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Distance-bounding protocols have been introduced to thwart relay attacks against contactless authentication protocols. In this context, verifiers have to authenticate the credentials of untrusted provers. Unfortunately, these protocols are themselves subject to complex threats such as terrorist-fraud attacks, in which a malicious prover helps an accomplice to authenticate. Provably guaranteeing the resistance of distance-bounding protocols to these attacks is a complex task. The classical countermeasures usually assume that rational provers want to protect their long-term authentication credentials, even with respect to their accomplices. Thus, terrorist-fraud resistant protocols generally rely on artificial extraction mechanisms, ensuring that an accomplice can retrieve the credential of his partnering prover.

In this paper, we propose a novel approach to obtain provable terroristfraud resistant protocols without assuming that provers have any longterm secret key. Instead, the attacker simply has to replay the information that he has received from his accomplice. Based on this, we present a generic construction for provably secure distance-bounding protocols, and give three instances: (1) an efficient symmetric-key protocol, (2) a public-key protocol protecting the identities of the provers against external eavesdroppers, and finally (3) a fully anonymous protocol protecting the identities of the provers even against malicious verifiers trying to profile them.

Introduction

In recent years, contactless communications have become ubiquitous. They are used in access control cards, electronic passports, payment systems, and nu-resistance, our efforts expand the fundamental understanding of this problem and how to counter it in practice. Eventually, the best approach will emerge from all these attempts.

Our main contributions can be summarized as follows.

Novel Approach. The main contribution is to propose a new approach for provable TF resistance in which the prover can unilaterally select the binary responses used during the time-critical challenge-response phases. If a malicious prover transfers this information to his accomplice, the accomplice can then adapt and replay the information received for a new session. We therefore obtain an intuitive TF resistance proof without any artificial extraction mechanism. Surprisingly, this idea has not been considered so far in the literature. As shown in this paper, it can be used to design protocols achieving the simulation-based TF resistance notion [START_REF] Dürholz | A formal approach to distance-bounding RFID protocols[END_REF], which is a stronger notion than the ones used for most existing TF-resistant protocols. Fortunately, even if the prover is responsible for selecting the response vectors, this impacts only slightly the other security properties of our protocols.

Generic Construction. The second is TREAD (for Terrorist-fraud Resistant and Extractor-free Anonymous Distance-bounding), which is a generic construction implementing the proposed approach. It can be instantiated in several ways including a lightweight symmetric-key protocol, a public-key protocol protecting the privacy of provers in the presence of eavesdroppers, and a protocol based on group signatures protecting the anony-mity of the provers even against malicious verifiers. The latter one can be used in the public transportation scenario, whilst the first two are more adapted to the scenario of the restricted-access building.

Extension of DFKO. As a final contribution, the DFKO framework [START_REF] Dürholz | A formal approach to distance-bounding RFID protocols[END_REF] is extended to deal with distance-hija-cking (DH) attacks [START_REF] Cremers | Distance hijacking attacks on distance bounding protocols[END_REF], in which a malicious prover tries to fool a verifier on their mutual distance, by taking advantage of nearby honest provers. This provides a framework to deal with all the potential attacks against DB protocols. The security of TREAD is proven in this extended framework.

We provide a comparative analysis of our results and other well-known solutions existing in the literature in Table 1. These results are grouped into three categories: best unproved protocols, best formally-proven protocols and best privacy-preserving formally-proven protocols.

TREAD compared favourably to the best published solutions. The instance based on the group-signature scheme is fully anonymous and provides TFresistance, in contrast to the solution presented in [START_REF] Gambs | Prover anonymous and deniable distance-bounding authentication[END_REF], while simply having to slightly relax the MF-resistance probability (from 1 2 n to 3 4 n , which forces the number of time-critical phases to at least double to achieve the same security level). In fact, it has the best security properties of any fully anonymous protocol without any artificial and inefficient extraction mechanism. It almost matches the TF, MF and distance-fraud (DF) resistance of the best proven solutions [START_REF] Boureanu | Practical & provably secure distance-bounding[END_REF][START_REF] Fischlin | Terrorism in distance bounding: Modeling terrorist fraud resistance[END_REF] while providing full anonymity. Finally, the instance based on the public-key scheme achieves slightly less MF resistance than the Swiss-Knife protocol attains with a symmetric key. However, note that the Swiss-Knife protocol has not been formally proven. In fact, a minor attack has been presented against it [START_REF] Boureanu | On the pseudorandom function assumption in (secure) distance-bounding protocols: PRF-ness alone does not stop the frauds![END_REF].

Related Work. Since the introduction of DB protocols in 1993 by Brands

Table 1: Comparison. TF denotes the terrorist-fraud resistance. The probabilities of successful mafia-fraud and distance-fraud attacks depend on the number n of time-critical rounds. P and A respectively denote privacy with respect to an eavesdropper and anonymity with respect to a malicious verifier. R denotes if a user can be revoked easily.
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TF MF DF P A R Not formally proven Swiss Knife [START_REF] Kim | The Swiss-Knife RFID distance bounding protocol[END_REF] n Proven-security and privacy privDB [START_REF] Vaudenay | Private and secure public-key distance bounding: Application to NFC payment[END_REF] 1 2 n 3 4

n GOR [START_REF] Gambs | Prover anonymous and deniable distance-bounding authentication[END_REF] 1 2 and Chaum [START_REF] Brands | Distance-bounding protocols[END_REF], new threats have emerged against contactless communications. They can be classified depending on whether the adversary is an external entity or a legitimate but malicious prover. The former case includes attacks in which the adversary illegitimately authenticates, possibly using a far-away honest prover (Mafia Fraud ), or in which the adversary plays against a simplified version of the protocol without any distance estimation (Impersonation Fraud ). The latter case includes attacks featuring a legitimate but malicious prover who wants to fool the verifier on the distance between them (Distance Fraud ), sometimes using the presence of an honest prover close to the verifier (Distance Hijacking). It also tackles a malicious prover who helps an accomplice authenticate (Terrorist Fraud ). This attack is the most difficult one to characterize and counter. The classical countermeasure against TF relies on the assumption that a malicious prover does not have enough trust in his accomplice to simply give him directly his authentication credentials (i.e., any potential long-term secret key). TF resistance is generally implemented by making the authentication of the accomplice very difficult if the prover does not leak away a significant fraction of his long-term key. While intuitively achieving this objective is not difficult, proving that a protocol is TF resistant is problematic. So far, all the proofs proposed in the literature have relied on artificial mechanisms, such as trapdoors, secret leakage, secret sharing schemes and extractors. These mechanisms allow an accomplice to extract the long-term secret key of his companion prover if he can authenticate with a non-negligible probability. Thus, once the accomplice has retrieved this key, he can impersonate at will the targeted prover. Hence, these artificial mechanisms are mainly used to deter rational provers from helping potential accomplices. For instance, Fischlin and Onete [START_REF] Fischlin | Terrorism in distance bounding: Modeling terrorist fraud resistance[END_REF] proposed a special mode (i.e., a trapdoor) allowing the adversary to authenticate if he knows a targeted string close in terms of Hamming distance to the long-term secret key of the prover. Very recently, Bultel and co-authors [START_REF] Bultel | A prover-anonymous and terrorist-fraud resistant distancebounding protocol[END_REF] used the same approach to introduce SPADE, a fully anonymous TF-resistant protocol. Unfortunately in this case, there is a trade-off to set in the analysis of the MF and TF resistance probabilities. This trade-off balances the information given to the accomplice by the prover and the information inferred from the trapdoor, which leads to unusual resistance probabilities for some properties. An important drawback of this approach is that it does not support easily scattered verifiers. In such a case, the verifiers may have to share a common decryption key to respond to the trapdoor queries. Otherwise, the accomplice would be able to impersonate his partnering prover only with the given verifier, which is a threat that the prover may accept. Finally, in this solution, a malicious verifier is unfortunately able to replay the received information and impersonate a given prover, representing a major threat against the latter.

n 3 4 n PDB[1] 1 2 n 3 4 n SPADE[12]
In their SKI protocols [START_REF] Boureanu | Secure and lightweight distance-bounding[END_REF], Boureanu, Mitrokotsa and Vaudenay employed a leakage scheme allowing an adversary to retrieve the long-term secret key used several times by a prover. The same technique is reused in the DB opt protocols [START_REF] Boureanu | Optimal proximity proofs[END_REF]. Avoine, Lauradoux, and Martin [START_REF] Avoine | How secret-sharing can defeat terrorist fraud[END_REF] used a classical secret-sharing scheme to resist to terrorist frauds. Their approach consists in sharing the prover's long-term secret using a (n, k) threshold cryptographic scheme. Upon reception of a challenge, the provers should send a share back to the verifier. The key-point is that an accomplice must know all the shares to be able to successfully respond to any challenge, but then he could retrieve the prover's long-term secret. In this case, the challenges sent during the time-critical phase can no longer be binary messages and in addition the scheme neither considers distance fraud, nor addresses the privacy issue. Finally, Vaudenay [START_REF] Vaudenay | Sound proof of proximity of knowledge[END_REF] relied on extractor schemes to recover a string close to the long-term secret key from the view of all nearby participants after a TF attempt. These solutions depend on computationally-expensive primitives. Overall, TREAD has therefore a simpler analysis than any of these protocols with the same security properties. Furthermore, as these solutions rely explicitly on long-term shared secret keys, they present serious challenges for developing privacy and anonymity-preserving solutions.

While a lot of effort has gone into designing secure DB protocols, the research community has only recently investigated privacy issues linked to distance bounding. Considering the amount of information that can be inferred from the location history of an individual [START_REF] Gambs | Show me how you move and I will tell you who you are[END_REF], protecting privacy becomes a critical issue for the wide acceptance of such technology. To address this concern, two aspects have to be considered: (1) the protection of the privacy of the provers with respect to eavesdroppers and (2) the protection of the anonymity of the provers with respect to curious verifiers.

Anonymous DB protocol against external adversaries has been introduced recently [START_REF] Hermans | Efficient, secure, private distance bounding without key updates[END_REF]. Gambs, Onete, and Robert [START_REF] Gambs | Prover anonymous and deniable distance-bounding authentication[END_REF] extended this notion to deal with honest-but-curious and malicious verifiers, which represent a threat against the privacy of the legitimate provers as they might profile provers by linking their authentication sessions. The authors proposed an extension of the HPO protocol [START_REF] Hermans | Efficient, secure, private distance bounding without key updates[END_REF] in which the provers are managed as a group. Though they addressed the classical MF, DF and IF attacks, they did not at consider TF. Recently, Vaudenay [START_REF] Vaudenay | Private and secure public-key distance bounding: Application to NFC payment[END_REF] proposed a generic solution to add the privacy property to DB protocols with respect to external eavesdroppers, which relies on an authenticated keyexchange added on top of a one-time secure DB protocol. Unfortunately, it does not provide TF resistance nor anonymity against honest-but-curious or malicious verifiers.

Finally, Ahmadi and Safavi-Naini [START_REF] Ahmadi | Privacy-preserving distance-bounding proof-of-knowledge[END_REF] gave a TF-resistant DB protocol PDB, which protects the anonymity of the prover, by fixing the weaknesses of the DBPK-log protocol [START_REF] Bussard | Distance-bounding proof of knowledge to avoid real-time attacks[END_REF]. Hence, the prover shows with a classical zero-knowledge proof that he possesses the secret key used during the protocol and its signature issued by a trusted authority. Unfortunately, this solution does not permit to revoke the credential of a specific prover without adding too much complexity and damaging the robustness of the overall scheme. In particular, since the authentication is supposed to be anonymous, there is no way to distinguish whether a session uses a given stolen secret key or not. Compared to this protocol, TREAD guarantees the anonymity of its users through a group signature scheme. This enables an efficient management of users (i.e., adding and revoking users) and a clear separation of duties (e.g., adding, revoking and lifting the anonymity of a prover can be done by separate authorities).

Note that overall more than forty DB protocols have been proposed since 1993. Unfortunately, based on a recent survey [START_REF] Brelurut | Survey of distance bounding protocols and threats[END_REF] only few of them have not been broken yet. We refer the reader to this paper for more details.

Outline. In the next section, we describe our generic construction providing TF resistance and three of its possible instantiations. Then in Section 3, we introduce the different security models and then prove the essential security properties of our construction before concluding in Section 4.

The TREAD instantiations

In this section, we present TREAD, a generic construction, which encompasses all the desirable properties of a secure DB protocol. To counter terrorist-fraud attack, the usual strategy is to ensure that if a malicious prover gives his accomplice both responses for a given challenge, he can recover one bit of the prover's long-term secret key x as shown in Figure 1. If the accomplice is able to authenticate with a non-negligible probability, he probably knows a large part of x and can use it to retrieve the full secret through the available extraction mechanism. Thus, any rational prover should not accept to go that far. Even though intuitively clear in general, the security of such approach is hard to prove formally. Our approach aims at avoiding this pitfall.

The Generic Construction TREAD

TREAD requires as building blocks an IND-CCA2-secure encryption scheme E (either symmetric-key or public-key) and an EUF-CMA-secure signature scheme S. The instantiations gradually move from a computationally-efficient symmetric protocol to a prover-anonymous one, in which a secure group-signature scheme is required.

As shown in Figure 2, our scheme relies on strong design choices. Our first design choice is to enable a prover to choose the values of the response strings Verifier V Prover P shared secret key: x

N V $ ← {0, 1} n N P ← ---------------N P $ ← {0, 1} n N V ---------------→ α = P RF x (N P, N V ) for i = 0 to n Pick c i ∈ {0, 1} Start clock ci ---------------→ r i = α i if c i = 0 α i ⊕ x i if c i = 1 Stop clock ri ← --------------- Figure 1:
The classical countermeasure against terrorist fraud: if the prover gives both possible responses, i.e. α i and α i ⊕ x i to his accomplice for a given c i , he leaks one bit of his long-term authentication secret x. Note that PRF is a pseudorandom function keyed with x. α and β, which he then sends signed and encrypted in his initial message e to the verifier. The encryption hides these values from an eavesdropper, but they can be used by the prover (or a TF accomplice) to replay the protocol. In addition, a malicious verifier could also do the same and replay the information against another verifier. The verifier simply responds to the initial message with a random binary string m to prevent trivial DF attacks in which a malicious prover selects α = β. During the time-critical phases, the response to challenge c i is computed as α i if c i = 0 and β i ⊕ m i otherwise.

Most existing DB protocols do not enable the prover to generate the response strings α and β, due to the fact that provers are potentially malicious and may attempt to cheat by selecting convenient values. Hence, these strings are usually computed as the output of a pseudo-random function (PRF) on nonces selected independently by the verifier and the prover. Unfortunately, this is not sufficient to prevent provers from influencing the values α||β [START_REF] Boureanu | On the pseudorandom function assumption in (secure) distance-bounding protocols: PRF-ness alone does not stop the frauds![END_REF][START_REF] Brelurut | Survey of distance bounding protocols and threats[END_REF]. Indeed as mentioned earlier, there is a potential attack against the Swiss-Knife protocol [START_REF] Kim | The Swiss-Knife RFID distance bounding protocol[END_REF] based on the use of a weak PRF [START_REF] Boureanu | On the pseudorandom function assumption in (secure) distance-bounding protocols: PRF-ness alone does not stop the frauds![END_REF].

Our first design choice is motivated by a simple observation. If a malicious prover can control the PRF in some cases, we can further assume that he chooses the response strings. If a protocol can thwart such provers, it should a fortiori resist to provers only manipulating the PRF.

A Novel Approach. Our second design choice is to allow for limited replays to achieve stronger TF resistance. This is a fundamental shift compared to approaches existing in the distance-bounding literature. More precisely, our strategy is not to force the prover to leak his secret to his accomplice. Rather, we design the protocol such that, if the prover helps his accomplice to authenticate, the latter can simply replay this information in future sessions. The difficulty is to ensure that only TF accomplices benefit from this strategy, and not regular external Man-in-the-Middle (MiM) adversaries.

In our construction, anyone knowing proper responses corresponding to a given initial message e (which is authenticated and encrypted by the prover, and remains opaque to a MiM adversary) can adapt them to any new string m generated by the verifier. This seems to go against the intuition that authentication protocols need to ensure freshness (usually through a verifier-generated nonce) to prevent replay attacks. Indeed, a MiM adversary can observe a session and learn about half the responses corresponding to a specific e. Then, he may replay e and the responses that he knows. However, this adversary must still guess on average n 2 values, which he can only do with negligible probability. The counter-intuitive second design choice has interesting implications with regards to TF-resistance. Consider the scenario in which an accomplice is helped by a malicious prover to authenticate. If the accomplice replays the initial message e in a latter session, he would be able to adapt the information given by the prover, which allows him to re-authenticate without the help of the prover with at least the same probability as in the first attempt. Moreover, if this probability is non-negligible, he is even able to amplify it in such a way that, after a polynomial number of interactions with the verifier (without the prover), he gains the ability to impersonate the prover with an overwhelming probability.

Based on our design choices, we propose our generic construction TREAD. It can be instantiated with a public identity (idpub(P )) in the classical nonanonymous case (in which the private identity idprv(P ) is useless and can be set to null) or with a private identity (idprv(P )) in the private and the anonymous settings (in which the public identity must be set to null). More details are given in the next section. These identities are used (among other things) to retrieve the corresponding decryption/verification keys. Definition 1 (TREAD). The construction TREAD is composed of five algorithms and parametrized by an IND-CCA2-secure encryption scheme E, an EUF-CMAsecure signature scheme S, as well as a definition for idprv(•) and idpub(•) and a distance bound d max such that messages cover this distance within a time tmax 2 . DB.gen(1 λ ) is the algorithm run by an honest party, setting up the encryption scheme E and the signature scheme S for a security parameter λ. It returns the number of the time-critical phases n, which is a function of λ.
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DB.prover(ek, sk) is the algorithm executed by the prover described in Figure 2.

The prover starts by drawing a random value α||β from the uniform distribution on {0, 1} 2•n . Then, he computes a signature σ p on it with S.sig sk (α||β||idprv(P )). Afterwards, he generates e = E.enc ek (α||β||idprv(P )||σ p ) and sends e||idpub(P ). Finally, during the n time-critical phases, he receives a challenge bit c i and responds with

r i = (α i ∧¬c i )∨((β i ⊕m i )∧c i ).
DB.verifier(ID, dk, vk, UL, RL) is the algorithm executed by the verifier interacting with a prover identified as ID. Depending on the context, this identifier can be directly the identity of a prover (idpub(P )), but it can also be the name of a group (idprv(P )) for anonymous authentication. Moreover depending on the context, the verifier has access to the lists of legitimate provers UL and revoked ones RL. He expects an initial message e and deciphers it as (α||β||idprv(P )||σ p ) = E.dec dk (e). If σ p is invalid (i.e., S.ver vk (σ p , α||β||idprv(P )) = 0), the verifier aborts. Otherwise, he picks a random bit string m from the uniform distribution on {0, 1} n and sends it. Afterwards, during the n time-critical phases, he generates a random bit c i from a uniform distribution, starts his clock, sends c i , gets back r i , stops his clock and stores the corresponding time ∆t i . Finally, he verifies that (1) ∆t i ≤ t max and ( 2)

r i = (α i ∧¬c i )∨((β i ⊕m i )∧c i ), for all i ≤ n.
If these conditions hold, he sends an accepting bit Out V = 1, while otherwise he sends Out V = 0.

DB.join(ID, UL) is the algorithm to register a new prover with identifier ID in the list UL. It returns the keys (ek, dk) for E and (sk, vk) for S. Depending on the primitives E and S, dk and vk may be public or private, and can sometimes be equal respectively to ek and sk.

DB.revoke(ID, UL, RL) is the algorithm to revoke a legitimate prover with identifier ID in UL and transfer him to the revoke list RL.

These last two algorithms depend heavily on the instance of the protocol and are described in more details in the following section. Note that TREAD adopts the sign-then-encrypt paradigm instead of the more usual encrypt-then-sign. If the latter approach were used, an eavesdropper would be able to infer easily the identity of any prover, by simply verifying the signature on the message e with all the public keys listed in UL. The security is nonetheless preserved, at the cost of using an IND-CCA2 secure encryption scheme.

Instantiations

Our instantiations go from a computationally-efficient sym-metric-key protocol to a prover-anonymous one.

Efficient symmetric-key scheme. Computational efficiency is critical for the design of DB protocols as they are usually used in resource-limited devices. To obtain an optimal construction, TREAD can be instantiated with an IND-CCA2 symmetric-key encryption scheme SKE and an EUF-CMA messageauthentication code scheme MAC. In this case, the public identity idpub(P ) is the identity of the prover and the private identity idprv(P ) is set to null. Since SKE and MAC are symmetric, we have ek = dk and sk = vk. Thus, the prover and the verifier have the same symmetric key k = (ek, sk). In this construction, the verifiers have access to a private list UL containing all the secret keys of legitimate provers. An authority should add any prover in the private list UL or in the revokation public list RL.

Prover privacy and public-key encryption. In applications such as contactless payment schemes, shared secret keys cannot be used. Thus, with the emergence of NFC-enabled smartphones, public-key DB protocols are crucial.

TREAD can be instantiated with an IND-CCA2 public-key encryption PKE and an EUF-CMA digital signature scheme S-SIG. In this case, the public identity idpub(P ) is set to null, and the private one idprv(P ) is the identity of P (or his verification key). The keys ek and dk are respectively the public and the private keys of the verifier, and sk and vk are the (private) signature key and the (public) verification key of the prover. With such a protocol, two sessions by the same user are not linkable for an external eavesdropper as the only information sent about the prover's identity is encrypted with the public-key of the verifier. However, verifiers have the power to link sessions. In this construction, the verifiers have access to a public list UL containing the public keys of legitimate provers. An authority should add any prover in the public list UL or in the revokation public list RL.

Prover anonymity and group signature. TREAD can be used to provide full prover-anonymity with respect to a malicious verifier. As profiling users is now common, it is crucial to develop anonymity-preserving DB protocols. Both prover anonymity and revocability can be achieved by instantiating TREAD with an IND-CCA2 public-key encryption scheme PKE and a revocable group signature scheme G-SIG. In this case, the public identity idpub(P ) is set to null, and the private identity idprv(P ) is set to the identity of the group ID G . Independent groups may coexist but prover-anonymity with respect to the verifier is only guaranteed up to a prover's group. The keys ek and dk are respectively the public and private keys of the verifier, sk is the prover's signing key and vk is the public group verification key. Group signature schemes allow a user to anonymously sign on behalf of a group he belongs to. Hence, the verifier can check if the prover belongs to the claimed group, but cannot identify him precisely nor link his sessions. In this scenario, the join and revoke algorithms take their full meaning.

Let (gpk, msk) be the group/master key pair of the group signature scheme G-SIG. Then, DB.join msk (ID, gpk, UL) returns a prover signing key sk ID for P ID . It also outputs a value reg ID and adds P ID to UL.

DB.revoke msk (ID, gpk, RL, UL) computes the logs rev ID for P ID , using reg ID and msk, and moves P ID from UL to RL.

Models and Security Proofs

In this section, we describe the models for defining DB protocols and to characterize the classical threats against these protocols. Then, we prove the main security properties of the instantiations of our TREAD construction.

Formal Security Models

To the best of our knowledge three security models exist for distance bounding: the original one by Avoine and co-authors [START_REF] Avoine | A formal framework for analyzing RFID distance bounding protocols[END_REF], the second one by Dürholz, Fischlin, Kasper and Onete [START_REF] Dürholz | A formal approach to distance-bounding RFID protocols[END_REF] (DFKO), and the last one by Boureanu, Mitrokotsa and Vaudenay [START_REF] Boureanu | Secure and lightweight distance-bounding[END_REF]. In this paper, we use the DFKO model and its extension for a strong TF-resistance notion (SimTF) proposed by Fischlin and Onete [START_REF] Fischlin | Terrorism in distance bounding: Modeling terrorist fraud resistance[END_REF]. The DFKO model is even extended to deal with DH attacks [START_REF] Cremers | Distance hijacking attacks on distance bounding protocols[END_REF]. Finally, we introduce the privacy and anonymity models derived from the work of Gambs, Onete and Robert [START_REF] Gambs | Prover anonymous and deniable distance-bounding authentication[END_REF]. These models are compatible with the proposed extension of the DFKO model and rely on classical security definitions given in Appendix A.

Distance-Bounding Protocols. DB protocols are interactive protocols running between two participants. The objective of the prover P is to prove to the verifier V that he is legitimate and located at a distance at most d max . The participants interact during rounds, defined as sequences of messages. For some of these rounds, the verifier uses a clock to measure the time elapsed between the emission of a challenge c i and the reception of the corresponding response r i . These back-and-forth rounds are referred to as time-critical rounds while otherwise they are refer to as slow phases. In most protocols, the DB phase of a protocol is composed of either n independent time-critical rounds or only one combined time-critical round. Having measured the elapsed time at the end of each time-critical round, the verifier then compares this value to a threshold t max associated with the maximal allowed distance d max . If at least one of these tests fails, the prover will not be considered in the vicinity of the verifier. The verifier is assumed to behave honestly during the authentication of a prover. However, he may try to lift the anonymity of a prover if this is possible. In such a case, the verifier may try to link sessions to a given prover. Additionally, provers can potentially behave maliciously and attempt to fool the verifier, either by themselves or by using (voluntary or unwilling) accomplices.

Adversary Model. In this DFKO model, an adversary can interact with provers and verifiers in three kinds of sessions:

• Prover-verifier sessions, in which he observes an honest execution of the protocol between a prover and a verifier.

• Prover-adversary sessions, in which he interacts with a honest prover as a verifier.

• Adversary-verifier sessions, in which he interacts with a legitimate verifier as a prover.

Each session is associated with a unique identifier sid.

The adversaries are defined in terms of their computational power t, the number of prover-verifier sessions q obs they may observe, the number q v of adversaryverifier sessions and the number q p of prover-adversary sessions they initiate, and their winning advantage for the corresponding security games.

To capture the notion of relays, the DFKO framework uses an abstract clock keeping track of the sequence of the adversary's actions. It is given as a function marker : N × N → N, such that marker(•, •) is strictly increasing. It can be used to define tainted time-critical rounds. This indicates that an attack scenario is ruled out by definition, due for instance to the verifier's ability to detect pure relays through his accurate clock. More precisely, an adversary cannot win a game in a tainted session. In the following definitions, Π sid [i, . . . , j] denotes a sequence of messages (m i , . . . , m j ) exchanged during the session sid of the protocol.

Following the terminology introduced by Vaudenay [START_REF] Vaudenay | On privacy models for RFID[END_REF] and later re-used to define prover-anonymity [START_REF] Hermans | Efficient, secure, private distance bounding without key updates[END_REF], if an adversary is assumed to know the final result of an authentication session (i.e., accept or reject), he is said to be wide, while otherwise he is narrow. Orthogonally, if the adversary may never corrupt provers, he is considered to be weak while if a corruption query is only followed by other such queries, the adversary is forward. Finally, if there is no restriction on the corruption queries, the adversary is said to be strong. In this paper, we consider the strongest adversary model possible, namely wide-strong adversaries.

Security analysis. We give the proofs of the main properties of our construction: (1) TF resistance, (2) MF resistance, (3) DH resistance (implying DF resistance), (4) prover privacy and finally (5) prover anonymity. In the context of this paper, the last property is the strongest one as it protects the privacy of the provers against the verifiers themselves.

The slow-phase impersonation-security threat is discarded in our analysis [START_REF] Dürholz | A formal approach to distance-bounding RFID protocols[END_REF]. This notion has been introduced for resource-limited provers and states that the authentication of a prover should be difficult even if only a reduced number of time-critical rounds is supported. It is relatively ambiguous and makes slow-phase impersonation resistance hard to achieve. Furthermore, having multiple rounds of communication is no longer a problem for contactless devices, which are faster and more efficient in their interactions. Therefore, we believe that the need for slow-phase authentication is no longer a constraint for the design of DB protocols.

Game structure. The threat models are represented as security games involving an adversary A and a challenger simulating the environment for him. All these game-based proofs start with the challenger building the simulation environment using DB.gen(1 λ ). For clarity, this step is omitted in their descriptions. The adversary interacts with the simulated environment through oracles that he is allowed to run concurrently. These include a prover oracle (for proveradversary sessions), a verifier oracle (for adversary-verifier sessions) as well as a session oracle to simulate an honest exchange between the prover and the verifier. The challenger may have to simulate the following oracles:

Verifier runs the protocol DB.verifier(ID, dk, vk, UL, RL). Prover(•) runs the protocol DB.prover(ek, sk). Session(•) returns the transcript of a new honest run of the protocol DB.auth(R, n).

Join c (•) simulates the join of a corrupted prover U i by running DB.join(i, UL)

and returning the secret keys.

Corrupt(•) simulates the corruption of a prover U i by returning his secret keys.

Notation.

In what follows, q p (respectively q v ) refers to the number of times the prover (respectively verifier) is used. In this attack model, the malicious prover is not allowed to communicate with his accomplice at all during the time-critical phases. Thus, any communication between them during any time-critical phase taints the session, which can be formalized by the following definition: Definition 2 (Tainted Session (TF)). An adversary-verifier session sid, with time-critical phases Π sid [k, k +1] = (m k , m k+1 ), for k ≥ 1, with the k-th message being received by the adversary, is tainted if there is a session sid between the adversary and P such that, for any i, marker(sid, k) < marker(sid , i) < marker(sid, k + 1). This definition is very strong since a single interaction between the accomplice and the prover, while the accomplice is running a time-critical round in an adversary-verifier session sid, is enough to taint all the time-critical rounds of sid. The malicious prover may not have any feedback from his accomplice during the time-critical phases of the protocol, making the prover's strategy nonadaptive to the challenges sent by the verifier. This simplifies the construction of a simulator that can match the adversary's winning probability.

Terrorist-Fraud Resistance

The TF-resistance notion SimTF can be defined as follows:

Definition 3 (TF Resistance). For a DB authentication scheme DB, a (t, q v , q p , q obs )terrorist-fraud adversary pair (A, P ) and a simulator S running in time t S , the malicious prover P and his accomplice A win against DB if A authenticates in at least one of q v adversary-verifier sessions without tainting it with probability p A , and if S authenticates in one of q v sessions with the view of A with probability p S , then p A ≤ p S .

As stated in Table 1, TF resistance is a binary property. Indeed, the accomplice (i.e., the simulator) is either able to impersonate independently the prover with at least the same probability in later sessions having the initial information received from the prover (i.e., TF-resistant) or not.

We first prove that the TREAD construction is SimTF-resistant without using any artificial extraction mechanism. This simply means that if the prover gives some information to his accomplice to succeed in the first phase of the TF attack, his accomplice can succeed similarly later without the help of the prover. Proof. The theorem simply states that, for any prover P helping an adversary A to authenticate in a session sid, there exists a simulator sim that can perform at least as good as A by using him as a black-box.

Let p be the initial success probability of A with the help of P in a session sid. Let sid denote a new session played a posteriori by the simulator sim with the verifier V . Assume that m is the initial message sent by V in sid and m is the corresponding message sent by V in sid .

To build sim, the idea is to place A in the same situation as in sid. The first step is to rewind A to his initial state, after it received information from P and sent e in sid. Then, sim sends m to A, even though V has sent a different m to sim. If P sent any additional message to A in sid before the beginning of the time-critical phases, sim relays it to A. Hence, from A's point of view, this is the same as in sid.

Next, the simulator sim simply forwards the challenges c i from V to A. If c i = 0, sim sends the response r i of A to V . Otherwise, if c i = 1, sim needs to adapt the response to m : he sends

r i = r i ⊕ m i ⊕ m i .
Using this strategy, it is clear that sim can respond to any challenge with a probability at least equal to that the success probability of A. Hence, sim can authenticate sid with a probability p sim , such that p sim ≥ p.

This result relies on a naïve simulator, which can only win with the same probability as the accomplice A. While this is sufficient to prove the result, a more advanced simulator can amplify any non-negligible advantage of A until it becomes overwhelming after a polynomial number of sessions to the verifier oracle and no further session with the prover himself. Therefore, no rational prover should attempt any TF attack with an accomplice, since any non-negligible success probability in the first phase of the attack can lead to successful impersonation attacks by the accomplice.

Theorem 5. For any adversary A authenticating with the help of a prover with non-negligible probability, there is an algorithm amplify using the internal view of A and oracle access to a verifier, such that after a polynomial number of steps, Pr[amplify authenticates ] = 1, almost surely.

The objective of the proof is to show that the simulator can retrieve the response vectors associated with the message e, allowing successful impersonations afterwards.

Proof. Let A be the accomplice of a malicious prover P trying to conduct a TF attack, and Sim TF () be a simulator having access to the same internal view of A. Assume that A can only access the prover before the time-critical phases. Then, he starts this phase with an initial knowledge IK given by P , and succeeds with a probability p TF . This information IK (i.e., the internal view of A) can be described as one of these two possibilities:

• The prover sends two n-bit vectors to his accomplice: c 0 and c 1 . These vectors represent respectively the (not necessarily correct) responses to the 0-challenges and the 1-challenges.

• The prover sends the description of an algorithm A to generate these vectors.

Intuitively, if A is memoryless (i.e., the response to the i th challenge does not depend on the previous challenges), the two cases are equivalent. Since the challenges are drawn honestly by the verifier, they are unpredictable and independent. Thus, the memoryless hypothesis is reasonable and the information IK can be described as IK = (c 0 , c 1 ).

The information provided to A can be described by two different scenarii. In the missing bits scenario, either c 0 i = α i and

c 1 i = β i ⊕ m i (Case 1 -full information), or c 0 i = α i and c 1 i = ⊥ or, equivalently, c 0 i = ⊥ and c 1 i = β i ⊕ m i (Case 2 -partial information).
For a round, the probability that A responds correctly to the verifier's challenge is either 1 in Case 1 or

q Case2 = 1 2 •1+ 1 2 • 1 2 = 3 4 in Case 2.
In the flipped bits scenario, Case 2 is redefined as

c 0 i = α i and c 1 i = β i ⊕ m i or c 0 i = α i and c 1 i = β i ⊕m i . The probability q Case2 is then equal to 1 2 •1+ 1 2 •0 = 1 2 , i.e.
, the probability that the verifier is asking for the unflipped bit.

The following lemma follows straightforwardly: Lemma 6. Assume that a malicious prover gives to his accomplice A the vectors (c 0 , c 1 ) s.t. Case 1 has been used n-r times and Case 2 r times. The probability that the TF succeeds is

p TF = Pr[A is not detected] = 1 n-r • q r Case2 . Assume now that r is such that q r
Case2 is non-negligible (i.e., ∃c, ∀n c , ∃n > n c , q r Case2 ≥ 1 n c ). This hypothesis implies that r ∈ O(log n) -in both scenarii. Consider now the simulator Sim TF (e, c 0 , c 1 ) that tries to impersonate P to the verifier with no further interaction with P . The simulator must authenticate with the same probability p TF that A had to succeed before helped by P .

This advantage can be amplified arbitrarily close to one. We define a simulator amplify(e, c 0 , c 1 ) using Sim TF (e, c 0 , c 1 ) internally. This simulator can try k • n • n c authentication experiments with the verifier, for some constant k > 2. Thus, amplify(e, c 0 , c 1 ) should win at least n experiments with an overwhelming probability.

For any challenge, the prover can either send beforehand both valid answers, only one valid answer, or one valid one and one invalid one, which can not be distinguished one for another. Hence, for memoryless information, these scenarios are the only ones possible. There is no value to send only one invalid answer or both invalid answers to the accomplice. This assumes that the prover does get any clue from the verifier on which challenges have been rejected.

In fact, we have the following lemma:

Lemma 7. For a valid view (e, c 0 , c 1 ), the probability that amplify(e, c 0 , c 1 )

wins less than n of the k • n • n c experiments is less than e -kn 2 ( k-1 k ) 2 .
The last lemma is derived from the Chernoff bound. The average number of wins µ should be equal to k

• n • n c • 1 n c = k • n. In contrast, n = (1 -δ) • µ, if 1 -δ = 1
k and thus δ = k-1 k . The lemma follows directly and, as a corollary, if k = 4, the probability is smaller than 1 e 1.125n < 1 2 n . Assume that amplify(e, c 0 , c 1 ) has won n independent experiments. Their independence follows from the initial assumption on the independence of the challenges. Depending on the scenarios, two different questions have to be considered. In the missing bits scenario, A has to properly guess different missing bits (i.e., α ij or β ij ⊕ m ij , for 1 ≤ j ≤ r). We need to compute the probability that A has discovered all his r missing bits. Consider a missing bit b ij , for 1 ≤ j ≤ r. After n successful experiments, A does not have discovered the bit only if the verifier has always asked for the opposite known bit -let E j be such an event. This happens only with probability Pr[E j ] = 1 2 n . The following result follows directly from the union bound for finite sets of events: Lemma 8. Assume that amplify(e, c 0 , c 1 ) has won n experiments. Thus, he should have discovered all its r missing bits (of Case 2) with an overwhelming probability. In fact, the probability that some bits are still unknown is simply

Pr[∪ j E j ] ≤ j Pr[E j ] = r 2 n .
Using the last two lemmas, we obtain the next result: Lemma 9. Assume that amplify(e, c 0 , c 1 ) has done 4 • n • n c authentication experiments. After these experiments, he should have retrieved all its r missing bits and be able to impersonate P with an overwhelming probability. Thus,

Adv MF amplify,TREAD (n) ≥ 1 - 1 2 n • 1 - r 2 n > 1 - r + 1 2 n .
In the flipped bits scenario, the verifier should not have asked for any flipped bit in the winning experiments. In these experiments, amplify(e, c 0 , c 1 ) may assume that the bits for which the verifier has always asked the same challenges in fact correspond to the instances of Case 2. The simulator would be wrong only if the verifier has asked always for the same challenges for at least one of the n -r instances of Case 1 (this happens with a probability at most n-r 2 n ). Thus, Adv MF amplify,TREAD (n) ≥ 1 -n-r+1

Mafia Fraud

During an MF, an active MiM adversary, interacting with a single prover and a single verifier during several sessions, tries to authenticate. However, he is not able to purely relay information between the verifier and the prover during the time-critical phases. To discard such attacks, the tainted time-critical phases are redefined as follows.

Definition 10 (Tainted Time-Critical Phase (MF)). A time-critical phase Π sid [k, k+ 1] = (m k , m k+1 ), for k ≥ 1, of an adversary-verifier session sid, with the message m k being received by the adversary as the k th challenge from the verifier, is tainted by the time-critical phase Once this definition is given, the game-based definition of MF resistance notion can be stated as follows.

Π sid * [k, k + 1] = (m * k , m * k+1 ) of a prover- adversary session sid * if (m k , m k+1 ) = (m * k , m * k+1 ), marker(sid, k) < marker(sid * , k),
Definition 11 (MF Resistance). For a DB authentication scheme DB, a (t, q v , q p , q obs )-MF adversary A wins against DB if the verifier accepts A in one of the q v adversary-verifier sessions sid, which does not have any critical phase tainted by a prover-adversary session sid * . Thus, the MF-resistance is defined as the probability Adv MF DB (A) that A wins this game. We now prove that TREAD is MF-resistant.

Theorem 12. If the challenges are drawn randomly from a uniform distribution by the verifier, E is an IND-CCA2-secure encryption scheme and S is EUF-CMAsecure, then TREAD is MF resistant and

Adv M F TREAD (λ) ≤ q 2 p 2 2n + Adv EUF-CMA S (λ) + Adv IND-CCA2 E (λ) + 3 4 n .
The prover and verifier oracles are simulated as defined in Section 2, except that after generating e, the prover adds an entry to a witness list WL containing (e, α||β).

The proof of the above theorem is more complex than others. It can be reduced to the security analysis of a simpler version of the protocol, using the game-hopping technique formalized by Shoup in [START_REF] Shoup | Sequences of games: a tool for taming complexity in security proofs[END_REF]. In essence, the initial security game Γ 0 is reduced to a final game in which the adversary has no information (other than by guessing) about the values α and β before the DB phase. This is done by reducing his means of attacks at each game (e.g. by forbidding nonces reuse from prover oracles), while showing that the resulting loss is negligible. More formally, if P r[Γ i ] represents the winning probability of the adversary A in the game Γ i , the transition between Γ i and Γ i+1 is such that

| Pr[Γ i ] -Pr[Γ i+1 ]| ≤ λ , in which λ is a negligible function of λ.
Proof. We start from the initial game Γ 0 as given in Definition 11 and build the following sequence of games. Γ 1 : In this game, no value α||β is outputted more than once by the prover oracle.

In the i th session, the probability to have a collision with any of the previous i -1 α||β values is bounded by i 2 2•n . If A runs q p prover sessions, the probability of a collision for a given session is bounded by qp 2 2•n . From the union bound, the probability that a collision occurs at least once is bounded by

qp i=0 qp 2 2•n , which is in turn bounded by q 2 p 2 2n . Thus, using Shoup's difference lemma, | Pr[Γ 0 ] -Pr[Γ 1 ]| ≤ q 2 p 2 2n , which is negligible. Γ 2 :
This game aborts if σ p was not generated by the prover oracle, and S.ver vk (σ p , α||β) = 0.

In this game, we rule out the possibility that A produces a valid signature without the key, which is trivially forbidden by the EUF-CMA resistance of S. The reduction simply consists in starting EUF-CMA experiments (one for each prover) with a challenger and using queries to the corresponding signing oracle to generate the signatures of a prover. Then, if A sends a valid signature on behalf of one of the provers, we can return it to the challenger and win the EUF-CMA experiment. From the difference lemma, we have

P r[Γ 1 ] -P r[Γ 2 ] ≤ Adv EUF-CMA S (1 λ
), which is negligible by hypothesis.

Distance Hijacking

One of our contribution extends the distance-fraud (DF) model in the DFKO framework to take into account distance-hijacking (DH) attacks [START_REF] Cremers | Distance hijacking attacks on distance bounding protocols[END_REF]. In DF attacks, the adversary is a malicious prover who aims to authenticate from a distance greater than d max . In DH attacks, the adversary attempts to do the same, but he uses the unintentional help of legitimate provers located close to the verifier. The remote adversary may initiate the DB protocol and let the nearby prover complete the DB phase. Although this is generally true in most of the DB literature, it does not hold for DB protocols preserving anonymity. Indeed, such attacks make only sense if the verifier may differentiate between two provers. For instance, if a remote member of a group X of legitimate provers initiates the DB protocol and a nearby prover of the same group involuntarily completes the DB phase, the verifier would simply conclude that a member of X has just been authenticated. He would end up with the same conclusion if the nearby prover has completed the scheme without any intervention from the remote party. To capture DH in the DFKO framework, we consider an adversary (here a malicious prover) able to use the help of an honest prover in the verifier's proximity and having two choices.

In the DB phase, he commits to a response in advance, before the challenge of that specific round, and sends that commitment. These commitments do not refer to cryptographic commitments, with the properties of binding and hiding, but rather they indicate the prover's choice with regards to a response, which he must transmit to the verifier. In any phase, he commits to a special message Prompt, triggering the response by a close-by honest prover.

If the adversary either (1) fails to commit or prompt for one specific phase, or (2) sends a different value than committed after receiving the time-critical responses, he taints the phase and the session. More formally, when the adversary opens a verifier-adversary session sid, he also opens two associated dummy sessions sid Commit for committed responses and sid Prompt for the responses prompted from the prover. Technically, such an adversary is more powerful than in a typical DH attack [START_REF] Boureanu | Towards secure distance bounding[END_REF], since the adversary can intercept time-critical responses that are sent by the honest prover, and replace them with his own committed responses. More precisely, the formal definition of tainted phases is as follows.

Definition 13 (Tainted Time-Critical Phase (DH)). A critical phase Π sid [k, k + 1] = (m k , m k+1 ) of an adversary-verifier session sid,with the message m k being received by the adversary as the k th challenge from the verifier, is tainted if one of the following conditions holds.

• The maximal j with Π sid Commit This definition rules out some potential actions of attackers. Once this is done, the game-based definition of DH resistance notion can be stated as follows.

Definition 14 (DH Resistance). For a DB authentication scheme DB with DB threshold t max , a (t, q p , q v , q obs )-DH adversary A (with id A ) wins against DB if the verifier accepts id A in one of q v adversary-verifier sessions, which does not have any critical phase tainted. Thus, the DH resistance is defined as the probability Adv DH DB (A) that A wins this game.

The following theorem covers both DH and DF resistance. The idea is that a DF can be seen as a special case of DH in which the adversary does not use nearby provers. The proof consists in showing that the responses corresponding to an initial message e * sent by the adversary have a negligible probability to match those of any nearby honest prover.

Theorem 15. If the challenges follow a uniform distribution, TREAD is DH resistant, and

Adv DH TREAD (λ) ≤ 3 4 n .
The proof of this theorem is given in Appendix B.1.

Privacy

We show now that the public-key instance of our protocol preserves the privacy of the provers against eavesdroppers. An adversary who intercepts information transmitted during the protocol cannot infer the identity of the prover from the information he has seen. Otherwise, he would be able to break the security of the encryption scheme. The private construction is an instance of TREAD using E = PKE and S = S-SIG, for a public key encryption PKE and a digital signature scheme S-SIG. In such protocols, idpub(P ) is set to null. Since all the information allowing to identify the prover is encrypted, only the verifier can learn his identity. This property [START_REF] Gambs | Prover anonymous and deniable distance-bounding authentication[END_REF] is formalized as follows:

Definition 16 (Privacy Protection). Let DB be a DB scheme. The privacy experiment Exp Priv A,DB (λ) for an adversary A on DB is defined as follows. A interacts with a challenger who runs the algorithm DB.gen(1 λ ) to generate the set-up and sends all the public set-up parameters to A. During the experiment, A has access to the following oracles: DB.Join c (•): On input i, it returns the public/secret key pair (pk i , sk i ) of a new prover P i using DB.join(λ).

DB.Prover(•):

On input i, it simulates a session by the prover P i using sk i .

DB.Verifier simulates a session by the verifier V using sk v .

Then, A sends the pair of provers (i 0 , i 1 ) to the challenger who picks b $ ← {0, 1}. Thereafter, A has now access to the following challenge oracle: DB.Prover b simulates a session by the prover P i b using sk i b .

Finally, A returns b . If b = b , the challenger returns 1 (i.e., the guess of A is correct), while otherwise he returns 0.

We define A's advantage on this experiment as 

Adv Priv A,DB (λ) = Pr[Exp Priv A,DB (λ) = 1] - 1 

Prover Anonymity

We finally show that the anonymous version of our protocol preserves the anonymity of the provers against malicious verifiers. By anonymity, we mean that the verifier can not distinguish who is the user with whom he interacts during a session. In TREAD, the only information on a prover identity that a verifier can get during the protocol is the signatures produced by the prover. Since a secure group signature scheme is used, the protocol does not leak any information on the identity of the provers. Otherwise, a verifier would be able to break the security of the group signature scheme. The anonymous construction is defined as an instance of TREAD using E = PKE and S = G-SIG, for a public key encryption PKE and a group signature scheme G-SIG. In such protocols, idprv(P ) should only identify the corresponding group identity. Thus, the verifier should not get any information on a prover identity. This notion is formalized by the Prover Anonymity property defined in [START_REF] Bultel | A prover-anonymous and terrorist-fraud resistant distancebounding protocol[END_REF].

Definition 18 (Prover Anonymity). Let DB be a DB scheme. The anonymity experiment Exp Anon A,DB (λ) for an adversary A on DB is defined as follows. A interacts with a challenger who runs the algorithm DB.gen(1 λ ) to generate the set-up and sends all the public set-up parameters to A. During the experiment, A has access to the following oracles: DB.Join h (•): On input i, it creates a new prover P i using DB.join MK (i, UL). DB.Join c (•): On input i, it creates a corrupted prover P i using DB.join MK (i, UL), returns the secret key psk i , and adds P i to CU.

DB.Revoke(•):

On input i, it runs DB.revoke MK (i, RL, UL) to revoke the prover P i .

DB.Corrupt(•):

On input i, it simulates the corruption of P i by returning his secret key psk i , and adds P i to CU.

DB.Prover(•):

On input i, it simulates a session by the honest prover P i using psk i .

DB.Verifier simulates a session by the verifier V using sk v .

First, A sends the pair of provers (i 0 , i 1 ) to the challenger. If i 0 or i 1 is in CU, the challenger aborts the experiment. Otherwise, he picks b $ ← {0, 1}. Then, A loses access to DB.Revoke(•) and DB.Corrupt(•) on i 0 and i 1 (the oracles return ⊥ if A uses these inputs). Thereafter, A has now access to the following challenge oracle: DB.Prover b simulates a session by the prover P i b using psk i b .

Finally, A returns b . If b = b , the challenger returns 1 (i.e., the guess of A is correct), while otherwise he returns 0.

We define A's advantage on this experiment as

Adv Anon A,DB (λ) = Pr[Exp Anon A,DB (λ) = 1] - 1 2
and the advantage on the PA experiment as

Adv Anon DB (λ) = max A∈Poly(λ) {Adv Anon A,DB (λ)}.
DB is prover anonymous if Adv Anon DB (λ) is negligible.

Theorem 19. If G-SIG is an anonymous revokable group signature scheme [START_REF] Nakanishi | Revocable group signature schemes with constant costs for signing and verifying[END_REF] and if for any prover P values idpub(P ) and idprv(P ) are either set to null or the group identity, then TREAD AN O is prover-anonymous and

Adv Anon TREAD AN O (λ) ≤ Adv Anon G-SIG (λ).
The proof of this theorem is given in Appendix B.3.

Conclusion

In this paper, we introduce a novel approach for provable TF resistance. More precisely, instead of relying on extraction mechanisms to make sure that a TF accomplice can impersonate the malicious prover helping him, we build a generic yet simple construction relying on replay. In this construction, an adversary helped by a malicious prover is given the ability to directly adapt the authentication information he learnt to perform a new authentication with the same probability. However, this comes at the cost of a slightly lower mafia-fraud and distance-fraud resistance.

We have also reinforce the already strong notion of SimTF and prove that if an adversary successfully authenticates with the help of a malicious prover with a non-negligible success probability, he can amplify his winning probability to an overwhelming probability. Three instances of the protocol have been presented. The first one is a symmetric-key lightweight DB protocol with no privacy, the second one is a public-key protocol private against external eavesdroppers, while the last one provides full prover anonymity with respect to malicious verifiers. Our design is generic and may be used to extend existing DB protocols. MAC.sig sk (m): returns a tag s from the message m and the key sk.

MAC.ver sk (s, m): returns a verification bit v from the tag s and the key sk.

A In this case, the verification oracle is optional since the adversary knows the verification key and can simulate it.

B Security Proofs B.1 Distance-Hijacking resistance

Proof of Thm 15. First note that if A uses Prompt for the initial message, i.e., he lets an honest prover send it and then his authentication automatically fails, as idpub(P ) and/or idprv(P ) do not correspond to the identity of A.

Hence, consider the case in which A initiated the protocol with a message e * (associated with α * , β * ). Let e (and α||β) denote the values picked by the nearby honest prover P . For each challenge c i , either A uses Prompt to let P respond or he uses Commit to respond himself before receiving c i .

• If he uses Prompt, his response is valid with probability 1 2 . This is the probability to have α i = α * i (or β i = β * i ).

• If he uses Commit, either α * i = β * i ⊕ m i , and he can commit to a correct response with probability 1, or α * i = β * i ⊕m i , and he must guess the challenge to commit to the correct response. Since m is uniformly distributed and unknown to A at the time when he picks α||β, P r[α * i = β * i ⊕ m i ] = 1 2 . Hence, the probability to commit to the valid response is P r[α

* i = β * i ⊕ m i ] • 1 + P r[α * i = β * i ⊕ m i ] • 1 2 = 3 4 .
It follows that the best strategy for A is to respond by himself, as in a classical DF, using Commit. For n challenges, his advantage Adv DH DB (A) is at most 3 4 n , which is negligible.

B.2 Privacy preserving property

Proof of Thm 17. Assume that there is a polynomial-time adversary A such that Adv Priv A,TREAD Pub (λ) is non-negligible. We show how to build an adversary B such that Adv IND-CCA2 B,PKE (λ) is also non-negligible. Initially, the challenger sends a key pk v to B. Then, B runs DB.gen(1 λ ) to generates the setup parameters of the scheme and sends to A the public set-ups and pk v . Having access to PKE-oracles from his challenger, B can simulate the DB-oracles for A as follows.

DB.Join c (•): On input i, B returns the public/secret key pair (pk i , sk i ) of a new prover P i using DB.join(λ).

DB.Prover(•): B simulates P i for A using sk i and pk v .

DB.Verifier: B simulates V for A as follows:

Initialization phase B receives e from A and computes (α||β||idprv(P i )||σ p ) = PKE.dec skv (e) using his oracle. If S.ver vki (σ p , α||β||idprv(P i )) = 0 (vk i is the verification key of P i ), B returns ⊥ and aborts this simulation. Finally, he picks m $ ← {0, 1} n and returns it.

Distance-bounding phase B picks c j ∈ {0, 1}, sends it to A and waits for the response r j . He repeats this protocol for all j in {0, . . . , n}.

Verification phase If, for all j in {0, . . . , n}, r j = α j when c j = 0 and r j = β j ⊕m j when c j = 1 then B returns 1 to A, otherwise he returns 0.

  Verifier V Prover P dk: decryption key ek: encryption key vk: verification key sk: signature key idpub(P ): public identity of P idprv(P ): private identity of P Initialisation α||β $ ← {0, 1} 2•n , σ p = S.sig sk (α||β||idprv(P )) (α||β||idprv(P )||σ p ) = E.dec dk (e) e||idpub(P ) ← ---------------e = E.enc ek (α||β||idprv(P )||σ p ) if S.ver vk (σ p , α||β||idprv(P )) = 0 then abort m

Figure 2 :

 2 Figure 2: Our generic and provably secure DB construction TREAD built from an IND-CCA2-secure encryption scheme E and an EUF-CMA-secure signature scheme S. We use || for the concatenation operation.

Theorem 4 .

 4 If the challenges c i are drawn uniformly at random by the verifier, TREAD is SimTF-resistant.

  and marker(sid, k + 1) > marker(sid * , k + 1).

  [j] = (sid, k + 1, m * k+1 ) for m * k+1 = Prompt and marker(sid, k) > marker(sid Commit , j) satisfies m * k+1 = m k+1 (or no such j exists). • The maximal j with Π sid Commit [j] = (sid, k + 1, m * k+1 ) for m * k+1 = Prompt satisfies m k+1 = m Prompt k+1 , in which m Prompt k+1 denotes the message m k+1 in sid Prompt .

  SKE.enc sk (m): returns a ciphertext c from the message m and the key sk. SKE.dec sk (c): returns a plaintext m from the ciphertext c and the key sk.A symmetric key encryption scheme is said correct if and only if SKE.dec sk (SKE.enc sk (m)) = m for any message m and any secret key sk generated by SKE.gen. Definition 21. A public key encryption scheme PKE is a triplet of algorithms (PKE.gen, PKE.enc, PKE.dec) s.t.: PKE.gen(1 λ ): returns a public/private key pair (pk, sk) from the security parameter λ. PKE.enc pk (m): returns a ciphertext c from the message m and the public key pk. PKE.dec sk (c): returns a plaintext m from the ciphertext c and the private key sk. A public key encryption scheme is said correct if and only if PKE.dec sk (PKE.enc pk (m)) = m for any message m and any key pair (pk, sk) generated by PKE.gen. Definition 22. Let SKE = (SKE.gen, SKE.enc, SKE.dec) be a symmetric key encryption scheme. SKE is said to be indistinguishable against adaptive chosen ciphertext attack (IND-CCA2) when for any adversary A = (A 0 , A 1 ), the following advantage probability Adv IND-CCA2 A,SKE(1 λ ) is negligible: Pr k ← SKE.gen(1 λ ), b $ ← {0, 1} b ← A SKE.enc k (LR b ),SKE.dec k 0 (λ) : b = b -1 2 where the oracles SKE.enc k (LR b ), SKE.dec k are defined as: SKE.enc k (LR b (m 0 , m 1 )): returns SKE.enc k (m b ) on the message pair (m 0 , m 1 ), for a random bit b. SKE.dec k (c): if c has been generated by SKE.enc k (LR b ) returns ⊥, else returns SKE.dec k (c). Definition 23. Let PKE = (PKE.gen, PKE.enc, PKE.dec) be a public key encryption scheme. PKE is said to be indistinguishable against adaptive chosen ciphertext attack when for any adversary A = (A 0 , A 1 ), the following advantage probability Adv IND-CCA2 A,PKE (1 λ ) defined is negligible: Pr (pk, sk) ← PKE.gen(1 λ ), b $ ← {0, 1} b ← A PKE.enc pk (LR b ) , PKE.dec sk (pk, λ) : b = b -1 2 where the oracles PKE.enc pk (LR b ), PKE.dec sk are defined as: PKE.enc pk (LR b (m 0 , m 1 ): returns PKE.enc pk (m b ) on the message pair (m 0 , m 1 ), for a random bit b. PKE.dec sk (c): if c has been generated by PKE.enc pk (LR b ) returns ⊥, else returns PKE.dec sk (c). Definition 24. A message authentication scheme MAC is a triplet of algorithms (MAC.gen, MAC.sig, MAC.ver) s.t.:MAC.gen(1 λ ): returns a secret key sk from the security parameter λ.

  Dürholz, Fischlin, Kasper and Onete defined the simulation-based TF-resistance notion SimTF[START_REF] Dürholz | A formal approach to distance-bounding RFID protocols[END_REF]. In this model, a far-away malicious prover P wants to use an accomplice A close to the verifier to authenticate. For any rational prover P , A should not receive during the attack enough information allowing him to impersonate P later on in any MF or IF. This is formalized as a two-phase game. During the first phase, A tries to authenticate with the help of P . Let p A denote his success probability. During the second phase, a simulator S takes the internal view of A and tries to authenticate without any interaction with any other legitimate prover. Let p S denote its success probability. The TF attack by the pair (P, A) is successful, if the help of P during the attack does make any difference in the attack (i.e., if p A > p S ).

  2and the advantage on the privacy experiment as Theorem 17. If PKE is an IND-CCA2 secure public key encryption scheme and if for any prover P values idpub(P ) is set to null, then TREAD Pub is privacy-

	Adv Priv DB (λ) = max A∈Poly(λ) {Adv Priv A,DB (λ)}.
	DB is privacy preserving if Adv Priv DB (λ) is negligible.	
	preserving and	
	Adv Priv TREAD Pub (λ) ≤ Adv IND-CCA2 PKE	(λ).
	The proof of this theorem is given in Appendix B.2.

  message authentication scheme is said correct if and only if MAC.ver sk (m, MAC.sig sk (m)) = 1 for any message m and any key sk generated by MAC.gen. Definition 25. A digital signature scheme SIG is a triplet of algorithms (SIG.gen, SIG.sig, SIG.ver) s.t.: SIG.gen(1 λ ): returns a key pair (sk, vk) from the security parameter λ. SIG.sig sk (m): returns a signature s from the message m and the signing key sk. SIG.ver vk (s, m): returns a verification bit v from the signature s and the verification key vk. A digital signature scheme is said correct if and only if SIG.ver pk (m, SIG.sig sk (m)) = 1 for any message m and any key pair (sk, vk) generated by SIG.gen. Definition 26. Let MAC = (MAC.gen, MAC.sig, MAC.ver) be a message authentication scheme. MAC is said to be unforgeable against chosen massage attack (EUF-CMA) when for any adversary A, the following advantage probability Adv EUF-CMA A,MAC (1 Definition 27. Let SIG = (SIG.gen, SIG.sig, SIG.ver) be a digital signature scheme. SIG is said to be unforgeable against chosen massage attack when for any adversary A, the following advantage probability Adv EUF-CMA SIG.gen(1 λ ) (s, m) ← A SIG.sign sk ,SIG.ver vk (vk, λ) : SIG.ver vk (s, m) = 1 where the oracles SIG.sign sk , SIG.ver vk are defined as: SIG.sign sk (m): returns (m, SIG.sig sk (m)) on message m. SIG.ver vk (s, m): if s has been generated by SIG.sign sk (m) returns ⊥, else returns SIG.ver vk (s, m).

		A,SIG	(1 λ ) is negli-
	gible:	
	Pr	k ←

λ ) is negligible: Pr k ← MAC.gen(1 λ ) (s, m) ← A MAC.sign k ,MAC.ver k (λ) : MAC.ver k (s, m) = 1 where the oracles MAC.sign k , MAC.ver k are defined as: MAC.sign k (m): returns (m, MAC.sig k (m)) on input m. MAC.ver k (s, m): if s has been generated by MAC.sign k (m) returns ⊥, else returns MAC.ver k (m, s).

n in this case, which concludes the proof of Theorem 5.

* This research was conducted with the support of the FEDER program of 2014-2020, the region council of Auvergne, and the Digital Trust Chair of the University of Auvergne. This work was also funded by NSERC Discovery Grant.

Γ 3 : In this game, e is replaced by the encryption of a random string (of equal length).

This transition is based on indistinguishability, aiming at removing any leakage of α||β from e by making α||β only appear during the DB phase. We prove that the probability = P r[Γ 3 ]-P r[Γ 2 ] is negligible by building a distinguisher B such that its advantage against the IND-CCA2 experiment is polynomial in . Hence, if is non-negligible, we reach a contradiction. By assumption, the advantage of any adversary against the IND-CCA2 experiment on E is negligible.

To build B, we replace E.enc ek (α||β||idprv(P )||σ p ) by a string given by the IND-CCA2 challenger. Using the adversary A, the distinguisher B can be built as follows.

Prover simulation: the reduction B generates two challenge messages: m 0 = (δ||idprv(P )||S.sig sk (δ||idprv(P ))) and m 1 = (α||β|| S.sig sk (α||β|| idprv(P ))), in which α||β and δ are random binary strings of length 2 • n. Then, he sends them to the challenger to obtain c b , the encryption of m b (depending on a random bit b picked by the challenger before the experiment). He also adds (c b , α||β) to the list WL. Afterwards, he sends c b as the initial message and uses α||β during the challenge-response phase.

Verifier simulation: When the verifier oracle gets the initial message e, he reads the tuple (e, α||β) in WL and uses the corresponding α||β to verify the responses. If no such tuple exists, then he is allowed to use the decryption oracle on e (as it is not a challenge c b ). As Γ 2 enforces that only invalid or prover generated signatures are contained in e, then either A loses for sending an invalid signature, or e is a new encryption for values contained in one of the challenges. In the latter case, B readily obtains the bit b by verifying whether the decryption of e corresponds to a m 0 or a m 1 .

Return value: B returns Out V .

If b = 1, B simulates Γ 2 (e is the encryption of α||β). In this case, B wins if

. Otherwise, if b = 0, then B simulates Γ 3 (e is the encryption of δ). In this case, B returns 0 if A loses (i.e., with probability 1 -P r[Γ 3 ]). The winning probability of B is then

, giving an advantage of = P r[Γ 2 ] -P r[Γ 3 ]. It follows that any significant probability difference between the two games can be transformed into an

We are left to prove that P r[Γ 3 ] is negligible. First remark that in Γ 3 , A has absolutely no way to predict the value r i for any round i (as neither α i nor β i appears before round i). Hence, A can either try to guess c i or r i . His success probability in the second case is 1 2 . In the first case, he succeeds if he guesses the challenge properly (as he can obtain the response from the prover), but also if he wrongly guesses the challenge but guesses correctly the other response. The corresponding probability is

for each round. As there are n such rounds, P r[Γ 3 ] ≤ 3

A Definitions

In this section, we present the classical definitions used implicitly in our formal proofs.

Definition 20. A symmetric key encryption scheme SKE is a triplet of algorithms (SKE.gen, SKE.enc, SKE.dec) s.t.: SKE.gen(1 λ ): returns a secret key sk from the security parameter λ. Definition 29. Let G-SIG be a group signature scheme. The anonymity experiment Exp Anon A,G-SIG (λ) for the adversary A on G-SIG is defined as follows. A interact with a challenger who creates (UL, RL, msk, gpk) using G.gen(1 λ ), gives gpk to A, and sets the lists CU and Σ. During this phase A has access to G-oracles: G.Join h (•): On input i, creates P i with G.join msk (i, gpk, UL).

G.Join c (•): On input i, creates P i with G.join msk (i, gpk, UL) with A, and adds him to CU.

G.Revoke(•): On input i, revokes P i with G.rev msk (i, RL, UL, gpk).

G.Corrupt(•):

On input i, returns the secret information of an existing P i . If P i ∈ UL, it sends ssk i to A and adds P i to CU.

G.Sign(•, •): On input i, returns a signature σ p on behalf of P i , using G.sig sski (m), and adds the pair (m, σ p ) to Σ.

G.Open(•, •): On input i, opens a signature σ on m and returns P i to A, using the algorithm G.ope msk (σ, m, UL, gpk). This oracle rejects all signatures produced by G.Sign b (•, •).

A outputs (i 0 , i 1 ) to the challenger. If i 0 and i 1 ∈ CU, the challenger stops. Distance-bounding phase B picks c j ∈ {0, 1}, sends it to A and waits the response r j . It repeats this protocol for all j in {0, . . . , n}.

Verification phase Using List d = (α, β, e), if for all j ∈ {0, . . . , n}, r j = α j when c j = 0 and r j = β j ⊕ m j when c j = 1, B returns 1 to A. Otherwise, he simply returns 0.

Finally, A returns b to B who returns it to the challenger. The experiment is perfectly simulated for A, and in consequence B wins his experiment with the same probability that A wins his. Thus, Adv Priv A,TREAD

, contradicting the assumption on PKE.

B.3 Anonymity preserving property

Proof of Thm 19. Assume that there is a polynomial-time adversary A such that Adv Anon A,TREAD AN O (λ) is non-negligible. We show how to construct an adversary B such that Adv Anon B,G-SIG (λ) is also non-negligible. Initially, the challenger sends a key gpk and a revoked list RL to B. Then, B generates a public/private key pair pk v , sk v for the verifier using PKE.gen(1 λ ). Thus, B sends (pk v , gpk, RL) to A and creates the empty list CU. Having access to G-SIG-oracles from his challenger, B can simulate the DB-oracles for A as follows:

DB.Join h (•): On input i, creates P i with G.Join h (•), and adds P i to UL. Distance-bounding phase B picks c j ∈ {0, 1}, sends it to A and waits the response r j . He repeats this protocol for all j in {0, . . . , n}.

DB.Join

Verification phase If, for all j in {0, . . . , n}, r j = α j when c j = 0 and r j = β j ⊕ m j when c j = 1 then B returns 1 to A, else he returns 0.

A sends (i 0 , i Verification phase B receives Out V from A.

Finally, A returns b to B who returns it to the challenger. The experiment is perfectly simulated for A and in consequence, B wins his experiment with the same probability that A wins his. Thus, Adv Anon B,G-SIG (λ) = Adv Anon A,TREAD Ano (λ), contradicting the assumption on G-SIG.