
HAL Id: hal-01588552
https://hal.science/hal-01588552v1

Submitted on 15 Sep 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On Matrices With Displacement Structure: Generalized
Operators and Faster Algorithms

Alin Bostan, Claude-Pierre Jeannerod, Christophe Mouilleron, Eric Schost

To cite this version:
Alin Bostan, Claude-Pierre Jeannerod, Christophe Mouilleron, Eric Schost. On Matrices With Dis-
placement Structure: Generalized Operators and Faster Algorithms. SIAM Journal on Matrix Analysis
and Applications, 2017, 38 (3), pp.733-775. �10.1137/16M1062855�. �hal-01588552�

https://hal.science/hal-01588552v1
https://hal.archives-ouvertes.fr

ON MATRICES WITH DISPLACEMENT STRUCTURE:
GENERALIZED OPERATORS AND FASTER ALGORITHMS

A. BOSTAN∗, C.-P. JEANNEROD†, C. MOUILLERON‡ , AND É. SCHOST§

Abstract. For matrices with displacement structure, basic operations like multiplication, in-
version, and linear system solving can all be expressed in terms of the following task: evaluate the
product AB, where A is a structured n × n matrix of displacement rank α, and B is an arbitrary
n × α matrix. Given B and a so-called generator of A, this product is classically computed with a
cost ranging from O(α2M (n)) to O(α2M (n) log(n)) arithmetic operations, depending on the type of
structure of A; here, M is a cost function for polynomial multiplication. In this paper, we first gen-
eralize classical displacement operators, based on block diagonal matrices with companion diagonal
blocks, and then design fast algorithms to perform the task above for this extended class of struc-
tured matrices. The cost of these algorithms ranges from O(αω−1M (n)) to O(αω−1M (n) log(n)),
with ω such that two n × n matrices over a field can be multiplied using O(nω) field operations.
By combining this result with classical randomized regularization techniques, we obtain faster Las
Vegas algorithms for structured inversion and linear system solving.

Key words. structured linear algebra, matrix multiplication, computational complexity

AMS subject classifications. 65F05, 68Q25

1. Introduction. Exploiting the structure of data is key to develop fast algo-
rithms and, in the context of linear algebra, this principle is at the heart of algorithms
for displacement structured matrices. These algorithms can speed up for instance the
inversion of a given matrix whenever this matrix has a structure close to that of a
Toeplitz, Hankel, Vandermonde, or Cauchy matrix. The idea is to represent structured
matrices succinctly by means of their generators with respect to suitable displacement
operators, and to operate on this succinct data structure.

Displacement operators. Let F be a field. To measure the extent to which a matrix
A ∈ Fm×n possesses some structure, it is customary to use its displacement rank, that
is, the rank of its image through a displacement operator [18]. There exist two broad
classes of displacement operators: Sylvester operators, of the form

∇M,N : A ∈ F
m×n 7→ MA− AN ∈ F

m×n,

and Stein operators, of the form

∆M,N : A ∈ F
m×n 7→ A−MAN ∈ F

m×n;

in both cases, M and N are fixed matrices in Fm×m and Fn×n, respectively. For any
such operator, say L, the rank of L(A) is called the L-displacement rank of A, or
simply its displacement rank if L is clear from the context. Loosely speaking, the
matrix A is called structured (with respect to the operator L) if its L-displacement
rank is small compared to its sizes m and n.

We say that a matrix pair (G,H) in Fm×α×Fn×α is an L-generator of length α of
A ∈ Fm×n if it satisfies L(A) = GHt, with Ht the transpose of H. Again, if L is clear

∗Inria, France (alin.bostan@inria.fr).
†Inria, Université de Lyon, laboratoire LIP (CNRS, ENSL, Inria, UCBL), France

(claude-pierre.jeannerod@inria.fr).
‡ENSIIE, Évry, France (christophe.mouilleron@ens-lyon.org). Part of this work was done when

C. Mouilleron was a member of laboratoire LIP (CNRS, ENSL, Inria, UCBL).
§David R. Cheriton School of Computer Science, University of Waterloo, ON, Canada

(eschost@uwaterloo.ca).

1

mailto:alin.bostan@inria.fr
mailto:claude-pierre.jeannerod@inria.fr
mailto:christophe.mouilleron@ens-lyon.org
mailto:eschost@uwaterloo.ca

2 A. BOSTAN, C.-P. JEANNEROD, C. MOUILLERON, AND É. SCHOST

from the context, we shall simply say generator of length α. Provided L is invertible
and when α is small, such a generator can play the role of a succinct data structure
to represent the matrix A. The smallest possible value for α is the rank of L(A).

If A is invertible and structured with respect to L, then its inverse A−1 is struc-
tured with respect to the operator L′ obtained by swapping M and N:

(1) L = ∇M,N =⇒ L′ = ∇N,M, L = ∆M,N =⇒ L′ = ∆N,M.

More precisely, the above claim says that the ranks of L(A) and L′(A−1) are the
same. (See [33, Theorem 1.5.3] and, for the case not handled there, see [18, p. 771];
for completeness, we give a proof in Appendix A.)

Some classical operators. Consider first Toeplitz-like matrices. For ϕ in F, it is
customary to define the m×m cyclic down-shift matrix

(2) Zm,ϕ =

ϕ
1

. . .

1

 ∈ F

m×m.

Then, using Sylvester operators, a matrix A ∈ Fm×n will be called Toeplitz-like if
Zm,ϕ A − AZn,ψ has a low rank compared to m and n. (This rank is independent
of the choice of ϕ and ψ, up to an additive constant of absolute value at most two.)
Using Stein operators, one would consider instead the rank of A− Zm,ϕ AZtn,ψ .

Besides Zm,ϕ and its transpose it is also useful to consider the diagonal ma-
trix D(x), whose diagonal is given by x ∈ Fm. Specifically, popular choices take

(3) (M,N) ∈
{
Zm,ϕ,Z

t
m,ϕ,D(x)

}
×
{
Zn,ψ ,Z

t
n,ψ,D(y)

}
,

with ϕ, ψ ∈ F, x ∈ Fm and y ∈ Fn, for either Sylvester or Stein operators. This
family covers in particular Toeplitz and Hankel-like structures, where both M and N

are (transposed) cyclic down-shift matrices; Vandermonde-like structures, where one
of the matrices M and N is a (transposed) cyclic down-shift matrix and the other
one is diagonal; and Cauchy-like structures, where both M and N are diagonal. We
say that a displacement operator is of Toeplitz / Hankel type if it falls into the first
category, and of Vandermonde / Cauchy type if it falls into the second or third one.

Block-diagonal companion matrices. The first contribution of this paper is to
generalize the classical displacement operators seen before. Let F[x] be the univariate
polynomial ring over F, and for δ > 0, let F[x]δ be the F-vector space of polynomials
of degree less than δ. Furthermore, for F =

∑
i fix

i ∈ F[x] monic of degree δ > 0,
denote by MF the δ × δ companion matrix associated with F :

MF =

−f0
1 −f1

. . .
...

1 −fδ−1

 ∈ F

δ×δ.

Two special cases are the m×m matrix Zm,ϕ defined in (2) and the 1×1 matrix given
by x0 ∈ F, which are associated with the polynomials xm−ϕ and x−x0, respectively.

Given d > 0, let now P = P1, . . . , Pd denote a family of monic nonconstant
polynomials in F[x], and let m = m1 + · · ·+md with mi = deg(Pi) > 1 for all i. We

ON MATRICES WITH DISPLACEMENT STRUCTURE 3

will call block-diagonal companion matrix associated with P the m×m block-diagonal
matrix MP whose ith diagonal block is the mi ×mi companion matrix MPi :

MP =

MP1

. . .

MPd

 ∈ F

m×m.

We write P to denote the product P1 · · ·Pd, which is the characteristic polynomial
of MP. Finally, we associate with P the following assumption on its elements:

HP: P1, . . . , Pd are pairwise coprime.

Associated displacement operators. With P as above, we now consider another
family of monic nonconstant polynomials, namely Q = Q1, . . . , Qe, with respective
degrees n1, . . . , ne; we let Q = Q1 · · ·Qe and n = n1 + · · · + ne. In what follows, we
assume that both assumptions HP and HQ hold.

Let then MP ∈ Fm×m and MQ ∈ Fn×n be the block-diagonal companion matrices
associated with P and Q. In this paper, we consider the following eight operators:

∇MP,Mt
Q
, ∇M

t
P
,MQ

, ∇MP,MQ
, ∇M

t
P
,Mt

Q
,

∆MP,Mt
Q
, ∆M

t
P
,MQ

, ∆MP,MQ
, ∆M

t
P
,Mt

Q
.

We shall call them the operators associated with (P,Q) of Sylvester or Stein type,
respectively, and say that they have format (m,n). Two of these operators will be
highlighted,∇MP,Mt

Q
and ∆MP,Mt

Q
, and we will call them the basic operators associated

with (P,Q). Indeed, we will be able to derive convenient formulas to invert them;
this will in turn allow us to deal with the other six operators by suitable reductions.

Tables 1 and 2 show that the classical structures defined by (3) follow as special
cases of these operators, for suitable choices of (P,Q) making MP or MQ a diagonal
or a (transposed) cyclic down-shift matrix.

Table 1

Some particular cases for the Sylvester operator ∇
MP,Mt

Q
.

e = 1 and Q1 = xn − ψ e = n and Qj = x− yj

d = 1 and P1 = xm − ϕ Hankel-like
Vandermondet-like
(for the points 1/yj)

d = m and Pi = x− xi
Vandermonde-like
(for the points 1/xi)

Cauchy-like
(for the points xi and yj)

Table 2

Some particular cases for the Stein operator ∆
MP,Mt

Q
.

e = 1 and Q1 = xn − ψ e = n and Qj = x− yj

d = 1 and P1 = xm − ϕ Toeplitz-like
Vandermondet-like
(for the points yj)

d = m and Pi = x− xi
Vandermonde-like
(for the points xi)

Cauchy-like
(for the points 1/xi and yj)

4 A. BOSTAN, C.-P. JEANNEROD, C. MOUILLERON, AND É. SCHOST

In other words, our family of operators covers all classical operators of Toeplitz,
Hankel, Vandermonde, and Cauchy type in a unified manner. However, this formalism
also includes many new cases as “intermediate” situations. For example, taking e = 1
and Q1 = xn, we see that the matrix of the multiple reduction map modulo P1, . . . , Pd
has displacement rank 1 for the Stein operator ∆MP,Mt

Q
, so our operators will allow

us to address problems related to Chinese remaindering.

Problem statement. Our goal is to study the complexity of basic computations
with matrices that are structured for the operators seen above: multiply a matrix
A ∈ Fm×n by a matrix B, invert A, and solve the linear system Ax = b. Formally, let
L : Fm×n → Fm×n be a displacement operator of either Sylvester or Stein type, and
assume that L is invertible. Then, the problems we address read as follows.

mul(L, α, β) : given an L-generator (G,H) ∈ Fm×α×Fn×α of a matrix A ∈ Fm×n with
α 6 min(m,n) and given a matrix B ∈ Fn×β , compute the product AB ∈ Fm×β.

inv(L, α) : given an L-generator (G,H) ∈ Fm×α × Fm×α of a matrix A ∈ Fm×m with
α 6 m, return an L′-generator (G′,H′) of length at most α for A−1, or assert
that A is not invertible. Here, L′ is the operator in (1).

solve(L, α) : given an L-generator (G,H) ∈ Fm×α × Fn×α of a matrix A ∈ Fm×n with
α 6 min(m,n) and given a vector b ∈ Fm, find a solution x ∈ Fn to Ax = b, or
assert that no such solution exists. (When b = 0 and A has not full column rank,
then a nonzero vector x should be returned; we call this a nontrivial solution.)

For the problems above to make sense, we need the displacement operator L to be
invertible. For the Sylvester operators associated with (P,Q), this occurs if and only

if gcd(P,Q) = 1; for Stein operators, the condition becomes gcd(P, Q̃) = 1 with Q̃ =

xnQ(1/x) or, equivalently, gcd(P̃ , Q) = 1 with P̃ = xmP (1/x) [33, Theorem 4.3.2].
We allow probabilistic algorithms. For instance, for inversion in sizem, we will see

algorithms that use r = O(m) random elements in F, for which success is conditional
to avoiding a hypersurface in F

r
of degree mO(1).

To analyze all upcoming algorithms, we count all arithmetic operations in F

at unit cost, so the time spent by an algorithm is simply the number of such op-
erations it performs. Then, our goal is to give upper bounds on the cost func-
tions Cmul(., ., .), Csolve(., .), Cinv(., .), which are such that the problems mul(L, α, β),
solve(L, α), inv(L, α), can be solved in respective times

Cmul(L, α, β), Csolve(L, α), Cinv(L, α).

In particular, Cmul(L, α, 1) denotes the cost of a structured matrix-vector product Av.
A few further problems can be solved as direct extensions of these operations.

Indeed, a simple transformation (see e.g. [33, Theorem 1.5.2]) shows that if a ma-
trix A is structured with respect to one of the operators associated with (P,Q), its
transpose At is structured as well, with respect to one of the operators associated
with (Q,P). This is summarized as follows, where (M,N) ∈ {MP,M

t
P}×{MQ,M

t
Q}:

∇M,N(A) = GHt ⇐⇒ ∇Nt,Mt(At) = (−H)Gt,

∆M,N(A) = GHt ⇐⇒ ∆Nt,Mt(At) = HGt.

Thus, from our results on multiplication, inversion, and linear system solving for the
matrix A, one directly obtains similar results for the same operations with At.

Cost measures. We let M be a multiplication time function for F[x], that is,
M : N>0 → R>0 is such that two polynomials of degree less than d can be multi-
plied in M (d) arithmetic operations in F; M must also satisfy the super-linearity

ON MATRICES WITH DISPLACEMENT STRUCTURE 5

properties of [12, Ch. 8]. It follows from [38, 37] that we can always take M (d) ∈
O(d lg(d) lglg(d)), where lg(d) = log(max(d, 2)) and log is the binary logarithm. (This
definition of lg(d) ensures that expressions like d lg(d) lglg(d) do not vanish at d = 1.)
Hence, from now on we assume that M is quasi-linear in d, so that M (d) = O(d1+ǫ)
for all ǫ > 0, and that M (1) = 1.

Here and hereafter, ω denotes any real number such that two n×nmatrices over F
can be multiplied using O(nω) arithmetic operations in F. We have ω < 2.38 [23] as
n→ ∞ and, for moderate dimensions (say, n < 106), upper bounds on ω range from
2.81 [40] down to 2.78 [29]; on the other hand, we have the trivial lower bound ω > 2.
(Our cost analyses will be given for ω > 2 for simplicity, but note that their extension
to the case ω = 2 would be straightforward and imply no more than some extra
logarithmic factors.)

The running time of our algorithms will depend on the cost of some polynomial
matrix operations. Let Mmat(d, n) : R>1 × N>0 → R>0 be such that two n × n
matrices over F[x]d can be multiplied in Mmat(d, n) arithmetic operations in F. (It
will be convenient to allow non-integer values of d; this does not change the definition.)
One can use the following estimates:

Mmat(d, n) =

O(M (d)nω) in general,

O(dnω + M (d)n2) if char(F) = 0 or |F| > 2d;

the former follows from [9] and the latter is from [7], using evaluation and interpolation

at geometric sequences; in both cases, this is Õ(dnω), where the soft-O notation Õ(·)
means that we omit polylogarithmic factors. Our costs will be expressed using not
quite Mmat, but two related functions M ′

mat and M ′′
mat, which should be thought of

as being “close” to Mmat up to logarithmic factors. These two functions are defined
as follows. For n a power of two,

M
′
mat(d, n) =

log(n)∑

k=0

2kMmat

(
2kd,

n

2k

)

and, for general n, M ′
mat(d, n) = M ′

mat(d, n) with n the smallest power of two greater
than or equal to n. Using the super-linearity of M , the above choices for Mmat give

(4) M
′
mat(d, n) =

O(M (dn)nω−1) in general,

O(dnω + M (dn)nlg(n)) if char(F) = 0 or |F| > 2dn;

in both cases, this is again Õ(dnω). Note on the other hand that dn2 6 nM (dn) 6
M ′

mat(d, n). Now, for d a power of two, let

M
′′
mat(d, n) =

log(d)∑

k=0

2kM ′
mat

(
d

2k
, n

)

and, for general d, let M ′′
mat(d, n) = M ′′

mat(d̄, n) with d̄ the smallest power of two
greater than or equal to d. Using the two previous bounds on M ′

mat, we deduce that

M
′′
mat(d, n) =

O
(
M (dn)nω−1lg(d)

)
in general,

O
(
(dnω + M (dn)nlg(n))lg(d)

)
if char(F) = 0 or |F| > 2dn;

6 A. BOSTAN, C.-P. JEANNEROD, C. MOUILLERON, AND É. SCHOST

again, in both cases this is Õ(dnω). Conversely, we have dnω = O
(
M ′′

mat(d, n)
)
, since

M ′′
mat(d, n) > dM ′

mat(1, n) > dMmat(1, n). Remark also that if we assume, similarly
to the super-linearity assumptions on M , that for every positive integer n the function
d 7→ M ′

mat(d, n)/d is nondecreasing, then we have in all cases the simple bound

M
′′
mat(d, n) 6 M

′
mat(d, n)(1 + log(d)).

Finally, note that for d = 1 and ω > 2,

M
′′
mat(1, n) = M

′
mat(1, n) = O(nω).

To check the second equality, one may fix some ǫ such that 0 < ǫ < ω − 2, so that
M (m) = O(m1+ǫ) and thus M ′

mat(1, n) = O
(∑

k>0 n
ω(2k)2+ǫ−ω

)
with 2+ ǫ−ω < 0.

To any family of polynomials P = P1, . . . , Pd with mi = deg(Pi) > 0 for all i, we
will associate two cost measures, C (P) and D(P), related to Chinese remaindering
and (extended) GCDs; both range between O(m) or O(M (m)) and O(M (m)lg(m)),
where we write m = m1+ · · ·+md as before. In both cases, we give a general formula
and point out particular cases with smaller estimates.

First, in the particular case where Pi = x − xi for all i with the xi in geometric
progression, we take C (P) = M (m). In all other cases, we take

C (P) = M (m)

1 +

∑

16i6d

mi

m
log

(
m

mi

)
 .

Since the value of the above sum ranges from zero to log(d) (see for example [8, p. 38]),
the function C (P) always satisfies

M (m) 6 C (P) 6 M (m)(1 + log(d));

in particular, we have C (P) = O(M (m)lg(d)).
The definition of the function D(P) starts with a particular case as well: when

d = 1 and P1 = xm − ϕ with ϕ ∈ F, we take D(P) = m. Otherwise, we write

D(P) =
∑

16i6d

M (mi)lg(mi).

Table 3 displays the values of C (P) and D(P) in the two special cases mentioned
above, but also their estimates when d = O(1) or mi = O(1) for 1 6 i 6 d. We see
that when d = O(1) we are essentially in the best case for C (P) and in the worst case
for D(P), and that the situation is reversed when mi = O(1) for all i. In other words,
the families with best and worst cases for D(P) are the opposite of those for C (P).

Finally, when considering two families of polynomials P and Q, we will write

C (P,Q) = C (P) + C (Q) and D(P,Q) = D(P) + D(Q).

Background work. Following landmark publications such as [24, 18, 25, 3], the
literature on structured linear systems has vastly developed, and we refer especially
to [33, 34] for comprehensive overviews. It was recognized early that a key ingredient
for the development of fast algorithms was the ability to perform matrix-vector prod-
ucts efficiently. For Toeplitz-like and Hankel-like systems, this was done in [25, 3];

ON MATRICES WITH DISPLACEMENT STRUCTURE 7

Table 3

Upper bounds for C (P) and D(P) in some special cases.

C (P) D(P)

Pi = x− xi for all i, with
the xi in geometric progression

M (m) m

d = 1 and P1 = xm − ϕ M (m) m

mi = O(1) for all i O(M (m)lg(m)) O(m)

d = O(1) O(M (m)) O(M (m)lg(m))

for Vandermonde and Cauchy structures, this is in [13, 14]. In our notation, these
references establish bounds of the form

Cmul(L, α, 1) = O(αM (m)) or Cmul(L, α, 1) = O(αM (m)lg(m)),

for operators of format (m,m) of Toeplitz / Hankel type or Vandermonde / Cauchy
type, respectively.

If a matrix B has β columns, then the product AB can be computed by perform-
ing β matrix-vector products with A. In other words, we can take

Cmul(L, α, β) 6 β Cmul(L, α, 1),

which yields the bounds O(αβM (m)) andO(αβM (m)lg(m)) for the cases seen above.
Such matrix-matrix products, with β ≃ α, are the main ingredients in the Morf /

Bitmead-Anderson (MBA) algorithm to invert structured matrices [3, 25] of Toeplitz
/ Hankel type, which combines the displacement rank approach of [11, 18, 17] with
Strassen’s divide-and-conquer approach for dense matrix inversion [40]. This algo-
rithm initially required several genericity conditions to hold but, based on the ran-
domized regularization technique of Kaltofen and Saunders [21], it was then further
extended in [19, 20] to handle arbitrary matrices (see also [2, pp. 204–208] and [33,
§5.5–5.7]). For operators of format (m,m) of Toeplitz, Hankel, Vandermonde or
Cauchy type, the cost of inversion Cinv(L, α) can then (roughly speaking) be taken in

O(Cmul(L, α, α)lg(m));

see [36] for the case of Vandermonde-like and Cauchy-like matrices, and [26, 31, 32]
for a unified treatment of all four structures. Using the above upper bound on the
cost of multiplication Cmul(L, α, α), we see that this is αlg(m) times the cost of a
matrix-vector product (strictly speaking, some precautions are necessary to make
such a statement; for instance, the algorithm becomes probabilistic).

This results in running times of the formO(α2M (m)lg(m)) orO(α2M (m)lg(m)2)
for inverting respectively Toeplitz /Hankel-like matrices and Vandermonde /Cauchy-
like matrices of size m and displacement rank α. In the Vandermonde /Cauchy case,
another approach due to Pan [30] proceeds by reduction to the Toeplitz/Hankel case;
the running time is then reduced to O(α2M (m)lg(m)).

Going beyond the four basic structures, Olshevsky and Shokrollahi introduced
a common generalization thereof, where the displacement matrices take the form of
block-diagonal Jordan matrices [28]. We will discuss their result in more detail after

8 A. BOSTAN, C.-P. JEANNEROD, C. MOUILLERON, AND É. SCHOST

stating our main theorems. For the moment, we mention that their paper gives an
algorithm for matrix-vector product with running times ranging from

Cmul(L, α, 1) = O(αM (m)) to Cmul(L, α, 1) = O(αM (m)lg(m)),

depending on the block configuration of the supporting Jordan matrices; for the four
basic structures seen above, we recover the running times seen before. In [27], this
result is used to sketch an extension of the MBA algorithm to such matrices. As
before, the running time for inversion increases by a factor αlg(m) compared to the
time for matrix-vector multiplication, ranging from

Cinv(L, α) = O(α2
M (m)lg(m)) to Cinv(L, α) = O(α2

M (m)lg(m)2),

depending on the operator.
When α = O(1), all above results for matrix-vector product or matrix inversion

are within a polylogarithmic factor of being linear-time. However, when α is not
constant, this is not the case anymore; in the worst case where α ≃ m, the running
times for inversion grow like m3 (neglecting logarithmic factors again), whereas dense
linear algebra algorithms take time O(mω). In [4], Bostan, Jeannerod and Schost
gave algorithms for inversion of structured matrices of the four classical types with
running time O(αω−1M (m)lg(m)2). This is satisfactory for α ≃ m, since we recover
the cost of dense linear algebra, up to logarithmic factors. However, for α = O(1),
this algorithm is slightly slower (by a factor lg(m)) than the MBA algorithm.

Main results. The results in this paper cover in a uniform manner the general
class of operators based on companion matrices introduced above. Inspired by [4], we
obtain algorithms for structured matrix multiplication, inversion, and linear system
solving whose running times grow with α as αω−1 instead of α2; however, we manage
to avoid the loss of the lg(m) factor observed in [4], thus improving on the results of
that paper. All our algorithms assume exact arithmetic (and we do not claim any
kind of accuracy guarantee when using finite precision arithmetic). Note also that
they are deterministic for multiplication and, similarly to [4], randomized (Las Vegas)
for inversion and linear system solving.

Let P and Q be as before. We give in Section 3 inversion formulas for the basic
operators L = ∇MP,Mt

Q
or L = ∆MP,Mt

Q
that allow us to recover a matrix A from one

of its generators, generalizing simultaneously previous results for Toeplitz, Hankel,
Vandermonde, and Cauchy displacement operators. From these formulas, one readily
deduces that a matrix-vector product Au can be computed in time

Cmul(L, α, 1) = O(D(P,Q) + αC (P,Q)),

which is Õ(αp) for p = max(m,n).
For matrix-matrix products, the direct approach which is based on the estimate

Cmul(L, α, β) 6 β Cmul(L, α, 1) thus leads to Cmul(L, α, β) = Õ(αβp), which is sub-
optimal, as we pointed out before. The following theorem improves on this straight-
forward approach, for all operators associated with (P,Q).

Theorem 1. Let P = P1, . . . , Pd and Q = Q1, . . . , Qe be two families of polyno-
mials in F[x]. Assume that in each of these families the polynomials are monic, non-

constant and pairwise coprime, and denote m =
∑d
i=1 deg(Pi) and n =

∑e
i=1 deg(Qi),

Then, for any invertible operator L associated with (P,Q), we can take

Cmul(L, α, β) = O

(
β′

α′
M

′
mat

(p
α′
, α′
)
+ D(P,Q) + β′

C (P,Q)

)
,

ON MATRICES WITH DISPLACEMENT STRUCTURE 9

with p = max(m,n), α′ = min(α, β), and β′ = max(α, β). Furthermore,

Cinv(L, α), Csolve(L, α) = O
(
M

′′
mat

(p
α
, α
))
.

Using the estimates for M ′
mat given in (4), the estimate for Cmul(L, α, β) becomes

O
(
α′ω−2

β′M (p) + β′M (p)lg(p)
)

in general,

O
(
α′ω−2

β′p+ β′M (p)lg(p)
)

if char(F) = 0 or |F| > 2p.

Thus, these results provide a continuum between two extreme cases. When α = β =
O(1), the cost is O(M (p)lg(p)); when α and β are large, the first term is dominant,

with total costs respectively O(α′ω−2
β′M (p)) and O(α′ω−2

β′p). Disregarding loga-

rithmic factors, this is always Õ(α′ω−2
β′p): this matches the cost (up to logarithmic

factors) of dense, unstructured linear algebra algorithms for multiplying matrices of
dimensions α′ × p and p× β′ with α′ 6 min(p, β′).

In fact, when α = p 6 β we recover exactly the cost bound O(βpω−1) of the
multiplication of two dense unstructured matrices of dimensions p×p and p×β, since
then Cmul(L, p, β) = O

(
β
pM ′

mat(1, p) +M(p)lg(p)
)
and M ′

mat(1, p) = O(pω).

For inversion and system solving, the bounds given above on M ′′
mat yield

O
(
αω−1M (p)lg(p)

)
in general,

O
(
αω−1p lg(p) + αlg(α)M (p)lg(p)

)
if char(F) = 0 or |F| > 2p;

and, when α = p (so that the input matrix is p × p and not structured with respect
to the operator L), the obtained cost is O(M ′′

mat(1, p)) ⊂ O(pω), as can be expected.
The following theorem highlights situations where we can take both C (P,Q)

and D(P,Q) in O(M (p)). In this case, we get slightly better bounds than in the
general case for the problems mul (for inversion and solve, the terms above are always
negligible, for any choice of P and Q). In view of Tables 1 and 2, we see that these
special cases correspond to operators of Toeplitz / Hankel type, or Vandermonde /
Cauchy type, when their supports are points in geometric progression.

Theorem 2. All notation and assumptions being as in Theorem 1, suppose in
addition that one of the following holds:

• either d = 1 and P1 = xm−ϕ for some ϕ ∈ F, or d = m and there exist u, q ∈ F

such that Pi = x− uqi for all i;
• either e = 1 and Q1 = xn − ψ for some ψ ∈ F, or e = n and there exist v, r ∈ F

such that Qj = x− vrj for all j.
Then, for any invertible operator L associated with (P,Q), we can take

Cmul(L, α, β) = O

(
β′

α′
M

′
mat

(p
α′
, α′
)
+ β′

M (p)

)
,

with p = max(m,n), α′ = min(α, β), and β′ = max(α, β).

Using once again the bounds on M ′
mat given in (4), this is thus

O(α′ω−2β′M (p)) in general,

O(α′ω−2
β′p+ β′lg(α′)M (p)) if char(F) = 0 or |F| > 2p.

10 A. BOSTAN, C.-P. JEANNEROD, C. MOUILLERON, AND É. SCHOST

Comparison with previous work. Let us briefly compare our results with previous
ones, in increasing order of generality.

For classical operators of Hankel, Toeplitz, Vandermonde or Cauchy type, our
results match classical ones in the cases α = β = O(1) (for multiplication) or α = O(1)
(for inversion). When we drop such assumptions, our results improve on all previous
ones. For instance, for the inversion of Toeplitz-like or Hankel-like matrices, the best
previous results were either O(α2M (m)lg(m)) in [25, 3, 19], or O(αω−1M (m)lg(m)2)
in [4]. We improve them simultaneously, by dropping the cost to O(αω−1M (m)lg(m)).

We mentioned earlier the work of Olshevsky and Shokrollahi [27, 28], who consider
Sylvester operators where the displacement matrices are block-diagonal, with Jordan
blocks. A Jordan block of size m associated with λ ∈ F is similar to the companion
matrix of (x − λ)m; the similarity matrix is the “Pascal” matrix of the mapping
F (x) 7→ F (x + λ), for F ∈ F[x]m. Because the similarity matrix and its inverse can
be applied in time O(M (m)) to a vector [1], the problem considered by Olshevsky
and Shokrollahi is essentially equivalent to a particular case of ours.

As it turns out, for these particular cases, the results in [27, 28] for matrix/vector
product and inversion are equivalent to ours, when the displacement rank α is O(1).
For larger α, our results improve on those of [27, 28], whose costs are quadratic in α.

Finally, to the best of our knowledge, no previous work addressed the general case
of block-companion matrices that we deal with in this paper.

An application. We are able to address problems related to simultaneous approxi-
mation using our operators. Suppose that we are given P = P1, . . . , Pd, with sum of
degrees m, together with “residuals”

R1,1, . . . , R1,α, . . . , Rd,1, . . . , Rd,α,

with all Ri,j in F[x] such that deg(Ri,j) < deg(Pi) for all i, j. We are looking for
polynomials f1, . . . , fα in F[x] such that f1Ri,1 + · · · + fαRi,α = 0 mod Pi holds for
i = 1, . . . , d, and with prescribed degree bounds (the polynomial fj should be in
F[x]nj , with n1 + · · ·+ nα = O(m)).

The matrix of the corresponding linear system, where the coefficients of f1, . . . , fα
are unknown, has size O(m) and displacement rank O(α) for the operator ∆MP,Mt

Q
,

where Q is the “vector” consisting of the unique polynomial Q1 = xm − ϕ, where ϕ
is chosen such that the assumptions of Theorem 1 hold. Hence, we can solve such
a system using O(αω−1M (m) log(m)) base field operations. This is to be compared
with an algorithm given in [10], that has cost O((α+d)ω−1M (m) log(m)2), but which
does not require the assumption that P1, . . . , Pd be pairwise coprime.

This problem generalizes Hermite-Padé (with d = 1 and P1 = xm) and so-called
M-Padé approximation, with Pi = (x− xi)

mi , for pairwise distinct xi in F. A typical
instance is the reconstruction of the minimal polynomial of an algebraic function.
Suppose that f is a root of a polynomial S ∈ F[x][y], so f lies in the algebraic closure
of F(x). Given the power series expansion of f at high enough precision around a
point x1, it is possible to reconstruct S by means of Hermite-Padé approximation.
Using our algorithm, we obtain the same output for the same cost, starting this time
from approximations at points x1, . . . , xd, each of them requiring smaller precision.

Organization of the paper. Section 2 introduces notation used all along this paper,
and discusses a few classical questions about polynomial arithmetic, such as Chinese
remaindering. Section 3 gives inversion formulas for the operators we discuss, which
generalize well-known results for classical operators. In Section 4, we use these formu-
las in order to reduce most of our questions to similar questions for basic operators, or

ON MATRICES WITH DISPLACEMENT STRUCTURE 11

even Toeplitz / Hankel operators. Section 5 gives the main algorithmic result in this
paper, an improved algorithm for the multiplication of structured matrices. Finally,
in Section 6, we show how this new multiplication algorithm can be used within the
MBA approach to accelerate structured inversion and structured system solving.

Acknowledgements. We thank an anonymous referee for many detailed comments.

2. Preliminaries. In this section, we review some classical operations on poly-
nomials and matrices: we introduce a short list of useful matrices, such as multiplica-
tion matrices, reversal matrices and Krylov matrices, and we discuss questions related
to modular computations, or multiple reduction and Chinese remaindering.

Throughout the article, we will use some well-known complexity results on poly-
nomial arithmetic; as a general rule, they can be found in the books [12], [8], or [33].

2.1. Basic notation. Matrices (resp. vectors) are written in upper-case (resp.
lower-case) sans-serif font. If A (resp. B, C, . . .) is a matrix, ai (resp. bi, ci, . . .) is its
ith column. If x (resp. y, z, . . .) is a vector, its ith entry is written xi (resp. yi, zi, . . .).
Special matrices (cyclic, companion, diagonal, . . .) will be written with blackboard
bold letters (Z, M, D, . . .). The entries of an m× n matrix A are indexed from 0 to
m− 1 (row indices) and from 0 to n− 1 (column indices).

We will also use the following notation.
• For u = [u0 · · · um−1]

t ∈ Fm, we write pol(u) to denote the polynomial u0 +
· · ·+ um−1x

m−1 ∈ F[x]m.
• For any polynomial F ∈ F[x] of degree at most d, rev(F, d) denotes its reverse

polynomial xdF (1/x) ∈ F[x].
For m > 1, Jm is the m ×m reversal matrix, with 1s on the antidiagonal only.

More generally, for 1 6 ℓ 6 m, Jℓ,m is the m × m matrix with 1s on the upper
antidiagonal entries of indices (ℓ − 1, 0), . . . , (0, ℓ− 1), so Jm,m = Jm; by convention,
for ℓ = 0, J0,m is the zero matrix of size m.

Finally, for A ∈ Fm×m, v ∈ Fm, and ℓ > 1, we write K(A, v, ℓ) to denote the
Krylov matrix in Fm×ℓ whose columns are v,Av, . . . ,Aℓ−1v.

2.2. Chinese remaindering and related problems. In this subsection, we
introduce additional notation and give basic results related to multiple reduction and
Chinese remaindering. Consider pairwise-coprime monic polynomials P = P1, . . . , Pd
in F[x] with deg(Pi) = mi, and let m = m1 + · · ·+md and P = P1 · · ·Pd.

Recall that we associated with the family P the cost functions C (P) and D(P).
They will help us measure the cost of the following operations. To P, we associate
the multiple reduction mapping, and its inverse, Chinese remaindering, defined by

redP : F[x]m → F[x]m1
× · · · × F[x]md

A 7→ (A mod P1, . . . , A mod Pd)

and

crtP : F[x]m1
× · · · × F[x]md

→ F[x]m
(A1, . . . , Ad) 7→ A, such that A mod Pi = Ai for all i.

A related question is linear recombination, defined as the following isomorphism:

combP : F[x]m1
× · · · × F[x]md

→ F[x]m
(A1, . . . , Ad) 7→ A1P2 · · ·Pd + · · ·+ P1 · · ·Pd−1Ad.

Fast algorithms for these three operations lead to the costs given in the next lemma.
Although such costs can be found in or deduced from [8, 12], they do not seem to have

12 A. BOSTAN, C.-P. JEANNEROD, C. MOUILLERON, AND É. SCHOST

been presented in this way, with a common precomputation involving both functions
C (P) and D(P), and then an extra cost involving only C (P).

Lemma 3. Let P = P1, . . . , Pd as above be given and assume that HP holds.
Then, after a precomputation of time O(C (P)+D(P)) that yields P as a by-product,
one can apply the maps redP, its inverse crtP, as well as combP and its inverse, to
any vector in time O(C (P)).

Proof. For 1 6 i 6 d, let us define Ei = P/Pi mod Pi and Fi = 1/Ei mod Pi. (In
particular, if d = 1 then E1 = F1 = 1, while if Pi is the linear polynomial x− xi then
Ei = 1/Fi is the value of the derivative of P at xi.) Using these polynomials, we first
note how the mappings crtP and combP relate to each other: Chinese remaindering of
A1, . . . , Ad is done by computing AiFi mod Pi for all i, and then applying combP to
these products; conversely, to perform linear recombination it suffices to compute the
products AiEi mod Pi and then to apply crtP. Note also that the inverse of combP
can be obtained by first using redP and then multiplying by the Fi’s modulo Pi.

Suppose we are in the case where Pi = x−xi with the xi’s in geometric progression.
Then, we can compute P,E1, . . . , Ed and apply redP and crtP in time O(C (P)) using
the algorithms of [7]. Using the remark above on the relation between crtP and combP,
the claim carries over to combP and its inverse, so the lemma is proved in this case.

In the general case, we can precompute P , as well as apply redP and combP
(without any further precomputation) in time O(C (P)) using respectively Theo-
rems 2.19, 3.19 and Step 2 (or 5) of Theorem 3.21 in [8].

Let P ⋆ = P/P1 + · · · + P/Pd. Since P ⋆ is obtained by applying combP to the
polynomials (1, . . . , 1), it can thus be precomputed in time O(C (P)). The modular
images P ⋆ mod Pi, which coincide with the polynomials Ei seen above, can be pre-
computed in the same time by applying redP. Finally, we precompute the inverses
Fi = 1/Ei mod Pi in time O(D(P)) by fast extended GCD (when d = 1, this is
straightforward, since we have seen that E1 = 1; otherwise, each Fi is obtained in
time O(M (mi)lg(mi)) using the fast extended Euclidean algorithm [8, Cor. 3.14]).

Using the first paragraph, we can then perform Chinese remaindering for the cost
O(C (P)) of combP, plus modular multiplications by the Fi’s. The cost of the latter
is O(M (m)), by the super-linearity of M , which is O(C (P)). The same holds for the
inverse of combP, which is reduced to redP and modular multiplications by the Fi’s.

In matrix terms, we will need the following notation in the next sections (here
and hereafter, we use canonical monomial bases for vector spaces such as F[x]m):

• XP ∈ Fm×m is the matrix of the mapping combP;
• WP ∈ Fm×m is the matrix of the mapping redP.

Lemma 4. Let P = P1, . . . , Pd as above be given and assume that HP holds.
Then, after a precomputation of time O(C (P) + D(P)), one can compute XP u, as
well as WP u, Wt

P u, W−1
P u and W

−t
P u for any u in Fm in time O(C (P)).

Proof. For XP u, WP u and W
−1
P u, this is nothing else than the previous lemma.

To compute with the transpose ofWP, we could rely on the transposition principle [6],
but it is actually possible to give direct algorithms. Algorithm TSimulMod in [5] shows
how to reduce the computation of Wt

P u to an application of combP and a few power
series multiplications / inversions that involve only P and the Pi’s, and whose costs
add up to O(M (m)). Thus, the claimed O(C (P)) follows from the previous lemma.
It is straightforward to invert that algorithm step-by-step, obtaining an algorithm for
computing W

−t
P u in time O(C (P)) as well.

ON MATRICES WITH DISPLACEMENT STRUCTURE 13

2.3. Modular arithmetic. Given a monic polynomial P ∈ F[x] of degreem, we
will frequently work with the residue class ring A = F[x]/P ; doing so, we will identify
its elements with polynomials in F[x]m. In this subsection, we review several questions
related to computations in A, such as modular multiplication and its transpose.

As a preamble, we define two useful matrices related to P . First, for ℓ > 1,
WP,ℓ ∈ Fm×ℓ denotes the matrix of reduction modulo P , which maps a polynomial
F ∈ F[x]ℓ to F mod P . Computationally, applying WP,ℓ to a vector amounts to doing
a Euclidean division. Next, writing P = p0 + p1x+ · · ·+ pmx

m (so that pm = 1), we
will denote by YP the m×m Hankel matrix

YP =

p1 · · · pm−1 1
... . .

.
1

pm−1 . .
.

1

 .

Operations with YP are fast, due to the triangular Hankel nature of this matrix.
The only non-trivial part of the following lemma concerns the inverse of YP . It is
proved in [33, §2.5] for triangular Toeplitz matrices; the extension to the Hankel case
is straightforward, since Y

−1
P = (JmYP)

−1Jm with JmYP triangular Toeplitz.

Lemma 5. Given P , for u in Fm, one can compute YP u and Y
−1
P u in O(M (m)).

Let us now discuss multiplication in A, often called modular multiplication. Com-
putationally, it is done by a standard polynomial multiplication, followed by a Eu-
clidean division; altogether, this takes time O(M (m)).

In matrix terms, recall that MP denotes the m×m companion matrix associated
with P ; equivalently, this is the matrix of the multiplication-by-x endomorphism in A.
More generally, for F in F[x], we denote by MF,P the m×m matrix of multiplication
by F in A; that is, the matrix whose (i, j) entry is the coefficient of xi in Fxj mod P ,
for i, j = 0, . . . ,m− 1. Thus, by what was said above, applying MF,P to a vector can
be done in time O(M (m)). Note also that Mx,P = MP and that MF,P = F (MP).

Yet more generally, for ℓ > 1, MF,P,ℓ ∈ Fm×ℓ is the matrix whose entries are the
coefficients of the same polynomials Fxj mod P as above, but now for j = 0, . . . , ℓ−1.
The following easy lemma simply says that for F in F[x]m and G in F[x]ℓ, (GF) mod
P = ((G mod P)F) mod P .

Lemma 6. Let F be in F[x]m and ℓ > 1. Then MF,P,ℓ = MF,P WP,ℓ.

We will also use a dual operation, involving the space A∗ of F-linear forms
A → F. Such a linear form will be given by the values it takes on the monomial
basis 1, x, . . . , xm−1 of A. Then, transposed multiplication is the operation mapping
(F, λ) ∈ A× A∗ to the linear form λ′ = F ◦ λ, defined by λ′(xi) = λ(xiF), where the
multiplication takes place in A. The name reflects the fact that for fixed F , transposed
multiplication by F is indeed the dual map of the multiplication-by-F endomorphism
of A. In matrix terms, transposed product by F amounts to multiplication by Mt

F,P .
Transposed products can be computed in the same time O(M (m)) as “standard”

modular multiplications, by a dual form of modular multiplication [6]. However, such
an algorithm relies on middle product techniques [15], which are not straightforward
to describe. The following lemma shows an alternative approach, with same cost up
to a constant factor: to perform a transposed product by F , it suffices to do a modular
multiplication by F , with a pre- and post-multiplication by YP and its inverse (which

14 A. BOSTAN, C.-P. JEANNEROD, C. MOUILLERON, AND É. SCHOST

can both be done in O(M (m)), see Lemma 5). For F = x, this result is sometimes
referred to as saying that YP is a symmetrizer for the polynomial P ; see [22, p. 455].

Lemma 7. For all F ∈ F[x]m, we have YP Mt
F,P = MF,P YP . Equivalently,

Mt
F,P = Y

−1
P MF,P YP .

Proof. By linearity, it is enough to consider the case of F = xℓ, for 0 6 ℓ < m.
The case ℓ = 0 is clear, since M1,P is the identity matrix. For ℓ = 1, this result is
well-known, see for instance [22, Ex. 3, Ch. 13]; it can be proved by simple inspection.
Once the claim is established for x, an easy induction shows that it holds for xℓ, for
an arbitrary ℓ > 1, using the fact that Mxℓ+1,P = MP Mxℓ,P = Mxℓ,P MP .

We now discuss Krylov matrices derived from (transposed) companion matrices.

Lemma 8. Let v ∈ Fm, ℓ > 1, and F = pol(v) ∈ F[x]m. Then
• K(MP , v, ℓ) = MF,P WP,ℓ = MF,P,ℓ and
• K(Mt

P , v, ℓ) = Y
−1
P MG,P WP,ℓ with G = pol(YP v).

Proof. The first assertion is clear. Indeed, the columns of the Krylov matrix
K(MP , v, ℓ) are the coefficient vectors of the polynomials xjF mod P , for 0 6 j < ℓ,
so that K(MP , v, ℓ) = MF,P,ℓ; the claim now follows from Lemma 6. For the second
assertion, the fact that Mt

P = Y
−1
P MP YP , which follows from Lemma 7, implies that

K(Mt
P , v, ℓ) = Y

−1
P K(MP ,Yp v, ℓ). Using the first point concludes the proof.

2.4. Computations with a family of polynomials. We now consider a family
of monic polynomials P = P1, . . . , Pd, and briefly discuss the extension of the previous
claims to this context. As before, we write mi = deg(Pi) and m = m1 + · · ·+md.

In terms of matrices, we have already mentioned the definition of the block-
diagonal companion matrix MP associated with P, whose blocks are MP1

, . . . ,MPd
.

Similarly, YP will denote the block-diagonal matrix with Hankel blocks YP1
, . . . ,YPd

.
The next lemma, which is about YP and its inverse, is a direct consequence of
Lemma 5; the complexity estimate follows from the super-linearity of the function M .

Lemma 9. Given P, for u in Fm, one can compute YP u and Y
−1
P u in O(M (m)).

Another straightforward result is the following extension of Lemma 7.

Lemma 10. The relation YP Mt
P = MP YP holds.

Next, we discuss computations with Krylov matrices derived from MP and its
transpose. We will only need some special cases, for which very simple formulas are
available (and for which invertibility will be easy to prove). Recall that WP ∈ Fm×m

denotes the matrix of the map redP of multiple reduction modulo P1, . . . , Pd; thus, it
is obtained by stacking the matrices WP1,m, . . . ,WPd,m.

Lemma 11. Writing em,i to denote the ith unit vector in Fm, the following holds:
• K(MP, v,m) = WP with v = [etm1,1| · · · |e

t
md,1

]t ∈ Fm, and

• K(Mt
P,w,m) = Y

−1
P WP with w = [etm1,m1

| · · · |etmd,md
]t ∈ Fm.

Proof. The block structure ofMP and the definition of v imply thatK(MP, v,m) is
obtained by stacking the matricesK(MPi , emi,1,m) for i = 1, . . . , d. Since pol(emi,1) =
1 ∈ F[x]mi , Lemma 8 gives K(MPi , emi,1,m) = WPi,m for all i; this proves the first
case. In the second case, K(Mt

P,w,m) is decomposed into blocks K(Mt
Pi
, emi,mi ,m),

which, by Lemma 8 and since pol(YPiemi,mi) = 1 ∈ F[x]mi , are equal to Y
−1
Pi

WPi,m.

Finally, the following lemma discusses computations involving two families of
monic polynomials P and Q.

ON MATRICES WITH DISPLACEMENT STRUCTURE 15

Lemma 12. Let P = P1, . . . , Pd and Q = Q1, . . . , Qe, such that HP and HQ

hold, and let P = P1 · · ·Pd and Q = Q1 · · ·Qe. Then, the following holds:
• If gcd(P,Q) = 1, we can compute all 1/Q mod Pi, for i = 1, . . . , d, in time
O(D(P,Q) + C (P,Q)).

• Let n = deg(Q) and Q̃ = rev(Q,n). If gcd(P, Q̃) = 1, we can compute all

1/Q̃ mod Pi, for i = 1, . . . , d, in time O(D(P,Q) + C (P,Q)).

Proof. Let p = max(m,n). We first discuss a particular case, where d = e = 1
and P = xm −ϕ and Q = xn −ψ. In this case, we can compute 1/Q mod P in linear

time O(p) [39, Lemma 3], provided it is well-defined; the same holds for 1/Q̃ mod P .
Thus, our claim holds, since in this case, D(P,Q) = m+ n.

If P is not as above, we compute Q in time O(C (Q) + D(Q)) using Lemma 3,
then Q mod P in time O(M (p)), which is O(C (P,Q)). Using Lemma 3 again, we
deduce all Q mod Pi, for i 6 d, in time O(C (P)); finally, we invert all remainders
using fast extended GCD with the Pi’s in time O(

∑
i6d M (mi)lg(mi)); under our

assumption on P , this is O(D(P)). The total cost is O(D(P,Q) + C (P,Q)), so our

claim for the inverses of Q modulo the Pi’s holds. We proceed similarly for Q̃.
The last case to consider is when d = 1 and P = xm − ϕ, but with Q not of

the form xn − ψ. We proceed in the converse direction: we first reduce and invert
P modulo all Qj , for all j 6 e; this takes time O(D(P,Q) + C (P,Q)). By Chinese
Remaindering, we obtain R = 1/P mod Q, without increasing the cost. Knowing R,
we deduce S = 1/Q mod P , since R and S satisfy RP + SQ = 1; this costs an extra

O(M (p)), which is O(C (P,Q)), so our claim is proved. We proceed similarly for Q̃.

3. Inverting displacement operators. Let us consider P = P1, . . . , Pd and
Q = Q1, . . . , Qe tuples of monic polynomials in F[x], and let m1, . . . ,md, n1, . . . , ne,
m, n, P and Q be as before. We assume the coprimality conditions HP and HQ. In
this section, we establish inversion formulas for the two basic operators of Sylvester
and Stein types associated with (P,Q). In other words, given two matrices (G,H) in
Fm×α × Fn×α, we show how to reconstruct the matrices A and A′ in Fm×n such that

∇MP,Mt
Q
(A) = GHt and ∆MP,Mt

Q
(A′) = GHt,

provided the corresponding operators are invertible. We will use the following objects.
• We denote by g1, . . . , gα and h1, . . . , hα the columns of G and H. Corresponding

to the partition of MP into blocks, we partition each gk, k 6 α, into smaller
column vectors g1,k, . . . , gd,k; similarly, we partition each hk into h1,k, . . . , he,k
according to the block structure of Mt

Q. The matrices G and H themselves are
partitioned into matrices G1, . . . ,Gd and H1, . . . ,He; Gi has size mi × α and
columns gi,1, . . . , gi,α, whereas Hj has size nj × α and columns hj,1, . . . , hj,α.

• For i = 1, . . . , d and k = 1, . . . , α, we let gi,k = pol(gi,k), so that gi,k is in F[x]mi .
Similarly, for j = 1, . . . , e, we define hj,k = pol(hj,k) ∈ F[x]nj .
We further let γk be the unique polynomial in F[x]m such that γk mod Pi = gi,k
holds for i = 1, . . . , d; in other words, we have

γk = crtP(g1,k, . . . , gd,k).

The polynomial ηk is defined similarly, replacing gi,k and Pi by hj,k and Qj .
In the following theorem, recall that the necessary and sufficient condition for the

Sylvester operator to be invertible is that gcd(P,Q) = 1; for the Stein operator, the

condition is that gcd(P, Q̃) = 1, with Q̃ = rev(Q,n).

16 A. BOSTAN, C.-P. JEANNEROD, C. MOUILLERON, AND É. SCHOST

Theorem 13. The following holds:
• Suppose that gcd(P,Q) = 1. Then, the unique matrix A ∈ Fm×n such that

∇MP,Mt
Q
(A) = GHt is given by

A = VP,Q WP

∑

k6α

Mγk,P,nMηk,Q

XQ YQ,

where VP,Q ∈ Fm×m is the block-diagonal matrix with blocks MQ−1,Pi
for i =

1, . . . , d, where MQ−1,Pi
denotes MQ−1 mod Pi,Pi

.

• Suppose that gcd(P, Q̃) = 1. Then, the unique matrix A′ ∈ Fm×n such that
∆MP,Mt

Q
(A′) = GHt is given by

A′ = V
′
P,Q WP

∑

k6α

Mγk,P,n JnMηk,Q

XQ YQ,

where V′
P,Q ∈ Fm×m is the block-diagonal matrix with blocks MQ̃−1,Pi

for i =
1, . . . , d, where MQ̃−1,Pi

denotes MQ̃−1 mod Pi,Pi
.

The following corollary on the cost of matrix-vector multiplication follows directly;
the more difficult case of matrix-matrix multiplication will be handled in Section 5.

Corollary 14. We can take

Cmul(∇MP,Mt
Q
, α, 1) = O(D(P,Q) + αC (P,Q))

and
Cmul(∆MP,Mt

Q
, α, 1) = O(D(P,Q) + αC (P,Q)).

Proof. The proof is mostly the same in both cases; it amounts to estimating first
the cost of computing the polynomials that define the matrices involved in Theo-
rem 13, and then the cost of multiplying each of these matrices by a single vector.

Given the families of polynomialsP andQ, we can compute the products P andQ
in time O(C (P,Q) +D(P,Q)), by Lemma 3. Moreover, since both assumptions HP

and HQ hold and depending on whether gcd(P,Q) = 1 or gcd(P, Q̃) = 1, we deduce

from Lemma 12 that we can compute the inverses of Q, or of Q̃, modulo all Pi’s in time
O(D(P,Q)+C (P,Q)). Finally, given further the generator (G,H) in Fm×α×Fn×α, it
follows from Lemma 3 that the polynomials γ1, . . . , γα and η1, . . . , ηα can be obtained
in time O(D(P)+αC (P)) and O(D(Q)+αC (Q)), respectively. Thus, the overall cost
of deducing the needed polynomials from P, Q, G, H is in O(D(P,Q) + αC (P,Q)).

We now turn to the cost of the matrix-vector products performed when applying
Theorem 13 to the evaluation of Au or A′u for some u in Fn. Lemma 9 shows that
the cost of multiplying YQ by u is O(M (n)), which is O(M (p)). By Lemma 4, the
cost for XQ is O(D(Q) + C (Q)). The inner sum amounts to O(α) multiplications
modulo P or Q, for a total of O(αM (p)). Lemma 4 also shows that the cost for WP

is O(D(P) + C (P)). Finally, multiplying by VP,Q or V′
P,Q amounts to performing

modular multiplications modulo all Pi’s, and this can be done in time O(M (m)) ⊂
O(M (p)). Hence the cost of all these matrix-vector products is in O(D(P,Q) +
C (P,Q) + αM (p)); this fits the announced bound, since M (p) 6 C (P,Q).

The rest of this section is devoted to proving Theorem 13 above.

ON MATRICES WITH DISPLACEMENT STRUCTURE 17

3.1. Sylvester operator ∇MP,Mt
Q
. Assuming that gcd(P,Q) = 1, we show how

to reconstruct the unique matrix A ∈ Fm×n such that ∇MP,Mt
Q
(A) = GHt. We first

show how to reconstruct all blocks in an ad-hoc block decomposition of A, then use
Chinese remaindering.

Step 1: reconstruction of the blocks of A. Partitioning the matrix A into blocks
Ai,j conformally with the block-diagonal structure of the matrices MP and MQ, we
have ∇MPi

,Mt
Qj

(Ai,j) = GiH
t
j for all i, j. In this paragraph, we prove a reconstruction

formula for each block Ai,j .

Lemma 15. For all i 6 d and j 6 e, we have

Ai,j =
∑

k6α

Mgi,k,Pi MQ−1

j ,Pi,nj
Mhj,k,Qj YQj .

Proof. Fix i and j. Note that MPi and MQj cannot be simultaneously singular,
since Pi and Qj are coprime. Then, for all ℓ > 1, a slight variation of [35, Theo-
rem 4.8] (with both cases “MPi nonsingular” and “MQj nonsingular” covered by a
single identity) gives

M
ℓ
Pi

Ai,j − Ai,j (M
t
Qj

)ℓ =
∑

k6α

K(MPi , gi,k, ℓ) JℓK(MQj , hj,k, ℓ)
t,

whereK(MPi , gi,k, ℓ) ∈ Fmi×ℓ denotes the Krylov matrix of column length ℓ associated
with the matrix MPi and the vector gi,k.

Writing Qj = qj,0 + · · ·+ qj,njx
nj , we obtain, for 1 6 ℓ 6 nj ,

qj,ℓM
ℓ
Pi

Ai,j − Ai,j qj,ℓ (M
t
Qj

)ℓ =
∑

k6α

K(MPi , gi,k, ℓ) qj,ℓ JℓK(MQj , hj,k, ℓ)
t

=
∑

k6α

K(MPi , gi,k, nj) qj,ℓ Jℓ,nj K(MQj , hj,k, nj)
t,

since we can inflate all matrices Jℓ to size nj ×nj , replacing them by Jℓ,nj . Note that
the above equality then also holds for ℓ = 0, since J0,nj = 0 by convention. Summing
over all ℓ = 0, . . . , nj and using the fact that Qj(M

t
Qj

) = Qj(MQj)
t = 0, we deduce

Qj(MPi)Ai,j =
∑

k6α

K(MPi , gi,k, nj)YQj K(MQj , hj,k, nj)
t.

Using the first part of Lemma 8 together with the fact that for gcd(Pi, Qj) = 1 the
matrix Qj(MPi) = MQj ,Pi is invertible with inverse M

−1
Qj ,Pi

= MQ−1

j ,Pi
, we obtain

Ai,j =
∑

k6α

MQ−1

j ,Pi
Mgi,k ,Pi,nj YQj M

t
hj,k,Qj

.

Hence, applying Lemma 7 to hj,k and since multiplication matrices mod Pi commute,

Ai,j =
∑

k6α

Mgi,k ,Pi MQ−1

j ,Pi,nj
Mhj,k,Qj YQj .

18 A. BOSTAN, C.-P. JEANNEROD, C. MOUILLERON, AND É. SCHOST

Step 2: a first reconstruction formula for A. Let BP,Q be the m×n block matrix

BP,Q =
[
MQ−1

j ,Pi,nj

]
16i6d
16j6e

.

Similarly, for k 6 α, we define Ck and Dk as the block diagonal matrices, with respec-
tively the multiplication matrices (Mgi,k,Pi)i6d and (Mhj,k,Qj)j6e on the diagonal.

Putting all blocks Ai,j together, we deduce the following reconstruction formula
for A; the proof is a straightforward application of the previous lemma.

Lemma 16. We have

A =

∑

k6α

Ck BP,Q Dk

 YQ.

Step 3: using a factorization of BP,Q. Next, we use the fact that BP,Q has a block
structure similar to a Cauchy matrix to factor it explicitly. For this, we introduce a
matrix related to WP: we let WP,n be the m×n matrix of multiple reduction modulo
P1, . . . , Pd, taking as input a polynomial of degree less than n, instead of m for WP.

Lemma 17. The equality BP,Q = VP,Q WP,nXQ holds, where VP,Q ∈ Fm×m is
the block-diagonal matrix with blocks MQ−1,Pi

, for i = 1, . . . , d.

Proof. Observe that, given the coefficient vectors of polynomials F1, . . . , Fe, with
Fj ∈ F[x]nj for all j, the matrix BP,Q returns the coefficients of

Gi =
F1

Q1
+ · · ·+

Fe
Qe

mod Pi

=
F1Q2 · · ·Qe + · · ·+Q1 · · ·Qe−1Fe

Q1 · · ·Qe
mod Pi,

for i = 1, . . . , d. Computing the polynomials Gi can be done as follows:
• compute H = F1Q2 · · ·Qe + · · ·+Q1 · · ·Qe−1Fe by calling combP;
• compute Hi = H mod Pi, for i = 1, . . . , d;
• deduce Gi = Hi/Q mod Pi, for i = 1, . . . , d.

This proves the requested factorization of BP,Q.

As a result, we deduce the following equalities for A:

A =

∑

k6α

Ck VP,Q WP,nXQ Dk

 YQ

= VP,Q

∑

k6α

CkWP,nXQ Dk

 YQ.

The last equality is due to the fact that the block-diagonal matrices Ck and VP,Q

commute (since all pairwise corresponding blocks are multiplication matrices modulo
the same polynomials Pi).

Step 4: using Chinese remaindering. The next step will allow us to take WP,n

and XP out of the inner sum. For any polynomial H , any i 6 d and any k 6 α, it
is equivalent to (i) reduce H modulo Pi and multiply it by gi,k modulo Pi and (ii)
multiply H by the polynomial γk (defined above) modulo P , and reduce it modulo Pi.
In other words, we have the commutation relation CkWP,n = WP Mγk,P,n. Similarly,
XQ Dk = Mηk,QXQ and this concludes the proof of the first part of Theorem 13.

ON MATRICES WITH DISPLACEMENT STRUCTURE 19

3.2. Stein operator ∆MP,Mt
Q
. The proof for Stein operator case follows the

same steps as for the Sylvester case. Let A′ be such that ∆MP,Mt
Q
(A′) = GHt.

Just like we decomposed A into blocks Ai,j , we decompose A′ into blocks A′
i,j , such

that ∆MPi
,Mt

Qj
(A′
i,j) = GiH

t
j . Extending the notation used above, we write Q̃j =

rev(Qj , nj), so that we have Q̃ = Q̃1 · · · Q̃e. The following lemma is then the analogue
of Lemma 15 for Stein operators and, as detailed in Appendix B, can be proved in
the same way using [35, Theorem 4.7].

Lemma 18. For all i 6 d and j 6 e, we have

A′
i,j =

∑

k6α

Mgi,k,Pi MQ̃j
−1
,Pi,nj

Jnj Mhj,k,Qj YQj .

Mimicking the construction in the previous section, we introduce the m×n block
matrix B′

P,Q given by

B
′
P,Q =

[
M
Q̃j

−1
,Pi,nj

]
16i6d
16j6e

.

We will use again the matrices Ck and Dk introduced before, as well as the block-
diagonal matrix D(Jnj) having blocks Jnj on the diagonal. This leads us to the
following analogue of Lemma 16, whose proof is straightforward.

Lemma 19. We have

A′ =

∑

k6α

Ck B
′
P,Q D(Jnj)Dk

 YQ.

The next step is to use the following factorization of B′
P,Q, or more precisely of

B′
P,Q D(Jnj). The proof is the same as that of Lemma 17, up to taking into account

the reversals induced by the matrices Jnj .

Lemma 20. The equality B′
P,Q D(Jnj) = V′

P,Q WP,n JnXQ holds, where V′
P,Q ∈

Fm×m is the block-diagonal matrix with blocks MQ̃−1,Pi
, for i = 1, . . . , d.

We conclude the proof of our theorem as before, using the relations

Ck V
′
P,Q = V

′
P,Q Ck,

CkWP,n = WP Mγk,P,n,

XQ Dk = Mηk,QXQ.

4. Using operator equivalences. Let P,Q be as in Theorems 1 and 2, and
let as before p = max(m,n). We are now going to extend the complexity estimates
for matrix-vector multiplication given in Corollary 14 to more operators (not only the
basic ones), by providing reductions to the Hankel operator ∇Zm,0,Zt

n,1
.

Theorem 21. Suppose that HP and HQ hold. Then for any displacement oper-
ator L associated with (P,Q), we can take

Cmul(L, α, β) 6 Cmul(∇Zm,0,Zt
n,1
, α+ 2, β) +O

(
D(P,Q) + (α+ β)C (P,Q)

)
,

Csolve(L, α) 6 Csolve(∇Zm,0,Zt
n,1
, α+ 2) +O

(
D(P,Q) + αC (P,Q)

)
,

Cinv(L, α) 6 Cinv(∇Zm,0,Zt
m,1
, α+ 2) +O

(
D(P,Q) + αC (P,Q) + αω−1m

)
.

20 A. BOSTAN, C.-P. JEANNEROD, C. MOUILLERON, AND É. SCHOST

The rest of this section is devoted to the proof of this theorem. In what follows,
we write several formulas involving some matrices G and H. In these formulas, G and
H will always be taken in Fm×α and Fn×α, respectively, for some α > 1 (and with
n = m when dealing with matrix inversion).

4.1. Reduction to basic operators. Table 4 shows that if a matrix A is struc-
tured for one of the operators associated with (P,Q), then simple pre- and post-
multiplications transform A into a matrix which is structured for one of the two basic
operators associated with (P,Q). All equivalences in this table follow directly from
the identities YP Mt

P = MP YP and YQ Mt
Q = MQ YQ (Lemma 10) and from YP and

YQ being invertible and symmetric. Combining these equivalences with Lemma 9 will
lead to the cost bounds in Lemma 22 below, expressed in terms of basic operators.

Table 4

Reduction to the basic operators ∇
MP,Mt

Q
and ∆

MP,Mt
Q
.

∇MP,MQ
(A) = GHt ⇐⇒ ∇MP,Mt

Q
(AYQ) = G (YQH)t

∇M
t
P
,Mt

Q
(A) = GHt ⇐⇒ ∇MP,Mt

Q
(YP A) = (YPG)H

t

∇M
t
P
,MQ

(A) = GHt ⇐⇒ ∇MP,Mt
Q
(YP AYQ) = (YPG)(YQH)t

∆MP,MQ
(A) = GHt ⇐⇒ ∆MP,Mt

Q
(AYQ) = G (YQH)t

∆M
t
P
,Mt

Q
(A) = GHt ⇐⇒ ∆MP,Mt

Q
(YP A) = (YPG)H

t

∆M
t
P
,MQ

(A) = GHt ⇐⇒ ∆MP,Mt
Q
(YP AYQ) = (YPG)(YQH)t.

Lemma 22. Let L be a displacement operator associated with (P,Q). Then:
• If L is a Sylvester operator, we can take

Cmul(L, α, β) 6 Cmul(∇MP,Mt
Q
, α, β) +O((α + β)M (p)),

Csolve(L, α) 6 Csolve(∇MP,Mt
Q
, α) +O(αM (p)),

Cinv(L, α) 6 Cinv(∇MP,Mt
Q
, α) +O(αM (m));

• If L is a Stein operator, we can take

Cmul(L, α, β) 6 Cmul(∆MP,Mt
Q
, α, β) +O((α + β)M (p)),

Csolve(L, α) 6 Csolve(∆MP,Mt
Q
, α) +O(αM (p)),

Cinv(L, α) 6 Cinv(∆MP,Mt
Q
, α) +O(αM (m)).

Proof. We give the proof for the Sylvester operator L = ∇M
t
P
,MQ

, which appears
in the third row of Table 4; the other five cases in that table can be handled similarly.

Suppose first that, given an L-generator (G,H) for A ∈ Fm×n as well as a matrix
B ∈ Fn×β, we want to compute AB. We begin by computing a ∇MP,Mt

Q
(A′)-generator

(YPG,YQH) for A′ = YP AYQ (cf. the third row of Table 4). Lemma 9 implies that
this takes time O(αM (p)). Then, we evaluate AB = Y

−1
P A′ Y

−1
Q B from right to left.

The products by Y
−1
P and Y

−1
Q take time O(βM (p)), and the product by A′ takes

time Cmul(∇MP,Mt
Q
, α, β); thus, the first claim is proved.

ON MATRICES WITH DISPLACEMENT STRUCTURE 21

Suppose now that we are given a vector b ∈ Km in addition to the matrix A. In
order to solve the system Ax = b, we solve A′x′ = b′, with A′ as defined above and
b′ = YPb. The latter system admits a solution if and only if the former one does; if x′

is a solution of A′x′ = b′, then x = YQx′ is a solution of Ax = b. Hence, as before, we
set up an ∇MP,Mt

Q
-generator (YPG,YQH) for A′, using O(αM (p)) operations in F,

and compute b′ in time O(M (m)). Then, in time Csolve(∇MP,Mt
Q
, α) we either assert

that the system A′x′ = b′ has no solution, or find such a solution x′. Finally, we
recover x in time O(M (n)). This proves the second claim.

Finally, assume that m = n and consider the question of inverting A. This matrix
is invertible if and only if the matrix A′ defined above is invertible. Again, we set up
a ∇MP,Mt

Q
-generator (YPG,YQH) for A′, using O(αM (m)) operations in F. Then, in

time Cinv(∇MP,Mt
Q
, α) we either assert that A′ is not invertible or deduce a ∇M

t
Q
,MP

-

generator for A′−1, say (G′
inv,H

′
inv). Finally, if A′ is invertible then, using Mt

P =
Y

−1
P MP YP and MQ = YQ Mt

QY
−1
Q , we obtain a ∇MQ,Mt

P
-generator (YQG′

inv,YPH
′
inv)

for A−1 in time O(αM (m)). This proves the last claim.

4.2. Reduction to the Hankel case. Our second reduction is less straightfor-
ward: we use Pan’s idea of multiplicative transformation of operators [30] to reduce
basic operators to an operator of Hankel type. There is some flexibility in the choice
of the target operator, here the Sylvester operator ∇Zm,0,Zt

n,1
; the only (natural) re-

quirement is that this target operator remains invertible.
The following proposition summarizes the transformation process. Although the

formulas are long, they describe simple processes: for an operation such as multipli-
cation, inversion or system solving, this amounts to e.g. the analogue operation for
an operator of Hankel type, several products with simple matrices derived from P
and Q, and O(1) matrix-vector products with the input matrix or its transpose.

Proposition 23. Let L ∈ {∇MP,Mt
Q
,∆MP,Mt

Q
}, and suppose that HP and HQ

hold. Then

Cmul(L, α, β) 6 Cmul(∇Zm,0,Zt
n,1
, α+ 2, β) +O

(
D(P,Q) + (α+ β)C (P,Q)

)
,(5)

Csolve(L, α) 6 Csolve(∇Zm,0,Zt
n,1
, α+ 2) +O

(
D(P,Q) + αC (P,Q)

)
,(6)

Cinv(L, α) 6 Cinv(∇Zm,0,Zt
m,1
, α+ 2) +O

(
D(P,Q) + αC (P,Q) + αω−1m

)
.(7)

The proof of Proposition 23 will occupy the rest of this subsection. Before that,
though, we point out that Theorem 21 follows directly from this proposition and
Lemma 22. In particular, since p 6 M (p) 6 M (m) + M (n) 6 C (P,Q) for p =
max(m,n), overheads such as O(αM (m)) or O(αM (p)) that appear in that lemma
are absorbed into terms such as O(αC (P,Q)) that appear in the proposition.

Preliminaries. To establish each of the claims in the proposition above, it will be
useful to have simple matrices L and R for pre-/post-multiplying A and whose displace-
ment rank with respect to ∇Zm,0,MP

and ∇M
t
Q
,Zt

n,1
, respectively, is small. Lemma 24

below shows that a possible choice, leading to displacement ranks at most 1, is

L = JmW
t
P Y

−1
P and R = Y

−1
Q WQ Jn.

In order to define generators for such matrices, we first rewrite the products P =
P1 · · ·Pd and Q = Q1 · · ·Qe as P = p0 + · · · + pm−1x

m−1 + xm and Q = q0 + · · · +
qn−1x

n−1 + xn, and let m = [p0 · · · pm−1]
t and n = [q0 · · · qn−1]

t be the coefficient

22 A. BOSTAN, C.-P. JEANNEROD, C. MOUILLERON, AND É. SCHOST

vectors of the polynomials P − xm and Q− xn. Then, we let

t =

1
0
...
0

 ∈ F

m, u = Y
−1
P WP m ∈ F

m, s =

1
0
...
0

 ∈ F

n, r = −Y
−1
Q WQ (n+s) ∈ F

n.

Lemma 24. The relations ∇Zm,0,MP
(L) = t ut and ∇M

t
Q
,Zt

n,1
(R) = r st hold.

Proof. According to the second part of Lemma 11, Y−1
P WP is equal to the Krylov

matrix K(Mt
P,w,m), so that the columns of Lt = Y

−1
P WP Jm are (Mt

P)
m−1w, . . . ,

Mt
Pw,w. Hence only the first column of Mt

P Lt− Lt Ztm,0 is nonzero, and it is equal to
ũ := (Mt

P)
m w. After transposition, this leads to ∇Zm,0,MP

(L) = −t ũt. We can now
check that ũ = −u as follows. First, from Lemma 10 and since YP is invertible, we
see that ũ = Y

−1
P Mm

P YP w. Then, the shape of w implies that YP w is the vector v

defined in the first part of Lemma 11, so that ũ = Y
−1
P Mm

P v. Now, the special shape
of v implies that Mm

P v is the vector whose ith subvector of length mi contains the
coefficients of xm mod Pi = −(P − xm) mod Pi. In other words, Mm

P v = −WP m.
This shows that ũ = −Y

−1
P WP m = −u, which concludes the proof of the first relation.

For the second relation, the proof is the same, taking into account that we are
now considering the operator ∇M

t
Q
,Zt

n,1
and that Ztn,1 = Ztn,0 + Jn s s

t.

Proof of (5) for L = ∇MP,Mt
Q
. Let A be in Fm×n and let (G,H) be a ∇MP,Mt

Q
-

generator for A. With L,R, r, s, t, u as in the previous paragraph, define further

G′ =
[
t | LG | LA r

]
and H′ =

[
Rt At u | Rt H | s

]
.

Lemma 25. The matrix A′ = LAR satisfies ∇Zm,0,Zt
n,1

(A′) = G′H′t.

Proof. Applying the general formula

(8) ∇M,N(ABC) = ∇M,Q(A)BC + A∇Q,R(B)C+ AB∇R,N(C)

(which follows directly from [33, Theorem 1.5.4]) and then using Lemma 24, we obtain

∇Zm,0,Zt
n,1

(LAR) = ∇Zm,0,MP
(L)AR+ L∇MP,Mt

Q
(A)R + LA∇M

t
Q
,Zt

n,1
(R)

= t ut AR+ LGHt R+ LA r st,

which is the announced equality.

To compute a product of the form AB with B ∈ Fn×β , we first compute the
matrices G′ and H′ described above. To obtain G′, it suffices to set up the vectors
r and Ar and to compute α + 1 matrix-vector products by L. Given (G,H) and r,
Corollary 14 implies that Ar is obtained in time

O(D(P,Q) + αC (P,Q)).

On the other hand, it follows from Lemmas 4 and 9 that the vector r is obtained in
time O(C (Q) + D(Q)) and, after some precomputation of time O(C (P) + D(P)),
that the α + 1 products by L are obtained in time O(αC (P)). Thus, overall, G′ is
obtained in time O(D(P,Q) + αC (P,Q)).

ON MATRICES WITH DISPLACEMENT STRUCTURE 23

We proceed similarly for H′. The only differences are that we have to do matrix-
vector products involving Rt and At instead of L and A. For the former, Lemmas 4
and 9 show that after a precomputation of cost O(C (Q)+D(Q)), the cost of one such
product is O(C (Q)). For the latter, recall that, as pointed out in the introduction,
from the given ∇MP,Mt

Q
-generator of A, we can deduce in negligible time a ∇MQ,Mt

P
-

generator of At of the same length α. This allows us to do matrix-vector products
with At with the same asymptotic cost

O(D(Q,P) + αC (Q,P)) = O(D(P,Q) + αC (P,Q))

as for A. Thus, the overall cost for computing H′ is asymptotically the same as for G′.
Let us now bound the cost of deducing the product AB from G′,H′,B. Note first

that under the coprimality assumptions HP and HQ the matrices WP and WQ are
invertible, and so are L and R. Consequently, AB = L−1A′ R−1B and it suffices to
bound the cost of each of the three products B′ := R−1B, B′′ := A′B′, and L−1B′′. By
reusing the same precomputation as for H′ and applying again Lemmas 4 and 9, we
obtain B′ for an additional cost of O(βC (Q)), via β matrix-vector products by R−1.
Then, Lemma 25 says that A′ is a Hankel-like matrix for which a ∇Zm,0,Zt

n,1
-generator

of length α + 2 is (G′,H′). Hence the cost for deducing B′′ from G′,H′,B′ is at
most Cmul(∇Zm,0,Zt

n,1
, α + 2, β). Finally, L−1B′′ is obtained for an additional cost

of O(βC (P)), by reusing the same precomputation as for G′ and by performing β
matrix-vector products by L−1.

To summarize, we have shown that (G′,H′) can be obtained in time O(D(P,Q)+
αC (P,Q)) and that AB can be deduced from G′,H′,B in time Cmul(∇Zm,0,Zt

n,1
, α +

2, β) + O(βC (P,Q)). Adding these two costs thus proves the bound (5) in Proposi-
tion 23 for L = ∇MP,Mt

Q
.

Proof of (6) for L = ∇MP,Mt
Q
. For A ∈ Fm×n given by some ∇MP,Mt

Q
-generator

(G,H) of length α and given b in Fm, we now want to find a (nontrivial) solution of
Ax = b, or determine that no solution exists.

Define b′ = Lb. Because L and R are invertible matrices, solving the system
A′x′ = b′ is equivalent to solving Ax = b, with then x = Rx′. As in the previous
paragraph, we can compute a generator (G′,H′) of A′ for the operator ∇Zm,0,Zt

n,1
in

time O(D(P,Q)+αC (P,Q)). The cost of computing b′ from b (and x from x′) fits into
the same bound, and solving the new system A′x′ = b′ takes time Csolve(∇Zm,0,Zt

n,1
, α+

2). Summing these costs, we prove the second item in the proposition.
Proof of (7) for L = ∇MP,Mt

Q
. Assume now that m = n and that A ∈ Fm×m is

given by a ∇MP,Mt
Q
-generator (G,H) of length α. As before, L and R are invertible

by assumption, so that A is invertible if and only if A′ = LAR is invertible. By
Lemma 25 this matrix A′ has displacement rank at most α+ 2 for ∇Zm,0,Zt

m,1
. Thus,

as explained in the introduction, if A′ is invertible then its inverse has displacement
rank at most α + 2 for ∇Z

t
m,1,Zm,0

. The next lemma shows that if (G′
inv,H

′
inv) is a

∇Z
t
m,1,Zm,0

-generator for the inverse of A′, then a ∇M
t
Q
,MP

-generator for the inverse of

A is given by the matrices

Ginv =
[
r | RG′

inv | RA′−1
t
]

and Hinv =
[
Lt A′−t s | Lt H′

inv | u
]
.

Lemma 26. The matrix A−1 satisfies ∇M
t
Q
,MP

(A−1) = GinvH
t
inv.

24 A. BOSTAN, C.-P. JEANNEROD, C. MOUILLERON, AND É. SCHOST

Proof. As for Lemma 25 the proof follows from [33, Theorem 1.5.4] and Lemma 24:

∇M
t
Q
,MP

(RA′−1
L) = ∇M

t
Q
,Zt

m,1
(R)A′−1

L+ R∇Z
t
m,1,Zm,0

(A′−1
) L

+ RA′−1
∇Zm,0,MP

(L)

= r st A′−1
L+ RG′

inv (H
′
inv)

t L+ RA′−1
t ut.

To conclude, we remark that A−1 = RA′−1
L.

The bound in (7) can now be established as follows. We begin by computing
(G′,H′), which by Lemma 25 is a ∇Zm,0,Zt

m,1
-generator of length α+2 of A′; as shown

in the previous paragraph, this is done in time O(D(P,Q)+αC (P,Q)). Then, in time
Cinv(∇Zm,0,Zt

m,1
, α+2) we either conclude that A′ is singular, or produce a ∇Z

t
m,1,Zm,0

-

generator (G′
inv,H

′
inv) of length α + 2 for the inverse of A′. Finally, if A′ is invertible

we proceed in two steps: First, using the same amount of time as for G′ and H′, we
set up the matrices Ginv and Hinv introduced before Lemma 26. Then we reduce each
of these two matrices to arrive at a generator of length α; this generator compression
step can be done in time O(αω−1m), in view of [33, Remark 4.6.7]. Overall, these
costs add up to the result reported in (7).

Proof of (5)– (7) for L = ∆MP,Mt
Q
. We only sketch the proof in these cases. This

time, we rely on the (easily verified) general formula

∆M,N(ABC) = −∇M,P(A)BQC + A∆P,Q(B)C+MAB∇Q,N(C).

We use it to write

∆Zm,0,Zt
n,1

(LAR) = −∇Zm,0,MP
(L)AM

t
Q R+ L∆MP,Mt

Q
(A)R+ Zm,0 LA∇M

t
Q
,Zt

n,1
(R);

this allows us to reduce questions (multiplication, linear system solving, inversion) re-
lated to A to the same questions for A′ = LAR, where A′ is given through a ∆Zm,0,Zt

n,1
-

generator of length α+2. Then, the relations Ztn,1Jn = JnZn,1 and Ztn,1 = Z
−1
n,1 imply

∇Zm,0,Zt
n,1

(A′
Jn) = −∆Zm,0,Zt

n,1
(A′)Zn,1 Jn;

this allows us to reduce our problems to computations with the matrix A′ Jn given by
means of a ∇Zm,0,Zt

n,1
-generator of length α+ 2.

For inversion (where m = n), inverting A′ Jn leads to a ∇Z
t
m,1,Zm,0

-generator of

(A′ Jm)
−1 = JmA′−1

. Then, using the relations on Zm,1 given above, we obtain

∆Z
t
m,1,Zm,0

(A′−1
) = Z

t
m,1 Jm∇Z

t
m,1,Zm,0

(JmA′−1
)

and thus a ∆Z
t
m,1,Zm,0

-generator of A′−1
. The general formula above further leads to

∆M
t
Q
,MP

(RA′−1
L) = −∇M

t
Q
,Zt

m,1
(R)A′−1

Zm,0 L+ R∆Z
t
m,1,Zm,0

(A′−1
) L

+M
t
Q RA′−1

∇Zm,0,MP
(L);

since RA′−1
L = A−1, this gives a ∆M

t
Q
,MP

-generator of A−1 whose length α + 2 is

finally reduced to α.
In all cases Lemma 24 can be reused, and the requested complexity bounds are

then derived in the same way as for the three cases above, up to a minor difference:
we also need to take into account the cost of multiplication by MQ or its transpose
with a vector. However, due to the sparse nature of this matrix, this cost is easily
seen to be O(n), so it does not impact the asymptotic estimate.

ON MATRICES WITH DISPLACEMENT STRUCTURE 25

5. Multiplication algorithms. In this section, we prove bounds on the cost of
the product AB, where A is a structured matrix in Fm×n and B is an arbitrary matrix
in Fn×β; this will prove the claims in Theorems 1 and 2 regarding multiplication.

Theorem 27. For any invertible operator L associated with (P,Q), we can take

Cmul(L, α, β) = O

(
β′

α′
M

′
mat

(p
α′
, α′
)
+ D(P,Q) + (α+ β)C (P,Q)

)
,

with p = max(m,n), α′ = min(α, β), and β′ = max(α, β).

Using Lemma 22, it will be sufficient to consider multiplication for the basic operators
associated with (P,Q). Thus, throughout this section we let L : Fm×n → Fm×n be
one of the two operators ∇MP,Mt

Q
and ∆MP,Mt

Q
and, given (G,H) ∈ Fm×α × Fn×α

and B ∈ Fn×β, we show how to compute the product AB ∈ Fm×β with A the unique
matrix in Fm×n such that L(A) = GHt.

In Subsection 5.1 we deal with the cases covered by Theorem 13; a key step of
the proof (corresponding to the case Q = xn) is deferred to Subsection 5.2 due to its
length. We then extend our results to all remaining cases in Subsection 5.3.

In view of Theorem 21, it would actually be sufficient to assume that L is the
Hankel operator ∇Zm,0,Zt

n,1
. This would allow us to bypass most of the derivation

in Subsection 5.3; however, such a restriction does not seem to lead to a better cost
estimate than our direct approach, which we include for completeness.

5.1. Applying Theorem 13. Let us first assume that L = ∇MP,Mt
Q
. Given P,

Q and the generator (G,H), and a matrix B ∈ Fn×β, Theorem 13 shows that AB can
be computed as follows:

1. compute the polynomials P , Q, γk, ηk, Q
−1 mod Pi for k 6 α and i 6 d;

2. compute the n× β matrix B′ = XQ YQ B;
3. compute the m× β matrix C given by

C =
∑

k6α

Mγk,P,nMηk,Q B′;

4. return the m× β matrix VP,Q WP C.
Proceeding as in the proof of Corollary 14, we see that Steps 1, 2, 4 can be completed
in time O(D(P,Q) + (α+ β)C (P,Q)). We are thus left with analyzing Step 3.

Let b1, . . . , bβ be the columns of B′, and for i = 1, . . . , β let Bi = pol(bi) ∈ F[x]n
be the polynomial whose coefficients are the entries of bi. In polynomial terms, given
B1, . . . , Bβ in F[x]n, we want to compute C1, . . . , Cβ in F[x]m such that

Ci =
∑

k6α

γk(ηkBi mod Q) mod P

for i 6 β; then, the m coefficients of Ci will make up the ith column of the matrix C.
To compute Ci, we can compute the sum first, and then reduce it modulo P . The

core problem is thus to compute

Ri =
∑

k6α

γk(ηkBi mod Q)

in F[x]m+n−1 for all i 6 β; the cost is given in Theorem 31 of Subsection 5.3 below:
writing α′ = min(α, β) and β′ = max(α, β), one can compute R1, . . . , Rβ in time

(9) O

(
β′

α′
M

′
mat

(p
α′
, α′
))

.

26 A. BOSTAN, C.-P. JEANNEROD, C. MOUILLERON, AND É. SCHOST

Finally, since Ri has degree less than m+n− 1 and since P has degree m, computing
each Ci = Ri mod P takes time O(M (m) + M (n)) ⊂ O(M (p)), so we can deduce
C1, . . . , Cβ from R1, . . . , Rβ for a negligible total cost of O(αM (p)).

In the case L = ∆MP,Mt
Q
, the approach is almost the same. A minor difference

is that we replace VP,Q by V′
P,Q: this has no influence on the cost. The other

difference is the matrix Jn appearing in the inversion formula for ∆MP,Mt
Q

(second

part of Theorem 13); in polynomial terms, this now leads us to compute the sums

R′
i =

∑

k6α

γk rev(ηkBi mod Q,n− 1)

for i = 1, . . . , β, and then to reduce each of them modulo P .
This problem is actually an instance of the question treated above, for we have

rev(R′
i,m+ n− 2) =

∑

k6α

rev(γk,m− 1)(ηkBi mod Q).

Since knowing rev(R′
i,m + n− 2) gives us R′

i for free, we can appeal here as well to
Theorem 31 to compute R′

i, using rev(γk,m− 1) instead of γk. The cost estimate is
the same as before, namely, (9), thus leading to Theorem 27 regarding a product of
the form AB for the operator L = ∆MP,Mt

Q
.

5.2. Computing the Ri’s when Q = xn. The previous subsection has shown
that for both Sylvester’s and Stein’s displacement operators, computing the product
AB essentially reduces to the following basic problem: given as input

• a monic polynomial Q of degree n,
• polynomials U1, . . . , Uα in F[x]m and V1, . . . , Vα,W1, . . . ,Wβ in F[x]n,

compute

Ri =
∑

k6α

Uk(VkWi mod Q) for i = 1, . . . , β.

The naive algorithm computes all sums independently; writing p = max(m,n), its
cost is O(αβM (p)). In this subsection we establish the following improved complexity
estimate in the special case where Q = xn. (This result will be further extended to
the case of a general Q of degree n in Subsection 5.3.)

Theorem 28. Assume Q = xn and α 6 n, and let p = max(m,n), α′ =
min(α, β), and β′ = max(α, β). Then one can compute the polynomials R1, . . . , Rβ
defined above in time

O

(
β′

α′
M

′
mat

(p
α′
, α′
))

.

To prove Theorem 28, we first rephrase our problem in polynomial matrix terms. Let

U ∈ F[x]α×1
m , V ∈ F[x]α×1

n , W ∈ F[x]β×1
n

be the polynomial vectors with respective entries (Ui), (Vi) and (Wi). Then, our

problem amounts to computing the polynomial row vector R ∈ F[x]1×βm+n−1 such that

R = Ut(VWt mod xn).

We first solve that problem in the special case where α = β (this is where most of the
difficulty takes place); then, we reduce the other cases of arbitrary α, β to this case.

ON MATRICES WITH DISPLACEMENT STRUCTURE 27

Case α = β. The following lemma is the basis of our algorithm in this case; it is
taken from the proof of [4, Lemma 12].

Lemma 29. Let α, γ, ν be in N>0 with ν even. Let V,W be in F[x]α×γν and define

V0 = V mod xν/2, V1 = V div xν/2,

W0 = W mod xν/2, W1 = W div xν/2.

Then the matrices [V0 V1] and [W1 W0] are in F[x]α×2γ
ν/2 , and we have

VWt mod xν = V0W
t
0 + xν/2

(
[V0 V1][W1 W0]

t mod xν/2
)
.

We will want to apply this lemma recursively, starting from ν = n and γ = 1. It will
be convenient to have both n and α be powers of two.

• If n is not a power of two, we define n = 2⌈logn⌉ and δ = n− n. One may then
check that a mod b = x−δ

(
(xδa) mod (xδb)

)
for any a and nonzero b in F[x];

applying this identity componentwise to the definition of R gives

(10) R = x−δ Ut
(
V(xδ W)t mod xn

)
,

where V and xδW have degree less than n.
• If α is not a power of two, we define α = 2⌈logα⌉ and µ = α− α. Then, we can

introduce µ dummy polynomials (Ui), (Vi) and (Wi), all equal to zero, without
affecting the value of R1, . . . , Rα.

The resulting algorithm is given in Figure 1, with a top-level procedure mul that
handles the cases when n or α are not powers of two by defining n and α as above,
and a main recursive procedure mul rec. We initially set ν = n and γ = 1; through
each recursive call, the width γ of the matrices V and W is doubled, while their degree
ν is divided by two, so that the invariant γν = n is maintained.

Lemma 30. Let p = max(m,n). Algorithm mul of Figure 1 works correctly in
time

O
(
M

′
mat

(p
α
, α
))

.

Proof. Correctness is a direct consequence of Lemma 29 and the discussion that
followed it. For the cost analysis, we let C(k) denote the cost of mul rec called upon
parameters α and γ such that α = 2kγ. Note that the total cost of mul will then be
at most C(κ), with κ = ⌈logα⌉. In particular, below, we always have k 6 κ. Another
useful remark is that we always have ν 6 2p/γ, since ν = n/γ and n 6 2n 6 2p.

If k = 0, we have γ = α, so we are in the base case of the algorithm, where
V and W are in F[x]α×αν . We first compute R′ = VWt mod xν in time Mmat(ν, α).
Then, given U in F[x]α×1

m and R′ in F[x]α×αν , we obtain R = UtR′ in two steps as
follows: rewriting Ut in the form Ut = [1 xc x2c · · · x(α−1)c]U′ with c = ⌊m/α⌋
and U′ ∈ F[x]α×αc , we compute first Q = U′R′ in time Mmat(max{c, ν}, α), and then
deduce R from Q using at most α2(c+ ν − 1) additions in F. In summary,

C(0) 6 Mmat(ν, α) + Mmat(max{c, ν}, α) + α2(c+ ν − 1)

6 2Mmat

(
2p

α
, α

)
+ 3αp,

using c 6 m/α 6 p/α and ν = n/α 6 2p/α. Therefore, there is a constant c0 with

(11) C(0) 6 c0 · Mmat

(p
α
, α
)
.

28 A. BOSTAN, C.-P. JEANNEROD, C. MOUILLERON, AND É. SCHOST

Algorithm mul rec(U,V,W,m, ν, α, γ)

Input: U ∈ F[x]α×1
m , V,W ∈ F[x]α×γν

Assumptions: α, γ and ν are powers of two and γ 6 α
Output: R ∈ F[x]1×αm+ν−1 such that R = Ut(VWt mod xν).

if γ = α then
R′ := VWt mod xν

R := UtR′

else
ν′ := ν/2; γ′ = 2γ
V0 := V mod xν

′

; V1 := V div xν
′

; V′ := [V0 V1]
W0 := W mod xν

′

; W1 := W div xν
′

; W′ := [W1 W0]
R′ := mul rec(U,V′,W′,m, ν′, α, γ′)
R := UtV0W

t
0 + xν

′

R′

return R.

Algorithm mul(U,V,W,m, n, α)

Input: U ∈ F[x]α×1
m , V,W ∈ F[x]α×1

n

Assumption: α 6 n
Output: R ∈ F[x]1×αm+n−1 such that R = Ut(VWt mod xn).

n := 2⌈log(n)⌉; δ := n− n
α := 2⌈log(α)⌉; µ := α− α
U := U augmented with µ zero rows
V := V augmented with µ zero rows
W := xδW augmented with µ zero rows
R := mul rec(U,V,W,m, n, α, 1)
R := x−δ R
return the first α entries of R.

Fig. 1. Algorithms mul and mul rec.

Let us now bound C(k) when k > 1. Given V,W ∈ F[x]α×γν , we can compute V0,
V1, W0, W1 for free. Then R′ is computed recursively in time C(k−1), and it remains
to bound the cost of producing the result as R = Q+ xν

′

R′, with Q = UtV0W
t
0.

For now let us write D(k) for the cost of computing Q. Given R′ in F[x]1×αm+ν′−1

with ν′ = ν/2 and Q in F[x]1×αm+ν−1, we can add them together using at most α(m+
ν′ − 2) additions in F. Since ν′ = n/2γ 6 n/γ 6 n, we deduce that for k > 1,

C(k) 6 C(k − 1) +D(k) + 2αp.(12)

In order to boundD(k) let us rewrite as before Ut as Ut = [1 xc x2c · · · x(γ−1)c]U′ with
c = ⌊m/γ⌋ and U′ ∈ F[x]γ×αc ; we compute Q as Q = [1, xc, x2c, . . . , x(γ−1)c](U′V0W

t
0).

The product U′V0W
t
0 involves three polynomial matrices of respective dimensions

γ × α, α × γ, γ × α, with entries of degree less than max{c, ν′}. Furthermore, since
c 6 m/γ and, as seen above, ν′ 6 n/γ, we have max{c, ν′} 6 p/γ. Since γ 6 α, we
can proceed as in the second case considered in the proof of [4, Lemma 7] to show
that U′V0W

t
0 can be evaluated as (U′V0)W

t
0 in time

α

γ
Mmat

(
p

γ
, γ

)
+ 2αp+

α

γ
Mmat

(
2p

γ
, γ

)
.

ON MATRICES WITH DISPLACEMENT STRUCTURE 29

Since U′V0W
t
0 has dimensions γ×α and degree less than 3p/γ, reconstructing Q from

that product requires at most γα · 3p/γ = 3αp additions in F. Thus, using α = 2kγ,

D(k) 6 2k
(

Mmat

(
2kp

α
,
α

2k

)
+ Mmat

(
2k+1p

α
,
α

2k

))
+ 5αp.

Combining this bound with (12) and the fact that Mmat(2d, n) = O(Mmat(d, n)), we
deduce that there exists a constant c1 such that for all k > 1,

(13) C(k) 6 C(k − 1) + c1 · 2
k
Mmat

(
2kp

α
,
α

2k

)
.

Taking all k = 0, . . . , κ into account, we deduce from (11) and (13) that the total
time of mul is bounded as

C(κ) 6 max{c0, c1} ·
κ∑

k=0

2kMmat

(
2kp

α
,
α

2k

)
∈ O

(
M

′
mat

(p
α
, α
))

.

The conclusion follows from the facts that p/α 6 p/α and that α < 2α.

Case α < β. In this situation, we split the vector W into vectors W1, . . . ,Wc,
with each Wi in F[x]α×1

n and c = ⌈β/α⌉ (so Wc may be padded with zeros). Then,
algorithm mul is applied c times (namely, to the (U, V,Wi)) and by Lemma 30 we
obtain R1, . . . , Rβ in time

O

(
β

α
M

′
mat

(p
α
, α
))

.

Case β < α. In this case, we split the vectors U and V into U1, . . . ,Uc and
V1, . . . ,Vc, with each Ui and Vi in F[x]β×1

n and c = ⌈α/β⌉. As before, algorithm mul

is applied c times, but now to the (Ui,Vi,W), for a cost of

O

(
α

β
M

′
mat

(
p

β
, β

))
;

the c results thus produced are then added, for a negligible cost of O(αp).

In the next subsection, we denote by mul(U,V,W,m, n, α, β) the algorithm that
handles all possible cases for α 6 n, following the discussion in the above paragraphs.

5.3. Computing the Ri’s in the general case. We now address the case of
an arbitrary Q. Given such a Q of degree n in F[x], as well as U1, . . . , Uα in F[x]m,
V1, . . . , Vα in F[x]n and W1, . . . ,Wβ in F[x]n, we recall that our goal is to compute

Ri =
∑

k6α

Uk(VkWi mod Q), i = 1, . . . , β.

Theorem 31. Assume α 6 n, and let p = max(m,n), α′ = min(α, β), and
β′ = max(α, β). Then one can compute the polynomials R1, . . . , Rβ in time

O

(
β′

α′
M

′
mat

(p
α′
, α′
))

.

30 A. BOSTAN, C.-P. JEANNEROD, C. MOUILLERON, AND É. SCHOST

To prove Theorem 31, the idea is to use the well-known fact that Euclidean
division reduces to power series inversion and multiplication; in this way, the proof of
Theorem 31 will reduce to that of Theorem 28.

The first step is to replace remainders by quotients. By applying the Euclidean
division equality VkWi = (VkWi div Q)Q+ (VkWi mod Q) and defining

Si =
∑

k6α

Uk(VkWi div Q) for i 6 β and T =
∑

k6α

UkVk,

we easily deduce the following lemma.

Lemma 32. Ri = TWi −QSi for i 6 β.

The main issue in our algorithm will be the computation of S1, . . . , Sβ; we will
actually compute their reverse polynomials. Observe that Ui has degree at mostm−1,
VkWi div Q has degree at most n− 2, and Si has degree at most m+n− 3. We thus
introduce the polynomials S̃i = rev(Si,m+n− 3); knowing those, we can recover the
polynomials Si for free. For k 6 α and i 6 β, let us also define

Ũk = rev(Uk,m− 1), Ṽk =
rev(Vk, n− 1)

rev(Q,n)
mod xn−1, W̃i = rev(Wi, n− 1) mod xn−1.

All these polynomials are related by the following formula.

Lemma 33. S̃i =
∑

k6α Ũk(ṼkW̃i mod xn−1) for i 6 β.

Proof. Using that rev(ab, r+ s) = rev(a, r)rev(b, s) for any polynomials a, b ∈ F[x]

of respective degrees r and s, we deduce from the definitions of Si and S̃i that

S̃i =
∑

k6α

Ũkrev(VkWi div Q,n− 2).

Following [12, p. 258], we conclude with the equalities

rev(VkWi div Q,n− 2) =
rev(VkWi, 2n− 2)

rev(Q,n)
mod xn−1

=
rev(Vk, n− 1) rev(Wi, n− 1)

rev(Q,n)
mod xn−1

= ṼkW̃i mod xn−1.

Figure 2 details the algorithm we just sketched. To prove Theorem 31, it suffices
to observe that the cost boils down to one call to mul plus O((α + β)M (p)) for all
other operations, and then to apply Theorem 28.

6. Algorithms for inversion and system solving. We conclude in this sec-
tion by establishing the cost bounds announced in Theorem 1 for structured inversion
and structured system solving. We rely on Theorem 21 from Section 4 to reduce our
task to the case of the Hankel operator ∇Zm,0,Zt

n,1
, then use the fast multiplication

algorithm of Section 5 to speed up the Morf / Bitmead-Anderson (MBA) approach.

Theorem 34. For any invertible operator L associated with (P,Q), we can take

Cinv(L, α) = O
(
M

′′
mat

(m
α
,α
))

and
Csolve(L, α) = O

(
M

′′
mat

(p
α
, α
))

, p = max(m,n).

ON MATRICES WITH DISPLACEMENT STRUCTURE 31

Algorithm mulQ(U,V,W,m, n, α, β,Q)

Input: U ∈ F[x]α×1
m , V ∈ F[x]α×1

n , W ∈ F[x]β×1
n

Input: Q monic of degree n in F[x]
Assumption: α 6 n
Output: R ∈ F[x]1×βm+n−1 such that R = Ut(VWt mod Q).

Ũ := [rev(Uk,m− 1), k = 1, . . . , α]

Ṽ := [rev(Vk, n− 1)/rev(Q,n) mod xn−1, k = 1, . . . , α]

W̃ := [rev(Wi, n− 1) mod xn−1, i = 1, . . . , β]

S̃ := mul(Ũ, Ṽ, W̃,m, n− 1, α, β)
T :=

∑
k=1,...,α UkVk

R := [TWi −Qrev(S̃i,m+ n− 3), i = 1, . . . , β]
return R.

Fig. 2. Algorithm mulQ.

Recall that Theorem 21 in Section 4 proves that we can take

Cinv(L, α) 6 Cinv(∇Zm,0,Zt
m,1
, α+ 2) +O

(
D(P,Q) + αC (P,Q) + αω−1m

)

and
Csolve(L, α) 6 Csolve(∇Zm,0,Zt

n,1
, α+ 2) +O

(
D(P,Q) + αC (P,Q)

)
,

so we are left with estimating the cost of inversion and system solving for ∇Zm,0,Zt
n,1

.

For this, we shall use the MBA approach with preconditioning introduced in [20]
together with the “compression-free” formulas from [16] for generating the matrix
inverse. Such formulas being expressed with products of the form (structured matrix)
× (unstructured matrix), this provides a way to exploit our results for fast structured
matrix multiplication from Section 5. Specifically, starting from a∇Zm,0,Zt

n,1
-generator

(G,H) of length α of A ∈ Fm×n, we proceed in three steps as follows.

Preconditioning. From (G,H) we begin by deducing a generator of the precondi-
tioned matrix

Ã = U(v1)AU(v2)
t,

where each U(vi) is a unit upper triangular Toeplitz matrix defined by some random
vector vi; as shown in [21], such a preconditioning ensures that, with high probability,

Ã has generic rank profile, that is, denoting by Ãk the leading principal submatrix of
Ã of dimensions k × k,

det
(
Ãk
)
6= 0 for k = 1, . . . , rank(Ã).

In our case, preconditioning will be done in such a way that the generator of
Ã corresponds not to ∇Zm,0,Zt

n,1
but to another Hankel operator, namely ∇Zm,0,Zt

n,0

(algorithm precond, Figure 3). The latter operator being singular but still partly

regular [33, §4.5], such a generator will in fact be a triple (G̃, H̃, ũ), with (G̃, H̃) of length

O(α) and ũ carrying the last row of Ã. Also, we will guarantee that the matrices G̃

and H̃ have the following special shape: their first α columns are precisely U(v1)G
and U(v2)H. These two requirements will be key to exploit the “compression-free”

inversion scheme of [16, §4.3] and then to move back from, say, Ã−1 to A−1.

32 A. BOSTAN, C.-P. JEANNEROD, C. MOUILLERON, AND É. SCHOST

Computation of the leading principal inverse. Assuming that Ã has generic rank
profile and given (G̃, H̃, ũ), we now consider computing a compact representation of

the inverse of its largest nonsingular leading principal submatrix, that is, of Ã−1
r with

r = rank(Ã) = rank(A).

Since Ãr is structured with respect to ∇Zr,0,Zt
r,0
, its inverse is structured with respect

to ∇Z
t
r,0,Zr,0

and, as recalled in (1),

rank
(
∇Z

t
r,0,Zr,0

(Ã−1
r)
)
= rank

(
∇Zr,0,Zt

r,0
(Ã)
)
=: ρ.

Therefore, our second step (detailed in Section 6.2) will be to compute a ∇Z
t
r,0,Zr,0

-

generator of Ã−1
r of length ρ.

In fact, following [33, §5], we give an algorithm (lp inv, Figure (6)) that does not

assume Ã has generic rank profile but discovers whether this is the case or not. It
calls first an auxiliary routine, called largest, which returns the size ℓ of the largest
leading principal submatrix Ãℓ having generic rank profile together with a generator
of the inverse Ã−1

ℓ . Then, from such a generator, one can check efficiently whether

ℓ equals rank(Ã), which is a condition equivalent to Ã having generic rank profile.

Thus, overall, algorithm lp inv generates Ã−1
r if and only if Ã has generic rank pro-

file (and reports ’failure’ otherwise, since this provides a way of certifying whether
preconditioning A was successful or not).

Algorithm largest calls a core recursive routine largest rec, which can be seen as
a combination of Kaltofen’s algorithm Leading Principal Inverse [20] and [16, algo-
rithm GenInvHL], which thus relies on products of the form (structured matrix) ×

(unstructured matrix). Also, the generating matrices Ỹℓ and Z̃ℓ produced by algo-
rithm largest are specified to have the following shape:

Ỹℓ = −Ã−1
ℓ G̃ℓ, Z̃ℓ = Ã−t

ℓ H̃ℓ,

where G̃ℓ is made from the first ℓ rows of G̃, and similarly for H̃ℓ. When ℓ = r,
the same specification is inherited by the generator (Ỹr , Z̃r, ṽ) produced by algorithm
lp inv, whose matrices satisfy

Ỹr = −Ã−1
r G̃r, Z̃r = Ã−t

r H̃r

where G̃r and H̃r are the first r rows of G̃ and H̃, and ṽt is the first row of Ã−1
r .

Generating inverses and solving linear systems. Given the rank r of Ã and the
∇Z

t
r,0,Zr,0

-generator (Ỹr , Z̃r, ṽ) of A−1
r as above, it is immediate to decide whether Ã

and A are invertible and, if so, to deduce the ∇Z
t
m,0,Zm,1

-generator of A−1 given by

Y = −A−1G, Z = A−tH.

This corresponds to algorithm inv in Figure 7. Now, given an additional vector b ∈ Fm,
we reduce the study of Ax = b to that of the equivalent linear system Ãx̃ = b̃, where
b̃ = U(v1)b and for which an algorithm can be derived directly from the one in [21,
§4], with the additional guarantee that if b = 0 and the column rank of A is not
full, then a nonzero solution x is obtained. This corresponds to algorithm solve in

ON MATRICES WITH DISPLACEMENT STRUCTURE 33

Figure 8. (Clearly, both inv and solve are Las Vegas algorithms—“always correct,
probably fast”, thanks to the specification of algorithm lp inv.)

The next three sections provide detailed descriptions of the algorithms mentioned
above, namely precond, largest rec, largest, lp inv, inv, solve, together with their cor-
rectness and complexity proofs, thereby establishing Theorem 34.

6.1. Preconditioning. We precondition our structured matrix A as shown in
Figure 3 below. Here and hereafter, en,i denotes the ith unit vector in Kn and, for
any given m × n matrix M such that n > α, we write M 7→α for the m × α matrix
obtained by keeping only the first α columns of M.

Algorithm precond(G,H, v1, v2)

Input: (G,H) ∈ Fm×α × Fn×α such that ∇Zm,0,Zt
n,1

(A) = GHt,

Input: v1 ∈ Fm and v2 ∈ Fn.

Output: (G̃, H̃) ∈ Fm×(α+4) × Fn×(α+4) and ũ ∈ Fn such that

• ∇Zm,0,Zt
n,0

(Ã) = G̃H̃t for Ã = U(v1)AU(v2)
t;

• ũt is the last row of Ã;

• G̃7→α = U(v1)G and H̃ 7→α = U(v2)H.

G1 :=
[
Zm,0Jmv1 | − em,1

]
; H1 :=

[
em,m |Ztm,0v1

]

G2 :=
[
Ztn,1v2 | − en,n

]
; H2 :=

[
en,1 |Zn,0Jnv2

]

G̃ :=
[
U(v1)G |G1 |U(v1)AG2

]
; H̃ :=

[
U(v2)H |U(v2)A

tH1 |H2

]

ũ := U(v2)A
tU(v1)

tem,m

return (G̃, H̃, ũ).

Fig. 3. Algorithm precond.

Lemma 35. Algorithm precond works correctly in time O(αM(p)). Furthermore,
if the vectors v1 ∈ Fm and v2 ∈ Fn have their first entry equal to 1 and their remaining
m + n − 2 entries chosen uniformly at random from a finite subset S ⊂ F, then the
matrix Ã = U(v1)AU(v2)

t has generic rank profile with probability at least

1− r(r + 1)/|S|,

where r = rank
(
Ã
)
= rank(A) and |S| is the cardinality of S.

Proof. We start by checking ∇Zm,0,Zt
n,0

(Ã) = G̃H̃t, from which correctness follows.

Writing L1 = ∇Zm,0,Zm,0(U(v1)) and L2 = ∇Z
t
n,1,Z

t
n,0

(U(v2)
t) and applying (8) gives

∇Zm,0,Zt
n,0

(Ã) = L1AU(v2)
t + U(v1)GH

t
U(v2)

t + U(v1)AL2,

and it remains to check that L1 = G1H
t
1 and L2 = G2H

t
2. Since U(v1) is upper

triangular Toeplitz, the matrix L1 = Zm,0U(v1)−U(v1)Zm,0 is zero everywhere except
on its last column, which is equal to Zm,0Jmv1, and on its first row, which is equal to
−vt1Zm,0. Hence L1 = Zm,0Jmv1 e

t
m,m − em,1 (Z

t
m,0v1)

t = G1H
t
1. For L2, we proceed

similarly, by noting that L2 = Ztn,1U(v2)
t − U(v2)

tZtn,0 is zero everywhere but on its
first column and last row, equal to Ztn,1v2 and −Zn,0Jnv2, respectively.

34 A. BOSTAN, C.-P. JEANNEROD, C. MOUILLERON, AND É. SCHOST

Let us now bound the cost of deducing G̃, H̃, ũ from G, H, v1, v2. First, we
set up the m × 2 matrices G1 and H1 and the n × 2 matrices G2 and H2 in time
O(p). Then, since A satisfies ∇Zm,0,Zt

n,1
(A) = GHt, multiplying A or At be a single

vector can be done in time O(αM(p)), using for example the reconstruction formula
in [16, (21b)]. Hence we obtain the products AG2, A

tH1, and AtU(v1)
tem,m in time

O(αM(p)). Finally, since G and H have α columns each, it remains to multiply O(α)
vectors by the triangular Toeplitz matrices U(v1) and U(v2), and this can be done in
time O(αM(p)). Overall, the cost of the algorithm is thus bounded by O(αM(p)).

The probability analysis is due to Kaltofen and Saunders [21, Theorem 2].

6.2. Computation of the leading principal inverse. In order to generate the
inverse of the largest nonsingular leading principal submatrix of A, we start with the
generation of the largest leading principal submatrix having generic rank profile. This
is done by algorithms largest rec and largest displayed in Figures 4 and 5. In algorithm
largest rec the matrices Aij , Gi, Hj for 1 6 i, j 6 2 have dimensions mi ×mj, mi × α,
mj × α, respectively, and correspond to the block partitions

A =

[
A11 A12

A21 A22

]
, G =

[
G1

G2

]
, H =

[
H1

H2

]
.

Similarly, utij denotes the last row of Aij .

Lemma 36. Algorithm largest rec is correct and if m = n is an integer power of
two, then its cost is

O
(
M

′′
mat

(m
α
,α
))
.

Proof. Correctness follows directly from combining the analysis in [20, pp. 801–
803] with the formulas for GS, HS, uS, Y, Z, w given in [16, p. 287].

Assuming m = n is a power of two, let C(m,α) denote the cost of algorithm
largest rec. We begin by showing that we can take

C(m,α) = O(αω) if α 6 m < 2α.

Given G and H we compute the product GHt in time O(αω). Then, starting from
the last row of A and using the fact that for i, j > 1 the (i, j) entry of GHt equals
ai−1,j − ai,j−1, we deduce all the entries of A in time O(α2).

Let us now bound the cost when m > 2α. Proceeding as in the proof of [16,
Lemma 5], it is easily seen that one can compute some generators of length at most
α+2 for the matrices A21, A

t
12, A

−1
11 A12, A

−t
22A

t
21 as well as the vectors u11, u21, u22, uS

for a total time in O(αM(m)). The number of additions is in O(αm) and we also have
to perform the four matrix products A21Y11, A

t
12 Z11, (A

−1
11 A12)YS, and (A−T

11 AT21)ZS.
For example, A12 has displacement rank at most α + 2 with respect to the operator
∇Zm/2,0,Z

t
m/2,1

, so that using a decomposition of the form A12 = A′
12 + A′′

12 with A′
12

and A′′
12 of displacement ranks at most α and 2, respectively, we can evaluate the

product A21Y11 in time Cmul(∇Zm/2,0,Z
t
m/2,1

, α, α) + O(αM(m)); by Theorem 2, this

is in O
(
m
2αM ′

mat(
m
2α , α)

)
. Adding up all these costs thus leads to

C(m,α) = 2C
(m
2
, α
)
+O

(
M

′
mat

(m
2α
, α
))

if m > 2α.

Hence, for some constant c0,

C(m,α) 6 c0

(
i0−1∑

i=0

2iM ′
mat

(m

2i+1α
, α
)
+ 2i0αω

)

ON MATRICES WITH DISPLACEMENT STRUCTURE 35

Algorithm largest rec(G,H, u)

Input: (G,H, u) ∈ Fm×α × Fn×α × Fn such that α 6 min(m,n) and
Input: ∇Zm,0,Zt

n,0
(A) = GHt and ut = etm,mA (the last row of A).

Output: (ℓ,Y,Z, v) ∈ N×Fℓ×α×Fℓ×α×Fℓ such that ℓ is the order of the largest
leading principal submatrix Aℓ of A having generic rank profile,
Y = −A−1

ℓ Gℓ, Z = A−t
ℓ Hℓ and v = A−t

ℓ eℓ,1 (the first row of A−1
ℓ).

if min(m,n) < 2α then
compute A explicitly and then deduce ℓ, Y,Z, v.

else
m1 := ⌈m/2⌉; m2 := ⌊m/2⌋; n1 := ⌈n/2⌉; n2 := ⌊n/2⌋
(ℓ11,Y11,Z11, v11) := largest rec(G1,H1, u11)
if ℓ11 < min(m1, n1) then

(ℓ,Y,Z, v) := (ℓ11,Y11,Z11, v11)
else

GS := G2 + A21Y11; HS := H2 − At12 Z11

uS := u22 − At12A
−t
11 u21

if the (1, 1) element of S is zero then
(ℓ,Y,Z, v) := (ℓ11,Y11,Z11, v11)

else
(ℓS,YS,ZS, vS) := largest rec(GS,HS, uS)
ℓ := ℓ11 + ℓS

Y :=
[
Y11−(A−1

11
A12)YS

YS

]
; Z :=

[
Z11−(A−T

11
AT
21)ZS

ZS

]
;

w := −S−TAT12v11; v :=
[
v11−A

−T
11

AT
21w

w

]
;

return (ℓ,Y,Z, v).

Fig. 4. Algorithm largest rec. Here Aℓ ∈ Fℓ×ℓ denotes the largest leading principal submatrix
of A whose rank profile is generic, and Gℓ and Hℓ are the ℓ× α submatrices consisting of the first ℓ
rows of G and H, respectively.

with i0 ∈ N such that α 6 m/2i0 < 2α, that is, i0 = ⌊log(m/α)⌋. Defining α =
2⌈log(α)⌉, we have α ∈ (α/2, α], which implies m/α ∈ [m/α, 2m/α) and thus, since m
is an integer power of two,

2i0 = m/α.

Besides, m/(2i+1α) < m/(2iα), which by assumption on M ′
mat implies

M
′
mat

(m

2i+1α
, α
)
= O

(
M

′
mat

(m

2iα
, α
))

.

Third, αω = O
(
M ′

mat(1, α)
)
. Consequently, for some constant c1,

C(m,α) 6 c1 ·

log(m/α)∑

i=0

2iM ′
mat

(m

2iα
, α
)
.

Now, α 6 α implies m/α 6 m/α 6 m/α, where m/α denotes the smallest inte-
ger power of two greater than or equal to m/α. Hence log(m/α) 6 log

(
m/α

)
and

M ′
mat(2

−im/α) = O
(
M ′

mat

(
2−im/α

))
by assumption on M ′

mat, so that the sum in
the above bound on C(m,α) is in O(M ′′

mat(m/α, α)), as announced.

36 A. BOSTAN, C.-P. JEANNEROD, C. MOUILLERON, AND É. SCHOST

Algorithm largest(G,H, u)

Input: (G,H, u) ∈ Fm×α × Fn×α × Fn such that α 6 min(m,n) and
Input: ∇Zm,0,Zt

n,0
(A) = GHt and ut = etm,mA (the last row of A).

Output: (ℓ,Y,Z, v) ∈ N×Fℓ×α×Fℓ×α×Fℓ such that ℓ is the order of the largest
leading principal submatrix Aℓ of A having generic rank profile,
Y = −A−1

ℓ Gℓ, Z = A−t
ℓ Hℓ and v = A−t

ℓ eℓ,1 (the first row of A−1
ℓ).

p := 2⌈log2(max(m,n))⌉

compute α ∈ N, G,H ∈ Fp×α, and u ∈ Fp such that:

• (G,H, u) is a ∇Zp,0,Zt
p,0

-generator of length α of A = [A 0
0 0] ∈ Fp×p;

• α 6 α 6 min(α + 2, p);

• G = [G ∗
∗ ∗] and H = [H ∗

∗ ∗]

• ut is the last row of A

(ℓ,Y,Z, v) := largest rec(G,H, u)

Y := Y 7→α; Z := Z 7→α

return (ℓ,Y,Z, v).

Fig. 5. Algorithm largest. Here Aℓ ∈ Fℓ×ℓ denotes the largest leading principal submatrix of A
whose rank profile is generic, and Gℓ and Hℓ are the ℓ×α submatrices consisting of the first ℓ rows
of G and H, respectively.

Lemma 37. Let p = max(m,n). Algorithm largest works correctly in time

O
(
M

′′
mat

(p
α
, α
))
.

Proof. Let us show first how to generate the augmented matrix A. If p = m = n,
then A = A and it suffices to take α = α, G = G, and H = H. If p = n > m then
∇Zm,0,Zt

n,0
(A) = GHt leads to the following generator of length α := α+ 1:

∇Zp,0,Zt
p,0

(
A
)
= GH

t
, G =

[
G

ep−m,1

]
, H =

[
H | u

]
;

the range constraint on α is satisfied, since α 6 min(m,n) = m < n = p, and, on the
other hand, the upper left corners of G and H are G and H, respectively. Proceeding
similarly when p = m > n, we take

α = α+ 1, G =
[
G | − u′

]
, H =

[
H

ep−n,1

]
,

where u′ is the last column of A and can be obtained in time O(αM(p)). It remains
to handle the case p > max(m,n), where A is bordered by both some zero rows
and some zero columns. In this case, we deduce from ∇Zm,0,Zt

n,0
(A) = GHt that a

∇Zp,0,Zt
p,0

-generator of length α+ 2 of A is given by

G =

[
G −u′

ep−m,1

]
, H =

[
H u

ep−n,1

]
.

Again, it is clear that the upper left corners of G and H are G and H, respectively.
Furthermore, if p > α + 2, we can take α = α+ 2; otherwise, since p > max(m,n) >

ON MATRICES WITH DISPLACEMENT STRUCTURE 37

min(m,n) > α, we are in the situation where p = α+ 1 and m = n = α. In this case
we shall proceed as follows to reduce the generator length from α + 2 to α + 1 while
ensuring that G and H are in the upper left corners of the new generator matrices: the
matrices G and H defined above have dimensions (α+ 1)× (α+ 2) and are given by

G =

[
G −u′

1

]
and H

t
=

Ht

ut

1

;

since G is α × α, we can deduce from G and u′ a vector u′′ ∈ Fα such that Gu′′ = u′

in time O(αω); then, using the fact that

E =

Iα u′′

1
1

 =⇒ GE =

[
G 0

1 0

]
and E−1H

t
=

Ht −u′′

ut

1

,

we conclude that a suitable ∇Zp,0,Zt
p,0

-generator of A is obtained by taking the first

α+ 1 =: α columns of GE and HE−t. Finally, obtaining the vector u is free, since the
last row of A is either the last row of A (which is part of the input) or the zero row. To
summarize, we can always find a suitable generator (G,H, u) of the augmented matrix
A in time O(αM(p) + αω), that is, since p < 2p and α 6 p,

O(αM(p) + αω−1p).

Since α 6 p and p is a power of two, Lemma 36 implies that the output (ℓ,Y,Z, v)
of largest rec is obtained in time

O(M ′′
mat(p/α, α))

and satisfies the following: ℓ is the size of the largest leading principal submatrix of A
having generic rank profile; furthermore, denoting this matrix by Aℓ, we have v

t equal
to the first row of A−1

ℓ and Y = −A−1
ℓ Gℓ and Z = −A−t

ℓ Hℓ with Gℓ and Hℓ the ℓ × α
submatrices consisting of the first ℓ rows of G and H. Since G ∈ Fm×α and H ∈ Fn×α

are in the upper left corners of G and H and since ℓ 6 min(m,n), we deduce that

Gℓ = [Gℓ ∗] and Hℓ = [Hℓ ∗].

Consequently, by keeping only the first α columns of each of Y and Z, we obtain the
matrix pair (Y,Z) such that

Y = −A−1
ℓ Gℓ and Z = −A−t

ℓ Hℓ.

This concludes the proof of correctness. For the cost, note that the smallest integer
power of two greater than or equal to p/α is less than 4p/α and, on the other hand, and
that α = O(α). Hence M ′′

mat(p/α, α) = O
(
M ′′

mat(p/α, α)
)
, and the latter expression

dominates over the term in O(αM(p) + αω−1p).

Lemma 38. Let p = max(m,n). Algorithm lp inv works correctly in time

O
(
M

′′
mat

(p
α
, α
))

.

38 A. BOSTAN, C.-P. JEANNEROD, C. MOUILLERON, AND É. SCHOST

Algorithm lp inv(G,H, u)

Input: (G,H) ∈ Fm×α×Fn×α such that α 6 min(m,n) and ∇Zm,0,Zt
n,0

(A) = GHt;

Input: u ∈ Fn such that ut = etm,mA (the last row of A).
Output: (r,Y,Z, v) such that r = rank(A), (Y,Z) = (−A−1

r Gr,A
−t
r Hr), and

Output: v = A−t
r er,1 (the first row of A−1

r) if A has generic rank profile,
Output: and r = “failure” otherwise.

(ℓ,Yℓ,Zℓ, vℓ) := largest(G,H, u)
GS := G2 + A21Yℓ; HS := H2 − At12 Zℓ
uS := u22 − At12A

−t
ℓ u21

r0 := the rank of [GS|em−ℓ,1] [HS|uS]
t

if r0 = 0 then
(r,Y,Z, v) := (ℓ,Yℓ,Zℓ, vℓ)

else
(r,Y,Z, v) := (“failure”, ∗, ∗, ∗)

return (r,Y,Z, v).

Fig. 6. Algorithm lp inv. Here r denotes the (unknown) rank of A, and Ar is the r × r matrix
consisting of the first r rows and columns of A. Similarly, Gr and Hr are the r×α matrices consisting
of the first r rows of G and H, respectively.

Proof. By Lemma 37, the call to largest yields (ℓ,Yℓ,Zℓ, vℓ) such that ℓ is the
order of the largest leading principal submatrix of A having generic rank profile,
Yℓ = −A−1

ℓ Gℓ, Zℓ = A−t
ℓ Hℓ, and vℓ = A−t

ℓ eℓ,1. Thanks to the special shape of the
matrices Yℓ and Zℓ, we can check as in [16] that the expressions for GS, HS, uS lead to a
∇Zm−ℓ,1,Zt

n−ℓ,0
-generator of length α+1 of the Schur complement S = A22−A21A

−1
ℓ A12:

∇Zm−ℓ,1,Zt
n−ℓ,0

(S) = [GS|em−ℓ,1][HS|uS]
t.

Now, since both ∇Zm−ℓ,1,Zt
n−ℓ,0

and Aℓ are invertible,

r0 := rank
(
∇Zm−ℓ,1,Zt

n−ℓ,0
(S)
)
= 0 ⇐⇒ S = 0 ⇐⇒ ℓ = rank(A).

Correctness then follows, since ℓ = rank(A) if and only if A has generic rank profile.
To bound the cost, recall first from Lemma 37 than ℓ, Yℓ, Zℓ, vℓ are com-

puted in time O(M ′′
mat(p/α, α)). Then we can obtain GS in time O(M ′

mat(p/α, α))
by evaluating the product A21Yℓ as follows. Defining A21 =

[
0 0
0 A21

]
∈ Fm×n and

Yℓ =
[

0
Yℓ

]
∈ Fn×α, we can deduce from G,H, u a ∇Zm,1,Zn,0-generator (G21,H21)

of length α + 2 of A21 in time O(αM(p)). Writing A21 = A
′

21 + A
′′

21 with A
′

21 of

displacement rank α 6 min(m,n) and A
′′

21 of displacement rank 2, we can eval-
uate A21Yℓ in time Cmul(∇Zm,1,Zt

n,0
, α, α) + O(αM(p)), which by Theorem 2 is in

O(M ′
mat(p/α, α) + αM(p)). It remains to extract A21Yℓ from A21Yℓ =

[
0

A21Yℓ

]
and

to add it to G2, for an overhead of O(αp). Since αM(p) = O(M ′
mat(p/α, α)), we have

thus obtained GS in time O(M ′
mat(p/α, α)). The same cost bound can be derived

for the matrix HS and, on the other hand, the cost bound O(αM(p)) applies to the
computation of uS and follows from computing a generator of length O(α) of At12A

−t
ℓ

and then multiplying by and subtracting from a vector. Finally, given GS HS, uS, the
rank r0 can be deduced in time O(αω−1p). The conclusion for the cost then follows
from the fact that αω−1p and M ′

mat(p/α, α) are both in O(M ′′
mat(p/α, α)).

ON MATRICES WITH DISPLACEMENT STRUCTURE 39

6.3. Generating inverses and solving linear systems. We conclude by
showing how to apply algorithm lp inv from the previous section to our initial prob-
lems inv(L, α) and solve(L, α). This corresponds to algorithms inv and solve given in
Figures 7 and 8.

Algorithm inv(G,H, S)

Input: (G,H) ∈ Fm×α × Fm×α such that α 6 m and ∇Zm,0,Zt
m,1

(A) = GHt,

Input: and a finite subset S ⊂ F.
Output: if not “failure”, then (Y,Z) = (−A−1G,A−tH) or “A is singular”.

choose the entries of r1, r2 ∈ Fm−1 uniformly at random from S

v1 :=
[
1 | rt1

]t
; v2 :=

[
1 | rt2

]t

(G̃, H̃, ũ) := precond(G,H, v1, v2)

(r, Ỹ, Z̃, ∗) := lp inv(G̃, H̃, ũ)
if r 6∈ {0, 1, . . . ,m} then

return “failure”
else

if r = m then
Y := U(v2)

t Ỹ 7→α; Z := U(v1)
t Z̃ 7→α

return (Y,Z)
else

return “A is singular”

Fig. 7. Algorithm inv.

Theorem 39. Algorithm inv works correctly in time O
(
M ′′

mat

(
m
α , α

))
. It makes

2m−2 random choices in F and fails with probability less than 1/2 if |S| > 2m(m+1).

Proof. By applying Lemma 35 to the case m = n, we see that ũt is the last row
of Ã = U(v1)AU(v2)

t and that G̃ and H̃ are m× (α+ 4) matrices such that

Zm,0 Ã− ÃZ
t
m,0 = G̃H̃t, G̃7→α = U(v1)G, H̃ 7→α = U(v2)H.

If r 6∈ {0, 1, . . . ,m} then r = “failure”, and this is what we return. Assume now that

r ∈ {0, 1, . . . ,m}. In this case, preconditioning has ensured that Ã has generic rank

profile. The number r produced by lp inv thus satisfies r = rank(Ã) = rank(A), and

A is singular if and only if r 6= m. When r = m, we have Ã = Ãr, so the matrices Ỹ
and Z̃ produced by lp inv satisfy Ỹ = −Ã−1G̃ and Z̃ = Ã−tH̃. Using the special shape
of the first α columns of G̃ and H̃, we conclude that the returned matrices Y and Z

are −A−1G and A−tH, as wanted. (Note that although it is produced by lp inv, the

first row of the inverse of Ãr is not needed here and denoted by ∗; we will need it,
however, when solving linear systems at the end of this section.)

Applying Lemmas 35 and 38 with p = m shows that the cost of calling precond

and lp inv is O(αM(m) + M ′′
mat(m/α, α)); on the other hand, the Toeplitz structure

of U(v1) and U(v2) implies that Y and Z can be deduced in time O(αM(m)) from

v1, v2, Ỹ, and Z̃. Writing α and m/α for the smallest integer powers of two greater
than or equal to α and m/α, we have M ′′

mat(m/α, α) > M ′
mat

(
m/α, α

)
> αMmat

(
α ·

m/α, 1
)
= αM

(
α ·m/α

)
> αM(m), from which the claimed cost bound follows.

40 A. BOSTAN, C.-P. JEANNEROD, C. MOUILLERON, AND É. SCHOST

Finally, by Lemma 35, the preconditioned matrix Ã has generic rank profile with
probability P > 1 − rank(A) · (rank(A) + 1)/|S|. Since rank(A) 6 m, we have P >

1−m(m+ 1)/|S|, so that |S| > 2m(m+ 1) implies P > 1/2.

For solving Ax = b, we work on the equivalent (preconditioned) system Ã x̃ = b̃

such that Ã = U(v1)AU(v2)
t and b̃ = U(v1)b, for which any solution x̃ yields a solution

x = U(v2)
t x̃. Algorithm solve in Figure 8 uses the following notation: writing as before

r for the rank of A, we partition Ã and b̃ into blocks as

Ã =

[
Ãr Ã12

Ã21 Ã21 Ã
−1
r Ã12

]
, b̃ =

[
b̃1

b̃2

]

with A12 ∈ Fr×(n−r), Ã21 ∈ F(m−r)×r, b̃1 ∈ Fr and b̃2 ∈ Fm−r.

Algorithm solve(G,H, b, S)

Input: (G,H) ∈ Fm×α×Fn×α such that α 6 min(m,n) and ∇Zm,0,Zt
n,1

(A) = GHt,

Input: b ∈ Fm, and a finite subset S ⊂ F.
Output: if not “failure”, then a nontrivial solution x ∈ Fn to Ax = b

or “no solution exists.”

choose the entries of r1 ∈ Fm−1 and r2 ∈ Fn−1 uniformly at random from S

v1 :=
[
1 | rt1

]t
; v2 :=

[
1 | rt2

]t

(G̃, H̃, ũ) := precond(G,H, v1, v2)

(r, Ỹ, Z̃, ṽ) := lp inv(G̃, H̃, ũ)

if r 6∈ {0, 1, . . . ,m} then
return “failure”

else[
b̃1

b̃2

]
:= U(v1)b

x̃1 := Ã−1
r b̃1

if Ã21x̃1 = b̃2 then

x̃ :=
[
x̃1+Ã−1

r Ã12 en−r,1

−en−r,1

]

x := U(v2)
t x̃

return x

else
return “no solution exists”

Fig. 8. Algorithm solve.

Theorem 40. Algorithm solve works correctly in time O
(
M ′′

mat

(
p
α , α

))
with p =

max(m,n). It makes m + n − 2 random choices in F and fails with probability less
than 1/2 if |S| > 2q(q + 1) with q = min(m,n).

Proof. Recalling that Ax = b is equivalent to Ã x̃ = b̃ with Ã = U(v1)AU(v2)
t,

x̃ = U(v2)
−tx and b̃ = U(v1)b, we see that the algorithm begins by generating the

matrix Ã. If r ∈ {0, 1, . . . ,m}, then Ã has generic rank profile and thus r = rank(Ã) =

rank(A). This implies Ã22 − Ã21Ã
−1
r Ã12 = 0 and, partitioning b̃ conformally with Ã,

ON MATRICES WITH DISPLACEMENT STRUCTURE 41

we deduce that the linear system Ã x̃ = b̃ is equivalent to
[
Ãr Ã12

0 0

]
x̃ =

[
Ir 0

−Ã21Ã
−1
r Im−r

][
b̃1

b̃2

]
.

If b̃2 is such that −Ã21x̃1 + b̃2 6= 0 for x̃1 = Ã−1
r b̃1, then no solution exists. Else, it is

easily checked that any vector of the form

x̃(v) =

[
x̃1 + Ã−1

r Ã12v

−v

]
with v ∈ F

n−r

is a solution to Ã x̃ = b̃; furthermore, taking v = en−r,1 6= 0 when n − r > 0 ensures
that this solution is nontrivial. Pre-multiplying this solution by U(v2)

t then yields a
nontrivial solution to the original system, so correctness follows.

By Lemmas 35 and 38, calling precond and lp inv uses O(αM(p)+M ′′
mat(p/α, α))

operations in F. Then, since U(v1) and U(v2) are Toeplitz matrices, we can deduce

b̃ = U(v1)b and x = U(v2)
t x̃ from v1, v2, b, x̃ in time O(M(p)). Finally, given the

generators (G̃, H̃, ṽ) and (Ỹ, Z̃, ṽ) of Ã and Ã−1
r , we can generate the submatrices Ã12

and Ã21 and perform the matrix-vector products Ã−1
r b̃1, Ã21x̃1, and Ã−1

r Ã12 en−r,1 in
time O(αM(p)). Recalling that αM(p) 6 M ′′

mat(p/α, α), we conclude that the total
cost is thus in O(M ′′

mat(p/α, α)).
The probability analysis is the same as for inversion.

Remark. If one wants to sample uniformly the solution manifold of Ax = b, then
it suffices to replace the unit vector en−r,1 in algorithm solve by a vector r3 ∈ Fn−r

whose entries are selected uniformly at random from the subset S. This way of
constructing x corresponds to the technique introduced by Kaltofen and Saunders
in [21, Theorem 4], but requires only n− r additional random choices instead of n.

REFERENCES

[1] A. V. Aho, K. Steiglitz, and J. D. Ullman, Evaluating polynomials at fixed sets of points,
SIAM J. Comput., 4 (1975), pp. 533–539.

[2] D. Bini and V. Y. Pan, Polynomial and Matrix Computations, volume 1: Fundamental Algo-
rithms, Birkhäuser, 1994.

[3] R. R. Bitmead and B. D. O. Anderson, Asymptotically fast solution of Toeplitz and related
systems of linear equations, Linear Algebra Appl., 34 (1980), pp. 103–116.

[4] A. Bostan, C.-P. Jeannerod, and É. Schost, Solving structured linear systems with large
displacement rank, Theoret. Comput. Sci., 407 (2008), pp. 155–181.

[5] A. Bostan, G. Lecerf, B. Salvy, É. Schost, and B. Wiebelt, Complexity issues in bivariate
polynomial factorization, Proceedings of ISSAC’04, ACM, 2004, pp. 42–49.

[6] A. Bostan, G. Lecerf, and É. Schost, Tellegen’s principle into practice, Proceedings of
ISSAC’03, ACM, 2003, pp. 37–44.

[7] A. Bostan and É. Schost, Polynomial evaluation and interpolation on special sets of points,
J. Complexity, 21 (2005), pp. 420–446.

[8] P. Bürgisser, M. Clausen, and A. Shokrollahi, Algebraic Complexity Theory, Springer,
1997.

[9] D. G. Cantor and E. Kaltofen, On fast multiplication of polynomials over arbitrary algebras,
Acta Inform., 28 (1991), pp. 693–701.

[10] M. F. I. Chowdhury, C.-P. Jeannerod, V. Neiger, É. Schost, and G. Villard, Faster
algorithms for multivariate interpolation with multiplicities and simultaneous polynomial
approximations, IEEE Trans. Inform. Theory, 61 (2015), pp. 2370–2387.

[11] B. Friedlander, M. Morf, T. Kailath, and L. Ljung, New inversion formulas for matri-
ces classified in terms of their distance from Toeplitz matrices, Linear Algebra Appl., 27
(1979), pp. 31–60.

42 A. BOSTAN, C.-P. JEANNEROD, C. MOUILLERON, AND É. SCHOST

[12] J. von zur Gathen and J. Gerhard, Modern computer algebra, Cambridge University Press,
third ed., 2013.

[13] I. Gohberg and V. Olshevsky, Complexity of multiplication with vectors for structured ma-
trices, Linear Algebra Appl., 202 (1994), pp. 163–192.

[14] I. Gohberg and V. Olshevsky, Fast algorithms with preprocessing for matrix-vector multi-
plication problems, J. Complexity, 10 (1994), pp. 411–427.

[15] G. Hanrot, M. Quercia, and P. Zimmermann, The middle product algorithm. I, Appl. Al-
gebra Engrg. Comm. Comput., 14 (2004), pp. 415–438.

[16] C.-P. Jeannerod and C. Mouilleron, Computing specified generators of structured matrix
inverses, Proceedings of ISSAC’10, ACM, 2010, pp. 281–288.

[17] T. Kailath, S. Y. Kung, and M. Morf, Displacement ranks of a matrix, Bull. Amer. Math.
Soc. (N.S.), 1 (1979), pp. 769–773.

[18] T. Kailath, S. Y. Kung, and M. Morf, Displacement ranks of matrices and linear equations,
J. Math. Anal. Appl., 68 (1979), pp. 395–407.

[19] E. Kaltofen, Asymptotically fast solution of Toeplitz-like singular linear systems, Proceedings
of ISSAC’94, ACM, 1994, pp. 297–304.

[20] E. Kaltofen, Analysis of Coppersmith’s block Wiedemann algorithm for the parallel solution
of sparse linear systems, Math. Comp., 64 (1995), pp. 777–806.

[21] E. Kaltofen and D. Saunders, On Wiedemann’s method of solving sparse linear systems, in
AAECC-9, vol. 539 of Lecture Notes in Computer Science, Springer, 1991, pp. 29–38.

[22] P. Lancaster and M. Tismenetsky, The Theory of Matrices, Second Edition, Computer
Science and Applied Mathematics, Academic Press, 1985.

[23] F. Le Gall, Powers of tensors and fast matrix multiplication, in Proceedings of ISSAC’14,
ACM, 2014, pp. 296–303.

[24] M. Morf, Fast Algorithms for Multivariable Systems, PhD thesis, Dept. of Electrical Engi-
neering, Stanford University, Stanford, 1974.

[25] M. Morf, Doubling algorithms for Toeplitz and related equations, in Proceedings of the IEEE
International Conference on Acoustics, Speech and Signal Processing, 1980, pp. 954–959.

[26] V. Olshevsky and V. Pan, A unified superfast algorithm for boundary rational tangential
interpolation problems and for inversion and factorization of dense structured matrices,
in Proc. 39th IEEE FOCS, 1998, pp. 192–201.

[27] V. Olshevsky and A. Shokrollahi, A unified superfast algorithm for confluent tangential
interpolation problem and for structured matrices, in Advanced Signal Processing Algo-
rithms, Architectures, and Implementations, ASPAAI’IX, SPIE, 1999, pp. 312–323.

[28] V. Olshevsky and A. Shokrollahi, Matrix-vector product for confluent Cauchy-like matrices
with application to confluent rational interpolation, in STOC’00, ACM, 2000, pp. 573–581.

[29] V. Y. Pan, Trilinear aggregating with implicit canceling for a new acceleration of matrix
multiplication, Comp. & Maths. with Appls., 8 (1982), pp. 23–34.

[30] V. Y. Pan, On computations with dense structured matrices, Math. Comp., 55 (1990), pp. 179–
190.

[31] V. Y. Pan, A unified superfast divide-and-conquer algorithm for structured matrices. MSRI
Preprint 1999-033, Mathematical Sciences Research Institute, Berkeley, CA, April 1999.

[32] V. Y. Pan, Nearly optimal computations with structured matrices, in SODA’00, ACM, 2000,
pp. 953–962.

[33] V. Y. Pan, Structured Matrices and Polynomials, Birkhäuser Boston Inc., 2001.
[34] V. Y. Pan, Transformations of matrix structures work again, Linear Algebra Appl., 465 (2015),

pp. 107–138.
[35] V. Y. Pan and X. Wang, Inversion of displacement operators, SIAM J. Matrix Anal. Appl.,

24 (2003), pp. 660–677.
[36] V. Y. Pan and A. Zheng, Superfast algorithms for Cauchy-like matrix computations and

extensions., Linear Algebra Appl., 310 (2000), pp. 83–108.
[37] A. Schönhage, Schnelle Multiplikation von Polynomen über Körpern der Charakteristik 2,

Acta Inform., 7 (1977), pp. 395–398.
[38] A. Schönhage and V. Strassen, Schnelle Multiplikation großer Zahlen, Computing, 7 (1971),

pp. 281–292.
[39] I. S. Sergeev, Fast algorithms for elementary operations with complex power series, Diskret.

Mat., 22 (2010), pp. 17–49.
[40] V. Strassen, Gaussian elimination is not optimal, Numer. Math., 13 (1969), pp. 354–356.

ON MATRICES WITH DISPLACEMENT STRUCTURE 43

Appendix A. Proof that L(A) and L′(A−1) have the same rank for L
and L′ as in (1). Consider first the Sylvester case, where L(A) = MA − AN and
L′(A−1) = NA−1 − A−1M. If L(A) = GHt, then pre- and post-multiplying both sides
of this equality by A−1 gives A−1M − NA−1 = A−1GHtA−1, so that L′(A−1) equals
−A−1G(A−tH)t and thus has the same rank as L(A).

Consider now the Stein case, where L(A) = A − MAN and L′(A−1) = A−1 −
NA−1M. Defining the matrix

B =

[
A M

N A−1

]
,

we have [
I −MA

I

]
B

[
I

−AN I

]
= diag

(
A−MAN,A−1

)

and [
I

−NA−1 I

]
B

[
I −A−1M

I

]
= diag

(
A,A−1 − NA−1M

)
.

Since the four matrices applied to B are invertible, we deduce that

rank(B) = rank(A−MAN) + rank(A−1) = rank(A) + rank(A−1 − NA−1M).

Using rank(A) = rank(A−1), we see again that L(A) and L′(A−1) have the same rank.

Appendix B. Proof of Lemma 18. Fix i and j. For all ℓ > 1, [35, Theo-
rem 4.7] gives

A′
i,j −M

ℓ
Pi

A′
i,j (M

t
Qj

)ℓ =
∑

k6α

K(MPi , gi,k, ℓ)K(MQj , hj,k, ℓ)
t

with K(MPi , gi,k, ℓ) and K(MQj , hj,k, ℓ) as in the proof of Lemma 15. Writing Qj =

qj,0 + · · ·+ qj,njx
nj , and multiplying the former equality on the left by qj,ℓM

nj−ℓ
Pi

, we
get, for 1 6 ℓ 6 nj ,

qj,ℓM
nj−ℓ
Pi

A′
i,j − qj,ℓM

nj

Pi
A′
i,j (M

t
Qj

)ℓ

=
∑

k6α

M
nj−ℓ
Pi

K(MPi , gi,k, ℓ) qj,ℓK(MQj , hj,k, ℓ)
t

=
∑

k6α

K(MPi , gi,k, nj) Jnj qj,ℓ Jℓ,nj K(MQj , hj,k, nj)
t,

since the last ℓ columns of K(MPi , gi,k, nj) are precisely M
nj−ℓ
Pi

K(MPi , gi,k, ℓ); note
that the equality also holds for ℓ = 0. Summing over all ℓ = 0, . . . , nj , and using the
fact that Qj(M

t
Qj

) = 0, we deduce

Q̃j(MPi)A
′
i,j =

∑

k6α

K(MPi , gi,k, nj) Jnj YQj K(MQj , hj,k, nj)
t.

The rest of the proof now follows exactly that of Lemma 15.

	Introduction
	Preliminaries
	Basic notation
	Chinese remaindering and related problems
	Modular arithmetic
	Computations with a family of polynomials

	Inverting displacement operators
	Sylvester operator MP,MQt
	Stein operator MP,MQt

	Using operator equivalences
	Reduction to basic operators
	Reduction to the Hankel case

	Multiplication algorithms
	Applying Theorem 13
	Computing the Ri's when Q=xn
	Computing the Ri's in the general case

	Algorithms for inversion and system solving
	Preconditioning
	Computation of the leading principal inverse
	Generating inverses and solving linear systems

	References
	Appendix A. Proof that L(A) and L'(A-1) have the same rank for L and L' as in (1)
	Appendix B. Proof of Lemma 18

