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Abstract. We prove that one can construct various kinds of automata
over finite words for which some elementary properties are actually in-
dependent from strong set theories like Tn =:ZFC + “There exist (at
least) n inaccessible cardinals”, for integers n ≥ 0. In particular, we prove
independence results for languages of finite words generated by context-
free grammars, or accepted by 2-tape or 1-counter automata. Moreover
we get some independence results for weighted automata and for some
related finitely generated subsemigroups of the set Z

3×3 of 3-3 matrices
with integer entries. Some of these latter results are independence results
from the Peano axiomatic system PA.
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1 Introduction

We pursue in this paper a study of the links between automata theory and set
theory we begun in previous papers [Fin09,Fin11,Fin15]

In [Fin09] we proved a surprising result: the topological complexity of an
ω-language accepted by a 1-counter Büchi automaton, or of an infinitary ratio-
nal relation accepted by a 2-tape Büchi automaton, is not determined by the
axiomatic system ZFC; notice that here the topological complexity refers to
the location of an ω-language in hierarchies, like Borel or Wadge hierarchies, in
the Cantor space of infinite words over a finite alphabet Σ, and one assume, as
usually, that ZFC is consistent and thus has a model. In particular, there is a
1-counter Büchi automaton A (respectively, a 2-tape Büchi automaton B) and
two models V1 and V2 of ZFC such that the ω-language L(A) (respectively,
the infinitary rational relation L(B)) is Borel in V1 but not in V2. We have
proved in [Fin11] other independence results, showing that some basic cardinal-
ity questions on automata reading infinite words actually depend on the models
of ZFC.



The next step in this research project was to determine which properties
of automata actually depend on the models of ZFC, and to achieve a more
complete investigation of these properties.

Recall that a large cardinal in a model of set theory is a cardinal which
is in some sense much larger than the smaller ones. This may be seen as a
generalization of the fact that ω is much larger than all finite cardinals. The
inaccessible cardinals are the simplest such large cardinals. Notice that it cannot
be proved in ZFC that there exists an inaccessible cardinal, but one usually
believes that the existence of such cardinals is consistent with the axiomatic
theory ZFC. The assumed existence of large cardinals have many consequences
in Set Theory as well as in many other branches of Mathematics like Algebra,
Topology or Analysis, see [Jec02].

In [Fin15], we recently proved that there exist some 1-counter Büchi au-
tomata An for which some elementary properties are independent of theories
like Tn =: ZFC + “There exist (at least) n inaccessible cardinals”, for integers
n ≥ 1. We first prove that “L(An) is Borel”, “L(An) is arithmetical”, “L(An) is
ω-regular”, “L(An) is deterministic”, and “L(An) is unambiguous” are equiva-
lent to the consistency of the theory Tn (denoted Cons(Tn)). This implies that,
if Tn is consistent, all these statements are provable from ZFC + “There exist
(at least) n + 1 inaccessible cardinals” but not from ZFC + “There exist (at
least) n inaccessible cardinals”.

We prove in this paper that independence results, even from strong set the-
ories with large cardinals, occur in the theory of various automata over finite
words, like 1-counter automata, pushdown automata (equivalent to context-free
grammars), 2-tape automata accepting finitary rational relations, weighted au-
tomata. We first show that if T is a given recursive theory then there exists
an instance of the Post Correspondence Problem (denoted PCP), constituted of
two n-tuples (x1, x2, . . . , xn) and (y1, y2, . . . , yn) of non-empty words over a finite
alphabet Γ , which has no solution if and only if T is consistent. In other words
the theory T is consistent if and only if there does not exist any non-empty se-
quence of indices i1, i2, . . . , ik such that xi1xi2 · · ·xik = yi1yi2 · · · yik . This allows
to find many elementary properties of some pushdown automata, context-free
grammars, or 2-tape automata, which are independent from ZFC or from some
strong theory in the form ZFC + “There exist some kind of large cardinals”,
since many properties of these automata are proved to be undecidable via some
effective reductions of the PCP to these properties.

For instance we prove that, for every integer n ≥ 0, there exist 2-tape au-
tomata An, Bn, Cn, and Dn, accepting subsets of A⋆ × B⋆, for two alphabets
A and B, such that Cons(Tn) is equivalent to each of the following items: (1)
L(An) ∩ L(Bn) = ∅; (2) L(Cn) = A⋆ × B⋆; (3) “L(Dn) is accepted by a de-
terministic 2-tape automaton”; (4) “L(Dn) is accepted by a synchronous 2-tape
automaton”. In particular, if ZFC + “There exist (at least) n inaccessible cardi-
nals” is consistent, then each of the properties of these 2-tape automata given by
Items (1)-(4) is provable from ZFC + “There exist (at least) n+ 1 inaccessible
cardinals” but not from ZFC + “There exist (at least) n inaccessible cardinals”.



We also prove some independence results for weighted automata, via some
independence results for finitely generated matrix subsemigroups of Z3×3. Notice
that in this context we also obtain results of independence from Peano Arithmetic
which make sense since in the context of finite words or of integer matrices
eveything can be formalized in first-order arithmetic. For instance we show that
there exists a finite set of matrices M1,M2, . . . ,Mn ∈ Z3×3, for some integer
n ≥ 1, such that: (1) “the subsemigroup of Z3×3 generated by these matrices
does not contain the zero matrix”, and (2) “The property (1) is not provable
from PA”.
These results seem of more concrete mathematical nature than the fact that
Cons(PA) is an arithmetical statement which is true but unprovable from PA.
Indeed although our results follow from Gödel’s Second Incompleteness Theorem,
they express some properties about some natural and simple mathematical ob-
jects: the finitely generated subsemigroups of the semigroup Z3×3 of 3-3-matrices
with integer entries.

This could be compared to the fact that if PA (respectively, ZFC) is con-
sistent then there is a polynomial P (x1, . . . , xn) which has no integer roots, but
for which this cannot be proved from PA (respectively, ZFC); this result can
be inferred from Matiyasevich’s Theorem, see [EFT94, end of chapter 10.7]. The
above results could also be compared with other independence results obtained
by Kanamori and McAloon [KM87].

Notice that we recently discovered that in older papers it had been noted that
undecidability and incompleteness in automata theory were intimately related
and that one could for instance obtain some results about automata which are
true but unprovable in some recursive theory extending Peano Arithmetic like
ZFC, [Har85,JY81]. However the results presented here, although they are not
very difficult to prove, exhibit in our opinion the following novelties:

1. We obtain results of a different kind: we show that a great number of ele-
mentary properties of automata over finite words, are actually independent
from strong set theories.

2. We show how we can effectively construct some automata, like 1-counter or
2-tape automata, for which many elementary properties reflect the scale of a
hierarchy of large cardinals axioms like “There exist (at least) n inaccessible
cardinals” for integers n ≥ 1.

3. We show how we can use Post Correspondence Problem to get simple com-
binatorial statements about finite words which are independent from strong
set theories.

Altogether we think that the collection of results presented in this paper will
be of interest for computer scientists and also for set theorists.

The paper is organized as follows. We recall some notions and results of
set theory in Section 2. We prove some independence results for various kinds
of automata over finite words in Section 3. Concluding remarks are given in
Section 4.



2 Some Results of Set Theory

We now recall some basic notions of set theory which will be useful in the
sequel, and which are exposed in any textbook on set theory, like [Kun80,Jec02].

The usual axiomatic system ZFC is Zermelo-Fraenkel system ZF plus the
axiom of choice AC. The axioms of ZFC express some natural facts that we
consider to hold in the universe of sets. For instance a natural fact is that two
sets x and y are equal iff they have the same elements. This is expressed by the
Axiom of Extensionality:

∀x∀y [ x = y ↔ ∀z(z ∈ x ↔ z ∈ y) ].

Another natural axiom is the Pairing Axiom which states that for all sets x and
y there exists a set z = {x, y} whose elements are x and y:

∀x∀y [ ∃z(∀w(w ∈ z ↔ (w = x ∨ w = y)))].

Similarly the Powerset Axiom states the existence of the set P(x) of subsets of
a set x. Notice that these axioms are first-order sentences in the usual logical
language of set theory whose only non logical symbol is the membership binary
relation symbol ∈. We refer the reader to any textbook on set theory for an
exposition of the other axioms of ZFC.

A model (V, ∈) of an arbitrary set of axioms A is a collection V of sets,
equipped with the membership relation ∈, where “x ∈ y” means that the set x
is an element of the set y, which satisfies the axioms of A. We often say “the
model V” instead of “the model (V, ∈)”.

We say that two sets A and B have same cardinality iff there is a bijection
from A onto B and we denote this by A ≈ B. The relation ≈ is an equivalence
relation. Using the axiom of choice AC, one can prove that any set A can be
well-ordered so there is an ordinal γ such that A ≈ γ. In set theory the cardinal
of the set A is then formally defined as the smallest such ordinal γ.

The infinite cardinals are usually denoted by ℵ0,ℵ1,ℵ2, . . . ,ℵα, . . . The car-
dinal ℵα is also denoted by ωα, when it is considered as an ordinal. The first
infinite ordinal is ω and it is the smallest ordinal which is countably infinite so
ℵ0 = ω (which could be written ω0). The first uncountable ordinal is ω1, and
formally ℵ1 = ω1.

Let ON be the class of all ordinals. Recall that an ordinal α is said to be a
successor ordinal iff there exists an ordinal β such that α = β+1; otherwise the
ordinal α is said to be a limit ordinal and in this case α = sup{β ∈ ON | β < α}.

We recall now the notions of cofinality of an ordinal and of regular cardinal
which may be found for instance in [Jec02]. Let α be a limit ordinal, the cofinal-
ity of α, denoted cof(α), is the least ordinal β such that there exists a strictly
increasing sequence of ordinals (αi)i<β , of length β, such that ∀i < β αi <

α and supi<β αi = α. This definition is usually extended to 0 and to the
successor ordinals: cof(0) = 0 and cof(α + 1) = 1 for every ordinal α. The co-
finality of a limit ordinal is always a limit ordinal satisfying: ω ≤ cof(α) ≤ α.



Moreover cof(α) is in fact a cardinal. A cardinal κ is said to be regular iff
cof(κ) = κ. Otherwise cof(κ) < κ and the cardinal κ is said to be singular.

A cardinal κ is said to be a (strongly) inaccessible cardinal iff κ > ω, κ is
regular, and for all cardinals λ < κ it holds that 2λ < κ, where 2λ is the cardinal
of P(λ).

There are many other notions of large cardinals which have been studied in
set theory, see [Dra74,Kan97,Jec02]. A remarkable fact is that the strenghs of
these notions appear to be linearly ordered (and in fact well ordered).

Recall that the class of sets in a model V of ZF may be stratified in a
transfinite hierarchy, called the Cumulative Hierarchy, which is defined by V =⋃

α∈ON
Vα, where the sets Vα are constructed by induction as follows:

(1). V0 = ∅
(2). Vα+1 = P(Vα) is the set of subsets of Vα, and
(3). Vα =

⋃
β<αVβ , for α a limit ordinal.

It is well known that if V is a model of ZFC and κ is an inaccessible cardinal
in V then Vκ is also a model of ZFC. If there exist in V at least n inaccessible
cardinals, where n ≥ 1 is an integer, and if κ is the n-th inaccessible cardinal, then
Vκ is also a model of ZFC + “There exist exactly n− 1 inaccessible cardinals”
(and the same result is true if we replace “inaccessible” by “hyperinaccessible”).
This implies that one cannot prove in ZFC that there exists an inaccessible
cardinal, because if κ is the first inaccessible cardinal in V then Vκ is a model
of ZFC + “There exist no inaccessible cardinals”.

We now recall that a (first-order) theory T in the language of set theory is
a set of (first-order) sentences, called the axioms of the theory. If T is a theory
and ϕ is a sentence then we write T ⊢ ϕ iff there is a formal proof of ϕ from
T ; this means that there is a finite sequence of sentences ϕj , 1 ≤ j ≤ n, such
that ϕ1 ⊢ ϕ2 ⊢ . . . ϕn, where ϕn is the sentence ϕ and for each j ∈ [1, n], either
ϕj is in T or ϕj is a logical axiom or ϕj follows from ϕ1, ϕ2, . . . ϕj−1 by usual
rules of inference which can be defined purely syntactically. A theory is said to
be consistent iff for no (first-order) sentence ϕ does T ⊢ ϕ and T ⊢ ¬ϕ. If T
is inconsistent, then for every sentence ϕ it holds that T ⊢ ϕ. We shall denote
Cons(T) the sentence “the theory T is consistent”.

Recall that one can code in a recursive manner the sentences in the language
of set theory by finite sequences over a finite alphabet, and then simply over the
alphabet {0, 1}, by using a classical Gödel numbering of the sentences. We say
that the theory T is recursive iff the set of codes of axioms in T is a recursive set
of words over {0, 1}. In that case one can also code formal proofs from axioms of
a recursive theory T and then Cons(T) is an arithmetical statement. The theory
ZFC is recursive and so are the theories Tn =: ZFC + “There exist (at least)
n inaccessible cardinals”, for any integer n ≥ 1.

We now recall Gödel’s Second Incompleteness Theorem, [Göd63].

Theorem 1 (Gödel 1931 [Göd63]). Let T be a consistent recursive extension
of ZF. Then T 0 Cons(T ).

We now state the following lemmas.



Lemma 2. Let T be a recursive theory in the language of set theory. Then there
exists a Turing machine MT , starting on an empty tape, such that MT halts iff
T is inconsistent.

Proof. We describe informally the behaviour of the machine MT . Essentially
the machine works as a program which enumerates all the formal proofs from
T and enters in an accepting state and then halts iff the last sentence of the
proof is the sentence “∃x(x 6= x)”. If the theory T is consistent the machine
will never enter in an accepting state qf and never halts. But if the theory is
inconsistent then at some point of the computation the machine sees a proof
whose last sentence is actually “∃x(x 6= x)” and halts. �

In [Fin15] we have focused our results on set theories, even if we noticed
that some of our results could be extended to weaker arithmetical theories and
to other recursive theories. We have shown that some elementary properties
of automata may be independent from strong set theories like ZFC + “There
exist (at least) n inaccessible cardinals”. We are going to show in this paper
that some similar phenomena still hold for some kinds of automata on finite
words. However in the context of automata over finite words, we can notice that
automata and their behaviour can be coded by integers and this can be done
in Peano arithmetic; this will be often assumed in the sequel. Then we shall
also obtain some new independence results from the axiomatic system of Peano
Arithmetic PA. Indeed while we have first stated Gödel’s Second Incompleteness
Theorem for consistent recursive extensions of ZF in the above Theorem 1, the
prooof of this Theorem leads also to the following version, see [Poi00] for a proof.

Theorem 3 (Gödel 1931). Let PA be Peano Arithmetic. Then

PA 0 Cons(PA).

Notice that PA is known to be consistent, since the axioms of Peano Arith-
metic are satisfied in the standard model of the natural numbers. Thus the above
Theorem 3 gives a true arithmetical statement which is not provable from Peano
Arithmetic. Notice that Gentzen gave in 1936 a proof of the consistency of Peano
Arithmetic which uses only transfinite induction up to the Cantor ordinal ε0, see
[Gen36,Hor14]; this proof can be considered as being finitistic since the ordinal
ε0 can be coded with finite objects, like finite trees.

3 Incompleteness results for automata over finite words

We assume the reader to be familiar with the theory of formal languages
[HMU01]. We recall the usual notations of formal language theory.

If Σ is a finite alphabet, a non-empty finite word over Σ is any sequence
x = a1 . . . ak, where ai ∈ Σ for i = 1, . . . , k , and k is an integer ≥ 1. The length
of x is k, denoted by |x|. The empty word has no letter and is denoted by ε; its
length is 0. Σ⋆ is the set of finite words (including the empty word) over Σ.



The usual concatenation product of two finite words u and v is denoted u.v

(and sometimes just uv). This product is extended to the product of a finite
word u and an ω-word v: the infinite word u.v is then the ω-word such that:

(u.v)(k) = u(k) if k ≤ |u| , and (u.v)(k) = v(k − |u|) if k > |u|.

We now recall the well known Post Correspondence Problem (PCP), see
[HMU01, pages 392-402]. It is one of the famous undecidable problems in The-
oretical Computer Science and in Formal Language Theory. The PCP is an
abstract problem involving strings, and it has been very useful to prove the un-
decidability of many other problems by reduction of PCP to those problems.
In particular, many problems about context-free languages, those accepted by
pushdown automata or generated by context-free grammars, have been shown to
be undecidable by this method. For instance it follows from the undecidability of
the Post Correspondence Problem that the universality problem, the inclusion
and the equivalence problems for context-free languages are also undecidable.

An instance of the Post Correspondence Problem consists of two lists of finite
words over some finite alphabet Γ : (x1, x2, . . . , xn) and (y1, y2, . . . , yn). Notice
that the two lists must have the same length n ≥ 1. One says that this instance
has a solution if there exists a non-empty sequence of indices i1, i2, . . . , ik such
that xi1xi2 · · ·xik = yi1yi2 · · · yik . The Post Correspondence Problem is:

“Given an instance of the PCP, tell whether this instance has a solution”.
We now recall Post’s result, now well-known as the undecidability of the Post

Correspondence Problem.

Theorem 4. [Post, see [HMU01]] Let Γ be an alphabet having at least two ele-
ments. Then it is undecidable to determine, for arbitrary n-tuples (x1, x2, . . . , xn)
and (y1, y2, . . . , yn) of non-empty words in Γ ⋆, whether there exists a non-empty
sequence of indices i1, i2, . . . , ik such that xi1xi2 · · ·xik = yi1yi2 · · · yik .

We now recall the variant of the PCP called the modified Post Correspon-
dence Problem, which is used in the proof of the above Theorem 4.

The MPCP consists, given two n-tuples (x1, x2, . . . , xn) and (y1, y2, . . . , yn)
of non-empty words in Γ ⋆, in determining whether there exists a non-empty
sequence of indices i1, i2, . . . , ik such that x1xi1xi2 · · ·xik = y1yi1yi2 · · · yik .

The proof of Theorem 4 is given in two steps, see [HMU01]. First one can
associate in a recursive manner, to each pair (Mz , w) where Mz is the Turing
machine of index z ∈ N and w is an input word for Mz, an instance of the
MPCP consisting of two n-tuples (x1, x2, . . . , xn) and (y1, y2, . . . , yn) such that
there exists a finite sequence of indices i1, i2, . . . , ik, such that x1xi1xi2 · · ·xik =
y1yi1yi2 · · · yik if and only if the Turing machine Mz does halt on the input w.

Next we can associate in an effective manner, to each instance of the MPCP
consisting of two n-tuples (x1, x2, . . . , xn) and (y1, y2, . . . , yn), another instance
of the PCP consisting of two n+2-tuples (x′

1, x
′

2, . . . , x
′

n+2) and (y′1, y
′

2, . . . , y
′

n+2),
such that (x1, x2, . . . , xn) and (y1, y2, . . . , yn) form a solution of the MPCP if and
only if (x′

1, x
′

2, . . . , x
′

n+2) and (y′1, y
′

2, . . . , y
′

n+2) form a solution of the PCP.

We can now state the following result.



Theorem 5. Let T be a recursive theory in the language of set theory or T =
PA. Then there exist two n-tuples XT = (x1, x2, . . . , xn) and YT = (y1, y2, . . . ,
yn) of finite words over a finite alphabet Σ, such that there exists a non-empty
sequence of indices i1, i2, . . . , ik such that xi1xi2 · · ·xik = yi1yi2 · · · yik iff T is
inconsistent.

Proof. Let T be a recursive theory in the language of set theory or T = PA.
Then there exists a Turing machine M, starting with an empty tape, which halts
if and only if the theory T is inconsistent. We can now deduce the announced
result from the proof of the undecidability of the PCP which is just sketched
above. �

Remark 6. We can easily see that the above theorem is true for the two-letter
alphabet Σ = {a, b}. Indeed if Σ = {a1, a2, . . . , ap} is an alphabet having more
than two letters, we can use the coding given by: aj → bja, where a and b are
two letters, which provides the announced claim.

Corollary 7. For every integer n ≥ 0, there exist p ≥ 1 and two p-tuples XT,n =
(x1,n, x2,n, . . . , xp,n) and YT,n = (y1,n, y2,n, . . . , yp,n) of finite words over Σ =
{a, b}, such that: “Pn: there exist no non-empty sequence of indices i1, i2, . . . , ik
such that: xi1,nxi2,n · · ·xik,n = yi1,nyi2,n · · · yik,n

′′ iff Tn is consistent.
In particular, if ZFC + “There exist (at least) n inaccessible cardinals” is

consistent, then Pn is provable from ZFC + “There exist (at least) n + 1 in-
accessible cardinals” but not from ZFC + “There exist (at least) n inaccessible
cardinals”.

Proof. By Theorem 5, for each integer n ≥ 0, there exist p ≥ 1 and two p-
tuples XT,n = (x1,n, x2,n, . . . , xp,n) and YT,n = (y1,n, y2,n, . . . , yp,n) of finite
words over Σ = {a, b}, such that: “Pn: there exist no non-empty sequence of
indices i1, i2, . . . , ik such that xi1,nxi2,n · · ·xik,n = yi1,nyi2,n · · · yik,n

′′ iff Tn

is consistent. Recall that one can prove from ZFC + “There exist (at least)
n+ 1 inaccessible cardinals” that if κ is the n+ 1-th inaccessible cardinal, then
the set Vκ of the cumulative hierarchy is also a model of ZFC + “There exist
n inaccessible cardinals”. This implies that the theory ZFC + “There exist n

inaccessible cardinals” is consistent and thus this also implies that there exist
no non-empty sequence of indices i1, i2, . . . , ik such that:

xi1,nxi2,n · · ·xik,n = yi1,nyi2,n · · · yik,n
′′

On the other hand if Tn is consistent, then Pn is not provable from Tn. Indeed
Tn is then a consistent recursive extension of ZFC and thus by Gödel’s Second
Incompleteness Theorem we know that Tn 0 Cons(Tn). �

Moreover, since PA is consistent, we also get the following result.

Corollary 8. There exist two p-tuples X = (x1, x2, . . . , xp) and Y = (y1, y2, . . . ,
yp) of finite words over Σ = {a, b}, such that:
(1) there exist no non-empty sequence of indices i1, i2, . . . , ik such that:

xi1xi2 · · ·xik = yi1yi2 · · · yik



(2) The property (1) is not provable from PA.

We can now infer from Theorem 5 some incompleteness results for context-
free languages generated by context-free languages or equivalently accepted by
pushdown automata. We use the reductions of PCP to some problems about
context-free grammars ans context-free languages given in [HMU01, pages 404-
408]. We refer the reader to this textbook for background about context-free
grammars and context-free languages.

We first state the following result about ambiguity of context-free grammars.

Theorem 9. Let T be a recursive theory in the language of set theory or T =
PA. Then there exists a context-free grammar GT which is unambiguous iff T

is consistent.

Proof. We refer here to the proof of the undecidability of the unambiguity of a
given context-free grammar in [HMU01, pages 404-406]. From a given instance
of the PCP constituted by two n-tuples (x1, x2, . . . , xn) and (y1, y2, . . . , yn) of
finite words over a finite alphabet Σ, is constructed a context-free grammar G
such that G is ambiguous if and only if this instance of PCP has a solution. The
result now follows from this construction and from the above Theorem 5. �

Corollary 10. For every integer n ≥ 0, there exists a context-free grammar Gn

such that Gn is unambiguous iff Tn is consistent.
In particular, if ZFC + “There exist (at least) n inaccessible cardinals” is

consistent, then “ Gn is unambiguous” is provable from ZFC + “There exist (at
least) n+ 1 inaccessible cardinals” but not from ZFC + “There exist (at least)
n inaccessible cardinals”.

We now state some other results about elementary properties of context-free
languages.

Theorem 11. Let T be a recursive theory in the language of set theory or T =
PA. Then there exist context-free grammars G1,T G2,T , G3,T , and G4,T , such
that Cons(T ) is equivalent to each of the following items:
(1) L(G1,T ) ∩ L(G2,T ) = ∅;
(2) L(G3,T ) = L(G4,T );
(3) L(G3,T ) = Γ ⋆, for some alphabet Γ .

Corollary 12. For every integer n ≥ 0, there exist context-free grammars G1,n

G2,n, G3,n, and G4,n, such that Cons(Tn) is equivalent to each of the following
items:
(1) L(G1,n) ∩ L(G2,n) = ∅;
(2) L(G3,n) = L(G4,n);
(3) L(G3,n) = Γ ⋆, for some alphabet Γ .

In particular, if ZFC + “There exist (at least) n inaccessible cardinals” is
consistent, then each of the properties of these context-free languages given by
Items (1)-(3) is provable from ZFC + “There exist (at least) n+ 1 inaccessible
cardinals” but not from ZFC + “There exist (at least) n inaccessible cardinals”.



We are now going to state some similar independence results for other very
simple finite machines reading finite words: the class of 2-tape automata (or
transducers) accepting finitary rational relations. We shall refer to the book
[Ber79] in which some elementary problems about finitary rational relations are
proved to be undecidable by reducing the PCP to these problems, see pages
79-82 in this book.

We now state the following results.

Theorem 13. let T be a recursive theory in the language of set theory or T =
PA. Then there exist 2-tape automata A, B, and C, accepting finitary rational
relations X,Y, Z ⊆ A⋆ × B⋆, for two alphabets A and B having at least two
letters, and such that Cons(T ) is equivalent to each of the following items:
(1) X ∩ Y = ∅;
(2) Z = A⋆ ×B⋆;
(3) A⋆ ×B⋆ ⊆ Z.

Proof. We refer to the proof of [Ber79, Theorem 8.4, page 81]. We assume, as
in this proof, that A contains exactly two letters and that A = {a, b}. For two
sequences u1, u2, . . . , up, and v1, v2, . . . , vp, of finite words over the alphabet B,
we define U = {(ab, u1), . . . , (ab

p, up)}, and V = {(ab, v1), . . . , (abp, vp)}. Then
U+ and V + are rational relations and, by [Ber79, Lemma 8.3, page 80], the
relations Ū = A⋆×B⋆ \U+ and V̄ = A⋆×B⋆ \V + are also rational. It is noticed
in the proof of Theorem 8.4 in [Ber79] that if we set X = U+ and Y = V +, then
it holds that X ∩ Y 6= ∅ iff the instance of the PCP given by (u1, u2, . . . , up),
and (v1, v2, . . . , vp) has a solution. Item (1) of the Theorem follows then from
the above Theorem 5. Moreover if we set Z = Ū ∪ V̄ , then Z = A⋆ × B⋆ iff
X ∩ Y = ∅, and this implies Items (2) and (3). �

Using a 2-tape automaton C accepting the finitary relation Z given by the
above theorem, it is easy to construct, with similar methods as in the paper
[Fin03] about infinitary rational relations, another 2-tape automaton D accept-
ing a finitary rational relation L ⊆ A⋆ ×B⋆ such that L is accepted by a deter-
ministic 2-tape automaton iff L is accepted by a synchronous 2-tape automaton
iff Z = A⋆ × B⋆. Thus we can state the following result. The detailed proof is
here left to the reader.

Theorem 14. let T be a recursive theory in the language of set theory or T =
PA. Then there exists a 2-tape automaton D, accepting a finitary rational rela-
tion L ⊆ A⋆ × B⋆, for two alphabets A and B having at least two letters, and
such that Cons(T ) is equivalent to each of the following items:
(1) L is accepted by a deterministic 2-tape automaton;
(2) L is accepted by a synchronous 2-tape automaton.

Corollary 15. For every integer n ≥ 0, there exist 2-tape automata An, Bn,
Cn, and Dn, accepting subsets of A⋆ ×B⋆, for two alphabets A and B having at
least two letters, such that Cons(Tn) is equivalent to each of the following items:
(1) L(An) ∩ L(Bn) = ∅;



(2) L(Cn) = A⋆ ×B⋆;
(3) L(Dn) is accepted by a deterministic 2-tape automaton;
(4) L(Dn) is accepted by a synchronous 2-tape automaton.

In particular, if ZFC + “There exist (at least) n inaccessible cardinals” is
consistent, then each of the properties of these 2-tape automata given by Items
(1)-(4) is provable from ZFC + “There exist (at least) n+ 1 inaccessible cardi-
nals” but not from ZFC + “There exist (at least) n inaccessible cardinals”.

Since PA is consistent, we get the following result from Theorems 13 and 14
(where we assume, as we have already said at the beginning of this section, that
automata are coded by integers):

Corollary 16. There exist 2-tape automata A, B, C, and D, accepting subsets
of A⋆ ×B⋆, for two alphabets A and B having at least two letters, such that
(1) L(A) ∩ L(B) = ∅.
(2) L(C) = A⋆ ×B⋆.
(3) L(D) is accepted by a deterministic 2-tape automaton.
(4) L(D) is accepted by a synchronous 2-tape automaton.

But none of the items (1)− (4) is provable from PA.

We are now going to state some incompleteness results about weighted au-
tomata. We shall also state some incompleteness results about finitely generated
semigroups of matrices with integer entries (with the semigroup operation of
multiplication of matrices) which can be presented by automata with multiplic-
ities, see [Har02].

We first recall the notion of an n-state Z-automaton, i.e. a non-deterministic
automaton with integer multiplicities, as presented in [Har02].

A non-deterministic Z-automaton is a 5-tuple A = (Σ,Q, δ, J, F ), where:
Σ = {a1, a2, . . . , ak} is a finite input alphabet and the letter ai is associated to
a matrice Mi ∈ Zn×n; Q = {1, 2, . . . , n} is the state set (and i corresponds to
the ith row and column of the matrices); J is the set of initial states and F ⊆ Q

is the set of final states; δ is the set of transitions that provides the rules

r
(ai
m)
−→ s,

where ai ∈ Σ, and m = (Mi)rs is the multiplicity of the rule.
A path

π = s1
( b1
m1
)

−→ s2
( b2
m2
)

−→ s3 −→ · · · −→ st
( bt
mt
)

−→ st+1

is a computation of the automaton A reading a word w = b1b2 . . . bt ∈ Σ⋆ and
the muliplicity of this path is equal to ‖π‖ = m1m2 . . .mt ∈ Z. For a word
w ∈ Σ⋆ we denote by Πrs the set of the paths of A reading the word w which go
from state r to state s. Then the multiplicity of the word w = ai1ai2 . . . ait ∈ Σ⋆

from r to s is the sum

Ars(w) =
∑

π∈Πrs

‖π‖ = (Mi1Mi2 . . .Mit)rs



and we get the multiplicity of w in A from the accepting paths:

A(w) =
∑

r∈J,s∈F

Ars(w) =
∑

r∈J,s∈F

(Mi1Mi2 . . .Mit)rs.

We first state the following result.

Theorem 17. Let T be a recursive theory in the language of set theory or T =
PA. Then there exists a finite set of matrices M1,M2, . . . ,Mn ∈ Z3×3, for some
integer n ≥ 1, such that the subsemigroup of Z3×3 generated by these matrices
does not contain any matrix M with M13 = 0 if and only if T is consistent.

One can easily state corollaries of the above Theorem for strong set theories,
as for previous results in this paper. Details are here left to the reader. Moreover,
since PA is consistent, we also get the following result.

Corollary 18. There exists a finite set of matrices M1,M2, . . . ,Mn ∈ Z3×3,
for some integer n ≥ 1, such that:
(1) the subsemigroup of Z3×3 generated by these matrices does not contain any
matrix M with M13 = 0, and
(2) The property (1) is not provable from PA.

We also get the following result as a corollary of the above Theorem 17.

Corollary 19. Let T be a recursive theory in the language of set theory or
T = PA. Then there exists a 3-state Z-automaton A such that A accepts a word
with multiplicity zero iff T is inconsistent.

Corollary 20. Let T be a recursive theory in the language of set theory or
T = PA. Then there exists two 2-state N-automata A and B such that A and B
accept a word w with the same multiplicity iff T is inconsistent.

One can easily state corollaries of the above one for strong set theories or for
Peano Arithmetic, as for previous results in this paper. Details are here left to
the reader.

Following an idea of Paterson, Halava and Harju proved in [HH01] that it is
undecidable for finitely generated subsemigroups S of Z3×3 whether S contains
a matrix with M11 = 0. We now prove the following result.

Theorem 21. Let T be a recursive theory in the language of set theory or T =
PA. Then there exists a finite set of matrices M1,M2, . . . ,Mn ∈ Z3×3, for some
integer n ≥ 1, such that the subsemigroup of Z3×3 generated by these matrices
does not contain any matrix M with M11 = 0 if and only if T is consistent.

Recall that Paterson proved in 1970 that the mortality problem for finitely
generated subsemigroups S of Z3×3 is undecidable, i.e. that one cannot decide,
for a given set of matrices M1,M2, . . . ,Mn ∈ Z3×3, whether the zero matrix
(whose all coefficients are equal to zero) belongs to the subsemigroup generated



by the matrices M1,M2, . . . ,Mn, i.e. whether there exists a sequence of integers
i1, i2, . . . ik, such that Mi1Mi2 . . .Mik = 0. Halava and Harju gave a proof of this
result in [HH01].

We can now state the following result.

Theorem 22. Let T be a recursive theory in the language of set theory or T =
PA. Then there exists a finite set of matrices M1,M2, . . . ,Mn ∈ Z

3×3, for some
integer n ≥ 1, such that the subsemigroup of Z3×3 generated by these matrices
does not contain the zero matrix if and only if T is consistent.

Corollary 23. For every integer p ≥ 0, there exists a finite set of matrices
M1,M2, . . . ,Mnp

∈ Z3×3, for some integer np ≥ 1, such that the subsemigroup
of Z3×3 generated by these matrices does not contain the zero matrix if and only
if T ′

p is consistent.
In particular, if ZFC + “There exist (at least) p inaccessible cardinals” is

consistent, then the property “The subsemigroup of Z3×3 generated by the matri-
ces M1,M2, . . . ,Mnp

, does not contain the zero matrix” is provable from ZFC +
“There exist (at least) p+1 inaccessible cardinals” but not from ZFC + “There
exist (at least) p inaccessible cardinals”.

Moreover, since PA is consistent, we also get the following result.

Corollary 24. There exists a finite set of matrices M1,M2, . . . ,Mn ∈ Z3×3,
for some integer n ≥ 1, such that:
(1) the subsemigroup of Z3×3 generated by these matrices does not contain the
zero matrix, and
(2) The property (1) is not provable from PA.

We have used in the proof of the above results some effective reductions of
the PCP to some undecidable problems and an independence result about the
solutions of some instances of the PCP. We can also sometimes use directly
some effective reductions of the halting problem for Turing machines to some
undecidable problems along with the above Lemma 2.

We now give some examples of independence results we can get by using this
lemma.

Theorem 25. Let T be a recursive theory in the language of set theory or T =
PA. Then there exists a 1-counter automaton A, reading finite words over a
finite alphabet Σ, such that L(A) = Σ⋆ if and only if T is consistent.

Proof. Recall that Ibarra proved in [Iba79] that the universality problem for
languages of 1-counter automata (and actually for some very restricted classes of
1-counter automata) is undecidable. He constructed, for each single-tape Turing
machineM, a 1-counter automatonA, reading finite words over a finite alphabet
Σ, such that L(A) = Σ⋆ iff the machine M does not halt on the blank tape.
The result now follows from the above Lemma 2. �

We can now prove the following result.



Theorem 26. Let T be a recursive theory in the language of set theory or T =
PA. Then there exists a 1-counter automaton A, reading finite words over a
finite alphabet Σ, such that Cons(T ) is equivalent to each of the following items:
(1) L(A) = Σ⋆;
(2) L(A) is accepted by a deterministic 1-counter automaton;
(3) L(A) is accepted by an unambiguous 1-counter automaton.

Corollary 27. For every integer n ≥ 0, there exists a 1-counter automaton An,
reading finite words over a finite alphabet Σ, such that Cons(Tn) is equivalent
to each of the following items:
(1) L(An) = Σ⋆;
(2) L(An) is accepted by a deterministic 1-counter automaton;
(3) L(An) is accepted by an unambiguous 1-counter automaton.

In particular, if ZFC + “There exist (at least) n inaccessible cardinals” is
consistent, then each of the properties of the 1-counter automaton An given by
Items (1)-(3) is provable from ZFC + “There exist (at least) n+ 1 inaccessible
cardinals” but not from ZFC + “There exist (at least) n inaccessible cardinals”.

Remark 28. Part of Theorem 26 and of Corollary 27 subsumes Items (2) and
(3) of Theorem 11 and of Corollary 12. Indeed we can construct, from a given
pushdown automaton (and thus also from a given 1-counter automaton) accept-
ing a finitary language, a context-free grammar generating the same language.

4 Concluding remarks

We have shown that some very elementary properties of some automata over fi-
nite words are actually independent from strong set theories like ZFC + “There
exist (at least) n inaccessible cardinals”. The results of this paper are true for
other large cardinals than inaccessible ones. For instance we can replace inacces-
sible cardinals by hyperinaccessible, hyperMahlo, measurable, . . . and still other
ones and obtain similar results.

Some of our results are even more general because they could have been
stated for more general recursive theories,
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