5 (which corresponds to the exact differentiator)
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and 1 (that corresponds to the linear differentiator). The main

difference between our previous work [10] and the present

contribution is that the exponent gain α is made variable

with respect to the magnitude of the signal high frequency.

Note that variable gain (not exponent gain) schemes of

sliding mode controllers exist in the literature (see for

example [1], [3], [4], [8], [16], [20], [21], [23], [25]). These

schemes are introduced in order to minimize the amplitude

variation of the control law able to reject the perturbation

with reducing the energy consumption. It is important to

note that in differentiators design, energy consumption is not

relevant contrarily to the reduction of the noise measurement

effect.

The remainder of the paper is organized as follows.

Section II introduces a formal state space representation

generating the signal to be differentiated. In section III, the

dedicated differentiator is proposed. A convergence proof

ensuring a practical stability of the differentiator is given

when the signal to be differentiated is affected by a noise

and an exact differentiation is obtained in a free-noise case.

Simulation results are given in section IV illustrating the per-

formances and the effectiveness of the proposed differentiator

compared to cases when α is fixed.

II. SIGNAL GENERATION MODELING

Considering any ideal signal x1 with at least a second

bounded derivative. This signal can be represented by a

double integrator with bounded unknown input u. In practice

there exist always some noise measurement, then this ideal

signal y = x1 becomes a real one ym, as it is given hereafter

Σ :

⎧

⎨

⎩

ẋ1 = x2

ẋ2 = u

ym = x1 + w

(1)

where x(t) ∈ R2 is the state of the system, u(t) ⊂ U ∈ R is

the unknown input, ym(t) ∈ R represents the output of the

system and w refers to a white measurement noise.

Assumptions 1:

1. The unknown input u ⊂ U is supposed to be bounded,

i.e., |u(t)| ≤ umax ∀t ≥ 0, where umax is the constant

bound value of u(t).
2. The measurement noise w is supposed to be bounded,

i.e., |w(t)| ≤ wmax ∀t ≥ 0, where wmax is the constant

bound value of w(t).
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III. PROPOSED DIFFERENTIATOR

First of all, in our previous work [10] a differentiator is

designed by making the exponent gain α variable accord-

ing to the error output measurement. By doing this, it is

not possible to distinguish clearly the effects of noise and

perturbation respectively. Hereafter, a new type of signal

differentiator is introduced by making the exponent gain α

variable with respect to the magnitude of the high frequency

signal. Roughly speaking, the high frequency signal, which

is close1 to the high frequency noise, is isolated and its

magnitude is used to drive the exponent gain α. So if

there is no noise, α is assigned to be equal to 0.5 (exact

differentiator) and to tend to 1 (linear differentiator) when

the noise increases.

The novel differentiator of ym is proposed as follows:

D :

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ż1 = z2 + k1 μ |e1m|αsign(e1m)

ż2 = k2 αμ2 |e1m|2α−1sign(e1m)

ż3 = −τ z3 + τ |ymhf |

α = 0.5(1 +
z3

z3 + ǫ
)

ymhf = s′4

(s′2+0.7654s′+1)(s′2+1.8478s′+1)ym

s′ = s
wcut

ŷ = z1

e1m = ym − z1

(2)

where z1 and z2 are respectively estimates of x1 and x2. A

mixed time-domain/Laplace-domain notation is adopted.

The differentiator (2) includes two filters.

The first filter (FF) is a high pass fourth order filter (Butter-

worth filter [6]) used to capture the magnitude of the high

frequency signal (ymhf ). The second filter (SF) z3 is a low

pass first order filter of |ymhf |.
The parameter α depends on the SF output in order to be

variable with respect to the magnitude of the high frequency

noise.

Remark 1: In (2), when α is fixed, according for example

to [18], the degree of homogeneity d = α−1 and the weights

r1 and r2 are equal to 1 and α respectively. In our case, the

assumption of a fixed α is always closely satisfied because α

is a slowly varying variable2 and is satisfied in a steady-state

case.

A. Gains and parameters tuning

- ki > 0, i = 1, 2 are constants and refer to the gains of the

linear part (see [17]). They are chosen such that the linear

part of the derivative of the Lyapunov function candidate

(see the proof of Theorem 1) has appropriate pole placement.

1The decomposition of the unknown input u in Fourier series and its 2-
times integration show that high frequency terms are divided by the square
of the high frequency input. Consequently, as the input is bounded, the input
high frequency effect on the signal is negligible.

2It is due to the fact that the SF is a slowly varying variable (ż3 = 0)
according to the tuning of τ .

- μ > 0 is a constant parameter chosen large enough to

cancel the perturbation (unknown input) effect (see the

proof of theorem 1).

- ǫ is a constant parameter. It will be chosen greater than

1 to have α ∈ [0.5, 1]. More precisely, when z3 is close to

zero (resp. close to ∞) α tends to 0, 5 (resp. tends to 1).

- τ > 0 is a constant parameter. In order to fix the frequency

range of the SF sufficiently low, this parameter will be

chosen sufficiently small (singular perturbation argument).

- wcut is the cutoff frequency of the FF. This frequency

should be greater than the frequency of the ideal signal y

(generated by system (1)).

- The damping ratio of the FF is given with 0.7654 and

1.8478. These values are obtained by developing the But-

terworth polynomial (normalized denominator polynomial)

Bn(s
′) = Πn

k
(s′−s′k)

w′
c

where s′k = w′
c exp

j(2k+n−1)π
2n , with

k = 1, 2, 3, ..., n, w′
c = 1 and n = 4.

B. Stability analysis

Let us define the state estimation error as
{

e1 = x1 − z1
e2 = x2 − z2.

The following change of coordinates is being useful to prove

the finite time convergence as it was introduced in [17]

{

Λ1 = μ |e1|αsign(e1)
Λ2 = e2.

(3)

In the sequel, the derivative of α will be needed

α̇ = 0.5
ż3(z3 + ǫ)− ż3z3

(z3 + ǫ)2

= 0.5
ǫ

(z3 + ǫ)2
ż3. (4)

By exploiting expression (4) the derivative of (3) is

Λ̇1 = μα |e1|α−1(Λ2 − k1μ |e1m|αsign(e1m))

+μ ln(|e1|)|e1|αsign(e1)0.5
ǫ

(z3 + ǫ)2
ż3

Λ̇2 = u− k2 αμ2 |e1m|2α−1sign(e1m). (5)

In the next theorem, conditions to have the practical stability

of the state estimation error (3) are given in the presence

of noise. In a free-noise case, an exact differentiation is

obtained (Levant’s like differentiator).

Theorem 1: If system (1) satisfies assumptions 1-1 and

1-2, then (2) is a second order sliding mode differentiator

of (1) with a variable gain exponent α. Moreover, the state

estimation error (3) converges to a ball whose radius is

function of |w| and |u|.
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Proof:

Consider the following Lyapunov function candidate

V = ΛTPΛ

whose time derivative along the trajectories of (5) is

V̇ = Λ̇TPΛ + ΛTP Λ̇ (6)

where Λ =
(

Λ1; Λ2

)

and P = PT is a positive definite

constant matrix.

Dynamics error (5) can be simplified as follows

Λ̇1 = μα |e1|α−1(Λ2 − k1 μ |e1m|αsign(e1m)) (7)

Λ̇2 = u− k2 αμ2 |e1m|2α−1sign(e1m)

according to the singular perturbation argument (see [24]).

In fact ż3 in (5) can be considered equal to zero due

to the requirement on the low-pass filter (SF) given in

subsection III-A. Moreover, it can be seen that in Λ̇1 of (5)

when e1 tends to zero, the second term is multiplied by 0
( lim
|e1|→0

ln(|e1|)|e1|α = 0) while the first term is multiplied

by ∞ ( lim
|e1|→0

|e1|α−1 = ∞).

Now, in order to rewrite (7) in terms of e1 instead of

e1m, the following inequalities are used

• When e1+w ≥ 0 with ⌊e1m⌉β = |e1+w|βsign(e1+w),
then

|e1|βsign(e1)− 2|w|β ≤ ⌊e1m⌉β ≤ |e1|βsign(e1) + 2|w|β

• When e1 + w ≤ 0, then

|e1|βsign(e1) + 2|w|β ≥ ⌊e1m⌉β ≥ |e1|βsign(e1)− 2|w|β .
Thus a function f(e1, w) ∈ [−2, 2] can be deduced

⌊e1m⌉β = |e1|βsign(e1) + f(e1, w)|w|β (8)

which allows to rewrite (7) in function of e1 and w separately

Λ̇1 = αμ |e1|α−1(Λ2 − k1 Λ1) + k1 μ f1(e1, w)|w|α)
Λ̇2 = u (9)

− αμ |e1|α−1(k2 Λ1 − k2 μ |e1|1−αf2(e1, w)|w|2α−1)

where in (8), f = f1 for β = α and f = f2 for β = 2α− 1.

Finally a compact form of (9) is obtained

Λ̇ = φ(AΛ +N) + U (10)

where U = (0;u), φ = αμ |e1|α−1,

N =

[

k1μ f1(e1, w)|w|α
k2μ |e1|1−αf2(e1, w)|w|2α−1

]

, and A =

(

−k1 1
−k2 0

)

.

Note that the matrix P is chosen such that

ATP + PA = −Q (11)

where Q is a constant definite positive matrix and the

eigenvalues of A are equal to
−k1±

√
k2

1
−4k2

2 . For an

appropriate choice of k1 and k2, A is a Hurwitz matrix.

Replacing now (10) in (6) and using (11), the derivative of

V becomes

V̇ ≤ −φΛTQΛ + 2φNTPΛ + 2UTPΛ

≤ −λmin(Q)φ‖Λ‖2 + 2φλmax(P )‖Λ‖‖N‖max

+2umaxλmax(P )‖Λ‖. (12)

If ‖Λ‖ verifies the following inequality

‖Λ‖ ≥ 2λmax(P )

λmin(Q)
(‖N‖max +

umax

φ
) := ρ,

V̇ (12) is negative, then this ensures that the error with

respect to ‖Λ‖ converges to a ball whose radius equal or

smaller to ρ. Consequently |e2| (equal to |Λ2|) is smaller or

equal than this radius when t tends to ∞.

Corollary 1: In the absence of noise, i.e. w = 0 the

radius of the ball tends to zero.

Proof: When w = 0, z3 in (2) tends to zero asymptot-

ically, then α goes to 0, 5 and the differentiator (2) becomes

Levant’s like differentiator (super twisting differentiator)

(13). In this case the perturbation due to u is directly canceled

by the sign function for sufficiently large μ.

Dexact :

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ż1 = z2 + k1 μ |e1m|0,5sign(e1m)
ż2 = k2 0, 5μ

2 sign(e1m)
ŷ = z1
e1m = ym − z1.

(13)

IV. SIMULATION RESULTS

In this section, simulations results of the proposed dif-

ferentiator are presented. The designed differentiator was

implemented in Matlab Simulink environment where an ode1

(Euler) solver is used with a fixed-step size equal to 0.0005.

The parameters of the signal generation modeling (1) are

fixed as follows:

- Initial conditions: x1(0) = 0, x2(0) = −10.

- Unknown input:

u(t) =

{

0 if t ∈ [150s, 300s], [450s, 600s], [750s, 900s]
sin(0.05t) else.

- Noise: w(t) is a white noise of power 0.5, sample time

0.0005 (fixed step-size), starting seed for random number

generator 23541. This noise is physically supposed bounded

(its magnitude is physically saturated) and it is multiplied

- by 0 for t ∈ [300, 500s] and [900, 1000s]
- by 0,1

35 between 500 and 600 s

- by 0,15
35 for t ∈ [0, 300s], [800s, 900s]

- and finally by 0,25
35 for t ∈ [600s, 800s].

According to section (III-A), differentiator (2) parameters

are selected as follows:

- Initial conditions: z1(0) = z2(0) = z3(0) = 0.

- k1 = 10, k2 = 40, μ = 1, τ = 1
3 , wcut = 10.

3
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As it can be noticed, the proposed differentiator scheme

with a variable exponent α gives good performances (see

figures 1, 2 and 3. In these figures (1, 2 and 3), the estimation

error e2 between x2 and z2 is better reduced when α is

variable compared to the cases when it is all time fixed.

Results comparison are made with Levant’s differentiator

case (α = 0, 5), linear differentiator case (α = 1) and

the average between both cases, i.e. α = 0, 75. With or

without perturbation (unknown input) and in the presence

of noise, the estimation error goes to a ball whose radius

is better reduced than the noted cases (i.e. α is equal to

0.5 or 0.75 or 1) and an exact differentiation is obtained

(α = 0, 5) in a free-noise situation under perturbation

(unknown input). This exact differentiation is also obtained

at initial conditions (considered also by the differentiator

as perturbations). This better result is possible thanks to

the proposed variable law α that is displayed in figure 4.

The latter takes the better choice. It tends to 1 when the

noise (figure 6) increases (Linear differentiator case) and

takes 0, 5 value (Levant’s differentiator case) under unknown

input (figure 5) or different initial conditions with a free-

noise case. As it was excepted, the response of the low pass

filter (SF) z3 displayed in figure 4 increases when the noise

increases (α increases) and goes to zero in the free-noise

case (α decreases in order to have 0, 5 value). Moreover, the

results of the second state x2 and its observation z2 when

α is variable and when it is fixed to α = 0, 5 are shown in

figures 7 and 8, respectively. These results confirm the well

founded of the proposed differentiator.
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Fig. 1. Estimation error e2 with α variable and fixed to 0, 5

100 200 300 400 500 600 700 800 900 1000

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Time (s)

e
2

e
2
=x

2
−z

2
 with α = 0,75

e
2
=x

2
−z

2
 with α  variable 

0 0.5 1

0

5

10

Initial conditions

Fig. 2. Estimation error e2 with α variable and fixed to 0, 75
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Fig. 3. Estimation error e2 with α variable and fixed to 1
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Fig. 8. State x2 and its estimate z2 with variable α

V. CONCLUSION

In this paper, a novel differentiator has been presented.

Usually, in a free-noise situation an exact differentiator

(super twisting differentiator) is used under perturbation

while the linear differentiator is employed when the signal

to be differentiated is affected by noise. Roughly speaking,

both properties, mainly accuracy (exact differentiation) and

less sensitivity to noise (linear differentiator) are combined

in the proposed differentiator by making the exponent

parameter α variable with respect to the high frequency

magnitude of the signal. If the signal to be differentiated is

affected by noise (resp. not affected by noise), α tends to 1
(resp. to 0, 5) and the proposed differentiator behaves as a

linear differentiator (resp. as a super twisting differentiator).

The dedicated differentiator has been tested in simulation.

The obtained results demonstrated that it performs well

compared to others differentiators when α is considered

fixed. Our on going work will focus on an experimental

validation and a more general stability analysis of the

designed differentiator.
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