N

N

A joint segmentation and reconstruction algorithm for
3D Bayesian Computed Tomography using
Gaus-Markov-Potts Prior Model
Camille Chapdelaine, Ali Mohammad-Djafari, Nicolas Gac, Estelle

Parra-Denis

» To cite this version:

Camille Chapdelaine, Ali Mohammad-Djafari, Nicolas Gac, Estelle Parra-Denis. A joint segmentation
and reconstruction algorithm for 3D Bayesian Computed Tomography using Gaus-Markov-Potts Prior
Model. The 42nd IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP
2017), Mar 2017, New Orleans, United States. hal-01588443

HAL Id: hal-01588443
https://hal.science/hal-01588443
Submitted on 15 Sep 2017

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-01588443
https://hal.archives-ouvertes.fr

A JOINT SEGMENTATION AND RECONSTRUCTION ALGORITHM FOR 3D BAYESIAN
COMPUTED TOMOGRAPHY USING GAUSS-MARKOV-POTTS PRIOR MODEL

Camille Chapdelaine'?, Advisors : Ali Mohammad-Djafari', Nicolas Gac', Estelle Parra®

! Laboratoire des signaux et systémes, CNRS, Centralesupélec-Univ Paris Saclay, Gif-sur-Yvette, France
2SAFRAN SA, Safran Tech, Pole Technologie du Signal et de I’Information, Magny-Les-Hameaux, France

ABSTRACT

Gauss-Markov-Potts models for images and its use in many
image restoration, super-resolution and Computed Tomogra-
phy (CT) have shown their effective use for Non Destructive
Testing (NDT) applications. In this paper, we propose a 3D
Gauss-Markov-Potts model for 3D CT for NDT applications.
Thanks to this model, we are able to perform a joint recon-
struction and segmentation of the object to control, which is
very useful in industrial applications. First, we describe our
prior models for each unknown of the problem. Then, we
present results on simulated data and compare them to those
of Total Variation (TV) minimization algorithm. Two quality
indicators exploiting the segmentation are also proposed.

Index Terms— Gauss-Markov-Potts, 3D Computed To-
mography, joint reconstruction and segmentation

1. INTRODUCTION

Computed tomography (CT) is a powerful imaging tool to see
the interior of a three dimensional object and has a wide field
of applications. In particular, in industry, the most used one
is the so-called FDK algorithm [1] for cone-beam CT, which
performs a filtered back-projection (FBP) algorithm. This al-
gorithm is part of analytical reconstruction methods, based on
the use of Radon transform [2]. There exist other analytical re-
construction methods [3] which use Fourier slice theorem but
need to apply a filter in order to deal with a tricky interpolation
in Fourier domain.

These analytical reconstruction methods suffer from arti-
facts due to approximations and give poor results with limited-
angle projections. From this standpoint, algebraic reconstruc-
tion techniques (ART) and iterative methods have been pro-
vided for the last decades and consider a linearized discretiza-
tion of Radon transform [2]. In order to account for the errors
and to obtain a better reconstruction, most of these methods
apply a regularization which enforces some priors on the ob-
ject to reconstruct [4].

In our application, we aim at reconstructing an industrial
part which is composed of several materials filling one or sev-
eral compact and quite homogeneous regions. Gauss-Markov-
Potts model has been successfully applied in microwave imag-
ing [5] and image restoration [6]. In this paper, we present
a 3D Gauss-Markov-Potts model for CT for non-destructive
testing (NDT) in industry, based on the works done in [6].
A joint maximization a posteriori (JMAP) is also proposed,
which jointly retrieves an estimation of the object to recon-
struct and a segmentation of the reconstructed object in com-
pact and well-distinguishable regions.

2. MODELS

The forward model is based on the discretization of Radon
transform. Denoting by g the data, by f the object to recon-
struct and by H the projection operator, we write the forward
projection model :

g=Hf+e€ 9]

Errors ¢; are modeled as zero-mean Gaussian with unknown
variances (v, ), , Vi, which are modeled as following an In-
verse Gamma distribution :

p(U€i|a€o?B€0) :Ig(v€i|aeovﬁ€0)aVi (2)

where ., et 3, are fixed hyperparameters.

For the object, as said in introduction, we use a Gauss-
Markov-Potts model. We define a hidden field z that labels
each voxel by the material it represents : for instance, z; = k
if voxel j is part of material k. We assume that the number
K of materials in the object is known. Then, homogeneity of
each material is enforced by modeling that the gray values of
the voxels of a same material & are distributed around a mean
value my,, with variance vy,

p(filzj = k,my, o) = N(fjlme,vx) if zj =k (3)
The priors for the means and the variances of the classes are
p(mi|mo,vo) = N (mg|mo, vo) )

and
p(vk|ao, Bo) = LG (vi|ao, Bo) &)

where my, vg, g and [y are fixed hyperparameters. To trans-
late the compacity of each material, we assign a Markov-Potts
prior model for the hidden field z:

K
p(Z|(X,’Y()) X exp Z <Z ak(s(zj _ k)—|—
J k=1 (6)
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Parameter v allows to control the compactness of the regions,
as shown in figure 1. Here, 7y is tuned sufficiently large so
the regions are compact. These prior models are very similar
to the ones proposed in [6] for image restoration. The main
difficulty here is that we deal with very huge 3D objects : this
makes matrix H unstorable in memory.
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Fig. 1: Potts field z for different values of vp, with K = 5 classes
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Fig. 2: Gauss-Markov-Potts hierarchical model

3. JOINT MAXIMIZATION AND RESULTS

Our hierachical model is summarized in figure 2. We estimate
the unknowns f, z, v, m and v by maximizing the joint pos-
terior distribution of the unknowns (JMAP) :

o< p(g|f,ve) p(flz,m,v)
P(Ve|aey, Bey) P(2|la;v0)  (7)
p(m|m07 UO) p('U|O[0, /80)

p(f7z7ve7mav|g;M)

Equation (7) highlights the importance of our priors. Thanks
to this expression, at iteration ¢ of the algorithm, in order to
estimate and update each unknown, we can successively max-
imize its posterior distribution given the other unknowns : this
is an approximate maximization of the posterior distribution
which makes possible to achieve joint reconstruction and seg-
mentation of the controlled object.

The method is tested on 2563 size Shepp-Logan 3D phan-
tom, of which the middle slice is shown in figure (3a). The
corresponding segmentation is shown in figure (3b): the num-
ber of materials is K = 5. 64 projections with 2562 pixels
are obtained from this phantom and are noisy with signal-to-
noise ratio (SNR) equal to 20 db. Then, the algorithm is ap-
plied with 7y = 3 and the reconstruction and the segmen-
tation, of which middle slices are shown in figures (3c) and
(3d), are obtained. The core of the algorithm speedup is the
parallelization on GPU of the projector H and backprojector
H”, which makes gradient descent in the object estimation
step fast. For the reconstruction and segmentation in figures
(3c) and (3d), we have achieved a total computation time about
10 minutes. The method is compared to Total Variation (TV)
minimization algorithm, to which a posterior Potts segmenta-
tion is applied. The results for TV are shown in figures (3e)
and (3f). TV reconstruction retrieves the bone better than our
algorithm, but joint segmentation in figure (3d) retrieves the
detail on the front while this is not the case in figure (3f), al-
though it is retrieved in TV reconstruction. This emphasizes
the great interest of joint reconstruction and segmentation, that
is not cumulating errors from reconstruction and segmentation
algorithms.

Moreover, we have used the segmentation to define two
quality indicators designed so that the higher they are, the bet-
ter the reconstruction is. The compactness indicator gives the
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Fig. 3: Shepp-Logan 3D phantom (a) and its segmentation (b), obtained joint
reconstruction (c) and segmentation (d) by our method, and obtained recon-
struction by TV (e) and its posterior Potts segmentation (f) (middle slices)
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average rate of voxels which are only surrounded by neigh-
bours in the same class as them : it is 89.2% for our method
reconstruction and 88.9% for TV. The distinguishability indi-
cator measures how two voxels in different classes on the con-
tours of the regions are distinguishable : it is 73.9% for our
method reconstruction, and 72.8% for TV.

4. CONCLUSION AND PERSPECTIVES

In this paper, we have presented a comprehensive prior model
to perform joint reconstruction and segmentation in 3D CT.
This method has been shown to retrieve results comparable
to TV. The two herein proposed quality indicators have made
us able to see that joint segmentation is better than posterior
segmentation. Future works will focus on full implementation
on GPU and some variations in the prior model.
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