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Rate of convergence to equilibrium for discrete-time stochastic

dynamics with memory

Maylis Varvenne∗

September 21, 2017

Abstract

The main objective of the paper is to study the long-time behavior of general discrete dynamics
driven by ergodic stationary Gaussian noise. To this end, we first explain how is it possible to define
invariant distributions in this generally non-Markovian setting and to get existence results under
appropriate conditions. Then, we get a uniqueness result and a rate of convergence to the invariant
distribution in total variation thanks to a coupling procedure (with a step specific to non-Markovian
framework).

Keywords: Discrete stochastic dynamics; Stationary Gaussian noise; Rate of convergence to equilibrium;
Total variation distance; Lyapunov function; Toeplitz operator.

1 Introduction

Convergence to equilibrium for Stochastic dynamics is one of the most natural and most studied problems
in probability theory. Regarding Markov processes, this topic has been deeply undertaken through various
approaches: spectral analysis, functional inequalities or coupling methods. However, in many applications
(Physics, Biology, Finance...) the future evolution of a quantity may depend on its own history, and thus,
noise with independent increments does not accurately reflect reality. A classical way to overcome this
problem is to consider dynamical systems driven by processes with stationary increments like fractional
Brownian motion for instance. In a continuous time framework, Stochastic Differential Equations (SDEs)
driven by Gaussian processes with stationary increments have been introduced to model random evolution
phenomena with long range dependence properties. Consider SDEs of the following form

dXt = b(Xt) + σ(Xt)dZt (1.1)

where (Zt)t>0 is a Gaussian process with ergodic stationary increments and σ : Rd → Md(R), b : R
d → R

d

are functions defined in a such a way that existence of a solution holds. As concerns long-time behavior,
different properties have been studied like approximation of stationary solution in [8] or the rate of
convergence to an equilibrium distribution. For this last property, the case when (Zt)t>0 is fractional
Brownian motion (fBm) has received significant attention from Hairer [14], Fontbona and Panloup [11],
Deya, Panloup and Tindel [9] over the last decade. They used coalescent coupling strategy to compute
the rate of convergence. In the additive noise setting, Hairer proved that the process converges in total
variation to the stationary regime with a rate upper-bounded by Cεt

−(αH−ε) for any ε > 0, with

αH =

{
1
8 if H ∈ (14 , 1)\

{
1
2

}

H(1− 2H) if H ∈ (0, 14 ).
(1.2)

In the multiplicative noise setting, Fontbona and Panloup extended those results under selected assump-
tions on σ to the case where H ∈ (12 , 1) and finally Deya, Panloup and Tindel obtained this type of results
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in the rough setting H ∈ (13 , 1/2). Here, we focus on a general class of recursive discrete dynamics driven
by a stationary sequence which includes in particular discretization of (1.1), that is

Xn+1 = F (Xn,∆n+1) (1.3)

where (∆n)n∈Z is an ergodic stationary Gaussian sequence. This type of discrete stochastic dynamics,
which is not Markovian in general, has not been much discussed except in the linear case like Autoregres-
sive Moving-average (ARMA) models [5] whose main objective is the prediction of stationary processes.
When F is linear, dynamics like (1.3) are truely related to ARMA processes through the so-called Wold’s
decomposition theorem which implies that we can see (∆n)n∈Z as a moving-average of infinite order (see
[5] to get more details).
Here, we investigate the problem of the long-time behavior of (1.3) for a general class of functions F .
To this end, we first explain how is it possible to define invariant distributions in this non-Markovian
setting and to obtain existence results, and then we use a coalescent coupling strategy to get the rate of
convergence to equilibrium of processes following (1.3) under selected assumptions. This discrete time
framework has several advantages. First, it allows us to better target the impact of the memory thanks
to the moving average (MA) representation of the noise process (see (2.2)). The deterministic sequence
defined by the coefficients involved in this representation measures, in a sense, the weight of the past
since the covariance function of (∆n)n∈Z is entirely determined by those coefficients (see Remark 2.1).
Then, one of our motivations to work in this discrete context is to see if the speed of convergence to
equilibrium is affected by the difficulty of the coupling strategy which is a priori greater in a continuous
time setting.
Now, let us briefly recall how this coupling method is organized. First, one takes two processes (X1

n, (∆
1
n+k)k60)n>0

and (X2
n, (∆

2
n+k)k60)n>0 following (1.3) starting respectively from µ0 and µ⋆ (the invariant distribution).

As a preliminary step, one waits that the two paths get close. Then, at each trial, the coupling attempt
is divided in two steps. First, one tries in Step 1 to stick the positions together at a given time. Then, in
Step 2, one tries to ensure that the paths stay clustered until +∞. Actually, oppositely to the Markovian
setting where the paths remain naturally fastened together (by putting the same innovation on each
path), the main difficulty here is that, staying together has a cost. In other words, this property can be
ensured only with a non trivial coupling of the noises. Finally, if one of the two previous steps fails, one
begins Step 3 by putting the same noise on each coordinate until the “cost” to attempt Step 1 is not too
big. In other words, during this step one waits again for the paths to get close but also for the memory
of the coupling cost to decrease sufficiently.
Thanks to this strategy, we are able to prove that the law of the process (Xn+k)k>0 following (1.3)
converges in total variation to the stationary regime with a rate upper-bounded by Cn−v where v is a
quantity which is directly linked to the asymptotic behavior of the sequence of coefficients appearing in
the MA representation of the noise process. In particular, we focus on Gaussian noise with exponential
and polynomial memory (see Section 2 for more details). For the polynomial case, a more precise example
is also studied, namely noise with fractional memory (see Subsection 2.6). This example coupled with
the fact that we apply our result to the discretization of (1.1) (see Subsection 2.4) allows us to contrast
with the continuous time results [14, 11, 9].
The following section gives more details on the studied dynamics and describes the assumptions required
to get the main result, namely Theorem 2.1. Then, the proof of Theorem 2.1 is achieved in Sections 3,
4, 5, 6 and 7, which are outlined at the end of Section 2.

2 Setting and main results

2.1 Setting

Let X := (Xn)n>0 denote an R
d-valued sequence defined by: X0 is a random variable with distribution

denoted by µ0 and
∀n > 0, Xn+1 = F (Xn,∆n+1), (2.1)

2



where F : Rd×R
d → R

d is continuous and (∆n)n∈Z is a stationary and purely non-deterministic Gaussian
sequence. Hence, by Wold’s decomposition theorem [5] it has a moving average representation

∀n ∈ Z, ∆n =

+∞∑

k=0

akξn−k (2.2)

with
{

(ak)k>0 ∈ R
N such that a0 6= 0 and

∑+∞
k=0 a

2
k < +∞

(ξk)k∈Z an i.i.d sequence such that ξ1 ∼ N (0, Id).
(2.3)

Without loss of generality, we assume that a0 = 1. Actually, if a0 6= 1, we can come back to this case by
setting

∆̃n =

+∞∑

k=0

ãkξn−k

with ãk := ak
a0

.

Remark 2.1. The asymptotic behavior of the sequence (ak)k>0 certainly plays a key role to compute the
rate of convergence to equilibrium of the process (Xn)n>0. Actually, the memory induced by the noise
process is quantified by the sequence (ak)k>0 through the identity

∀n ∈ Z, ∀k > 0, c(k) := E [∆n∆n+k] =

+∞∑

i=0

aiak+i.

In the sequel, the state space of the process X and the noise space associated to ((∆n+k)k60)n>0 will be

respectively denoted by X := R
d and W := (Rd)Z

−

. These notations will be clarified in Subsection 3.1.

2.2 Preliminary tool: a Toeplitz type operator

The moving-average representation of the Gaussian sequence (∆n)n∈Z naturally leads us to define an
operator related to the coefficients (ak)k>0. First, set

ℓa(Z
−,Rd) :=

{

w ∈ (Rd)Z
−

∣
∣
∣
∣
∣
∀k > 0,

+∞∑

l=0

alw−k−l < +∞
}

and define Ta on ℓa(Z
−,Rd) by

Ta(w) =

(
+∞∑

l=0

alw−k−l

)

k>0

. (2.4)

Due to the Cauchy-Schwarz inequality, we can check that for instance ℓ2(Z−,Rd) is included in ℓa(Z
−,Rd)

due to the assumption
∑

k>0 a
2
k < +∞. This Toeplitz type operator Ta links (∆n)n∈Z to (ξn)n∈Z. The

following proposition spells out the reverse operator.

Proposition 2.1. Let Tb be the operator defined on ℓb(Z
−,Rd) in the same way as Ta but with the

following sequence (bk)k>0

b0 =
1

a0
and ∀k > 1, bk = − 1

a0

k∑

l=1

albk−l. (2.5)

Then,
∀w ∈ ℓa(Z

−,Rd), Tb(Ta(w)) = w and ∀w ∈ ℓb(Z
−,Rd), Ta(Tb(w)) = w

that is Tb = Ta
−1 and ℓb(Z

−,Rd) = Ta(ℓa(Z
−,Rd)).
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Proof. Let w ∈ ℓa(Z
−,Rd). Then let n > 0,

(Tb(Ta(w)))−n =

+∞∑

k=0

bk(Ta(w))−n−k

=
+∞∑

k=0

bk

+∞∑

l=0

alw−n−k−l

=

+∞∑

k=0

+∞∑

i=k

bkai−kw−n−i (by setting i = k + l)

(Tb(Ta(w)))−n =

+∞∑

i=0

(
i∑

k=0

bkai−k

)

︸ ︷︷ ︸

=0 except
for i=0

w−n−i = w−n

We show in the same way that for w ∈ ℓb(Z
−,Rd), we have Ta(Tb(w)) = w.

Remark 2.2. The sequence (bk)k>0 is of first importance in the sequel. The sketch of the proof of
Theorem 2.1 will use an important property linked to the sequence (bk)k>0: if two sequences u and v are
such that

∀n > 1, un =

n−1∑

k=0

akvn−k

then

∀n > 1, vn =

n−1∑

k=0

bkun−k.

This reverse identity and the asymptotic behavior of (bk)k>0 play a significant role in the computation of
the rate of convergence.

The following section is devoted to outline assumptions on (ak)k>0 and (bk)k>0 and then on F to get the
main result.

2.3 Assumptions and general theorem

First of all, let us introduce assumptions on (ak)k>0 and (bk)k>0. All along the paper, we will switch
between two types of assumptions called respectively the polynomial case and the exponential case.

Hypothesis (Hpoly): The following conditions hold,

• there exist ρ, β > 0 and Cρ, Cβ > 0 such that

∀k > 0, |ak| 6 Cρ(k + 1)−ρ and ∀k > 0, |bk| 6 Cβ(k + 1)−β .

• there exist κ > ρ+ 1 and Cκ > 0 such that

∀k > 0, |ak − ak+1| 6 Cκ(k + 1)−κ.

Hypothesis (Hexp): There exist λ, µ > 0 and Cλ, Cµ > 0 such that,

∀k > 0, |ak| 6 Cλe
−λk and ∀k > 0, |bk| 6 Cµe

−µk.

Remark 2.3. ⊲ (Hpoly) and (Hexp) are general parametric hypothesis which apply to a large class
of Gaussian driven dynamics. These assumptions involve the memory of the noise process through the
sequence (ak)k>0 but also through the coefficients appearing in the reverse Toeplitz operator Ta

−1 (see
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Proposition 2.1). Due to the strategy of the proof (coalescent coupling in a non Markovian setting) we
also need a bound on the discrete derivative of (ak)k>0.
⊲ Even though (ak)k>0 and (bk)k>0 are related by (2.5), there is no general rule which connects ρ and
β. This fact will be highlighted in Subsection 2.6.

Let us now introduce some assumptions on the function F which defines the dynamics (2.1). Throughout
this paper F : X × R

d → X is a continous function and the following hypothesis (H1) and (H2) are
satisfied.

Hypothesis (H1): There exists a continous function V : X → R
∗
+ satisfying lim

|x|→+∞
V (x) = +∞ and

∃γ ∈ (0, 1) and C > 0 such that for all (x,w) ∈ X × R
d,

V (F (x,w)) 6 γV (x) + C(1 + |w|).
Remark 2.4. We will see in Subsection 3.2 that this condition on F ensures the existence of an invariant
distribution (in a sense made precise below).

We define F̃ : X × R
d × R

d → X by F̃ (x, u, y) = F (x, u + y). We assume that F̃ satisfies the following
conditions:

Hypothesis (H2): Let K > 0. We assume that there exists K̃ > 0 such that for every x := (x, x′, y, y′)
in B(0,K)4, there exist Λx : Rd → R

d, MK > 0 and CK̃ such that the following holds

• Λx is a measurable, invertible and almost everywhere differentiable function such that Λ−1
x is also

measurable.

• for all u ∈ B(0, K̃),

F̃ (x, u, y) = F̃ (x′,Λx(u), y
′) (2.6)

| det(JΛx
(u))| > CK̃ (2.7)

• for all u ∈ R
d,

|Λx(u)− u| 6MK (2.8)

Remark 2.5. Let us make a few precisions on the arguments of F̃ : x is the position of the process, u
the increment of the innovation process and y is related to the past of the process (see (4.7) for more
details). The boundary CK̃ and MK are independent from x, x′, y and y′. This assumption can be viewed
as a kind of controlability assumption in the following sense: the existence of Λx leads to the coalescence
of the positions by (2.6). This is of first importance to achieve the first step of the coupling procedure
(see Subsection 4.2).

We are now in position to state our main result. Let L((Xµ0
n )n>0) denote the distribution of the process X

starting from an initial condition µ0 (see Subsection 3.1 below for detailed definitions of initial condition
and invariant distribution) and for an invariant distribution µ⋆ denote by Sµ⋆ the law of the stationary
solution. Finally, we denote by ‖.‖TV the classical total variation norm.

Theorem 2.1. Assume (H1) and (H2). Then,

(i) There exists an invariant distribution µ⋆ associated to (2.1).

(ii) Assume that (Hpoly) is true with ρ, β > 1/2 and ρ+β > 3/2. Then, uniqueness holds for the invari-
ant distribution µ⋆. Furthermore, for every initial distribution µ0 for which

∫

X
V (x)Π∗

Xµ0(dx) <
+∞ and for all ε > 0, there exists Cε > 0 such that

‖L((Xµ0

n+k)k>0)− Sµ⋆‖TV 6 Cε n
−(v(β,ρ)−ε).

where the function v is defined by

v(β, ρ) = sup
α∈( 1

2∨(
3
2−β),ρ)

min{1, 2(ρ− α)}(min{α, β, α+ β − 1} − 1/2).
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(iii) Assume that (Hexp) is true, then uniqueness holds for the invariant distribution µ⋆. Furthermore,
for every initial distribution µ0 for which

∫

X
V (x)Π∗

Xµ0(dx) < +∞ and for all
p > 0, there exists Cp > 0 such that

‖L((Xµ0

n+k)k>0)− Sµ⋆‖TV 6 Cp n
−p.

Remark 2.6. Assumption (H2) is only required to perform the first step of the coupling strategy to get
(ii) and (iii) (see Section 4 for more details).

In the following subsection, we test the assumptions of our main result Theorem 2.1 (especially (H1) and
(H2)) on the Euler scheme of SDEs like (1.1).

2.4 The Euler Scheme

Recall that X = R
d. In this subsection, set

Fh : X × R
d → X

(x,w) 7→ x+ hb(x) + σ(x)w. (2.9)

where h > 0, b : X → X is continuous and σ : X → Md(R) is a continuous and bounded function on
X . For all x ∈ X we suppose that σ(x) is invertible and we denote by σ−1(x) the inverse. Moreover, we
assume that σ−1 is a continuous function and that b satisfies a Lyapunov type assumption that is:

(L1) ∃C > 0 such that
∀x ∈ X , |b(x)| 6 C(1 + |x|) (2.10)

(L2) ∃β̃ ∈ R and α̃ > 0 such that
∀x ∈ X , 〈x, b(x)〉 6 β̃ − α̃|x|2. (2.11)

Remark 2.7. This function Fh corresponds to the Euler scheme associated to SDEs like (1.1). The
conditions on the function b are classical to get existence of invariant distribution.

In this setting the function F̃h (introduced in Hypothesis (H2)) is given by

F̃h : X × R
d × R

d → X
(x, u, y) 7→ x+ hb(x) + σ(x)(u + y).

Theorem 2.2. Let h > 0. Let Fh be the function defined above. Assume that b : X → X is a continuous
function satisfying (L1) and (L2) and σ : X → Md(R) is a continous and bounded function such that
for all x ∈ X , σ(x) is invertible and x 7→ σ−1(x) is a continuous function. Then, (H1) and (H2) hold
for Fh with h > 0 small enough.

Proof. Set V (x) = |x|. Let us begin by proving that (H1) holds with V for Fh with h > 0 small enough.
We have:

|Fh(x,w)|2 = |x|2 + h2|b(x)|2 + 2h〈x, b(x)〉+ 2〈x, σ(x)w〉 + 2h〈b(x), σ(x)w〉 + |σ(x)w|2 .

Then, using the inequality |〈a, b〉| 6 1
2 (ε|a|2 + 1

ε |b|2) for all ε > 0, we get

|〈x, σ(x)w〉| 6 1

2
(ε|x|2 + 1

ε
|σ(x)w|2) et |〈b(x), σ(x)w〉| 6 1

2
(ε|b(x)|2 + 1

ε
|σ(x)w|2).

Moreover, assumptions (L1) and (L2) on b give

|〈b(x), x〉| 6 β̃ − α|x|2 et |b(x)|2 6 C̃(1 + |x|2).
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Hence, we finally have

|Fh(x,w)|2 6 |x|2 + C̃h2(1 + |x|2) + 2h(β̃ − α̃|x|2) + ε|x|2 + 1

ε
|σ(x)w|2

+ C̃hε(1 + |x|2) + h

ε
|σ(x)w|2 + |σ(x)w|2

6 |x|2 + 2h(β̃ − α̃|x|2) + C̃(ε+ hε+ h2)(1 + |x|2) +
(

1 +
h+ 1

ε

)

|σ(x)w|2 .

Now, set ε = h2 and choose h small enough such that C̃(ε+ hε+ h2) 6 α̃h. Therefore,

|Fh(x,w)|2 6 |x|2 + h(γ̃ − α̃|x|2) +
(

1 +
h+ 1

ε

)

|σ(x)w|2

where γ̃ = 2β̃ + α̃. Then

|Fh(x,w)|2 6 (1− α̃h)|x|2 + hγ +

(

1 +
h+ 1

ε

)

|σ(x)w|2 .

By assumption σ is a bounded function on R
d. Then, there exists C̃ > 0 depending on h and σ such that

|Fh(x,w)|2 6 (1− α̃h)|x|2 + C̃
(
1 + |w|2

)
.

Using the classical inequality
√
a+ b 6

√
a+

√
b, we finally get the existence of γ ∈ (0, 1) and C > 0 such

that for all (x,w) ∈ R
d × R

d

|Fh(x,w)| 6 γ|x|+ C (1 + |w|) (2.12)

which achieves the proof of (H1).
We now turn to the proof of (H2). Let K > 0 and take x = (x, x′, y, y′) ∈ B(0,K)4. Here we take
K̃ = K. Hence, let us now define Λx. For all u ∈ B(0,K), we set

Λx(u) = σ−1(x′)σ(x)u + σ−1(x′)(x − x′ + h(b(x)− b(x′))) + σ−1(x′)σ(x)y − y′ (2.13)

which is equivalent to F̃h(x, u, y) = F̃h(x
′,Λx(u), y

′) for all u ∈ B(0,K).
Hence, for all u ∈ B(0,K),

JΛx
(u) = σ−1(x′)σ(x). (2.14)

Since σ, σ−1 and b are continuous, there exist CK > 0 and mK > 0 independent from x such that for all
u ∈ B(0,K),

| det(JΛx
(u))| > CK

|Λx(u)− u| 6 mK .

Then, we extend Λx to a continuous and invertible function in such a way that there exists MK > mK

such that for all u ∈ R
d,

|Λx(u)− u| 6MK .

Finally, the function F̃h satisfies (H2).

The two following subsections are devoted to outline examples of sequences wich satisfy hypothesis (Hexp)
or (Hpoly). In particular, Subsection 2.6 includes the case where the process (∆n)n∈Z corresponds to
fractional Brownian motion increments.
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2.5 An explicit case which satisfies (Hexp)

In this subsection, we investigate an explicit exponential case with the following definition for the sequence
(ak)k>0

a0 = 1 and ∀k ∈ N
∗, ak = Cae

−λk (2.15)

with Ca ∈ R. Let us recall that b0 = 1 (since a0 = 1) and for all k > 1, we can get the following general
expression of bk (see Appendix A):

bk =
k∑

p=1

(−1)p

ap+1
0







∑

k1,...,kp>1
k1+···+kp=k

p
∏

i=1

aki






. (2.16)

A classical combinatorial argument shows that ♯{(k1, . . . , kp) ∈ N
∗ | k1 + · · · + kp = k} =

(
k−1
p−1

)
. As a

consequence, when the sequence (ak)k>0 is defined by (2.15), we can easily compute the coefficients bk
for k > 1,

bk =

k∑

p=1

(−Ca)pe−λk♯{(k1, . . . , kp) ∈ N
∗ | k1 + · · ·+ kp = k}

=

k∑

p=1

(
k − 1

p− 1

)

(−Ca)pe−λk

bk = −Ca(1− Ca)
k−1e−λk. (2.17)

Hence, to satisfy (Hexp), we only need Ca to be such that µ := λ− ln |1−Ca| > 0 and then for all k ∈ N
∗,

we get
|bk| 6 Cbe

−µk (2.18)

with Cb > 0 a constant depending on Ca.

Remark 2.8. ⊲ In this setting where everything is computable, it’s interisting to see that the asymptotic
decrease of the sequence (|bk|) is not only related to the one of the sequence (|ak|). For instance, if we take
Ca < 0, the simple fact that a0 > 0 and ak < 0 for all k > 0 makes (bk) diverge to +∞ and nevertheless,
(|ak|) decreases to 0 at an exponential rate.
⊲ If we take Ca = 1, we can reduce (∆n)n∈Z to the following induction

∀n ∈ Z, ∆n+1 = ξn+1−k + e−λ∆n. (2.19)

2.6 Stationary Gaussian sequence of fractional type

Let H ∈ (0, 1). In the sequel, we will speak about stationary Gaussian sequence of fractional type if the
sequence (ak) is such that

∀k > 0, |ak| 6 Cρ(k + 1)−ρ and |ak − ak+1| 6 C̃ρ(k + 1)−(ρ+1) (2.20)

with ρ := 3/2−H .
As we will see below, this condition includes the case where (∆n)n∈Z corresponds to the fractional Brow-
nian motion (fBm) increments. Unfortunately, computing the rate of convergence of the corresponding
sequence (bk)k>0 is a hard task and strongly depends on the variations of (ak)k>0. Actually, in Proposi-
tion 2.2 and 2.3, dealing with the same order of memory, we will see that the orders of rate of convergence
are really different. Note that the first corresponds to the case where ak := (k+1)−(3/2−H) for all k ∈ N

whereas the second deals with fBm increments.
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Proposition 2.2. Assume (H1) and (H2). Let H ∈ (0, 1) and set ρ := 3/2−H ∈ (1, 3/2).
If for all k > 0, ak = (k + 1)−ρ, then (ak) is of fractional type and we have |bk| 6 (k + 1)−ρ. Moreover,
if ρ > 3/4 Theorem 2.1 (ii) holds with the rate

v(ρ, ρ) = v(3/2−H, 3/2−H) =
1

2

{
(1 −H)2 if H ∈ (0, 1/2]
(3 − 4H)2 if H ∈ (1/2, 3/4).

Remark 2.9. This result follows from the proof of the inequality |bk| 6 (k + 1)−ρ for all k > 0 which is
outlined in Appendix B. The key argument in this proof is the property of log-convexity of the sequence
(ak)k∈N, which means that for all k ∈ N, ak > 0 and for k > 1, a2k − ak−1ak+1 6 0.

As mentioned before, the terminology “fractional type” refers to the fractional Brownian motion. Indeed,
in a continuous-time setting, a famous and classical example of non-Markovian dynamics is SDE driven
by fBm

dXt = b(Xt)dt+ σ(Xt)dBt (2.21)

Recall that a d-dimensional fBm with Hurst parameter H ∈ (0, 1) is a centered Gaussian process (Bt)t>0

with stationary increments satisfying

∀t, s > 0, ∀i, j ∈ {1, . . . , d}, E

[

(Bit −Bis)(B
j
t −Bjs)

]

= δij |t− s|2H .

The study by a coupling argument of the rate of convergence to equilibrium for this kind of dynamics has
been undertaken by Hairer [14], Fontbona and Panloup [11], Deya, Panloup and Tindel [9], respectively
in the additive noise, multiplicative noise with H > 1/2 and multiplicative noise with H ∈ (1/3, 1/2).
Here in our discrete-time setting, we are thus concerned by the long time behavior of (2.1) if we take for
h > 0

(∆n)n∈Z = (Bnh −B(n−1)h)n∈Z (2.22)

which is a stationary Gaussian sequence. It can be realized through a moving average representation
with coefficients (aHk )k>0 defined by (see [19]):

aH0 = hHκ(H)21/2−H and for k > 1, aHk = hHκ(H)

((

k +
1

2

)H−1/2

−
(

k − 1

2

)H−1/2
)

(2.23)

where

κ(H) =

√

sin(πH)Γ(2H + 1)

Γ(H + 1/2)
.

One can easily check that aHk ∼
k→+∞

Ch,H(k + 1)−(3/2−H) and |aHk − aHk+1| 6 C′
h,H(k + 1)−(5/2−H).

Hence (aHk )k>0 is of fractional type in the sense of (2.20). Now, the question is: how does the correspond-
ing (bHk ) behave ? When H belongs to (0, 1/2), only aH0 is non-negative and then (aHk ) is not log-convex.
Therefore, we cannot use this property to get the asymptotic behavior of (bHk ) as we did in Proposition
2.2. However, thanks to simulations (see Figure 1a and 1b), we conjectured and we proved (see Appendix
E) the following proposition.

Proposition 2.3. There exists C′′
h,H > 0 such that for all H ∈ (0, 1/2)

∀k > 0, |bHk | 6 C′′
h,H(k + 1)−(H+1/2). (2.24)

Then, if we assume (H1) and (H2), Theorem 2.1 (ii) holds with the rate

v(ρ, 2− ρ) = v(3/2−H,H + 1/2) =
1

2

{
H(1− 2H) if H ∈ (0, 1/4]
1
8 if H ∈ (1/4, 1/2).

9



(a) parameter: H = 0.1 (b) parameter: H = 0.3

(c) parameter: H = 0.6 (d) parameter: H = 0.9

Figure 1: (log |bHk |) according to (log(k + 1)) with different Hurst parameters H .

As concerns the case where H belongs to (1/2, 1), we conjecture that (see Figure 1c and 1d)

Conjecture: There exists C′′
h,H > 0 and βH > 1 such that

∀k > 0, |bHk | 6 C′′
h,H(k + 1)−βH . (2.25)

Remark 2.10. We do not have a precise idea of the expression of βH with respect to H. But, we can

note that if ρ < 1 and β > 1 in (Hpoly), then the rate of convergence in Theorem 2.1 is v(ρ, β) = (2ρ−1)2

8
and does not depend on β. Hence, if H ∈ (1/2, 1), ρ = 3/2−H and βH > 1, we fall into this case and
then the dependence of βH in terms of H does not matter.

If the previous conjecture is true we get the following rate of convergence for H ∈ (1/2, 1) in Theorem
2.1:

v(ρ, βH) = v(3/2−H, βH) =
(1−H)2

2
.

Now, let us briefly discuss about those results. First, Proposition 2.2 and 2.3 indeed confirm that the
fluctuations of the sequence (ak)k∈N have an impact on (bk)k∈N and on the corresponding rate of conver-
gence. Then, let us focus on the specific statements on fBm increments (especially Proposition 2.3 and the
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conjecture below) and compare with the continuous time setting. When H belongs to (0, 1/2) Proposition
2.3 gives exactly the same rate of convergence obtained in [14, 11, 9]. However, when H > 1/2 if the
conjecture is true which seems to be confirmed by simulations, we get a smaller rate than in a continuous
time setting. The reason for this may be that Theorem 2.1 is a result with quite general hypothesis on
the Gaussian noise process (∆n)n∈Z. In the case of fBm increments, the moving average representation is
explicit. Hence, we may use a more specific approach and significantly closer to Hairer’s, especially with
regard to Step 2 in the coupling method (see Subsection 5.2.2) by not exploiting the technical lemma 5.3
for instance. This seems to be a right track in order to improve our results in this precise example.

We are now ready to begin the proof of Theorem 2.1. In Section 3, we establish a Markovian structure
to define invariant distribution and to get the first part of the theorem, i.e. (i). Then, in Section 4 we
explain the scheme of coupling before implementing this strategy in Sections 5 and 6. Finally, in Section
7, we achieve the proof of (ii) and (iii) of Theorem 2.1.

3 Existence of invariant distribution

The stochastic dynamics described in (2.1) is clearly non-Markovian. We will see in this section how is it
possible to introduce a Markovian structure and then the notion of invariant distribution. This method
is inspired by [15].

3.1 Markovian structure

The first idea is now to look at (Xn, (∆n+k)k60)n>0 instead of (Xn)n>0. Let us introduce the following
concatenation operator

⊔ : W × R
d → W (3.1)

(w,w′) 7→ w ⊔ w′

where (w ⊔ w′)0 = w′ and ∀k < 0, (w ⊔ w′)k = wk+1. Then (2.1) is equivalent to the system

(Xn+1, (∆n+1+k)k60) = ϕ((Xn, (∆n+k)k60),∆n+1) (3.2)

where

ϕ : (X ×W)× R
d → X ×W

((x,w), w′) 7→ (F (x,w′), w ⊔ w′).

Therefore, (Xn, (∆n+k)k60)n>0 can be realized through the Feller Markov transition kernel Q defined by

∫

W

g(x′, w′)Q((x,w), (dx′, dw′)) =

∫

Rd

g(ϕ((x,w), δ))P(w, dδ). (3.3)

where P(w, dδ) := L(∆n+1|(∆n+k)k60 = w) does not depend on n since (∆n) is a stationary sequence,
and g : X ×W → R is a measurable function.

Definition 3.1. A measure µ ∈ M1(X ×W) is said to be an invariant distribution for (3.2) and then
for (2.1) if it is invariant by Q, i.e.

Qµ = µ.

However, the concept of uniqueness will be slightly different from the classical setting. Indeed, denote
by Sµ the distribution of (Xµ

n )n>0 when we realize (Xµ
n , (∆n+k)k60)n>0 through the transition Q and

with initial distribution µ. Then, we will speak of uniqueness of the invariant distribution up to the
equivalence relation: µ ∼ ν ⇐⇒ Sµ = Sν.
Moreover, here uniqueness will be deduced from the coupling procedure. There exist some results about
uniqueness using ergodic theory, like in [15], but they will be not outlined here.
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3.2 Lyapunov condition

Denote by Pw the law of (∆k)k60. Since (∆n)n∈Z is stationary we immediately get the following property:

Property 3.1. If a measure µ ∈ M1(X ×W) is such that Π∗
Wµ = Pw then Π∗

WQµ = Pw.

We can now define the notion of Lyapunov function.

Definition 3.2. A function ψ : X → [0,+∞) is called a Lyapunov function for Q if ψ is continuous and
if the following holds:

(i) ψ−1([0, a]) is compact for all a ∈ [0,+∞).

(ii) ∃β > 0 and α ∈ (0, 1) such that:
∫

X×W

ψ(x)Qµ(dx, dw) 6 β + α

∫

X

ψ(x)(Π∗
Xµ)(dx)

for all µ ∈ M1(X ×W) such that Π∗
Wµ = Pw and

∫

X
ψ(x)(Π∗

Xµ)(dx) < +∞.

The following result ensures the existence of invariant distribution for Q.

Theorem 3.1. If there exists a Lyapunov function ψ for Q, then Q has at least one invariant distribution
µ⋆, in other words Qµ⋆ = µ⋆.

A detailed proof of this result is given in Appendix C. Finally, we get the first part (i) of Theorem 2.1
about the existence of an invariant distibution by setting ψ := V (with V the function appearing in (H1))
and by saying that ψ is a Lyapunov function for Q.

4 General coupling procedure

We now turn to the proof of the main result of the paper, i.e. Theorem 2.1 (ii) and (iii) about the
convergence in total variation. This result is based on a coupling method first introduced in [14], but
also used in [11] and [9], in a continuous time framework. The coupling strategy is slightly different in
our discrete context, the following part is devoted to explain this procedure.

4.1 Scheme of coupling

Let (∆1
n)n∈Z and (∆2

n)n∈Z be two stationary and purely non-deterministic Gaussian sequences with the
following moving average representations







∆1
n =

+∞∑

k=0

akξ
1
n−k

∆2
n =

+∞∑

k=0

akξ
2
n−k

with
{

(ak)k>0 ∈ R
N such that a0 = 1 and

∑+∞
k=0 a

2
k < +∞

ξi := (ξik)k∈Z an i.i.d sequence such that ξi1 ∼ N (0, Id) for i = 1, 2.
(4.1)

We denote by (X1, X2) the solution of the system:
{
X1
n+1 = F (X1

n,∆
1
n+1)

X2
n+1 = F (X2

n,∆
2
n+1)

(4.2)

with initial conditions (X1
0 , (∆

1
k)k60) and (X2

0 , (∆
2
k)k60). We assume that (X2

0 , (∆
2
k)k60) ∼ µ⋆ where

µ⋆ denotes a fixed invariant distribution associated to (2.1). The previous section ensures that such a
measure exists. We define the natural filtration associated to (4.2) by

(Fn)n∈N = (σ((ξ1k)k6n, (ξ
2
k)k6n, X

1
0 , X

2
0 ))n>0.
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To lower the “weight of the past” at the beginning of the coupling procedure, we assume that a.s,

(∆1
k)k60 = (∆2

k)k60

which is actually equivalent to assume that a.s (ξ1k)k60 = (ξ2k)k60 since the invertible Toeplitz operator
defined in Subsection 2.2 links (∆i

k)k60 to (ξik)k60 for i = 1, 2. Lastly, we denote by (gn)n∈Z and (fn)n∈Z

the random variable sequences defined by

ξ1n+1 = ξ2n+1 + gn and ∆1
n+1 = ∆2

n+1 + fn. (4.3)

They respectively represent the “drift” between the underlying noises (ξik) and the real noises (∆i
k). By

assumption, we have gn = fn = 0 for n < 0.

Remark 4.1. From the moving average representations, we deduce immediately the following relation
for all n > 0,

fn =
+∞∑

k=0

akgn−k =
n∑

k=0

akgn−k (4.4)

The aim is now to build (gn)n>0 and (fn)n>0 in order to stick X1 and X2. We set

τ∞ = inf{n > 0 | X1
k = X2

k , ∀k > n}.

In a purely Markovian setting, when the paths coincide at time n then they remain stuck for all k > n by
putting the same innovation into both processes. Due to the memory this phenomenon cannot happen
here. Hence, this involves a new step in the coupling scheme: try to keep the paths fathened together
(see below).
Recall that L((X2

k )k>n) = Sµ⋆. The purpose of the coupling procedure is to bound the quantity P(τ∞ >
n) since by a classical result we have

‖L((X1
k)k>n)− Sµ⋆‖TV 6 P(τ∞ > n). (4.5)

Hence, we realize the coupling after a series of trials which follows three steps:

∗ Step 1: Try to stick the positions at a given time with a “controlled cost”.

∗ Step 2: (specific to non-Markov processes) Try to keep the paths fastened together.

∗ Step 3: If Step 2 fails, we wait long enough so as to allow Step 1 to be realized with a “controlled
cost” and with a non-negative probability. During this step, we assume that gn = 0.

More precisely, let us introduce some notations,

• Let τ0 > 0. We begin the first trial at time τ0 +1, in other words we try to stick X1
τ0+1 and X2

τ0+1.
Hence, we assume that

∀n < τ0, gn = fn = 0. (4.6)

• For j > 1, let τj denote the end of trial j. More specifically,

⊲ If τj = +∞ for some j > 1, it means that the coupling tentative has been successful.

⊲ Else, τj corresponds to the end of Step 3, that is τj +1 is the beginning of Step 1 of trial j+1.

The real meaning of “controlled cost” will be clarified on Subsection 5.1. But the main idea is that at Step
1 of trial j, the “cost” is represented by the quantity gτj−1 that we need to build to get X1

τj−1+1 = X2
τj−1+1

with non-negative probability. Here the cost does not only depend on the positions at time τj−1 but also
on all the past of the underlying noises ξ1 and ξ2. Hence, we must have a control on gτj−1 in case of
failure and to this end we have to wait enough during Step 3 before beginning a new attempt of coupling.
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4.2 Coupling lemmas to achieve Step 1 and 2

This section is devoted to establish coupling lemmas in order to build (ξ1, ξ2) during Step 1 and Step 2.

4.2.1 Hitting step

If we want to stick X1 and X2 at time n+1, we need to build (ξ1n+1, ξ
2
n+1) in order to get F (X1

n,∆
1
n+1) =

F (X2
n,∆

2
n+1) with non-negative probability, that is to get

F

(

X1
n, a0ξ

1
n+1 +

+∞∑

k=1

akξ
1
n+1−k

)

= F

(

X2
n, a0ξ

2
n+1 +

+∞∑

k=1

akξ
2
n+1−k

)

⇐⇒ F̃

(

X1
n, ξ

1
n+1,

+∞∑

k=1

akξ
1
n+1−k

)

= F̃

(

X2
n, ξ

2
n+1,

+∞∑

k=1

akξ
2
n+1−k

)

(4.7)

since a0 = 1. The following lemma will be the main tool to achieve this goal.

Lemma 4.1. Let K > 0 and µ := N (0, Id). Under the controlability assumption (H2), there exists
K̃ > 0 (given by (H2)), such that for every x := (x, x′, y, y′) in B(0,K)4, we can build a random variable
(Z1, Z2) with values in (Rd)2 such that

(i) L(Z1) = L(Z2) = µ,

(ii) there exists δK̃ > 0 depending only on K̃ such that

P(F̃ (x, Z1, y) = F̃ (x′, Z2, y
′)) > P(Z2 = Λx(Z1), |Z1| 6 K̃) > δK̃ > 0 (4.8)

where Λx is the function given by hypothesis (H2),

(iii) there exists MK > 0 depending only on K such that

P(|Z2 − Z1| 6MK) = 1. (4.9)

Proof. Let x := (x, x′, y, y′) ∈ B(0,K)4. First, let us denote by π1 (resp. π2) the projection from R
d×R

d

to R
d of the first (resp. the second) coordinate. Introduce the two following functions defined on R

d

Λ1 : u1 7→ (u1,Λx(u1))

Λ2 : u2 7→ (Λ−1
x (u2), u2)

where Λx is the function given by (H2). Now, we set

P1 =
1

2
(Λ∗

1µ ∧ Λ∗
2µ).

Let us find a simplest expression for P1. For every measurable function f : Rd × R
d → R+, we have

Λ∗
1µ(f) =

∫

Rd

f(u1,Λx(u1))µ(du1) =

∫

Rd×Rd

f(u1, u2)δΛx(u1)(du2)µ(du1)
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and

Λ∗
2µ(f) =

∫

Rd

f(Λ−1
x (u2), u2)µ(du2)

=
1

(2π)d/2

∫

Rd

f(Λ−1
x (u2), u2) exp

(

−|u2|2
2

)

du2

=
1

(2π)d/2

∫

Rd

f(u1,Λx(u1)) exp

(

−|Λx(u1)|2
2

)

| det(JΛx
(u1))|du1 (by setting u1 = Λ−1

x (u2))

=

∫

Rd

f(u1,Λx(u1)) exp

( |u1|2
2

− |Λx(u1)|2
2

)

| det(JΛx
(u1))|

︸ ︷︷ ︸

=:DΛx
(u1)

µ(du1)

=

∫

Rd×Rd

f(u1, u2)δΛx(u1)(du2)DΛx
(u1)µ(du1).

By construction, we then have

P1(du1, du2) =
1

2
δΛx(u1)(du2)(DΛx

(u1) ∧ 1)µ(du1). (4.10)

Write S(u1, u2) = (u2, u1) and denote by P̃1 the “symmetrized” non-negative measure induced by P1,

P̃1 = P1 + S∗P1. (4.11)

We then define (Z1, Z2) as follows:

L(Z1, Z2) = P̃1 +∆∗(µ− π∗
1P̃1) = P1 +P2 (4.12)

with ∆(u) = (u, u) and P2 = S∗P1 +∆∗(µ − π∗
1P̃1). It remains to prove that L(Z1, Z2) is well defined

and satisfies all the properties required by the lemma.

First step: Prove that P2 is the sum of two positive measures.
Using (4.10), we can check that for all non-negative function f,

π∗
1P1(f) 6

1

2
µ(f)

and

π∗
2P1(f) = π∗

1(S
∗P1)(f) 6

1

2
µ(f).

By adding the two previous inequalities, we deduce that the measure µ−π∗
1P̃1 is positive. This concludes

the first step.

Second step: Prove that π∗
1(P1 +P2) = π∗

2(P1 +P2) = µ.
This fact is almost obvious. We just need to use the fact that

π1 ◦∆ = π2 ◦∆ = Id

and the symmetry property of P̃1,
i.e. π∗

1P̃1 = π∗
2P̃1.

Third step: Prove (4.8) and (4.9).
Let us first remark that the support of P1 +P2 is included in

{(u, v) ∈ R
d × R

d | v = Λx(u)} ∪ {(u, v) ∈ R
d × R

d | v = Λ−1
x (u)} ∪ {(u, v) ∈ R

d × R
d | v = u}.
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Therefore, by (2.8) in (H2) and the fact that

(∀u ∈ R
d, |Λx(u)− u| 6MK) ⇐⇒ (∀u ∈ R

d, |Λ−1
x (u)− u| 6MK)

since Λx is invertible on R
d, we finally get (4.9).

Then, using again (H2) where K̃ is defined and the definition of the subprobability P1 we get

P(F̃ (x, Z1, y) = F̃ (x′, Z2, y
′)) > P1(B(0, K̃)× Λ(B(0, K̃)))

︸ ︷︷ ︸

=P(Z2=Λx(Z1),|Z1|6K̃)

(4.13)

and

P(Z2 = Λx(Z1), |Z1| 6 K̃) =
1

2

∫

B(0,K̃)

(DΛx
(u) ∧ 1)µ(du).

It just remains to use (2.7) and (2.8) in (H2) to conclude. Indeed,

P(Z2 = Λx(Z1), |Z1| 6 K̃) =
1

2

∫

B(0,K̃)

(

exp

( |u|2
2

− |Λx(u)|2
2

)

| det(JΛx
(u))|

)

∧ 1 µ(du)

>
1

2
µ(B(0, K̃))

[(

exp

(

− (MK̃ + K̃)2

2

)

CK̃

)

∧ 1

]

=: δK̃ > 0

which concludes the proof.

4.2.2 Sticking step

Now, if the positions X1
n+1 and X2

n+1 are stuck together, we want that they remain fastened together for
all k > n+ 1 which means that:

∀k > n+ 1, F (X1
k ,∆

1
k+1) = F (X2

k ,∆
2
k+1)

⇐⇒ ∀k > n+ 1, F (X1
k , ξ

1
k+1 +

+∞∑

l=1

alξ
1
k+1−l) = F (X1

k , ξ
2
k+1 +

+∞∑

l=1

alξ
2
k+1−l) (4.14)

since X1
k = X2

k and a0 = 1. Recall that for all k ∈ Z, gk = ξ1k+1−ξ2k+1 is the drift between the underlying
noises. Then, if we have

∀k > n+ 1, ξ1k+1 +

+∞∑

l=1

alξ
1
k+1−l = ξ2k+1 +

+∞∑

l=1

alξ
2
k+1−l

⇐⇒ ∀k > n+ 1, gk = −
+∞∑

l=1

algk−l (4.15)

the identity (4.14) is automatically satisfied.

Remark 4.2. The successful gk defined by relation (4.15) is Fk-measurable. This explains why we chose
to index it by k even if it represents the drift between ξ1k+1 and ξ2k+1.

Hence, we will try to get (4.15) on successive finite intervals to finally get a bound on the successful-
coupling probability. The size choice of those intervals will be important according to the hypothesis
(Hpoly) or (Hexp) that we made. The two next results will be our tools to get (4.15) on Subsection 5.2.
For the sake of simplicity we set out these results on R. On R

d we just have to apply them on every
marginal. Lemma 4.2 is almost the statement of Lemma 5.13 of [14] or Lemma 3.2 of [11].
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Lemma 4.2. Let µ := N (0, 1). Let a ∈ R, b > |a| and Mb := max(4b,−2 log(b/8)).

(i) For all b > |a|, there exist δ1b and δ2b ∈ (0, 1), such that we can build a probability measure N 2
a,b on

R
2 with every marginal equal to µ and such that:

N 2
a,b({(x, y) | y = x+ a}) > δ1b and N 2

a,b({(x, y) | |y − x| 6Mb}) = 1.

(ii) Moreover, if b ∈ (0, 1), the previous statement holds with δ1b = 1− b.

The following corollary is an adapted version of Lemma 3.3 of [11] to our discrete context.

Corollary 4.1. Let T > 0 be an integer, b > 0, g = (g0, g1, . . . , gT ) ∈ R
T+1 such that ‖g‖ 6 b where ‖.‖

is the euclidian norm on R
T+1 and set Mb := max(4b,−2 log(b/8)).

(i) Then, there exists δ1b ∈ (0, 1), for which we can build a random variable ((ξ1k+1)k∈J0,T K, (ξ
2
k+1)k∈J0,T K)

with values in (RT+1)2, with distribution N (0, IT+1) and satisfying:

P
(
ξ1k+1 = ξ2k+1 + gk ∀k ∈ J0, T K

)
> δ1b

and
P
(
‖ξ1 − ξ2‖ 6Mb

)
= 1.

(ii) Moreover, if b ∈ (0, 1), the previous statement holds with δ1b = 1− b.

Proof. Let (uk)k∈J0,T K be an orthonormal basis of RT+1 with u0 = g
‖g‖ . We denote by (U1, U2) a random

variable which has distribution N 2
a,b (with a = ‖g‖) given in the lemma 4.2. Let (εk)k∈J1,T K be an iid

random variable sequence with ε1 ∼ N (0, 1) and independent from (U1, U2). Then, for i = 1, 2 we define
the isometry:

W i : R
T+1 → W i(RT+1) ⊂ L2(Ω,F ,P)

u0 7→ Ui
uk 7→ εk for k ∈ J1, T K.

(4.16)

And we set for all n ∈ J0, T K, ξin+1 := W i(en) where en is the vector of RT+1 for which every coordinate
is 0 except the nth which is 1. Since (uk)k∈J0,T K is an orthonormal basis of RT+1, we then have:

en =
T∑

k=0

〈en, uk〉uk.

Hence,

ξin+1 = W i

(
T∑

k=0

〈en, uk〉uk
)

= Ui
gn
‖g‖ +

T∑

k=1

〈en, uk〉εk.

ξin+1 is clearly centered and Gaussian as a linear combination of independent centered Gaussian random
variables and using that W i is an isometry, we get that (ξik+1)k∈J0,T K has distribution N (0, IT+1) for
i = 1, 2. Therefore, we built ξ1 and ξ2 as anounced. Indeed, by Lemma 4.2

P
(
ξ1n+1 = ξ2n+1 + gn ∀n ∈ J0, T K

)
= P (U1 = U2 + ‖g‖) > δ1b

and
P
(
‖ξ1 − ξ2‖ 6Mb

)
= P(|U1 − U2| 6Mb) = 1.

(ii) also follows immediately from Lemma 4.2.

5 Coupling under (Hpoly) or (Hexp)

We can now move on the real coupling procedure to finally get a lower-bound for the successful-coupling
probability. In a first subsection, we explain exactly what we called “controlled cost” and in a second
subsection we spell out our bound.
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5.1 Admissibility condition

The “controlled cost” is called “admissibility” in [14]. Here, we will talk about (K,α)-admissibility, as in
[11], but in the following sense:

Definition 5.1. Let K > 0 and α > 0 be two constants and τ a random variable with values in N. We
say that the system is (K,α)-admissible at time τ if τ(ω) < +∞ and if
(X1

τ (ω), X
2
τ (ω), (ξ

1
n(ω), ξ

2
n(ω))n6τ ) satisfies

∀n > 0,

∣
∣
∣
∣
∣

+∞∑

k=n+1

akgτ+n−k(ω)

∣
∣
∣
∣
∣
6 vn (5.1)

and
∣
∣X i

τ (ω)
∣
∣ 6 K,

∣
∣
∣
∣
∣

+∞∑

k=1

akξ
i
τ+1−k(ω)

∣
∣
∣
∣
∣
6 K for i = 1, 2 (5.2)

with
vn = (n+ 1)−α under (Hpoly) and vn = e−αn under (Hexp). (5.3)

Remark 5.1. On the one hand, condition (5.1) measures the distance between the past of the noises
(before time τ). On the other hand, condition (5.2) has two parts: the first one ensures that at time τ
both processes are not far from each other and the second part is a constraint on the memory part of the
Gaussian noise ∆i

τ+1.

The aim is to prove that under those two conditions, the coupling will be successful with a probability
lower-bounded by a non-negative constant. To this end, we will need to ensure that at every time τj , the
system will be (K,α)-admissible with non-negative probability. We set:

Ω1
α,τ :=

{

ω, τ(ω) < +∞,

∣
∣
∣
∣
∣

+∞∑

k=n+1

akgτ+n−k(ω)

∣
∣
∣
∣
∣
6 vn ∀n ∈ N

}

(5.4)

and

Ω2
K,τ :=

{

ω, τ(ω) < +∞,
∣
∣X i

τ (ω)
∣
∣ 6 K and

∣
∣
∣
∣
∣

+∞∑

k=1

akξ
i
τ+1−k(ω)

∣
∣
∣
∣
∣
6 K for i = 1, 2

}

. (5.5)

We define
ΩK,α,τ = Ω1

α,τ ∩ Ω2
K,τ . (5.6)

If ω ∈ ΩK,α,τ , we will try to couple at time τ +1. Otherwise, we say that Step 1 fails and one begins Step
3. Hence, Step 1 of trial j has two ways to fail: either ω belongs to ΩcK,α,τj−1

and one moves directly to

Step 3 or ω belongs to ΩK,α,τj−1 , one tries to couple and it fails.

5.2 Lower-bound for the successful-coupling probability

The main purpose of this subsection is to get a non-negative lower-bound for the successful-coupling
probability which will be independent of j (the number of the tentative), in other words we want to prove
the following proposition

Proposition 5.1. Assume (H1) and (H2). Let K > 0, α > 1
2 ∨

(
3
2 − β

)
if we are under (Hpoly) and

α > 0 different from µ if we are under (Hexp). In both cases, there exists δ0 in (0, 1) such that for all
j > 1,

δ0 6 P(∆τj = +∞|ΩK,α,τj−1
) (5.7)

where ∆τj := τj − τj−1 and τj is defined in Subsection 4.1 as the end of trial j.

Another result will appear in this subsection: a lower-bound (independent from j) of the failure-coupling
probability, that is we can choose δ1 ∈ (0, 1) such that

∀j > 1, δ1 6 P(τj <∞|τj−1 <∞). (5.8)

This result may appear of weak interest but will be of first importance in Subsection 6.2 and we will get
this bound thanks to Step 1, that is why we talk about this here.
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5.2.1 Step 1 (hitting step)

Lemma 5.1. Let K > 0 and α > 0. Assume (H1) and (H2). Let K̃ > 0 be the constant appearing in
(H2), δ1 ∈ (0, 1) and τ be a stopping time with respect to (Fn)n∈Z such that P(ΩK,α,τ ) > 0.
We can build (ξ1τ+1, ξ

2
τ+1) with ξ1τ+1 ∼ N (0, Id) and ξ2τ+1 ∼ N (0, Id) such that

(i) There exist K1 ∈ (0, K̃] and δK1 ∈ (0, 1) such that

P(X1
τ+1 = X2

τ+1|ΩK,α,τ ) > P(ξ2τ+1 = Λx(ξ
1
τ+1), |ξ1τ+1| 6 K1 |ΩK,α,τ ) > δK1 > 0 (5.9)

and
P
(
ΩcK,α,τ ∪

(
{ξ2τ+1 6= Λx(ξ

1
τ+1) or |ξ1τ+1| > K1} ∩ ΩK,α,τ

))
> δ1 (5.10)

where x :=
(

X1
τ , X

2
τ ,
∑+∞

k=0 akξ
1
τ+1−k,

∑+∞
k=0 akξ

2
τ+1−k

)

and Λx comes from (H2).

(ii) There exists MK > 0 such that

|gτ | = |ξ1τ+1 − ξ2τ+1| 6MK a.s.

Remark 5.2. The constant δ1 is chosen independently from K and α.

Before proving this result, let us explain a bit why we add the lower-bound (5.10). As we already said,
we will see further (in Subsection 6.2) that we need a (uniform) bound on the failure-coupling probability
P(τj < ∞|τj−1 < ∞) for every j > 1. Therefore, for every j > 1, we will consider that Step 1 of trial j

fails if and only if ω ∈ ΩcK,α,τj−1
∪
(

{ξ2τj−1+1 6= Λx(ξ
1
τj−1+1) or |ξ1τj−1+1| > K1} ∩ ΩK,α,τj−1

)

and in this

case one immediatly begins Step 3. Hence, for all j > 1, thanks to Lemma 5.1 we get the existence of K1

such that:

P(τj <∞|τj−1 <∞)

> P

(

ΩcK,α,τj−1
∪
(

{ξ2τj−1+1 6= Λx(ξ
1
τj−1+1) or |ξ1τj−1+1| > K1} ∩ ΩK,α,τj−1

))

> δ1.

This construction may seem artificial but it is necessary to prove Proposition 6.2. Moreover, this has no
impact on the computation of the rate of convergence to equilibrium since it only affects Step 1. We can
now move on the proof of Lemma 5.1.

Proof. (i) Set x :=
(

X1
τ , X

2
τ ,
∑+∞

k=1 akξ
1
τ+1−k,

∑+∞
k=1 akξ

2
τ+1−k

)

. Conditionnally to ΩK,α,τ we have

x ∈ B(0,K)4 and we can build (Z1, Z2) as in Lemma 4.1. Let ξ ∼ N (0, 1) be independent from (Z1, Z2)
and set

(ξ1τ+1, ξ
2
τ+1) = (1ΩK,α,τZ1 + 1Ωc

K,α,τ
ξ, 1ΩK,α,τZ2 + 1Ωc

K,α,τ
ξ). (5.11)

Therefore, we deduce by Lemma 4.1 and its proof that for all K1 ∈ (0, K̃],

P(X1
τ+1 = X2

τ+1|ΩK,α,τ ) > P(Z2 = Λx(Z1), |Z1| 6 K1 |ΩK,α,τ )
︸ ︷︷ ︸

=P(ξ2τ+1=Λx(ξ1τ+1), |ξ1τ+1|6K1 |ΩK,α,τ )

> δK1 > 0. (5.12)

And the first part of (i) is proven. It remains to choose the good K1 ∈ (0, K̃] to get the second part. Set
pK := P(ΩK,α,τ ) and µ := N (0, Id), then

P
(
ΩcK,α,τ ∪

(
{ξ2τ+1 6= Λx(ξ

1
τ+1) or |ξ1τ+1| > K1} ∩ΩK,α,τ

))

= 1− pK + pKP
(
{ξ2τ+1 6= Λx(ξ

1
τ+1) or |ξ1τ+1| > K1}|ΩK,α,τ

)

> 1− pK + pKP(|ξ1τ+1| > K1|ΩK,α,τ )
> 1− pK + pKµ(B(0,K1)

c) = 1− pK + pK(1− µ(B(0,K1))

where the last inequality is due to Lemma 4.1 one more time. Finally, it remains to choose K1 ∈ (0, K̃]
small enough in order to get 1− pK + pK(1 − µ(B(0,K1)) > δ1.

(ii) If ω ∈ ΩK,α,τ , by the previous construction and Lemma 4.1, we have |gτ (ω)| = |Z1(ω)−Z2(ω)| 6MK .
And if ω ∈ ΩcK,α,τ then |gτ (ω)| = |ξ(ω)− ξ(ω)| = 0 which concludes the proof of (ii).
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To fix the ideas let us recall what we mean by “success of Step 1” and “failure of Step 1” of trial j (j > 1) :

{success of Step 1} = ΩK,α,τj−1 ∩ {ξ2τj−1+1 = Λx(ξ
1
τj−1+1), |ξ1τj−1+1| 6 K1} (5.13)

{failure of Step 1} = ΩcK,α,τj−1
∪
(

{ξ2τj−1+1 6= Λx(ξ
1
τj−1+1) or |ξ1τj−1+1| > K1} ∩ ΩK,α,τj−1

)

(5.14)

where x :=
(

X1
τj−1

, X2
τj−1

,
∑+∞

k=0 akξ
1
τj−1+1−k,

∑+∞
k=0 akξ

2
τj−1+1−k

)

.

5.2.2 Step 2 (sticking step)

Step 2 of trial j consists in trying to keep the paths fastened together on successive intervals Ij,ℓ. More
precisely, during trial j, we set

Ij,0 := {τj−1 + 1}, Ij,1 := Jτj−1 + 2, τj−1 + 2c2 − 1K
and ∀ℓ > 2, Ij,ℓ :=

q
τj−1 + c2sℓ, τj−1 + c2sℓ+1 − 1

y
(5.15)

where c2 > 2 will be chosen further and with

∀ℓ > 2, sℓ =

{
2ℓ under (Hpoly)
ℓ under (Hexp).

(5.16)

We denote
ℓ∗j := sup{ℓ > 1 | ∀n ∈ Ij,ℓ−1, gn−1 = g

(s)
n−1} (5.17)

where g
(s)
n−1 is the successful-coupling drift defined by (4.15), i.e. g

(s)
n−1 = −∑+∞

l=1 algn−1−l. In other

words, Ij,ℓ∗j is the interval where the failure occurs. If {ℓ > 1|∀n ∈ Ij,ℓ−1, gn−1 = g
(s)
n−1} = ∅, we adopt

the convention ℓ∗j = 0, it corresponds to the case where the failure occurs at Step 1. When ℓ∗j = +∞,
trial j is successful. For a given positive α and K > 0, we set

Bj,ℓ := ΩK,α,τj−1
∩ {ℓ∗j > ℓ} ∀j > 1, ℓ > 0. (5.18)

which means that failure of Step 2 may occur at most after ℓ trials. With this notations we get

P(∆τj = +∞|ΩK,α,τj−1
) = P(success of Step 1 |ΩK,α,τj−1

)

+∞∏

ℓ=1

P(Bj,ℓ|Bj,ℓ−1) (5.19)

where the event {success of Step 1} is defined by (5.13).

Remark 5.3. There is an infinite product in this expression of the successful-coupling probability. Hence,
the size choice of the intervals Ij,ℓ defined in (5.16) will play a significant role in the convergence of the
product to a non-negative limit.

In the following lemma, similarly to the above definitions, we consider for a stopping time τ the intervals
(Iτ,ℓ)ℓ>1, the integer ℓ∗τ and the events Bτ,ℓ, replacing τj−1 by τ .

Lemma 5.2. Let K > 0, assume (H1) and (H2). Let α > 1
2 ∨
(
3
2 − β

)
under (Hpoly) or α > 0 different

from µ under (Hexp). Let τ be a stopping time with respect to (Fn)n∈Z (defined in Subsection 4.1) and
assume that the system is (K,α)-admissible at time τ , then there exists CK > 0 such that for c2 > 2 large
enough the successful drift g(s) satisfies

for ℓ = 1, ‖g(s)‖Iτ,1 6 CK

and

∀ℓ > 2, ‖g(s)‖Iτ,ℓ =
(
τ+c2sℓ+1−1
∑

k=τ+c2sℓ

∣
∣
∣g

(s)
k−1

∣
∣
∣

2
)1/2

6 2−α̃ℓ
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where α̃ :=

{
min{α, β, α+ β − 1} − 1/2− ε for all ε > 0 under (Hpoly)

min(α, µ) under (Hexp)
.

Therefore, for all ℓ > 1, we can build thanks to Corollary 4.1
(
(ξ1k)k∈Iτ,ℓ , (ξ

2
k)k∈Iτ,ℓ

)
during Step 2 in such

a way that
P(Bτ,1|Bτ,0) > δ1K and ∀ℓ > 2, P(Bτ,ℓ|Bτ,ℓ−1) > 1− 2−α̃ℓ

where δ1K ∈ (0, 1).
Moreover, if 2 6 ℓ∗τ < +∞, there exists Cα > 0 independent from K such that





τ+c2sℓ∗τ+1−1
∑

k=τ+c2sℓ∗τ

|gk−1|2




1/2

6 Cα(ℓ
∗
τ + 1)

and if ℓ∗τ = 1, ‖g‖Iτ,1 6 C′
K for some constant C′

K > 0.

Remark 5.4. ⊲ Under hypothesis (Hpoly) the condition α > 1
2 ∨

(
3
2 − β

)
will ensure that

min{α, β, α+ β − 1} − 1/2 > 0.
⊲ In the polynomial case, for technical reasons α̃ depends on ε > 0. This expression allows us to put
together different cases and simplify the lemma. Indeed, if (α, β) /∈ {1}× (0, 1]∪ (0, 1]×{1}, we can take
ε = 0.

To prove this lemma we will use in the polynomial case the following technical result which a more precise
statement and a proof are given in Appendix D.

Lemma 5.3 (Technical lemma). Let α > 0 and β > 0 such that α+β > 1. Then, there exists C(α, β) > 0
such that for every ε > 0,

∀n > 0,
n∑

k=0

(k + 1)−β(n+ 1− k)−α 6 C(α, β) (n+ 1)−min{α,β,α+β−1}+ε.

When (α, β) /∈ {1} × (0, 1] ∪ (0, 1]× {1}, we can take ε = 0 in the previous inequality.

We can now move on the proof of Lemma 5.2.

Proof. Let us prove the first part of the lemma, namely the upper-bound of the ℓ2 norm for the successful-
coupling drift term on the intervals Iτℓ . Indeed, the second part is just an application of corollary 4.1.
Since the system is (K,α)-admissible at time τ , we get by (5.1)

∀n > 0,

∣
∣
∣
∣
∣

+∞∑

k=n+1

akgτ+n−k

∣
∣
∣
∣
∣
6 vn.

But, if Step 2 is successful, we recall that by (4.15) the successful drift satisfies

∀n > 1, g
(s)
τ+n = −

+∞∑

k=1

akgτ+n−k

and then

∀n > 1,

n∑

k=0

akg
(s)
τ+n−k = −

+∞∑

k=n+1

akgτ+n−k

︸ ︷︷ ︸

=:un

and we set u0 := a0g
(s)
τ = g(s)τ .

Therefore thanks to remark 2.2 this is equivalent to

∀n > 0, g
(s)
τ+n =

n∑

k=0

bkun−k.
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By the admissibility assumption, we have ∀k ∈ {0, . . . , n − 1}, |un−k| 6 vn−k and by Lemma 5.1 (ii),
|u0| 6MK . Hence, we get

∀n > 0, |g(s)τ+n| 6MK

n∑

k=0

|bk|vn−k. (5.20)

• Polynomial case: Assume (Hpoly). Then for all n > 0, vn = (n+ 1)−α with α > 1
2 ∨

(
3
2 − β

)
.

Here, (5.20) is equivalent to

∀n > 0, |g(s)τ+n| 6MKCβ

n∑

k=0

(k + 1)−β(n+ 1− k)−α

6M ′
K (n+ 1)−min{α,β,α+β−1}+ε.

for all ε > 0 by applying the technical lemma 5.3 and setting M ′
K := C(α, β)MKCβ .

We then set α̃ := min{α, β, α+ β − 1} − 1/2− ε.
Hence, for all ℓ > 2,

‖g(s)‖Iτ,ℓ =





τ+c22
ℓ+1−1∑

k=τ+c22ℓ

(

g
(s)
k−1

)2





1/2

6M ′
K





c22
ℓ+1−1∑

k=c22ℓ

k−2α̃−1





1/2

6M ′
K ×

(
c22

ℓ × (c22
ℓ)−2α̃−1

)1/2
=M ′

Kc
−α̃
2 2−α̃ℓ.

It remains to choose c2 > 2 ∨ (M ′
K)1/α̃ to get the desired bound.

• Exponential case: Assume (Hexp). Then for all n > 0, vn = e−αn with α > 0 and α 6= µ.
Here, (5.20) is equivalent to

∀n > 0, |g(s)τ+n| 6MKCµ

n∑

k=0

e−µke−α(n−k)

6M ′
K e−min{α,µ}n.

by setting M ′
K :=MKCµ. We then set α̃ := min(α, µ).

Hence, for all ℓ > 2,

‖g(s)‖
I
(τ)
ℓ

=





τ+c2(ℓ+1)−1
∑

k=τ+c2ℓ

(

g
(s)
k−1

)2





1/2

6M ′
K





c2(ℓ+1)−1
∑

k=c2ℓ

e−2α̃(k−1)





1/2

6M ′
K ×

(
e−2α̃(c2ℓ−2)

2α̃

[
1− e−2α̃c2

]
)1/2

(by integral upper-bound)

6 e−α̃ℓ (by choosing c2 > 2 large enough)

6 2−α̃ℓ

For ℓ = 1, in both polynomial and exponential cases, the same approach gives us the existence of CK > 0
such that

‖g(s)‖Iτ,1 6 CK .

By combining Lemma 5.1, Lemma 5.2 and the expression (5.19) we finally get Proposition 5.1.
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6 (K,α)-admissibility

6.1 On condition (5.1)

Let ∆t
(j)
3 be the duration of Step 3 of trial j for j > 1. The purpose of the next proposition is to prove

that thanks to a calibration of ∆t
(j)
3 , one satisfies almost surely condition (5.1) at time τj .

Proposition 6.1. Assume (H1) and (H2). Let α ∈
(
1
2 ∨

(
3
2 − β

)
, ρ
)

if we are under (Hpoly) and
α ∈ (0, λ) different from µ if we are under (Hexp). Assume that for all j > 1,

∆t
(j)
3 =

{
t∗ς

j2θℓ
∗

j with θ > (2(ρ− α))−1 under (Hpoly)
t∗ + ςj + θℓ∗j with θ > 0 under (Hexp)

where ℓ∗j is defined in (5.17) and with ς > 1 arbitrary. Then for every K > 0, there exists a choice of t∗
such that, for all j > 0, condition (5.1) is a.s. true at time τj on the event {τj < +∞}. In other words,
for all j > 0,

P(Ω1
α,τj

|{τj < +∞}) = 1.

Proof. Let us begin by the first coupling trial, in other words for j = 0. We recall that gk = 0 for all
k < τ0 (see (4.6)), therefore

∀n > 0,

∣
∣
∣
∣
∣

+∞∑

k=n+1

akgτ0+n−k

∣
∣
∣
∣
∣
= 0 6 vn

and then condition (5.1) is a.s. true at time τ0. Now, we assume j > 1 and we work on the event

{τj < +∞} (⊃ {τm < +∞} for all 0 6 m 6 j − 1).

Let us prove that on this event we have

∀n > 0,

∣
∣
∣
∣
∣

1

a0

+∞∑

k=n+1

akgτj+n−k

∣
∣
∣
∣
∣
6 vn.

Set un :=
∑+∞

k=n+1 akgτj+n−k. Since gk = 0 for all k < τ0, we get

un =

n+τj−τ0∑

k=n+1

akgτj+n−k.

Let us now separate the right term into the contributions of the different coupling trials. We get

un =

j
∑

m=1





n+τj−τm−1∑

k=n+τj−τm+1

ak gτj+n−k



 =

j
∑

m=1





τm−1
∑

k=τm−1

an+τj−k gk





︸ ︷︷ ︸

(⋆)m

and (⋆)m corresponds to the contribution of trial m, divided into two parts: success and failure. We have
now to distinguish two cases:

First case: ℓ∗m > 1, in other words the failure occurs during Step 2. We recall that in this case the system
was automatically (K,α)-admissible at time τm−1, which will allow us to use Lemma 5.2 on τm−1.
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Then, since gk = 0 on Jτm−1 + c2sℓ∗m+1, τm − 1K by definition of Step 3 of the coupling procedure,

(⋆)m =

τm−1+c2sℓ∗m+1−1
∑

k=τjm−1

an+τj−k gk =

c2sℓ∗m+1−1
∑

k=0

an+τj−τm−1−k
gτm−1+k

=

c2sℓ∗m−1
∑

k=0

an+τj−τm−1−k
gτm−1+k

︸ ︷︷ ︸

success

+

c2sℓ∗m+1−1
∑

k=c2sℓ∗m

an+τj−τm−1−k
gτm−1+k

︸ ︷︷ ︸

failure

.

We have now to make the distinction between the polynomial and the exponential case.

⊲ Under (Hpoly): sℓ = 2ℓ, |ak| 6 Cρ(k + 1)−ρ and then a2k 6 C2
ρ(k + 1)−2ρ

Using Cauchy-Schwarz inequality, the domination assumption on (ak), and the fact that

n+ τj − τm−1 − k + 1 > n+ τm − τm−1 − k + 1 = ∆t
(m)
3 + c22

ℓ∗m+1 + n− k

we get,

|success| 6





c22
ℓ∗m−1∑

k=0

a2n+τj−τm−1−k





1/2



c22
ℓ∗m−1∑

k=0

∣
∣gτm−1+k

∣
∣
2





1/2

6 Cρ





c22
ℓ∗m−1∑

k=0

(n+ τj − τm−1 − k + 1)−2ρ





1/2



c22
ℓ∗m−1∑

k=0

∣
∣gτm−1+k

∣
∣
2





1/2

6 Cρ





c22
ℓ∗m−1∑

k=0

(∆t
(m)
3 + c22

ℓ∗m+1 + n− k)−2ρ





1/2



c22
ℓ∗m−1∑

k=0

∣
∣gτm−1+k

∣
∣
2





1/2

= Cρ






∆t
(m)
3 +c22

ℓ∗m+1+n
∑

k=∆t
(m)
3 +c22

ℓ∗m+n+1

k−2ρ






1/2



c22
ℓ∗m−1∑

k=0

∣
∣gτm−1+k

∣
∣
2





1/2

6 Cρ

(

c22
ℓ∗m(n+∆t

(m)
3 )−2ρ

)1/2





c22
ℓ∗m−1∑

k=0

∣
∣gτm−1+k

∣
∣
2





1/2

.

By the same arguments, we obtain

|failure| 6 Cρ

(

c22
ℓ∗m(n+∆t

(m)
3 )−2ρ

)1/2





c22
ℓ∗m+1−1∑

k=c22
ℓ∗m

∣
∣
∣gτm−1+k

∣
∣
∣

2





1/2

.

Hence, by the triangular inequality, we have

|(⋆)m| 6 Cρ
√
c22

ℓ∗m/2(n+∆t
(m)
3 )−ρ













c22
ℓ∗m−1∑

k=0

(

gτm−1+k

)2





1/2

(1)

+






c
ℓ∗m+1

2 −1
∑

k=c22
ℓ∗m

(

gτm−1+k

)2






1/2

(2)









.
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Since ℓ∗j > 1, by Lemma 5.1 (ii) and Lemma 5.2, we have

(1) 6MK +

ℓ∗m−1
∑

ℓ=1

‖g(s)‖Iℓ 6MK + CK +
+∞∑

ℓ=2

2−α̃ℓ =: C̃K

and
(2) 6 max(Cα, C

′
K)(ℓ∗m + 1).

Therefore

|(⋆)m| 6 C
(2)
K 2ℓ

∗

m/2(ℓ∗m + 1)
(

n+∆t
(m)
3

)−ρ

(6.1)

where C
(2)
K := max(Cα, C

′
K , C̃K).

Moreover, recall that under (Hpoly)

∆t
(m)
3 = t∗ς

m2θℓ
∗

m with θ > (2(ρ− α))−1 and ς > 1. (6.2)

Plugging the definition of ∆t
(m)
3 into (6.1) and using that for all x, y > 0, (x+ y)−ρ 6 x−(ρ−α)y−α

|(⋆)m| 6 C
(2)
K 2ℓ

∗

m/2(ℓ∗m + 1)(n+∆t
(m)
3 )−ρ

6 C
(2)
K (ℓ∗m + 1)2(1/2−θ(ρ−α))ℓ

∗

m(t∗ς
m)−(ρ−α)(n+ 1)−α. (6.3)

Since θ > (2(ρ− α))−1 we have

Cα,K = sup
ℓ∗>0

C
(2)
K (ℓ∗ + 1)2(1/2−θ(ρ−α))ℓ

∗

< +∞,

and (6.3) yields
|(⋆)m| 6 Cα,K(t∗ς

m)−(ρ−α)(n+ 1)−α under (Hpoly). (6.4)

⊲ Under (Hexp): sℓ = ℓ, |ak| 6 Cλe
−λk and then a2k 6 C2

λe
−2λk

Since the proof is almost the same in the exponential case, we will go faster and skip some details.
Using again Cauchy-Schwarz inequality, the domination assumption on (ak), and the fact that

n+ τj − τm−1 − k > n+ τm − τm−1 − k = ∆t
(m)
3 + c2(ℓ

∗
m + 1) + n− k − 1

we get

|success| 6





c2ℓ
∗

m−1
∑

k=0

a2n+τj−τm−1−k





1/2



c2ℓ
∗

m−1
∑

k=0

∣
∣gτm−1+k

∣
∣
2





1/2

6 Cλ






∆t
(m)
3 +c2(ℓ

∗

m+1)+n−1
∑

k=∆t
(m)
3 +c2+n

e−2λk






1/2



c22
ℓ∗m−1∑

k=0

∣
∣gτm−1+k

∣
∣
2





1/2

6
Cλ√
2λ
e−λ(n+∆t

(m)
3 +c2−1)





c22
ℓ∗m−1∑

k=0

∣
∣gτm−1+k

∣
∣
2





1/2

(by integral bound)

6
Cλe

λ

√
2λ

e−λ(n+∆t
(m)
3 )





c22
ℓ∗m−1∑

k=0

∣
∣gτm−1+k

∣
∣
2





1/2
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and by the same arguments,

|failure| 6 Cλe
λ

√
2λ

e−λ(n+∆t
(m)
3 )





c2(ℓ
∗

m+1)−1
∑

k=c2ℓ∗m

∣
∣
∣gτm−1+k

∣
∣
∣

2





1/2

.

As in the polynomial case, by using Lemma 5.1 and 5.2 we get the existence of C
(3)
K > 0 such that

|(⋆)m| 6 C
(3)
K (ℓ∗m + 1)e−λ(n+∆t

(m)
3 ). (6.5)

Moreover, recall that under (Hexp)

∆t
(m)
3 = t∗ + ςm + θℓ∗m with θ > 0 and ς > 1. (6.6)

Plugging the definition of ∆t
(m)
3 into (6.5), we get

|(⋆)m| 6 C
(3)
K (ℓ∗m + 1)e−λ(n+∆t

(m)
3 )

6 C
(3)
K (ℓ∗m + 1)e−(λ−α)∆t

(m)
3 e−αn

= C
(3)
K (ℓ∗m + 1)e−(λ−α)(t∗+ς

m+θℓ∗m)e−αn.

We set
C′
α,K = sup

ℓ∗>0
C

(3)
K (ℓ∗ + 1)e−θ(λ−α)ℓ

∗

< +∞.

And this gives us
|(⋆)m| 6 C′

α,Ke
−(λ−α)(t∗+ς

m)e−αn under (Hexp). (6.7)

Second case: ℓ∗m = 0, in other words, failure occurs during Step 1. This includes the case when the
system is not (K,α)-admissible at time τm−1.

We have
(⋆)m = an+τj−τm−1

gτm−1
.

By Lemma 5.1 (ii), |gτm−1
| 6MK .

Moreover, since n+ τj − τm−1 > n+ τm − τm−1 = n+∆t
(m)
3 , we obtain by using the same method as in

the first case,

|(⋆)m| 6
{
MK(t∗ς

m)−(ρ−α)(n+ 1)−α under (Hpoly)
MKe

−(λ−α)(t∗+ς
m)e−αn under (Hexp)

. (6.8)

By putting (6.4), (6.7) and (6.8) together, we finally get

|(⋆)m| 6
{

max(MK , Cα,K)(t∗ς
m)−(ρ−α)(n+ 1)−α under (Hpoly)

max(MK , C
′
α,K)e−(λ−α)(t∗+ς

m)e−αn under (Hexp)
.

Set S1 =
∑+∞
m=1 ς

−(ρ−α)m and S2 =
∑+∞
m=1 e

−(λ−α)ςm . By choosing t∗ large enough, we obtain for all
1 6 m 6 j:

|(⋆)m| 6
{

1
S1
ς−(ρ−α)m(n+ 1)−α under (Hpoly)

1
S2
e−(λ−α)ςme−αn under (Hexp)

. (6.9)

Finally, by adding (6.9) for m = 1, .., j we have

∀n > 0, |un| 6
{

(n+ 1)−α under (Hpoly)
e−αn under (Hexp)

which concludes the proof.
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6.2 Compact return condition (5.2)

In the sequel, we set
Ej := {τj <∞}(= {τ1 <∞, . . . , τj <∞}). (6.10)

The aim of this subsection is to prove the following proposition:

Proposition 6.2. Assume (H1) and (H2). For all ε > 0, there exists Kε > 0 such that

P(Ω2
Kε,τj |Ej) > 1− ε. (6.11)

At this stage, we assume that (Hpoly) is true. Indeed, the exponential case will immediately follow from
the polynomial one since (Hexp) implies (Hpoly).

Since for every events A1, A2, A3 and A4, we have P(A1 ∩A2 ∩A3 ∩A4) >
∑4
i=1 P(Ai)− 3 , it is enough

to prove that for all ε > 0, there exists Kε > 0 such that

P(|X i
τj | 6 Kε|Ej) > 1− ε and P

(∣
∣
∣
∣
∣

+∞∑

k=1

akξ
i
τj+1−k

∣
∣
∣
∣
∣
6 Kε

∣
∣
∣
∣
∣
Ej
)

> 1− ε for i = 1, 2 (6.12)

to get (6.11). Let us first focus on the first part of (6.12) concerning |X i
τj | for i = 1, 2. Recall that the

function V : Rd → R
∗
+ appearing in (H1) is such that lim

|x|→+∞
V (x) = +∞. For K > 0 large enough we

then have: |x| > K ⇒ V (x) > K. Therefore, for i = 1, 2 and Kε large enough, using Markov inequality
we get

P(|X i
τj | > Kε|Ej) 6 P(V (X i

τj ) > Kε|Ej) 6
E(V (X i

τj ) |Ej)
Kε

(6.13)

Hence, the first part of (6.12) is true if there exists a constant C such that for every j ∈ N and for every
K > 0,

E(V (X i
τj ) |Ej) 6 C for i = 1, 2. (6.14)

Indeed, plugging (6.14) into (6.13) and taking Kε >
C
ε yield the desired inequality. We see here that the

independence of C with respect to K is essential.
For the sake of simplicity, we we will first use the following hypothesis to prove (6.14):

(H′
1): Let γ ∈ (0, 1). There exists Cγ > 0 such that for all j ∈ N, for every K > 0 and for i = 1, 2,

E





∆τj∑

l=1

γ∆τj−l|∆i
τj−1+l|

∣
∣
∣
∣
∣
∣

Ej



 < Cγ

where ∆τj := τj − τj−1 and ∆i is the stationary Gaussian sequence defined by (2.2).

Proposition 6.3. Assume (H1), (H2) and (H′
1). Let (X1

n, X
2
n)n∈N be a solution of (4.2) with initial

condition (X1
0 , X

2
0 ) satisfying E(V (X i

0)) <∞ for i = 1, 2. Moreover, assume that τ0 = 0 and that (τj)j>1

is built in such a way that for all j > 1, P(Ej |Ej−1) > δ1 > 0 (where δ1 is not depending on j) and

∆τj >
log(δ1/2)
log(γ) . Then, there esists a constant C such that for all j ∈ N and for every K > 0,

E(V (X i
τj ) |Ej) 6 C for i = 1, 2.
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Remark 6.1. ⊲ Actually, hypothesis (H′
1) is true under (Hpoly) and will be proven in Subsection 6.3.

⊲ The existence of δ1 > 0 independent from j is proven in Subsection 5.2.

⊲ To get ∆τj >
log(δ1/2)
log(γ) , it is sufficient to choose t∗ large enough in the expression of ∆t

(j)
3 (see Propo-

sition 6.1).
⊲ Since in Theorem 2.1 we made the assumption

∫

X V (x)Π∗
Xµ0(dx) < +∞ and since an invariant

distribution (extracted thanks to Theorem 3.1) also satisfies
∫

X V (x)Π∗
Xµ⋆(dx) < +∞, we get that

E(V (X i
0)) <∞ for i = 1, 2. Hence, we can set τ0 = 0.

Proof. By (H1), there exist γ ∈ (0, 1) and C > 0 such that for all n > 0 and for i = 1, 2 we have

V (X i
n+1) 6 γV (X i

n) + C(1 + |∆i
n+1|).

By applying this inequality at time n = τj − 1, and by induction, we immediately get:

V (X i
τj ) 6 γ∆τjV (X i

τj−1
) + C

∆τj∑

l=1

γ∆τj−l(1 + |∆i
τj−1+l|). (6.15)

By assumption ∆τj >
log(δ1/2)
log(γ) then γ∆τj 6 δ1

2 . Moreover, since Ej ⊂ Ej−1 and P(Ej|Ej−1) > δ1, we get

E[V (X i
τj−1

) |Ej ] =
1

P(Ej)
E[V (X i

τj−1
)1Ej ] 6

P(Ej−1)

P(Ej)
︸ ︷︷ ︸

=P(Ej|Ej−1)−1

E[V (X i
τj−1

) |Ej−1]

6 δ−1
1 E[V (X i

τj−1
) |Ej−1]

therefore

E[γ∆τjV (X i
τj−1

) |Ej ] 6
δ1
2
δ−1
1 E[V (X i

τj−1
) |Ej−1] =

1

2
E[V (X i

τj−1
) |Ej−1].

Hence, by taking (6.15), we have

E[V (X i
τj ) |Ej ] 6

1

2
E[V (X i

τj−1
) |Ej−1] + C

+∞∑

l=0

γl + C E





∆τj∑

l=1

γ∆τj−l|∆i
τj−1+l|

∣
∣
∣
∣
∣
∣

Ej





=
1

2
E[V (X i

τj−1
) |Ej−1] +

C

1− γ
+ C E





∆τj∑

l=1

γ∆τj−l|∆i
τj−1+l|

∣
∣
∣
∣
∣
∣

Ej



 .

Hypothesis (H′
1) allows us to say

E[V (X i
τj) |Ej ] 6

1

2
E[V (X i

τj−1
) |Ej−1] + C

(
1

1− γ
+ Cγ

)

.

By induction, we get the existence of a constant C̃γ > 0 such that

E[V (X i
τj ) |Ej ] 6

(
1

2

)j

E[V (X i
τ0) |E0] + C̃γ .

since P(E0) = 1, we get

E[V (X i
τj ) |Ej ] 6

(
1

2

)j

E[V (X i
τ0)] + C̃γ .

Since τ0 = 0 and we assumed that E[V (X i
0)] <∞, the proof is over.

It remains now to prove (H′
1) to get the first part of (6.12). The second part will be deduced from the

proof of (H′
1) thanks to Remark 6.2.
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6.3 Proof of hypothesis (H′

1)

We recall that we want to prove that under (Hpoly), the following hypothesis is true:

(H′
1): Let γ ∈ (0, 1). There exists Cγ > 0 such that for all j ∈ N, for every K > 0 and for i = 1, 2,

E





∆τj∑

l=1

γ∆τj−l|∆i
τj−1+l|

∣
∣
∣
∣
∣
∣

Ej



 < Cγ

where ∆τj := τj − τj−1 and ∆i is the stationary Gaussian sequence defined by (2.2).

Remark 6.2. Since the proof of this assumption will exclusively use the domination assumption on
(ak)k>0 and since (ãk)k>0 := (ak+1)k>0 satisfies the same domination assumption, we will also get that
for i = 1, 2,

E





∆τj∑

l=1

γ∆τj−l|∆̃i
τj−1+l|

∣
∣
∣
∣
∣
∣

Ej



 < Cγ

where ∆̃i
τj−1+l

=
∑+∞

k=0 ak+1ξ
i
τj−1+l−k

. Hence, we will get that for i = 1, 2

E

[

|∆̃i
τj |
∣
∣
∣ Ej
]

= E

[∣
∣
∣
∣
∣

+∞∑

k=0

ak+1ξ
i
τj−k

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
Ej
]

< Cγ .

Then, by the Markov inequality we finally get the second part of (6.12).

We now turn to the proof of (H′
1). We work on the set Ej = {τj < +∞}. We have

∆τj∑

l=1

γ∆τj−l|∆i
τj−1+l| =

τj∑

u=τj−1+1

γτj−u|∆i
u|.

But,

|∆i
u| =

∣
∣
∣
∣
∣

k=u∑

−∞

au−kξ
i
k

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

j
∑

m=0

Λim(u)

∣
∣
∣
∣
∣
.

where

Λim(u) =

τm∑

k=τm−1+1

au−kξ
i
k pour m ∈ {1, . . . , j − 1}, (6.16)

Λi0(u) =

k=τ0∑

−∞

au−kξ
i
k et Λij(u) =

u∑

k=τj−1+1

au−kξ
i
k. (6.17)

With these notations, we get the following upper-bound

∆τj∑

l=1

γ∆τj−l|∆i
τj−1+l| 6

j
∑

m=0

τj∑

u=τj−1+1

γτj−u|Λim(u)|. (6.18)

The goal of the following lemmas is to get an upper-bound of the quantity E[ sup
u∈Jτj−1+1,τjK

|Λim(u)| |Ej ]

when m ∈ {0, . . . , j − 1}.
Lemma 6.1. Assume (Hpoly). Let t0, t1 ∈ Z and u ∈ N such that t0 < t1 < u. Let (ξk)k∈Z be a sequence
with values in R

d. Then,
∣
∣
∣
∣
∣

t1∑

k=t0

au−kξk

∣
∣
∣
∣
∣
6 Cρ(u+ 1− t0)

−ρ

∣
∣
∣
∣
∣

t1∑

k=t0

ξk

∣
∣
∣
∣
∣
+ Cκ

t1−t0∑

k=1

∣
∣
∣
∣
∣

t1∑

l=k+t0

ξl

∣
∣
∣
∣
∣
(u+ 1− t0 − k)−κ

6 Cρ(u+ 1− t0)
−ρ

∣
∣
∣
∣
∣

t1∑

k=t0

ξk

∣
∣
∣
∣
∣
+ Cκ

t1−t0∑

k=1

∣
∣
∣
∣
∣

t1∑

l=k+t0

ξl

∣
∣
∣
∣
∣
(u+ 1− t0 − k)−(ρ+1).
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Remark 6.3. The last inequality just follows from the fact that κ > ρ+ 1 by assumption.

Proof. The proof is essentially based on a summation by parts argument. We set

t1∑

k=t0

au−kξk =

t1−t0∑

k=0

au−t0−k
︸ ︷︷ ︸

=:a′k

ξt0+k
︸ ︷︷ ︸

=:ξ′k

and

B̃k :=

t1−t0∑

l=k

ξ′l for k ∈ J0, t1 − t0K.

We then have

t1−t0∑

k=0

a′kξ
′
k =

t1−t0−1∑

k=0

a′k(B̃k − B̃k+1) + a′t1−t0ξ
′
t1−t0

=

t1−t0∑

k=0

a′kB̃k −
t1−t0∑

k=1

a′k−1B̃k

= a′0B̃0 +

t1−t0∑

k=1

(a′k − a′k−1)B̃k

t1−t0∑

k=0

a′kξ
′
k = au−t0

(
t1∑

k=t0

ξk

)

+

t1−t0∑

k=1

(
t1∑

l=k+t0

ξl

)

[au−t0−k − au−t0−(k−1)].

Finally, by using triangular inequality and (Hpoly) we deduce that

∣
∣
∣
∣
∣

t1∑

k=t0

au−kξk

∣
∣
∣
∣
∣
6 Cρ(u+ 1− t0)

−ρ

∣
∣
∣
∣
∣

t1∑

k=t0

ξk

∣
∣
∣
∣
∣
+ Cκ

t1−t0∑

k=1

∣
∣
∣
∣
∣

t1∑

l=k+t0

ξl

∣
∣
∣
∣
∣
(u+ 1− t0 − k)−κ.

In the next lemma we adopt the convention
∑

∅ = 1. Moreover, recall that by Proposition 6.1, we have
for every j ∈ N

∗, ∆τj > ςj for an arbitrary ς > 1.

Lemma 6.2. Assume (Hpoly). We suppose that τ0 = 0 and that there exists δ1 ∈ (0, 1) such that for all
m > 1 and K > 0, P(Em|Em−1) > δ1. Then, for i = 1, 2, for all p > 1 and for every ε ∈ (0, ρ − 1/2),
there exists C > 0 such that for all j > 1, m ∈ {0, . . . , j − 1} and K > 0,

E[ sup
u∈Jτj−1+1,τjK

|Λim(u)| |Ej ] 6 C

(
∑j−1
l=m+1 ς

l
)1/2−ρ+ε

δ
j−m

p

1

. (6.19)

Consequently, there exist η ∈ (0, 1) and C > 0 such that for all j > 1 and m ∈ {0, . . . , j − 1},

E[ sup
u∈Jτj−1+1,τjK

|Λim(u)| |Ej ] 6 Cη j−m. (6.20)

Proof. First of all, let us prove that (6.19) induces (6.20). Let α1 ∈ (0,+∞) such that ς = δ−α1
1 . One

just have to remark that for j > 2 and m ∈ {1, . . . , j − 2},
(

j−1
∑

l=m+1

ς l

)1/2−ρ+ε

δ
m−j

p

1 6 δ
(α1(ρ−1/2−ε)−1/p)(j−m)
1
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We choose for instance ε = 1
2 (ρ− 1/2) and p > 2

α1(ρ−1/2) in such a way that

α1(ρ− 1/2− ε)− 1/p > 0.

We then deduce (6.20).
Now, it remains to show (6.19). For clarity, we set

Ej := Jτj−1 + 1, τjK.

Using that for m > 1, Em ⊂ Em−1 and P(Em|Em−1) > δ1 ∈ (0, 1) and Hölder inequality we deduce the
following inequalities,

E[ sup
u∈Ej

|Λim(u)| |Ej ] 6 E[ sup
u∈Ej

|Λim(u)|p |Ej]1/p =
(

E[ sup
u∈Ej

|Λim(u)|p1Ej ]
1

P(Ej)

)1/p

6

(

E[ sup
u∈Ej

|Λim(u)|p1Ej−1 ]
1

P(Ej)

)1/p

=

(

E[ sup
u∈Ej

|Λim(u)|p |Ej−1]
P(Ej−1)

P(Ej)

)1/p

6 δ
−1/p
1 E[ sup

u∈Ej

|Λim(u)|p |Ej−1]
1/p

6 (δ−1
1 )

j−m
p E[ sup

u∈Ej

|Λim(u)|p |Em]1/p (by induction).

It remains to prove the existence of C such that for all j > 1, m ∈ {0, . . . , j − 1} and K > 0,

E[ sup
u∈Ej

|Λim(u)|p |Em]1/p 6 C

(
j−1
∑

l=m+1

ς l

)1/2−ρ+ε

with again the convention
∑

∅ = 1. We separate the end of the proof into three cases.

Case 1: j > 3 and m ∈ {1, . . . , j − 2}.
By Lemma 6.1, applied with t0 = τm−1 + 1 and t1 = τm

|Λim(u)| 6 Cρ(u− τm−1)
−ρ

∣
∣
∣
∣
∣
∣

τm∑

k=τm−1+1

ξik

∣
∣
∣
∣
∣
∣

+ Cκ

τm−τm−1−1
∑

k=1

∣
∣
∣
∣
∣
∣

τm∑

l=k+τm−1+1

ξil

∣
∣
∣
∣
∣
∣

(u− τm−1 − k)−(ρ+1).

But, u− τm−1 > τj−1 − τm−1 >
∑j−1

l=m+1 ς
l and u− τm−1 − k > τj−1 − τm + 1 >

∑j−1
l=m+1 ς

l.
Let ε ∈ (0, ρ− 1/2), we then have

|Λim(u)| 6
(

j−1
∑

l=m+1

ς l

)1/2−ρ+ε


Cρ(u− τm−1)
−(1/2+ε)

∣
∣
∣
∣
∣
∣

τm∑

k=τm−1+1

ξik

∣
∣
∣
∣
∣
∣

+Cκ

τm−τm−1−1
∑

k=1

∣
∣
∣
∣
∣
∣

τm∑

l=k+τm−1+1

ξil

∣
∣
∣
∣
∣
∣

(u − τm−1 − k)−(3/2+ε)



 .

We denote by Λ̃im(u) the above quantity between brackets. Hence

E[ sup
u∈Ej

|Λim(u)|p |Em]1/p 6

(
j−1
∑

l=m+1

ς l

)1/2−ρ+ε

E[ sup
u∈Ej

|Λ̃im(u)|p |Em]1/p.

We now have to prove the existence of C such that

E[ sup
u∈Ej

|Λ̃im(u)|p |Em]1/p 6 C for all p ∈ (1,+∞).
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We write Em = ∪ℓ>0Am,ℓ with
Am,ℓ = Bcm,ℓ ∩ Bm,ℓ−1 (6.21)

where Bm,ℓ is defined in (5.18). In other words, Am,0 is the failure of Step 1 of tentative m and for ℓ > 1,
Am,ℓ is the event “Step 2 of trial m fails after exactly ℓ attempts”.

Let ℓ ∈ N, we begin by studying E[ sup
u∈Ej

|Λ̃im(u)|p |Am,ℓ]
1/p. Since u > τm,

|Λ̃im(u)| 6 Cρ(∆τm)−(1/2+ε)

∣
∣
∣
∣
∣
∣

τm−1+∆τm∑

k=τm−1+1

ξik

∣
∣
∣
∣
∣
∣

+ Cκ

∆τm−1∑

k=1

∣
∣
∣
∣
∣
∣

τm−1+∆τm∑

l=k+τm−1+1

ξil

∣
∣
∣
∣
∣
∣

(∆τm − k)−(3/2+ε).

By Minkowski inequality and the fact that ∆τm =: ∆(m, ℓ) is constant on Am,ℓ, we get

E[ sup
u∈Ej

|Λ̃im(u)|p |Am,ℓ]
1/p

6 Cρ(∆(m, ℓ))−(1/2+ε)
E





∣
∣
∣
∣
∣
∣

τm−1+∆(m,ℓ)
∑

k=τm−1+1

ξik

∣
∣
∣
∣
∣
∣

p

|Am,ℓ





1/p

+ Cκ

∆(m,ℓ)−1
∑

k=1

(∆(m, ℓ)− k)−(3/2+ε)
E





∣
∣
∣
∣
∣
∣

τm−1+∆(m,ℓ)
∑

l=k+τm−1+1

ξil

∣
∣
∣
∣
∣
∣

p

|Am,ℓ





1/p

.

(6.22)

Moreover, using Cauchy-Schwarz inequality,

E





∣
∣
∣
∣
∣
∣

τm−1+∆(m,ℓ)
∑

k=τm−1+1

ξik

∣
∣
∣
∣
∣
∣

p

|Am,ℓ





1/p

= E





∣
∣
∣
∣
∣
∣

τm−1+∆(m,ℓ)
∑

k=τm−1+1

ξik

∣
∣
∣
∣
∣
∣

p

1Am,ℓ
|Em−1





1/p

P(Am,ℓ|Em−1)
−1/p

6 E










τm−1+∆(m,ℓ)
∑

k=τm−1+1

ξik





2p

|Em−1






1/2p

P(Am,ℓ|Em−1)
−1/2p

6 cp
√

∆(m, ℓ) P(Am,ℓ|Em−1)
−1/2p. (6.23)

In the last inequality we use the fact that
∑τm−1+∆(m,ℓ)

k=τm−1+1 ξik is independent from Em−1 and that its law is

N (0,∆(m, ℓ)). In the same way, we obtain

E





∣
∣
∣
∣
∣
∣

τm−1+∆(m,ℓ)
∑

l=k+τm−1+1

ξil

∣
∣
∣
∣
∣
∣

p

|Am,ℓ





1/p

6 cp
√

∆(m, ℓ)− k P(Am,ℓ|Em−1)
−1/2p. (6.24)

We deduce from (6.23) and (6.24) that in (6.22)

E[ sup
u∈Ej

|Λ̃im(u)|p |Am,ℓ]
1/p

6



cpCρ(∆(m, ℓ))−ε + cpCκ

∆(m,ℓ)−1
∑

k=1

(∆(m, ℓ)− k)−(1+ε)



P(Am,ℓ|Em−1)
−1/2p

6 Cp,εP(Am,ℓ|Em−1)
−1/2p. (6.25)
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Then by using the inequality (a+ b)1/p 6 a1/p + b1/p for p > 1 and (6.25) for ℓ from 0 to +∞, we get

E[ sup
u∈Ej

|Λ̃im(u)|p |Em]1/p =




∑

ℓ>0

E[ sup
u∈Ej

|Λ̃im(u)|p |Am,ℓ]P(Am,ℓ|Em)





1/p

6
∑

ℓ>0

E[ sup
u∈Ej

|Λ̃im(u)|p |Am,ℓ]
1/p

P(Am,ℓ|Em)1/p

6 Cp,ε
∑

ℓ>0

P(Am,ℓ|Em−1)
−1/2p

(
P(Am,ℓ|Em−1)

P(Em|Em−1)

)1/p

6 Cp,εδ
−1/p
1

∑

ℓ>0

P(Am,ℓ|Em−1)
1/2p.

But Am,ℓ ⊂ Em ⊂ Em−1 hence for ℓ > 0,

P(Am,ℓ|Em−1) = P(Bm,ℓ−1|Em−1)P(Bcm,ℓ|Bm,ℓ−1) 6 P(Bcm,ℓ|Bm,ℓ−1),

Therefore, for all ε ∈ (0, ρ− 1/2) and p ∈ (1,+∞), by applying Lemma 5.2, this gives us the existence of
C such that

E[ sup
u∈Ej

|Λ̃im(u)|p |Em]1/p 6 Cp,εδ
−1/p
1 (2 +

∑

ℓ>2

2−α̃ℓ/2p) < C.

The first case is now achieved.

Case 2: Let j > 2 and m = j − 1.
The proof is almost exactly the same as in case 1. We simply use the following controls

u− τj−2 > ∆τj−1 and u− τj−2 − k > ∆τj−1 − k

and we do not introduce ε which is useless here since
∑j−1
l=m+1 =

∑

∅.

Case 3: Let j > 1 and m = 0. By assumption τ0 = 0, then

Λi0(u) =

k=0∑

−∞

au−kξ
i
k.

By Lemma 6.1, for all M > 0,

|
k=0∑

−M

au−kξ
i
k| 6 Cρ(u+ 1 +M)−ρ

∣
∣
∣
∣
∣

0∑

k=−M

ξik

∣
∣
∣
∣
∣
+ Cκ

M∑

k=1

∣
∣
∣
∣
∣

0∑

l=k−M

ξil

∣
∣
∣
∣
∣
(u+ 1 +M − k)−(ρ+1)

6 Cρ(1 +M)−ρ

∣
∣
∣
∣
∣

0∑

k=−M

ξik

∣
∣
∣
∣
∣
+ Cκ

M∑

k=1

∣
∣
∣
∣
∣

0∑

l=k−M

ξil

∣
∣
∣
∣
∣
(M + 1− k)−(ρ+1)

= Cρ(1 +M)−ρ

∣
∣
∣
∣
∣

0∑

k=−M

ξik

∣
∣
∣
∣
∣
+ Cκ

M−1∑

k=0

∣
∣
∣
∣
∣

0∑

l=−k

ξil

∣
∣
∣
∣
∣
(k + 1)−(ρ+1)

= Cρ(1 +M)−ρ

∣
∣
∣
∣
∣

M∑

k=0

ξi−k

∣
∣
∣
∣
∣
+ Cκ

M−1∑

k=0

∣
∣
∣
∣
∣

k∑

l=0

ξi−l

∣
∣
∣
∣
∣
(k + 1)−(ρ+1).

Since ρ > 1/2, by means of Borel-Cantelli Lemma and the fact that
∑M
k=0 ξ

i
−k ∼ N (0,M + 1), we can

show that lim
M→+∞

(1 +M)−ρ
(
∑M

k=0 ξ
i
−k

)

= 0 a.s.

We then get

|Λi0(u)| 6 Cκ

+∞∑

k=0

∣
∣
∣
∣
∣

k∑

l=0

ξi−l

∣
∣
∣
∣
∣
(k + 1)−(ρ+1).

33



Set W i
k =

∑k−1
l=0 ξ

i
−l for k > 0 and W i

0 = ξi0. Using Minkowski inequality, we have for all p ∈ (1,+∞) and
for all ε ∈ (0, ρ− 1/2)

E[ sup
u∈Ej

|Λi0(u)|p |E0]1/p = E[ sup
u∈Ej

|Λi0(u)|p]1/p 6 Cκ

+∞∑

k=0

(k + 1)−(ρ+1/2−ε)
E

[(

|W i
k+1|

(k + 1)1/2+ε

)p ]1/p

6 CκE

[(

sup
k>0

|W i
k+1|

(k + 1)1/2+ε

)p ] 1
p +∞∑

k=0

(k + 1)−(ρ+1/2−ε)

6 CE

[(

sup
k>0

|W i
k+1|

(k + 1)1/2+ε

)p ] 1
p

because ρ+ 1/2− ε > 1. It remains to prove that for ε ∈ (0, ρ− 1/2) and for p ∈ (1,+∞)

E

[(

sup
k>0

|W i
k+1|

(k + 1)1/2+ε

)p ] 1
p

< +∞.

Thanks to a summation by parts, we can show that

W i
k+1

(k + 1)1/2+ε
=

k∑

l=0

ξi−l
(l + 1)1/2+ε

+

k∑

l=1

W i
l

(
1

(l + 1)1/2+ε
− 1

l1/2+ε

)

.

Hence, using that
∣
∣
∣

1
(l+1)1/2+ε − 1

l1/2+ε

∣
∣
∣ 6 (1/2 + ε) 1

l3/2+ε , we get

|W i
k+1|

(k + 1)1/2+ε
6

∣
∣
∣
∣
∣

k∑

l=0

ξi−l
(l + 1)1/2+ε

∣
∣
∣
∣
∣
+ (1/2 + ε)

k∑

l=1

|W i
l |

l3/2+ε
.

Therefore

sup
k>0

|W i
k+1|

(k + 1)1/2+ε
6 sup

k>0

∣
∣
∣
∣
∣

k∑

l=0

ξi−l
(l + 1)1/2+ε

∣
∣
∣
∣
∣
+ (1/2 + ε)

+∞∑

l=1

|W i
l |

l3/2+ε
.

We use again Minkowski inequality, which gives

∥
∥
∥
∥
∥
sup
k>0

|W i
k+1|

(k + 1)1/2+ε

∥
∥
∥
∥
∥
p

6

∥
∥
∥
∥
∥
sup
k>0

∣
∣
∣
∣
∣

k∑

l=0

ξi−l
(l + 1)1/2+ε

∣
∣
∣
∣
∣

∥
∥
∥
∥
∥
p

+ (1/2 + ε)

+∞∑

l=1

‖W i
l ‖p

l3/2+ε
.

On the one hand, we have ‖W i
l ‖p 6 cp

√
l because W i

l ∼ N (0, l). On the other hand, set Nk :=
∑k
l=0

ξi
−l

(l+1)1/2+ε . This is a martingale with distribution N
(

0,
∑k
l=0(l + 1)−(1+2ε)

)

therefore ‖Nk‖p 6 cp

with cp independent from k. Hence, (Nk)k∈N converges a.s. and in Lp into N∞ ∈ Lp. We then deduce
by Doob’s inequality that

‖ sup
k>0

|Nk| ‖p 6
(
p− 1

p

)

‖N∞‖p.

Finalement, ∥
∥
∥
∥
∥
sup
k>0

|W i
k+1|

(k + 1)1/2+ε

∥
∥
∥
∥
∥
p

< +∞.

which achieves the third case.

Proposition 6.4. Assume (Hpoly). We suppose that τ0 = 0 and that for all m > 1 and K > 0,
P(Em|Em−1) > δ1 ∈ (0, 1). Then (H′

1) holds true.
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Proof. First, thanks to (6.18), we have

∆τj∑

l=1

γ∆τj−l|∆i
τj−1+l| 6

j
∑

m=0

τj∑

u=τj−1+1

γτj−u|Λim(u)|.

The aim is to bound every term in the right-hand side. For m ∈ {0, . . . , j − 1} and for all u ∈ Ej :=
Jτj−1 + 1, τjK,

|Λim(u)| 6 sup
u∈Ej

|Λim(u)|.

Since the right-hand side does not depend on u anymore, we deduce that for all m ∈ {0, . . . , j − 1}
τj∑

u=τj−1+1

γτj−u|Λim(u)| 6 sup
u∈Ej

|Λim(u)|
+∞∑

w=0

γw = sup
u∈Ej

|Λim(u)|
1

1− γ
.

Hence, Lemma 6.2, gives that for all m ∈ {0, . . . , j − 1}

E





τj∑

u=τj−1+1

γτj−u|Λim(u)|

∣
∣
∣
∣
∣
∣

Ej



 6
C

1− γ
η j−m

where η ∈ (0, 1). Consequently,

E





j−1
∑

m=0

τj∑

u=τj−1+1

γτj−u|Λim(u)|

∣
∣
∣
∣
∣
∣

Ej



 6
C

(1− γ)(1 − η)
. (6.26)

In inequality (6.18), it then remains to bound the term with Λij(u). By substitution, we obtain for m = j

τj∑

u=τj−1+1

γτj−u|Λij(u)| =
∆τj∑

v=1

γ∆τj−v|Λij(v + τj−1)|.

As in the proof of Lemma 6.2, we use the decomposition of Ej through the events Aj,ℓ and that ∆τj =:
∆(j, ℓ) is constant on Aj,ℓ:

E[

τj∑

u=τj−1+1

γτj−u|Λij(u)| |Ej ] =
∑

ℓ>0

∆(j,ℓ)
∑

v=1

γ∆(j,ℓ)−v
E[|Λij(v + τj−1)| |Aj,ℓ]P(Aj,ℓ|Ej). (6.27)

Using that Aj,ℓ ⊂ Ej ⊂ Ej−1 and Cauchy-Schwarz inequality, one notes that

E[|Λij(v + τj−1)| |Aj,ℓ]P(Aj,ℓ|Ej) 6 E[|Λij(v + τj−1)|2 |Ej ]1/2P(Aj,ℓ|Ej)1/2

6
E[|Λij(v + τj−1)|4 |Ej−1]

1/4

P(Ej |Ej−1)1/4
P(Aj,ℓ|Ej)1/2

6

sup
v∈N∗

E[|Λij(v + τj−1)|4 |Ej−1]
1/4

P(Ej |Ej−1)1/4
P(Aj,ℓ|Ej)1/2. (6.28)

But P(Ej |Ej−1) > δ1 > 0 and by Lemma 5.2, we have for all ℓ > 2,

P(Aj,ℓ|Ej) =
P(Aj,ℓ|Ej−1)

P(Ej |Ej−1)
6 δ−1

1 P(Bj,ℓ−1|Ej−1)P(Bcj,ℓ|Bj,ℓ−1) 6 δ−1
1 2−α̃ℓ. (6.29)

We now use (6.28) and (6.29) into (6.27) and this gives the existence of Cδ1,γ such that

E[

τj∑

u=τj−1+1

γτj−u|Λij(u)| |Ej ] 6 Cδ1,γ sup
v∈N∗

E[|Λij(v + τj−1)|4 |Ej−1]
1/4. (6.30)
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It only remains to show that

sup
v∈N∗

E[|Λij(v + τj−1)|4 |Ej−1]
1/4 < +∞.

By Lemma 6.1 and the definition of Λij in (6.17),

|Λij(v + τj−1)| =

∣
∣
∣
∣
∣
∣

v+τj−1∑

k=τj−1+1

av+τj−1−kξ
i
k

∣
∣
∣
∣
∣
∣

6 Cρv
−ρ

∣
∣
∣
∣
∣
∣

v+τj−1∑

k=τj−1+1

ξik

∣
∣
∣
∣
∣
∣

+ Cκ

v−1∑

k=1

∣
∣
∣
∣
∣
∣

v+τj−1∑

l=k+τj−1+1

ξil

∣
∣
∣
∣
∣
∣

(v − k)−(ρ+1).

We again apply Minkowski inequality

E[|Λij(v+τj−1)|4 |Ej−1]
1/4

6 Cρv
−ρ

E






∣
∣
∣
∣
∣
∣

v+τj−1∑

k=τj−1+1

ξik

∣
∣
∣
∣
∣
∣

4
∣
∣
∣
∣
∣
∣
∣

Ej−1






1/4

+ Cκ

v−1∑

k=1

(v − k)−(ρ+1)
E






∣
∣
∣
∣
∣
∣

v+τj−1∑

l=k+τj−1+1

ξil

∣
∣
∣
∣
∣
∣

4
∣
∣
∣
∣
∣
∣
∣

Ej−1






1/4

= Cρv
−ρ

E





∣
∣
∣
∣
∣

v∑

k=1

ξik

∣
∣
∣
∣
∣

4




1/4

+ Cκ

v−1∑

k=1

(v − k)−(ρ+1)
E





∣
∣
∣
∣
∣

v∑

l=k+1

ξil

∣
∣
∣
∣
∣

4




1/4

6 c4

(

Cρv
−ρ+1/2 + Cκ

v−1∑

k=1

(v − k)−(ρ+1/2)

)

where c4 is related to the 4th moment of a centered and reduced Gaussian random variable. Since
ρ+ 1/2 > 1, we immediately deduce that

sup
v∈N∗

E[|Λij(v + τj−1)|4 |Ej−1]
1/4 < +∞. (6.31)

We put together (6.26),(6.30) and (6.31) to conclude the proof of (H′
1).

7 Proof of Theorem 2.1

Now we have all the necessary elements to prove the second part of the main theorem 2.1 concerning the
convergence in total variation to the unique invariant distribution (where the uniqueness will immediately
follow from this convergence).

We recall that ∆τj denotes the duration of coupling trial j and we set

j(s) := inf{j > 0,∆τj = +∞}. (7.1)

j(s) corresponds to the trial where the coupling procedure is successful. The aim of this section is to
bound P(τ∞ > n), where

τ∞ = inf{n > 0 | X1
k = X2

k , ∀k > n},
since

‖L((X1
k)k>n)− Sµ⋆‖TV 6 P(τ∞ > n).

But, we have

P(τ∞ > n) = P

(
+∞∑

k=1

∆τk1{j(s)>k} > n

)
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where j(s) is defined in (7.1). It remains to bound the right term. Let p ∈ (0,+∞).
If p ∈ (0, 1), then by the Markov inequality and the simple inequality |a+ b|p 6 |a|p + |b|p, we get

P

(
+∞∑

k=1

∆τk1{j(s)>k} > n

)

6
1

np

+∞∑

k=1

E[|∆τk|p1{j(s)>k}]

6
1

np

+∞∑

k=1

E[E[|∆τk|p1{∆τk<+∞} | {τk−1 < +∞}]1{τk−1<+∞}]. (7.2)

Else, if p > 1, by Markov inequality and Minkowsi inequality, we have

P

(
+∞∑

k=1

∆τk1{j(s)>k} > n

)

6
1

np
E

[(
+∞∑

k=1

∆τk1{j(s)>k}

)p]

6
1

np

(
+∞∑

k=1

E[|∆τk|p1{j(s)>k}]
1/p

)p

6
1

np

(
+∞∑

k=1

E[E[|∆τk|p1{∆τk<+∞} | {τk−1 < +∞}]1{τk−1<+∞}]
1/p

)p

. (7.3)

We recall that the event Ak,ℓ defined in (6.21) corresponds to the failure of Step 2 after ℓ attempts at
trial k. Both in (7.2) and (7.3), we separate the term E[|∆τk|p1{∆τk<+∞} | {τk−1 < +∞}] through the
events Ak,ℓ which gives

E[|∆τk|p1{∆τk<+∞} | {τk−1 < +∞}] =
+∞∑

ℓ=1

E[1Ak,ℓ
|∆τk|p1{∆τk<+∞} | {τk−1 < +∞}]. (7.4)

Moreover, thanks to Lemma 5.2 and the definition of the events Ak,ℓ, we deduce that for ℓ > 2,

P(Ak,ℓ | {τk−1 < +∞}) 6 2−α̃ℓ (7.5)

where α̃ :=

{
min{α, β, α+ β − 1} − 1/2− ε for all ε > 0 under (Hpoly)

min(α, µ) under (Hexp).

We have now to distinguish the polynomial case from the exponantial one.

⊲ Under (Hpoly):

We have a bound of type ∆τk 6 C1ς
k2θℓ (due to the value of ∆t

(k)
3 , see Proposition 6.1) on the event

Ak,ℓ where ς > 1 is arbitrary. Indeed, on Ak,ℓ, we have

∆τk = τk − τk−1 6 c22
ℓ+1 +∆t

(k)
3

= c22
ℓ+1 + t∗ς

k2θℓ

6 C1ς
k2(θ∨1)ℓ (for C1 large enough.)

Hence, in (7.4) we get

E[|∆τk|p1{∆τk<+∞} | {τk−1 < +∞}] 6 Cp1 ς
kp

(
+∞∑

ℓ=1

2(θ∨1)pℓ
P(Ak,ℓ | {τk−1 < +∞})

)

6 Cp1 ς
kp

(

2(θ∨1)p +
+∞∑

ℓ=2

2((θ∨1)p−α̃)ℓ

)

using (7.5)

6 Cςkp if p ∈
(

0,
α̃

θ ∨ 1

)

.
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Then for p ∈
(
0, α̃

θ∨1

)
,

E[E[|∆τk |p1{∆τk<+∞} | {τk−1 < +∞}]1{τk−1<+∞}] 6 CςkpP(j(s) > k − 1) (7.6)

and it remains to control P(j(s) > k − 1). We have

P(j(s) > k − 1) =

k−1∏

j=1

P(Ej |Ej−1) =

k−1∏

j=1

(1 − P(Ecj |Ej−1))

where Ej is defined in (6.10). By Proposition 5.1 and 6.2 applied for ε = 1/2, we get for every j > 2,

P(Ecj |Ej−1) > P(∆τj = +∞|ΩK1/2,α,τj−1)P(ΩK1/2,α,τj−1 |Ej−1) >
δ0
2

where δ0 > 0 depends on K1/2. Therefore,

P(j(s) > k − 1) 6

(

1− δ0
2

)k−1

and by (7.6)

E[E[|∆τk|p1{∆τk<+∞} | {τk−1 < +∞}]1{τk−1<+∞}] 6 Cςkp
(

1− δ0
2

)k−1

. (7.7)

Finally, by choosing 1 < ς <
(
1− δ0

2

)−1/p
, we get using (7.2) or (7.3) that for all p ∈

(
0, α̃

θ∨1

)
, there

exists Cp > 0 such that

P(τ∞ > n) 6 P

(
+∞∑

k=1

∆τk1{j(s)>k} > n

)

6 Cpn
−p. (7.8)

It remains to optimize the upper-bound α̃
θ∨1 for p. Since α̃ := min{α, β, α+β− 1}− 1/2− ε with ε > 0

as small as necessary and since by Proposition 6.1

θ > (2(ρ− α))−1 and α ∈
(
1

2
∨
(
3

2
− β

)

, ρ

)

,

we finally get (7.8) for all p ∈ (0, v(β, ρ)) where

v(β, ρ) = sup
α∈( 1

2∨(
3
2−β),ρ)

min{1, 2(ρ− α)}(min{α, β, α+ β − 1} − 1/2)

which concludes the proof of Theorem 2.1 in the polynomial case.

⊲ Under (Hexp):

The proof is almost the same. The only differences are that we use the following bound

∆τk = τk − τk−1 6 c2(ℓ + 1) + ∆t
(k)
3

= c2(ℓ + 1) + t∗ + ςk + θℓ

6 C1ς
kθℓ (for C1 large enough)

on the events Ak,ℓ and the upperbound P(Ak,ℓ | {τk−1 < +∞}) 6 2−α̃ℓ given in (7.5). And then we get
for all p > 0 the existence of Cp > 0 such that

P(τ∞ > n) 6 P

(
+∞∑

k=1

∆τk1{j(s)>k} > n

)

6 Cpn
−p. (7.9)

by choosing 1 < ς <
(
1− δ0

2

)−1/p
and the proof of Theorem 2.1 is over.
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A Explicit formula for the sequence (bk)k>0

Theorem A.1. Let (un)n∈N and (vn)n∈N be two sequences such that for n ∈ N,

un =

n∑

k=0

akvn−k (A.1)

then we have:

vn =

n∑

k=0

bkun−k (A.2)

where

b0 :=
1

a0
and ∀k > 1, bk :=

k∑

p=1

(−1)p

ap+1
0







∑

k1,...,kp>1
k1+···+kp=k

p
∏

i=1

aki






.

Proof. It sufficies to reverse a triangular Toeplitz matrix. Indeed, equation (A.1) is equivalent to:

∀n ∈ N,








f0
f1
...
fn








=









a0 0 . . . 0

a1
. . .

. . .
...

...
. . .

. . . 0
an−1 . . . a1 a0
















g0
g1
...
gn







. (A.3)

Denote by A the matrix asociated to the system. Denote by N the following nilpotent matrix:

N =









0 . . . . . . 0

1
. . .

...
. . .

. . .
...

(0) 1 0









.

Then, A = a0In + a1N + · · ·+ an−1N
n−1 and we are looking for B such that

B = b0In + b1N + · · ·+ bn−1N
n−1 and AB = In. Denote by

S(z) =
∑

k>0

akz
k and S−1(z) =

∑

k>0

bkz
k,

we are interested in the (n− 1) first coefficients of S−1(z).
And formally,

S−1(z) =
1

S(z)
=

1

a0

(

1

1 +
∑

k>1
ak
a0
zk

)

=
1

a0

∑

p>0

(−1)p

ap0




∑

k>1

akz
k





p

=
1

a0
+
∑

p>1

(−1)p

ap+1
0

∑

k>p







∑

k1,...,kp>1
k1+···+kp=k

ak1ak2 . . . akp






zk

=
1

a0
+
∑

k>1

k∑

p=1







(−1)p

ap+1
0

∑

k1,...,kp>1
k1+···+kp=k

ak1ak2 . . . akp






zk.

Finally, we identify the desired coefficients.
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B Particular case: when (ak)k>0 is log-convex

This section is based on a work made by N.Ford, D.V.Savostyanov et N.L.Zamarashkin in [12].

Lemma B.1. Let (an)n∈N be a log-convex sequence in the following sense

an > 0 for n > 0 and a2n 6 an−1an+1 for n > 1.

If a0 > 0, then the sequence (bn)n∈N defined by

b0 =
1

a0
et ∀n > 1, bn = − 1

a0

n∑

k=1

akbn−k

satisfies
∀n > 1, bn 6 0 et |bn| 6 b0an (B.1)

Remark B.1. The sequence an = (n+ 1)−ρ is log-convex for all ρ > 0, then the corresponding (bn)n∈N

is such that ∀n ∈ N, |bn| 6 (n+ 1)−ρ.

Proof. Without loss of generality, we assume that a0 = 1.
• We first prove by strong induction on n > 1 the following property:

(Pn) : bn 6 0

- For n = 1: We have

b1 = −a1
a0

6 0

- Heredity: Let n > 1 and assume that Pk is true for k ∈ J1, nK.
For all n > 1:

bn = −
n∑

k=1

akbn−k =⇒
n∑

k=0

akbn−k = 0

=⇒
n∑

k=0

an−kbk = 0

=⇒ an = −
n∑

k=1

an−kbk

We divide the last equality by an−1 and we deduce the two following equalities:

− an
an−1

=

n∑

k=1

an−k
an−1

bk (B.2)

−an+1

an
=

n+1∑

k=1

an+1−k

an
bk (B.3)

We make (B.3) − (B.2) and we get

(
an
an−1

− an+1

an

)

=
n∑

k=1

(
an+1−k

an
− an−k
an−1

)

bk +
bn+1

an

then
bn+1

an
=

(
an
an−1

− an+1

an

)

︸ ︷︷ ︸

60 by
log-convexity of (an)

−
n∑

k=1

(
an+1−k

an
− an−k
an−1

)

︸ ︷︷ ︸

(∗)

bk
︸︷︷︸

60
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But, (∗) have the same sign as

an+1−k

an−k
− an
an−1

=

(
an+1−k

an−k
− an+2−k

an+1−k

)

+

(
an+2−k

an+1−k
− an+3−k

an+2−k

)

+ · · ·+
(
an−1

an−2
− an
an−1

)

6 0

where every term is negative by log-convexity of (an).
We finally deduce that

bn+1 6 0.

- Conclusion: Property Pn is shown for all n > 1.

• The second property satisfied by (bn) directly follows from the first one. Let n > 1, as we just saw
bn 6 0 therefore |bn| = −bn. But,

−bn =

n−1∑

k=1

ak(bn−k
︸︷︷︸

60

) + anb0

6 b0an

and the lemma is proven.

C Proof of Theorem 3.1

Let x0 ∈ X and µ = δx0 × Pw. We have Π∗
Wµ = Pw therefore by property 3.1 we get ∀k ∈ N,

Π∗
W(Qkµ) = Pw. Moreover, we clearly have

∫

X
ψ(x)(Π∗

Xµ)(dx) = ψ(x0) < +∞.
We now set for all n ∈ N

∗,

Rnµ =
1

n

n−1∑

k=0

Qkµ.

The aim is to prove that the sequence (Rnµ)n∈N∗ is tight. First, let us prove that (Π∗
XRnµ)n∈N∗ is tight.

By (ii) of Definition 3.2, we have ∀k > 0:

∫

X×W

ψ(x)Qk+1µ(dx, dw) − α

∫

X

ψ(x)(Π∗
XQkµ)(dx) 6 β.

By adding for k from 0 to n− 1, dividing by n and reordering the terms, we get:

(1 − α)

∫

X

ψ(x)(Π∗
XRnµ)(dx)

+
1

n

n−1∑

k=0

(∫

X×W

ψ(x)Qkµ(dx, dw) −
∫

X

ψ(x)(Π∗
XQkµ)(dx)

)

+
1

n

∫

X×W

ψ(x)Qn+1µ(dx, dw) − 1

n

∫

X

ψ(x)(Π∗
Xµ)(dx) 6 β. (C.1)

Since we are in a Polish space (here X ×W) we can “disintegrate” Qkµ for all k ∈ {0, . . . , n− 1} (see [1]
for background):

Qkµ(dx, dw) = (Qkµ)x(dw)(Π∗
XQkµ)(dx).

By integrating first with respect to w and then with respect to x, we get:

∫

X×W

ψ(x)Qkµ(dx, dw) −
∫

X

ψ(x)(Π∗
XQkµ)(dx) = 0.
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Let us return to (C.1),

(1− α)

∫

X

ψ(x)(Π∗
XRnµ)(dx) 6 β +

1

n

(∫

X

ψ(x)(Π∗
Xµ)(dx) −

∫

X×W

ψ(x)Qn+1µ(dx, dw)

)

= β +
1

n

∫

X

ψ(x)(Π∗
Xµ−Π∗

X (Qn+1µ))(dx).

Set An+1 =
∫

X ψ(x)(Π
∗
XQn+1µ)(dx). By (ii) of Definition 3.2 and by induction, we have

0 6
An+1

n
6
β

n

n∑

k=0

αk +
αn+1

n
A0 =

β

n

1− αn+1

1− α
+
αn+1

n
ψ(x0).

Hence we deduce that lim
n→+∞

An+1

n = 0. Then, there exists C > 0 such that ∀n ∈ N
∗:

(1− α)

∫

X

ψ(x)(Π∗
XRnµ)(dx) 6 C

and then

sup
n>1

∫

X

ψ(x)(Π∗
XRnµ)(dx) 6

C

1− α
.

Let δ > 0 and Kδ := {x ∈ X | ψ(x) 6 δ} = ψ−1([0, δ]). By (ii) of Definition 3.2, Kδ is a compact set.

For all x ∈ X , we have 1Kc
δ
(x) 6 ψ(x)

δ , so

∀n ∈ N
∗, (Π∗

XRnµ)(K
c
δ ) 6

C

δ(1− α)
.

By setting ε
2 = C

δ(1−α) , we deduce that (Π∗
XRnµ)n∈N∗ is tight.

Let us now go back to the tightness of (Rnµ)n∈N∗ . Let K be a compact set of W such that Pw(K
c) < ε

2 ,
this is possible since W is Polish. We then get

Rnµ((Kδ ×K)c) 6Rnµ(K
c
δ ×W) +Rnµ(X ×Kc)

= (Π∗
XRnµ)(K

c
δ ) + (Π∗

WRnµ)(K
c)

= (Π∗
XRnµ)(K

c
δ ) + (Pw)(K

c)

6
ε

2
+
ε

2
= ε.

Finally, (Rnµ)n∈N∗ is tight. Let µ⋆ be one of its accumulation points. By the Krylov-Bogoliubov criterium
we deduce that µ⋆ is an invariant distribution for Q.

D Proof of Lemma 5.3

Recall that we want to prove that for all α, β > 0 such that α+β > 1, there exists C(α, β) > 0 such that
for all n > 0,

n∑

k=0

(k + 1)−β(n+ 1− k)−α 6 C(α, β)







(n+ 1)−β ln(n) if α = 1 and β 6 1
(n+ 1)−α ln(n) if β = 1 and α 6 1

(n+ 1)−min{α,β,α+β−1} else
. (D.1)
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For the sake of simplicity, we will prove this result when n is odd. If n is even, the proof is almost the
same. Set N := n+1

2 . Then, we get

n∑

k=0

(k + 1)−β(n+ 1− k)−α =

n+1∑

k=1

k−β(n+ 2− k)−α

=

N∑

k=1

k−β(n+ 2− k)−α +

n+1∑

k=N+1

k−β(n+ 2− k)−α

=

N∑

k=1

k−β(n+ 2− k)−α +

N∑

k=1

k−α(n+ 2− k)−β

n∑

k=0

(k + 1)−β(n+ 1− k)−α = SN (β, α) + SN (α, β) (D.2)

by setting SN (α, β) :=
∑N

k=1 k
−α(n+ 2− k)−β =

∑N
k=1 k

−α(2N − (k − 1))−β.

⊲ If α ∈ (0, 1), we have α+ β − 1 6 β and SN (α, β) 6 C̃(α, β)(n + 1)−(α+β−1).
Indeed,

SN (α, β) =

N∑

k=1

k−α(2N − (k − 1))−β

= N−(α+β−1) × 1

N

N∑

k=1

(
k

N

)−α(

2− k − 1

N

)−β

6 N−(α+β−1) × 1

N

N∑

k=1

(
k

N

)−α(

2− k

N

)−β

and

lim
N→+∞

1

N

N∑

k=1

(
k

N

)−α(

2− k

N

)−β

=

∫ 1

0

x−α(2− x)−βdx

where the integral is well defined since α ∈ (0, 1). Therefore, since N = n+1
2 , we deduce that there exists

C̃(α, β) > 0 such that SN (α, β) 6 C̃(α, β)(n + 1)−(α+β−1).

⊲ If α > 1, we have α+ β − 1 > β and SN (α, β) 6 C̃(α, β)(n + 1)−β.
Indeed,

SN(α, β) =

N∑

k=1

k−α(2N − (k − 1))−β

6 (2N − (N − 1))−β
N∑

k=1

k−α

6 (N + 1)−β
+∞∑

k=1

k−α.

Therefore, as before we deduce that there exists C̃(α, β) > 0 such that SN (α, β) 6 C̃(α, β)(n + 1)−β.
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⊲ If α = 1, in the same way as in the case α > 1, we get

SN(α, β) 6 (N + 1)−β
N∑

k=1

1

k

6 C̃(N + 1)−β ln(N)

Therefore, there exists C̃(α, β) > 0 such that SN (α, β) 6 C̃(α, β)(n + 1)−β ln(n).

Finally, we get that for all α > 0 and β > 0 such that α+ β > 1,

SN (α, β) 6 C̃(α, β)

{
(n+ 1)−min{α,β,α+β−1} if α 6= 1
(n+ 1)−β ln(n) if α = 1

(D.3)

Putting this inequality into (D.2) we finally get the desired inequality and the proof is finished.

E Proof of Proposition 2.3

We recall that ρ = 3/2−H where H ∈ (0, 1/2) is the Hurst parameter and (bn)n∈N is defined by

b0 =
1

aH0
et pour n > 1, bn = − 1

aH0

n∑

k=1

aHk bn−k. (E.1)

and for all k > 1,
aHk
aH0

=
(

(2k + 1)
1−ρ − (2k − 1)

1−ρ
)

.

We want to show that |bn| 6 Cb(n+1)−(2−ρ) by induction. To this end we only need to prove that for n
large enough,

Sn :=
n∑

k=1

(

(2k − 1)1−ρ − (2k + 1)1−ρ
)

(n+ 1− k)−(2−ρ)
6 (n+ 1)−(2−ρ). (E.2)

For the sake of simplicity we assume that n is even.

Sn =

n/2
∑

k=1

(

(2k − 1)
1−ρ − (2k + 1)

1−ρ
)

(n+ 1− k)−(2−ρ) +

n∑

k=n/2+1

(

(2k − 1)
1−ρ − (2k + 1)

1−ρ
)

(n+ 1− k)−(2−ρ)

Sn =: S(1)
n + S(2)

n . (E.3)

⊲ We begin with S
(1)
n . Summation by parts:

S(1)
n =

(n

2
+ 1
)−(2−ρ)

(1− (n+ 1)1−ρ)−
n/2−1
∑

k=1

(1− (2k + 1)1−ρ)
(

(n− k)−(2−ρ) − (n+ 1− k)−(2−ρ)
)

=
(n

2
+ 1
)−(2−ρ)

(1− (n+ 1)1−ρ)−
((n

2
+ 1
)−(2−ρ)

− n−(2−ρ)

)

+

n/2−1
∑

k=1

(2k + 1)1−ρ
(

(n− k)−(2−ρ) − (n+ 1− k)−(2−ρ)
)

= n−(2−ρ) −
(n

2
+ 1
)−(2−ρ)

(n+ 1)1−ρ +

n/2−1
∑

k=1

(2k + 1)1−ρ
(

(n− k)−(2−ρ) − (n+ 1− k)−(2−ρ)
)

S(1)
n = n−(2−ρ) −

(n

2

)−(2−ρ)

(n+ 1)1−ρ +

n/2
∑

k=1

(2k + 1)1−ρ
(

(n− k)−(2−ρ) − (n+ 1− k)−(2−ρ)
)

. (E.4)
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We set S̃n :=
∑n/2

k=1(2k + 1)1−ρ
(
(n− k)−(2−ρ) − (n+ 1− k)−(2−ρ)

)
. Then,

S̃n =
1

n

n/2
∑

k=1

(
2k + 1

n

)1−ρ
((

1− k

n

)−(2−ρ)

−
(

1− k − 1

n

)−(2−ρ)
)

=
21−ρ

n

n/2
∑

k=1

(
k + 1/2

n

)1−ρ
((

1− k

n

)−(2−ρ)

−
(

1− k − 1

n

)−(2−ρ)
)

.

Moreover,

n/2
∑

k=1

(
k + 1/2

n

)1−ρ
((

1− k

n

)−(2−ρ)

−
(

1− k − 1

n

)−(2−ρ)
)

= (2− ρ)





∫ 1/2

0

(

x+
1

2n

)1−ρ

(1− x)−(3−ρ)dx−
n/2
∑

k=1

∫ k
n

k−1
n

((

x+
1

2n

)1−ρ

−
(
k + 1/2

n

)1−ρ
)

(1− x)−(3−ρ)dx





(E.5)

and

∫ 1/2

0

(

x+
1

2n

)1−ρ

(1− x)−(3−ρ)dx =

[

(1− x)ρ−2
(
x+ 1

2n

)2−ρ

(2− ρ)
(
1 + 1

2n

)

]1/2

0

=
1

2− ρ

(

1 +
1

2n

)−1
[(

1 +
1

n

)2−ρ

−
(

1

2n

)2−ρ
]

. (E.6)

Hence by putting together (E.5) and (E.6) we get

S̃n =
21−ρ

n

((

1 +
1

2n

)−1
[(

1 +
1

n

)2−ρ

−
(

1

2n

)2−ρ
]

−(2− ρ)

n/2
∑

k=1

∫ k
n

k−1
n

((

x+
1

2n

)1−ρ

−
(
k + 1/2

n

)1−ρ
)

(1− x)−(3−ρ)dx



 . (E.7)

We deduce from (E.4) and (E.7) that

S(1)
n 6 n−(2−ρ) −

(n

2

)−(2−ρ)

(n+ 1)1−ρ +
21−ρ

n

(

1 +
1

2n

)−1
[(

1 +
1

n

)2−ρ

−
(

1

2n

)2−ρ
]

. (E.8)

⊲ Now, we look after S
(2)
n :

As before, using the fact that

∫ 1/2

0

(

1− x+
1

2n

)−ρ

x−(2−ρ)dx =

[(
1− x+ 1

2n

)1−ρ
xρ−1

(ρ− 1)
(
1 + 1

2n

)

]1/2

0

=
1

ρ− 1

(

1 +
1

2n

)−1(

1 +
1

n

)1−ρ

(E.9)
we get

S(2)
n =

21−ρ

n





(

1 +
1

2n

)−1(

1 +
1

n

)1−ρ

− (ρ− 1)

n/2
∑

k=1

∫ k
n

k−1
n

(

x−(2−ρ) −
(
k

n

)−(2−ρ)
)(

1− x+
1

2n

)−ρ

dx



 .

(E.10)
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Now, for all k ∈ {1, . . . , n/2}, we set

Ik :=

∫ k
n

k−1
n

(

x−(2−ρ) −
(
k

n

)−(2−ρ)
)(

1− x+
1

2n

)−ρ

dx.

Thanks to the substitution t = x− k−1
n , we have

Ik =

∫ 1/n

0

((

t+
k − 1

n

)−(2−ρ)

−
(
k

n

)−(2−ρ)
)(

1 +
1

2n
− t− k − 1

n

)−ρ

dt

Taylor-Lagrange expansion:

•
(

t+
k − 1

n

)−(2−ρ)

−
(
k

n

)−(2−ρ)

=

(
1

n
− t

)

(2− ρ)

(
k

n

)−(3−ρ)

+
1

2

(
1

n
− t

)2

(2− ρ)(3− ρ)ξ−(4−ρ)

with ξ ∈]t+ (k − 1)/n, k/n[.

•
(

1 +
1

2n
− t− k − 1

n

)−ρ

=

(

1 +
1

2n
− k − 1

n

)−ρ

+ tρ

(

1 +
1

2n
− c

)−ρ−1

with c ∈](k − 1)/n, t+ (k − 1)/n[.

Therefore, we deduce that

Ik >

∫ 1/n

0

(
1

n
− t

)

(2−ρ)
(
k

n

)−(3−ρ) (

1 +
1

2n
− k − 1

n

)−ρ

dt =
2− ρ

2n2

(
k

n

)−(3−ρ)(

1 +
1

2n
− k − 1

n

)−ρ

.

Then we add the inequality for k from 1 to n/2,

n/2
∑

k=1

Ik >
2− ρ

2n
× 1

n

n/2
∑

k=1

(
k

n

)−(3−ρ)(

1 +
1

2n
− k − 1

n

)−ρ

︸ ︷︷ ︸

Un

. (E.11)

We easily show that

Un >

∫ 1/2

0

(

y +
1

n

)−(3−ρ)(

1 +
3

2n
− y

)−ρ

dy =: Jn. (E.12)

By integration by parts on Jn we get:

Jn =

[

−
(
y + 1

n

)−(2−ρ)

2− ρ

(

1 +
3

2n
− y

)−ρ
]1/2

0

+
ρ

2− ρ

∫ 1/2

0

(

y +
1

n

)−(2−ρ)(

1 +
3

2n
− y

)−ρ−1

dy

=
1

2− ρ

[(
1

n

)−(2−ρ)(

1 +
3

2n

)−ρ

−
(
1

2
+

1

n

)−(2−ρ)(
1

2
+

3

2n

)−ρ
]

︸ ︷︷ ︸

∼
n→+∞

n2−ρ

+
ρ

2− ρ

∫ 1/2

0

(

y +
1

n

)−(2−ρ)(

1 +
3

2n
− y

)−ρ−1

dy

︸ ︷︷ ︸

−→
n→+∞

∫ 1/2
0 y−(2−ρ)(1−y)−ρ−1dy

.

Hence, for n large enough, we have

Un > Jn >
1

2(2− ρ)
n2−ρ (E.13)
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By combining (E.11) and (E.13) we get for n large enough

n/2
∑

k=1

Ik >
1

4
n1−ρ.

Finally we get for S
(2)
n the following upper-bound for n large enough,

S(2)
n 6

21−ρ

n

((

1 +
1

2n

)−1(

1 +
1

n

)1−ρ

− ρ− 1

4
n1−ρ

)

. (E.14)

By putting together (E.8) and (E.14) and when factoring by (n+ 1)−(2−ρ), we get for Sn

Sn 6 (n+ 1)−(2−ρ)

(

1− 1

n

)−(2−ρ)

× un (E.15)

with

un = 1− 22−ρ(n+ 1)1−ρ

+ 21−ρn1−ρ

[(

1 +
1

2n

)−1
((

1 +
1

n

)2−ρ

−
(

1

2n

)2−ρ
)

+

(

1 +
1

2n

)−1(

1 +
1

n

)1−ρ

− ρ− 1

4
n1−ρ

]

Lastly, we have the following asymptotic expansion:

(

1− 1

n

)−(2−ρ)

× un = 1− 21−ρ(ρ− 1)

4
n2−2ρ + o

(
1

n

)

Since ρ ∈ (1, 3/2) we have 2− 2ρ ∈ (−1, 0) therefore for n large enough we conclude that

Sn 6 (n+ 1)−(2−ρ).
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