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Rate of convergence to equilibrium for discrete-time stochastic

dynamics with memory

Maylis Varvenne∗

September 15, 2017

Abstract

The main objective of the paper is to study the long-time behavior of general discrete dynamics
driven by ergodic stationary Gaussian noise. To this end, we first explain how is it possible to define
invariant distributions in this generally non-Markovian setting and to get existence results under
appropriate conditions. Then, we get a uniqueness result and a rate of convergence to the invariant
distribution in total variation thanks to a coupling procedure (with a step specific to non-Markovian
framework).

Keywords: Discrete stochastic dynamics; Stationary Gaussian noise; Rate of convergence to equilibrium;
Total variation distance; Lyapunov function; Toeplitz operator.

1 Introduction

Convergence to equilibrium for Stochastic dynamics is one of the most natural and most studied problems
in probability theory. Regarding Markov processes, this topic has been deeply undertaken through various
approaches: spectral analysis, functional inequalities or coupling methods. However, in many applications
(Physics, Biology, Finance...) the future evolution of a quantity may depend on its own history, and thus,
noise with independent increments does not accurately reflect reality. A classical way to overcome this
problem is to consider dynamical systems driven by processes with stationary increments like fractional
Brownian motion for instance. In a continuous time framework, Stochastic Differential Equations (SDEs)
driven by Gaussian processes with stationary increments have been introduced to model random evolution
phenomena with long range dependence properties. Consider SDEs of the following form

dXt = b(Xt) + σ(Xt)dZt (1.1)

where (Zt)t>0 is a Gaussian process with ergodic stationary increments and σ : Rd → Md(R), b : R
d → R

d

are functions defined in a such a way that existence of a solution holds. As concerns long-time behavior,
different properties have been studied like approximation of stationary solution in [8] or the rate of
convergence to an equilibrium distribution. For this last property, the case when (Zt)t>0 is fractional
Brownian motion (fBm) has received significant attention from Hairer [14], Fontbona and Panloup [11],
Deya, Panloup and Tindel [9] over the last decade. They used coalescent coupling strategy to compute
the rate of convergence. In the additive noise setting, Hairer proved that the process converges in total
variation to the stationary regime with a rate upper-bounded by Cεt

−(αH−ε) for any ε > 0, with

αH =

{
1
8 if H ∈ (14 , 1)\

{
1
2

}

H(1− 2H) if H ∈ (0, 1
4 ).

(1.2)

In the multiplicative noise setting, Fontbona and Panloup extended those results under selected assump-
tions on σ to the case where H ∈ (12 , 1) and finally Deya, Panloup and Tindel obtained this type of results
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in the rough setting H ∈ (13 , 1/2). Here, we focus on a general class of recursive discrete dynamics driven
by a stationary sequence which includes in particular discretization of (1.1), that is

Xn+1 = F (Xn,∆n+1) (1.3)

where (∆n)n∈Z is an ergodic stationary Gaussian sequence. This type of discrete stochastic dynamics,
which is not Markovian in general, has not been much discussed except in the linear case like Autoregres-
sive Moving-average (ARMA) models [5] whose main objective is the prediction of stationary processes.
When F is linear, dynamics like (1.3) are truely related to ARMA processes through the so-called Wold’s
decomposition theorem which implies that we can see (∆n)n∈Z as a moving-average of infinite order (see
[5] to get more details).
Here, we investigate the problem of the long-time behavior of (1.3) for a general class of functions F .
To this end, we first explain how is it possible to define invariant distributions in this non-Markovian
setting and to obtain existence results, and then we use a coalescent coupling strategy to get the rate of
convergence to equilibrium of processes following (1.3) under selected assumptions. This discrete time
framework has several advantages. First, it allows us to better target the impact of the memory thanks
to the moving average (MA) representation of the noise process (see (2.2)). The deterministic sequence
defined by the coefficients involved in this representation measures, in a sense, the weight of the past
since the covariance function of (∆n)n∈Z is entirely determined by those coefficients (see Remark 2.1).
Then, one of our motivations to work in this discrete context is to see if the speed of convergence to
equilibrium is affected by the difficulty of the coupling strategy which is a priori greater in a continuous
time setting.
Now, let us briefly recall how this coupling method is organized. First, one takes two processes (X1

n, (∆
1
n+k)k60)n>0

and (X2
n, (∆

2
n+k)k60)n>0 following (1.3) starting respectively from µ0 and µ⋆ (the invariant distribution).

As a preliminary step, one waits that the two paths get close. Then, at each trial, the coupling attempt
is divided in two steps. First, one tries in Step 1 to stick the positions together at a given time. Then, in
Step 2, one tries to ensure that the paths stay clustered until +∞. Actually, oppositely to the Markovian
setting where the paths remain naturally fastened together (by putting the same innovation on each
path), the main difficulty here is that, staying together has a cost. In other words, this property can be
ensured only with a non trivial coupling of the noises. Finally, if one of the two previous steps fails, one
begins Step 3 by putting the same noise on each coordinate until the “cost” to attempt Step 1 is not too
big. In other words, during this step one waits again for the paths to get close but also for the memory
of the coupling cost to decrease sufficiently.
Thanks to this strategy, we are able to prove that the law of the process (Xn+k)k>0 following (1.3)
converges in total variation to the stationary regime with a rate upper-bounded by Cn−v where v is a
quantity which is directly linked to the asymptotic behavior of the sequence of coefficients appearing in
the MA representation of the noise process. In particular, we focus on Gaussian noise with exponential
and polynomial memory (see Section 2 for more details). For the polynomial case, a more precise example
is also studied, namely noise with fractional memory (see Subsection 2.6). This example coupled with
the fact that we apply our result to the discretization of (1.1) (see Subsection 2.4) allows us to contrast
with the continuous time results [14, 11, 9].
The following section gives more details on the studied dynamics and describes the assumptions required
to get the main result, namely Theorem 2.1. Then, the proof of Theorem 2.1 is achieved in Sections 3,
4, 5, 6 and 7, which are outlined at the end of Section 2.

2 Setting and main results

2.1 Setting

Let X := (Xn)n>0 denote an R
d-valued sequence defined by: X0 is a random variable with distribution

denoted by µ0 and
∀n > 0, Xn+1 = F (Xn,∆n+1), (2.1)
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where F : Rd×R
d → R

d is continuous and (∆n)n∈Z is a stationary and purely non-deterministic Gaussian
sequence. Hence, by Wold’s decomposition theorem [5] it has a moving average representation

∀n ∈ Z, ∆n =

+∞∑

k=0

akξn−k (2.2)

with
{

(ak)k>0 ∈ R
N such that a0 6= 0 and

∑+∞
k=0 a

2
k < +∞

(ξk)k∈Z an i.i.d sequence such that ξ1 ∼ N (0, Id).
(2.3)

Without loss of generality, we assume that a0 = 1. Actually, if a0 6= 1, we can come back to this case by
setting

∆̃n =

+∞∑

k=0

ãkξn−k

with ãk := ak

a0

.

Remark 2.1. The asymptotic behavior of the sequence (ak)k>0 certainly plays a key role to compute the
rate of convergence to equilibrium of the process (Xn)n>0. Actually, the memory induced by the noise
process is quantified by the sequence (ak)k>0 through the identity

∀n ∈ Z, ∀k > 0, c(k) := E [∆n∆n+k] =

+∞∑

i=0

aiak+i.

In the sequel, the state space of the process X and the noise space associated to ((∆n+k)k60)n>0 will be

respectively denoted by X := R
d and W := (Rd)Z

−

. These notations will be clarified in Subsection 3.1.

2.2 Preliminary tool: a Toeplitz type operator

The moving-average representation of the Gaussian sequence (∆n)n∈Z naturally leads us to define an
operator related to the coefficients (ak)k>0. First, set

ℓa(Z
−,Rd) :=

{

w ∈ (Rd)Z
−

∣
∣
∣
∣
∣
∀k > 0,

+∞∑

l=0

alw−k−l < +∞
}

and define Ta on ℓa(Z
−,Rd) by

Ta(w) =

(
+∞∑

l=0

alw−k−l

)

k>0

. (2.4)

Due to the Cauchy-Schwarz inequality, we can check that for instance ℓ2(Z−,Rd) is included in ℓa(Z
−,Rd)

due to the assumption
∑

k>0 a
2
k < +∞. This Toeplitz type operator Ta links (∆n)n∈Z to (ξn)n∈Z. The

following proposition spells out the reverse operator.

Proposition 2.1. Let Tb be the operator defined on ℓb(Z
−,Rd) in the same way as Ta but with the

following sequence (bk)k>0

b0 =
1

a0
and ∀k > 1, bk = − 1

a0

k∑

l=1

albk−l. (2.5)

Then,
∀w ∈ ℓa(Z

−,Rd), Tb(Ta(w)) = w and ∀w ∈ ℓb(Z
−,Rd), Ta(Tb(w)) = w

that is Tb = Ta
−1 and ℓb(Z

−,Rd) = Ta(ℓa(Z
−,Rd)).
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Proof. Let w ∈ ℓa(Z
−,Rd). Then let n > 0,

(Tb(Ta(w)))−n =

+∞∑

k=0

bk(Ta(w))−n−k

=
+∞∑

k=0

bk

+∞∑

l=0

alw−n−k−l

=

+∞∑

k=0

+∞∑

i=k

bkai−kw−n−i (by setting i = k + l)

(Tb(Ta(w)))−n =

+∞∑

i=0

(
i∑

k=0

bkai−k

)

︸ ︷︷ ︸

=0 except
for i=0

w−n−i = w−n

We show in the same way that for w ∈ ℓb(Z
−,Rd), we have Ta(Tb(w)) = w.

Remark 2.2. The sequence (bk)k>0 is of first importance in the sequel. The sketch of the proof of
Theorem 2.1 will use an important property linked to the sequence (bk)k>0: if two sequences u and v are
such that

∀n > 1, un =

n−1∑

k=0

akvn−k

then

∀n > 1, vn =

n−1∑

k=0

bkun−k.

This reverse identity and the asymptotic behavior of (bk)k>0 play a significant role in the computation of
the rate of convergence.

The following section is devoted to outline assumptions on (ak)k>0 and (bk)k>0 and then on F to get the
main result.

2.3 Assumptions and general theorem

First of all, let us introduce assumptions on (ak)k>0 and (bk)k>0. All along the paper, we will switch
between two types of assumptions called respectively the polynomial case and the exponential case.

Hypothesis (Hpoly): The following conditions hold,

• there exist ρ, β > 0 and Cρ, Cβ > 0 such that

∀k > 0, |ak| 6 Cρ(k + 1)−ρ and ∀k > 0, |bk| 6 Cβ(k + 1)−β .

• there exist κ > ρ+ 1 and Cκ > 0 such that

∀k > 0, |ak − ak+1| 6 Cκ(k + 1)−κ.

Hypothesis (Hexp): There exist λ, µ > 0 and Cλ, Cµ > 0 such that,

∀k > 0, |ak| 6 Cλe
−λk and ∀k > 0, |bk| 6 Cµe

−µk.

Remark 2.3. ⊲ (Hpoly) and (Hexp) are general parametric hypothesis which apply to a large class
of Gaussian driven dynamics. These assumptions involve the memory of the noise process through the
sequence (ak)k>0 but also through the coefficients appearing in the reverse Toeplitz operator Ta

−1 (see
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Proposition 2.1). Due to the strategy of the proof (coalescent coupling in a non Markovian setting) we
also need a bound on the discrete derivative of (ak)k>0.
⊲ Even though (ak)k>0 and (bk)k>0 are related by (2.5), there is no general rule which connects ρ and
β. This fact will be highlighted in Subsection 2.6.

Let us now introduce some assumptions on the function F which defines the dynamics (2.1). Throughout
this paper F : X × R

d → X is a continous function and the following hypothesis (H1) and (H2) are
satisfied.

Hypothesis (H1): There exists a continous function V : X → R
∗
+ satisfying lim

|x|→+∞
V (x) = +∞ and

∃γ ∈ (0, 1) and C > 0 such that for all (x,w) ∈ X × R
d,

V (F (x,w)) 6 γV (x) + C(1 + |w|).
Remark 2.4. We will see in Subsection 3.2 that this condition on F ensures the existence of an invariant
distribution (in a sense made precise below).

We define F̃ : X × R
d × R

d → X by F̃ (x, u, y) = F (x, u + y). We assume that F̃ satisfies the following
conditions:

Hypothesis (H2): Let K > 0. We assume that there exists K̃ > 0 such that for every x := (x, x′, y, y′)
in B(0,K)4, there exist Λx : Rd → R

d, MK > 0 and CK̃ such that the following holds

• Λx is a measurable, invertible and almost everywhere differentiable function such that Λ−1
x is also

measurable.

• for all u ∈ B(0, K̃),

F̃ (x, u, y) = F̃ (x′,Λx(u), y
′) (2.6)

| det(JΛx
(u))| > CK̃ (2.7)

• for all u ∈ R
d,

|Λx(u)− u| 6 MK (2.8)

Remark 2.5. Let us make a few precisions on the arguments of F̃ : x is the position of the process, u
the increment of the innovation process and y is related to the past of the process (see (4.7) for more
details). The boundary CK̃ and MK are independent from x, x′, y and y′. This assumption can be viewed
as a kind of controlability assumption in the following sense: the existence of Λx leads to the coalescence
of the positions by (2.6). This is of first importance to achieve the first step of the coupling procedure
(see Subsection 4.2).

We are now in position to state our main result. Let L((Xµ0

n )n>0) denote the distribution of the process X
starting from an initial condition µ0 (see Subsection 3.1 below for detailed definitions of initial condition
and invariant distribution) and for an invariant distribution µ⋆ denote by Sµ⋆ the law of the stationary
solution. Finally, we denote by ‖.‖TV the classical total variation norm.

Theorem 2.1. Assume (H1) and (H2). Then,

(i) There exists an invariant distribution µ⋆ associated to (2.1).

(ii) Assume that (Hpoly) is true with ρ, β > 1/2 and ρ+β > 3/2. Then, uniqueness holds for the invari-
ant distribution µ⋆. Furthermore, for every initial distribution µ0 for which

∫

X
V (x)Π∗

Xµ0(dx) <
+∞ and for all ε > 0, there exists Cε > 0 such that

‖L((Xµ0

n+k)k>0)− Sµ⋆‖TV 6 Cε n−(v(β,ρ)−ε).

where the function v is defined by

v(β, ρ) = sup
α∈( 1

2
∨( 3

2
−β),ρ)

min{1, 2(ρ− α)}(min{α, β, α+ β − 1} − 1/2).
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(iii) Assume that (Hexp) is true, then uniqueness holds for the invariant distribution µ⋆. Furthermore,
for every initial distribution µ0 for which

∫

X
V (x)Π∗

Xµ0(dx) < +∞ and for all
p > 0, there exists Cp > 0 such that

‖L((Xµ0

n+k)k>0)− Sµ⋆‖TV 6 Cp n−p.

Remark 2.6. Assumption (H2) is only required to perform the first step of the coupling strategy to get
(ii) and (iii) (see Section 4 for more details).

In the following subsection, we test the assumptions of our main result Theorem 2.1 (especially (H1) and
(H2)) on the Euler scheme of SDEs like (1.1).

2.4 The Euler Scheme

Recall that X = R
d. In this subsection, set

Fh : X × R
d → X

(x,w) 7→ x+ hb(x) + σ(x)w. (2.9)

where h > 0, b : X → X is continuous and σ : X → Md(R) is a continuous and bounded function on
X . For all x ∈ X we suppose that σ(x) is invertible and we denote by σ−1(x) the inverse. Moreover, we
assume that σ−1 is a continuous function and that b satisfies a Lyapunov type assumption that is:

(L1) ∃C > 0 such that
∀x ∈ X , |b(x)| 6 C(1 + |x|) (2.10)

(L2) ∃β̃ ∈ R and α̃ > 0 such that
∀x ∈ X , 〈x, b(x)〉 6 β̃ − α̃|x|2. (2.11)

Remark 2.7. This function Fh corresponds to the Euler scheme associated to SDEs like (1.1). The
conditions on the function b are classical to get existence of invariant distribution.

In this setting the function F̃h (introduced in Hypothesis (H2)) is given by

F̃h : X × R
d × R

d → X
(x, u, y) 7→ x+ hb(x) + σ(x)(u + y).

Theorem 2.2. Let h > 0. Let Fh be the function defined above. Assume that b : X → X is a continuous
function satisfying (L1) and (L2) and σ : X → Md(R) is a continous and bounded function such that
for all x ∈ X , σ(x) is invertible and x 7→ σ−1(x) is a continuous function. Then, (H1) and (H2) hold
for Fh with h > 0 small enough.

Proof. Set V (x) = |x|. Let us begin by proving that (H1) holds with V for Fh with h > 0 small enough.
We have:

|Fh(x,w)|2 = |x|2 + h2|b(x)|2 + 2h〈x, b(x)〉+ 2〈x, σ(x)w〉 + 2h〈b(x), σ(x)w〉 + |σ(x)w|2 .

Then, using the inequality |〈a, b〉| 6 1
2 (ε|a|2 + 1

ε |b|2) for all ε > 0, we get

|〈x, σ(x)w〉| 6 1

2
(ε|x|2 + 1

ε
|σ(x)w|2) et |〈b(x), σ(x)w〉| 6 1

2
(ε|b(x)|2 + 1

ε
|σ(x)w|2).

Moreover, assumptions (L1) and (L2) on b give

|〈b(x), x〉| 6 β̃ − α|x|2 et |b(x)|2 6 C̃(1 + |x|2).
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Hence, we finally have

|Fh(x,w)|2 6 |x|2 + C̃h2(1 + |x|2) + 2h(β̃ − α̃|x|2) + ε|x|2 + 1

ε
|σ(x)w|2

+ C̃hε(1 + |x|2) + h

ε
|σ(x)w|2 + |σ(x)w|2

6 |x|2 + 2h(β̃ − α̃|x|2) + C̃(ε+ hε+ h2)(1 + |x|2) +
(

1 +
h+ 1

ε

)

|σ(x)w|2 .

Now, set ε = h2 and choose h small enough such that C̃(ε+ hε+ h2) 6 α̃h. Therefore,

|Fh(x,w)|2 6 |x|2 + h(γ̃ − α̃|x|2) +
(

1 +
h+ 1

ε

)

|σ(x)w|2

where γ̃ = 2β̃ + α̃. Then

|Fh(x,w)|2 6 (1− α̃h)|x|2 + hγ +

(

1 +
h+ 1

ε

)

|σ(x)w|2 .

By assumption σ is a bounded function on R
d. Then, there exists C̃ > 0 depending on h and σ such that

|Fh(x,w)|2 6 (1− α̃h)|x|2 + C̃
(
1 + |w|2

)
.

Using the classical inequality
√
a+ b 6

√
a+

√
b, we finally get the existence of γ ∈ (0, 1) and C > 0 such

that for all (x,w) ∈ R
d × R

d

|Fh(x,w)| 6 γ|x|+ C (1 + |w|) (2.12)

which achieves the proof of (H1).
We now turn to the proof of (H2). Let K > 0 and take x = (x, x′, y, y′) ∈ B(0,K)4. Here we take
K̃ = K. Hence, let us now define Λx. For all u ∈ B(0,K), we set

Λx(u) = σ−1(x′)σ(x)u + σ−1(x′)(x − x′ + h(b(x)− b(x′))) + σ−1(x′)σ(x)y − y′ (2.13)

which is equivalent to F̃h(x, u, y) = F̃h(x
′,Λx(u), y

′) for all u ∈ B(0,K).
Hence, for all u ∈ B(0,K),

JΛx
(u) = σ−1(x′)σ(x). (2.14)

Since σ, σ−1 and b are continuous, there exist CK > 0 and mK > 0 independent from x such that for all
u ∈ B(0,K),

| det(JΛx
(u))| > CK

|Λx(u)− u| 6 mK .

Then, we extend Λx to a continuous and invertible function in such a way that there exists MK > mK

such that for all u ∈ R
d,

|Λx(u)− u| 6 MK .

Finally, the function F̃h satisfies (H2).

The two following subsections are devoted to outline examples of sequences wich satisfy hypothesis (Hexp)
or (Hpoly). In particular, Subsection 2.6 includes the case where the process (∆n)n∈Z corresponds to
fractional Brownian motion increments.
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2.5 An explicit case which satisfies (Hexp)

In this subsection, we investigate an explicit exponential case with the following definition for the sequence
(ak)k>0

a0 = 1 and ∀k ∈ N
∗, ak = Cae

−λk (2.15)

with Ca ∈ R. Let us recall that b0 = 1 (since a0 = 1) and for all k > 1, we can get the following general
expression of bk (see Appendix A):

bk =
k∑

p=1

(−1)p

ap+1
0







∑

k1,...,kp>1
k1+···+kp=k

p
∏

i=1

aki







. (2.16)

A classical combinatorial argument shows that ♯{(k1, . . . , kp) ∈ N
∗ | k1 + · · · + kp = k} =

(
k−1
p−1

)
. As a

consequence, when the sequence (ak)k>0 is defined by (2.15), we can easily compute the coefficients bk
for k > 1,

bk =

k∑

p=1

(−Ca)
pe−λk♯{(k1, . . . , kp) ∈ N

∗ | k1 + · · ·+ kp = k}

=

k∑

p=1

(
k − 1

p− 1

)

(−Ca)
pe−λk

bk = −Ca(1− Ca)
k−1e−λk. (2.17)

Hence, to satisfy (Hexp), we only need Ca to be such that µ := λ− ln |1−Ca| > 0 and then for all k ∈ N
∗,

we get
|bk| 6 Cbe

−µk (2.18)

with Cb > 0 a constant depending on Ca.

Remark 2.8. ⊲ In this setting where everything is computable, it’s interisting to see that the asymptotic
decrease of the sequence (|bk|) is not only related to the one of the sequence (|ak|). For instance, if we take
Ca < 0, the simple fact that a0 > 0 and ak < 0 for all k > 0 makes (bk) diverge to +∞ and nevertheless,
(|ak|) decreases to 0 at an exponential rate.
⊲ If we take Ca = 1, we can reduce (∆n)n∈Z to the following induction

∀n ∈ Z, ∆n+1 = ξn+1−k + e−λ∆n. (2.19)

2.6 Stationary Gaussian sequence of fractional type

Let H ∈ (0, 1). In the sequel, we will speak about stationary Gaussian sequence of fractional type if the
sequence (ak) is such that

∀k > 0, |ak| 6 Cρ(k + 1)−ρ and |ak − ak+1| 6 C̃ρ(k + 1)−(ρ+1) (2.20)

with ρ := 3/2−H .
As we will see below, this condition includes the case where (∆n)n∈Z corresponds to the fractional Brow-
nian motion (fBm) increments. Unfortunately, computing the rate of convergence of the corresponding
sequence (bk)k>0 is a hard task and strongly depends on the variations of (ak)k>0. Actually, in Proposi-
tion 2.2 and 2.3, dealing with the same order of memory, we will see that the orders of rate of convergence
are really different. Note that the first corresponds to the case where ak := (k+1)−(3/2−H) for all k ∈ N

whereas the second deals with fBm increments.
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Proposition 2.2. Assume (H1) and (H2). Let H ∈ (0, 1) and set ρ := 3/2−H ∈ (1, 3/2).
If for all k > 0, ak = (k + 1)−ρ, then (ak) is of fractional type and we have |bk| 6 (k + 1)−ρ. Moreover,
if ρ > 3/4 Theorem 2.1 (ii) holds with the rate

v(ρ, ρ) = v(3/2−H, 3/2−H) =
1

2

{
(1 −H)2 if H ∈ (0, 1/2]
(3 − 4H)2 if H ∈ (1/2, 3/4).

Remark 2.9. This result follows from the proof of the inequality |bk| 6 (k + 1)−ρ for all k > 0 which is
outlined in Appendix B. The key argument in this proof is the property of log-convexity of the sequence
(ak)k∈N, which means that for all k ∈ N, ak > 0 and for k > 1, a2k − ak−1ak+1 6 0.

As mentioned before, the terminology “fractional type” refers to the fractional Brownian motion. Indeed,
in a continuous-time setting, a famous and classical example of non-Markovian dynamics is SDE driven
by fBm

dXt = b(Xt)dt+ σ(Xt)dBt (2.21)

Recall that a d-dimensional fBm with Hurst parameter H ∈ (0, 1) is a centered Gaussian process (Bt)t>0

with stationary increments satisfying

∀t, s > 0, ∀i, j ∈ {1, . . . , d}, E

[

(Bi
t −Bi

s)(B
j
t −Bj

s)
]

= δij |t− s|2H .

The study by a coupling argument of the rate of convergence to equilibrium for this kind of dynamics has
been undertaken by Hairer [14], Fontbona and Panloup [11], Deya, Panloup and Tindel [9], respectively
in the additive noise, multiplicative noise with H > 1/2 and multiplicative noise with H ∈ (1/3, 1/2).
Here in our discrete-time setting, we are thus concerned by the long time behavior of (2.1) if we take for
h > 0

(∆n)n∈Z = (Bnh −B(n−1)h)n∈Z (2.22)

which is a stationary Gaussian sequence. It can be realized through a moving average representation
with coefficients (aHk )k>0 defined by (see [19]):

aH0 = hHκ(H)21/2−H and for k > 1, aHk = hHκ(H)

((

k +
1

2

)H−1/2

−
(

k − 1

2

)H−1/2
)

(2.23)

where

κ(H) =

√

sin(πH)Γ(2H + 1)

Γ(H + 1/2)
.

One can easily check that aHk ∼
k→+∞

Ch,H(k + 1)−(3/2−H) and |aHk − aHk+1| 6 C′
h,H(k + 1)−(5/2−H).

Hence (aHk )k>0 is of fractional type in the sense of (2.20). Now, the question is: how does the correspond-
ing (bHk ) behave ? When H belongs to (0, 1/2), only aH0 is non-negative and then (aHk ) is not log-convex.
Therefore, we cannot use this property to get the asymptotic behavior of (bHk ) as we did in Proposition
2.2. However, thanks to simulations (see Figure 1a and 1b), we conjectured and we proved (see Appendix
E) the following proposition.

Proposition 2.3. There exists C′′
h,H > 0 such that for all H ∈ (0, 1/2)

∀k > 0, |bHk | 6 C′′
h,H(k + 1)−(H+1/2). (2.24)

Then, if we assume (H1) and (H2), Theorem 2.1 (ii) holds with the rate

v(ρ, 2− ρ) = v(3/2−H,H + 1/2) =
1

2

{
H(1− 2H) if H ∈ (0, 1/4]
1
8 if H ∈ (1/4, 1/2).
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