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Abstract

This paper addresses the problem of formation control and tracking a of desired trajectory by an Euler-Lagrange multi-agent
systems. It is inspired by recent results by Qingkai et al. and adopts an event-triggered control strategy to reduce the number
of communications between agents. For that purpose, to evaluate its control input, each agent maintains estimators of the
states of the other agents. Communication is triggered when the discrepancy between the actual state of an agent and the
corresponding estimate reaches some threshold. The impact of additive state perturbations on the formation control is studied.
A condition for the convergence of the multi-agent system to a stable formation is studied. Simulations show the effectiveness
of the proposed approach.

Key words: Communication constraints, event-triggered control, formation stabilization, multi-agent system (MAS).

1 Introduction

Distributed cooperative control of a multi-agent system (MAS) usually requires significant exchange of information
between agents. In early contributions, see, e.g., [26, 42], communication is considered permanent. Recently, more
practical approaches have been proposed. For example, in [43, 44, 45], communication is intermittent, alternating
phases of permanent communication and of absence of communication. Alternatively, communication may only occur
at discrete time instants, either periodically as in [13], or triggered by some event, as in [9, 11, 40, 48].

This paper proposes a strategy to reduce the number of communications for displacement-based formation control
while following a desired reference trajectory. Agent dynamics are described by Euler-Lagrange models and include
perturbations. This work extends results presented in [27] by introducing an event-triggered strategy, and results
of [20, 36, 37] by addressing systems with more complex dynamics than a simple integrator. To obtain efficient
distributed control laws, each agent uses an estimator of the state of the other agents. The proposed distributed
communication triggering condition (CTC) involves the inter-agent displacements and the relative discrepancy be-
tween actual and estimated agent states. A single a priori trajectory has to be evaluated to follow the desired
path. Effects of state perturbations on the formation and on the communications are analyzed. Conditions for the
Lyapunov stability of the MAS have been introduced. The absence of Zeno behavior is proved.

This paper is organized as follows. Related work is detailed in Section 2. Some assumptions are introduced in Section 3
and the formation parametrization is described in Section 4. As the problem considered here is to drive a formation
of agents along a desired reference trajectory, the designed distributed control law consists of two parts. The first
part (see Section 4) drives the agents to some target formation and maintains the formation, despite the presence
of perturbations. It is based on estimates of the states of the agents described in Section 4.3. The second part (see
Section 5) is dedicated to the tracking of the desired trajectory. Communication instants are chosen locally by each
agent using an event-triggered approach introduced in Section 6. A simulation example is considered in Section 7 to
illustrate the reduction of the communications obtained by the proposed approach. Finally, conclusions are drawn
in Section 8.
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2 Related work

Event-triggered communication is a promising approach to save energy. It is well-suited to applications where com-
munications should be minimized, e.g., to improve furtivity, reduce energy consumption, or limit collisions between
transmitted data packets. Application examples with such constraints are exposed, e.g., in [18, 19] for the case of
a fleet of vehicles, or in [4] where agents aim at merging local feature-based maps. The main difficulty consists in
determining the CTC that will ensure the completion of the task assigned to the MAS, e.g., reaching some con-
sensus, maintaining a formation, etc. In a distributed strategy, the states of the other agents are not permanently
available, thus each agent usually maintains estimators of the state of its neighbours to evaluate their control laws.
Nevertheless, without permanent communication, the quality of the state estimates is difficult to evaluate. To ad-
dress this issue, each agent maintains an estimate of its own state using only the information it has shared with
its neighbours. When the discrepancy between this own state estimate and its actual state reaches some threshold,
the agent triggers a communication. This is the approach considered, e.g., in [9, 12, 14, 34, 39, 40, 49]. These works
differ by the complexity of the agents’ dynamics [12, 34, 49], the structure of the state estimator [9, 14, 39, 40], and
the determination of the threshold for the CTC [34, 39].

Most of the event-triggered approaches have been applied in the context of consensus in MAS [9, 14, 34]. This paper
focuses on distributed formation control, which has been considered in [20, 36, 37]. Formation control consists in
driving and maintaining all agents of a MAS to some reference, possibly time-varying configuration, defining, e.g.,
their relative positions, orientations, and speeds. Various approaches have been considered, such as behavior-based
flocking [6, 25, 31, 33, 38], or formation tracking [5, 8, 10, 23, 30].

Behavior-based flocking [6, 25, 31, 33, 38] imposes several behavior rules (attraction, repulsion, imitation) to each
agent. Their combination leads the MAS to follow some desired behavior. Such approach requires the availability to
each agent of observations of the state of its neighbours. These observations may be deduced from measurements
provided by sensors embedded in each agent or from information communicated by its neighbours. In all cases, these
observations are assumed permanently available. In addition, if a satisfying global behavior may be obtained by the
MAS, behavior-based flocking cannot impose a precise configuration between agents.

Different formation-tracking methods have been considered. In leader-follower techniques [5, 8, 10, 23], based on
mission goals, a trajectory is designed only for some leader agent. The other follower agents, aim at tracking the
leader as well as maintaining some target formation defined with respect to the leader. A virtual leader has been
considered in [7, 8, 32] to gain robustness to leader failure. This requires a good synchronization among agents of the
state of the virtual leader. Virtual structures have been introduced in [30, 41], where the agent control is designed
to satisfy constraints between neighbours. Such approaches also address the problem of leader failure. In distance-
based control, the constraints are distances between agents. In displacement-based control, relative coordinate or
speed vectors between agents are imposed. In tensegrity structures [24, 27] additional flexibility in the structure
is considered by considering attraction and repulsion terms between agents, as formalized by [3]. In addition to
constraints on the structure of the MAS, [35] imposes some reference trajectory to each agent. In most of these
works, permanent communication between agents is assumed.

Some recent works combine event-triggered approaches with distance-based or displacement-based formation control
[20, 36, 37]. In these works, the dynamics of the agents are described by a simple integrator, with control input
considered constant between two communications. The proposed CTCs consider different threshold formulations
and require each agent to have access to the state of all other agents. A constant threshold is considered in [36]. A
time-varying threshold is introduced in [20, 37]. The CTC depends then on the relative positions between agents
and the relative discrepancy between actual and estimated agent states. These CTCs reduce the number of triggered
communications when the system converges to the desired formation. A minimal time between two communications,
named inter-event time, is also defined. Finally, in all these works, no perturbations are considered.

Logic-based control (LBC) techniques have been introduced in [2, 29, 46, 47] to reduce the number of communications
in trajectory tracking problems. MAS with decoupled nonlinear agent dynamics are considered in [2, 29]. Agents
have to follow parametrized paths, designed in a centralized way. CTCs introduced by LBC lead all agents to follow
the paths in a synchronized way to set up a desired formation. Communication delays, as well as packet losses
are considered. Nevertheless, if input-to-state stability conditions are established, absence of Zeno behavior is not
analyzed.
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qi vector of coordinates of Agent i in some global fixed reference frame R

q vector
[
qT1 qT2 . . . qTN

]T
∈ RN.n, configuration of the MAS

xi state vector
[
qTi , q̇

T
i

]T
of Agent i

q̂ji estimate of qi performed by Agent j.

q̂j estimate of q performed by Agent j.

x̂ji estimate of xi performed by Agent j.

eji estimation error between qi and q̂ji .

rij relative coordinate vector rij = qi − qj between agents i and j.

r∗ij desired value for rij .

q0 reference trajectory

q∗i reference trajectory for Agent i

εi trajectory error for Agent i, εi = qi − q∗i
tj,k time at which the k-th message is sent by Agent j.

tij,k time at which the k-th message sent by Agent j is received by Agent i.

Table 1
Main notations

3 Notations and hypotheses

Table 1 summarizes the main notations used in this paper.

Consider a MAS consisting of a network of N agents which topology is described by an undirected graph G = (N , E).
N = {1, 2, ..., N} is the set of nodes and E ⊂ N ×N the set of edges of the network. The set of neighbours of Agent i

is Ni = {j ∈ N| (i, j) ∈ E , i 6= j}. Ni is the cardinal number of Ni. For some vector x =
[
x1 x2 . . . xn

]T
∈ Rn, we

define |x| =
[
|x1| |x2| . . . |xn|

]T
where |xi| is the absolute value of the i-th component of x. Similarly, the notation

x ≥ 0 will be used to indicate that each component xi of x is non negative, i.e., xi ≥ 0 ∀i ∈ {1 . . . n}. A continuous
function β (r, s) : [0, a) × [0, ∞) → [0, ∞) is said to belong to class KL if for each fixed s, the function β (., s) is
strictly increasing and β (0, s) = 0, and for each fixed r, the function β (r, .) is decreasing and lims→∞ β (r, s) = 0.

Let qi ∈ Rn be the vector of coordinates of Agent i in some global fixed reference frameR and let q =
[
qT1 qT2 . . . qTN

]T
∈

RN.n be the configuration of the MAS. The dynamics of each agent is described by the Euler-Lagrange model

Mi (qi) q̈i + Ci (qi, q̇i) q̇i +G = τi + di, (1)

where τi ∈ Rn is some control input described in Section 4.2, Mi (qi) ∈ Rn×n is the inertia matrix of Agent i,
Ci (qi, q̇i) ∈ Rn×n is the matrix of the Coriolis and centripetal term on Agent i, G accounts for gravitational
acceleration supposed to be known and constant, and di is a time-varying state perturbation satisfying ‖di (t)‖ <
Dmax. The state vector of Agent i is xTi =

[
qTi , q̇

T
i

]
. Assume that the dynamics satisfy the following assumptions:

A1) Mi (qi) is symmetric positive and there exists kM > 0 satisfying ∀x, xTMi (qi)x≤ kMxTx.

A2) Ṁi (qi)−2Ci (qi, q̇i) is skew symmetric or negative definite and there exists kC > 0 satisfying ∀x, xTCi (qi, q̇i)x ≤
kC ‖q̇i‖xTx.

A3) There exists q̇max ∈ Rn+ and q̈max ∈ Rn+ such that |q̈i| ≤ q̈max and |q̇i| ≤ q̇max.
A4) The left-hand side of (1) can be linearly parametrized as

Mi (qi)x1 + Ci (qi, q̇i)x2 = Yi (qi, q̇i, x1, x2) θi (2)

for all vectors x1, x2 ∈ Rn, where Yi (qi, q̇i, x1, x2) is a regressor matrix with known structure and θi is a vector
of unknown but constant parameters associated with the i-th agent.

A5) For each i = 1, . . . , N, θi is such that θmin,i < θi < θmax,i, with known θmin,i and θmax,i.
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Assumptions A1, A2, A3 and A4 have been previously considered, e.g., in [21, 22, 23].

Moreover, one assumes that

A6) each Agent i is able to measure without error its own state xi,
A7) there is no packet losses or communication delay between agents.

In what follows, the notations Mi and Ci are used to replace Mi (qi) and Ci (qi, q̇i).

4 Formation control problem

This section aims at designing a decentralized control strategy to drive a MAS to a desired target formation in
some global reference frame R, while reducing as much as possible the communications between agents. The target
formation is first described in Section 4.1. The potential energy of a MAS with respect to the target formation is
introduced to quantify the discrepancy between the target and current formations. The proposed distributed control,
introduced in Section 4.2, tries to minimize the potential energy. To evaluate the control input of each agent despite
the communications at discrete time instants only, estimators of the coordinate vectors of all agents are managed by
each agent, as presented in Section 4.3. The presence of perturbations increases the discrepancy between the state
vector and their estimates. A CTC is designed to limit this discrepancy by updating the estimators as described in
Section 6.

4.1 Formation parametrization

Consider the relative coordinate vector rij = qi − qj between two agents i and j and the target relative coordinate
vector r∗ij for all (i, j) ∈ N . A target formation is defined by the set

{
r∗ij , (i, j) ∈ N

}
.

The potential energy P (q, t) of the formation represents the disagreement between rij and r∗ij

P (q, t) =
1

2

N∑
i=1

N∑
j=1

kij
∥∥rij − r∗ij∥∥2

(3)

where the kij = kji are some spring coefficients, which can be positive or null, and where kii = 0. P (q, t) has
been introduced for tensegrety formations in [24, 27]. The minimum number of non-zero coefficients kij i, j ∈ N to
properly define a target formation is N − 1. Indeed, for a given r∗, all target relative coordinate vectors r∗ij between
any pair of agents i and j can be expressed from components of r∗. Nevertheless, a number of non-zero kij larger
than N − 1 introduces robustness in the formation, in particular with respect to the loss of an agent. The values of
the kijs that make a given r∗ an equilibrium formation may be chosen using the method developed in [27].

Definition 1 The MAS asymptotically converges to the target formation with a bounded error iff there exists some
ε1 > 0 such as

lim
t→∞

P (q, t) 6 ε1. (4)

A control law designed to reduce the potential energy P (q, t) allows a bounded convergence of the MAS. To describe
the evolution of P (q, t), one introduces as in [27]

gi =
∂P (q, t)

∂qi
=

N∑
j=1

kij
(
rij − r∗ij

)
(5)

ġi =

N∑
j=1

kij
(
ṙij − ṙ∗ij

)
(6)

si = q̇i + kpgi (7)

where gi and ġi characterize the evolution of the discrepancy between the current and target formations and kp is a
positive scalar design parameter.
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4.2 Distributed control

The control law proposed in [27] is defined as τi = τi(qi, q̇i, q) and aims at reducing P (q, t), thus making the MAS
converge to the target formation in case of permanent communication. In this approach, each agent evaluates its
control input using the state vectors of its neighbours obtained via permanent communication.

Here, in a distributed context with limited communications between agents, agents cannot have permanent access
to q. Thus, one introduces the estimate q̂ij of qj performed by Agent i to replace the missing information in the

control law. The MAS configuration estimated by Agent i is denoted as q̂i =
[
q̂iT1 . . . q̂iTN

]T
∈ RN.n. The way q̂ij is

evaluated is described in Section 4.3.

In a distributed context with limited communications, with the help of q̂i, Agent i is able to evaluate

ḡi =

N∑
j=1

kij
(
r̄ij − r∗ij

)
(8)

s̄i = q̇i + kpḡi (9)

with r̄ij = qi − q̂ij and ˙̄rij = q̇i − ˙̂qij . Using ḡi and s̄i, Agent i is able to evaluate the following adaptive distributed
control input to be used in (1)

τi

(
qi, q̇i, q̂

i, ˙̂qi
)

=−kss̄i − kg ḡi +G− Yi (qi, q̇i, kp ˙̄gi, kpḡi) θ̄i, (10)

˙̄θi = ΓiYi (qi, q̇i, kp ˙̄gi, kpḡi)
T
s̄i (11)

with kg > 0, ks ≥ 1 + kp (kM + 1) a design parameter and Γi an arbitrary symmetric positive definite matrix.

Section 4.3 introduces the estimator q̂ij of qj needed in (10).

4.3 Communication protocol and estimator dynamics

In what follows, the time instant at which the k-th message is sent by Agent j is denoted tj,k. Let tij,k be the
time at which the k-th message sent by Agent j is received by Agent i. In this paper, we assume that there is no
communication delay between agents. Therefore, tij,k = tj,k for all i ∈ Nj . When a communication is triggered at

ti,k for Agent i, it broadcasts a message containing ti,k, qi (ti,k), q̇i (ti,k) and its estimated matrix θ̄i (ti,k). Once a
message is received by neighbours of Agent i, its content is used to update their estimate of the state of Agent i as
presented in the next section.

t1 1, t1 2,

t1 1,
2

t1 1,
3

t1 2,
2

t1 2,
3

t2 1,

t2 1,

t2 1,
3

1

Agent 1

Agent 2

Agent 3

Fig. 1. Example of transmission times ti,k by Agent i of k-th message and reception times tji,k of k-th message by Agent j.
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4.3.1 Estimator dynamics

Following the idea of [39, 40], the estimate q̂ij of qj made by Agent i is evaluated considering

M̂ i
j

(
q̂ij
)

¨̂qij + Ĉij

(
q̂ij ,

˙̂qij

)
˙̂qij +G= τ̂ ij , ∀t ∈

[
tij,k, t

i
j,k+1

[
(12)

q̂ij
(
tij,k
)

= qj
(
tij,k
)

(13)

˙̂qij
(
tij,k
)

= q̇j
(
tij,k
)
, (14)

where M̂ i
j

(
q̂ij
)

and Ĉij

(
q̂ij ,

˙̂qij

)
are estimates of Mj and Cj computed from Yj

(
q̂ij ,

˙̂qij , x, y
)

and θ̄j

(
tij,k

)
using

M̂ i
j

(
q̂ij
)
x+ Ĉij

(
q̂ij ,

˙̂qij

)
y = Yj

(
q̂ij ,

˙̂qij , x, y
)
θ̄j
(
tij,k
)
. (15)

The estimator (12) managed by Agent i requires an estimate τ̂ ij of τj evaluated by Agent j. This estimate, used by
Agent i, is evaluated as

τ̂ ij =−ksŝij − kg ĝij +G− Yj
(
q̂ij ,

˙̂qij , kp
˙̂gij , kpĝ

i
j

)
θ̂ij (16)

˙̂
θij = ΓjYj

(
q̂ij ,

˙̂qij , kp
˙̂gij , kpĝ

i
j

)T
ŝij (17)

θ̂ij
(
tij,k
)

= θ̄j
(
tij,k
)

(18)

where ŝij = ˙̂qij + kpĝ
i
j , ĝ

i
j =

∑N
k=1 kjk

(
r̂ijk − r∗jk

)
, ˙̂gij =

∑N
k=1 kjk

(
˙̂rijk − ṙ∗jk

)
, r̂ijk = q̂ij − q̂ik, and θ̂ij is the estimate

of θ̄j .

Errors appear between qi and its estimate q̂ji obtained by an other Agent j due to the presence of state perturbations,

the non-permanent communication, and the mismatch between θi, θ̄i, and θ̂i. The errors for the estimates performed
by Agent j are expressed as

eji = q̂ji − qi, j ∈ N (19)

ej = q̂j − q. (20)

These errors are used in Section 6 to trigger communications when eii and ėii become too large. Figure 2 summarizes
the overall structure of the estimator and controller.

Remark 2 The structure of the estimator for τ̂ ij is chosen so as to get an accurate estimate for q in order to keep

the eiis and ėiis small. In absence of perturbations, i.e., when Dmax = 0 and if θi is perfectly known, i.e., θ̄i = θ̂ii = θi,
the estimation error eii introduced in (19) vanishes. The price to be paid for the use of this estimator structure for
τ̂ ij is that every agent needs to maintain an estimator of the state of all other agents.

4.3.2 Communication protocol

When a communication is triggered at ti,k for Agent i, it broadcasts a message containing ti,k, qi (ti,k), q̇i (ti,k) and
its estimated θ̄i (ti,k). We assume that this message is received by all other agents, either directly when the network
is fully connected, or after several hops when the network is connected. The latter case requires the use of a flooding
protocol [15, 28]. Since communications have been assumed without delay, one has q̂ii (t) = q̂ji (t) for all (i, j) ∈ N 2.
This simplifies the stability study in Appendix 9.1.
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 𝜏𝑖  

 Θ̅𝑖(𝑡𝑖,𝑘
𝑗

), 𝑞𝑖 (𝑡𝑖,𝑘
𝑗

) , �̇�𝑖 (𝑡𝑖,𝑘
𝑗

) 

Transmission of  

Communication  

If CTC(𝑒𝑖
𝑖, �̇�𝑖

𝑖 , �̅�𝑖, �̅�𝑖) ≥ 0  

Agent dynamics  
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 Θ̅𝑗(𝑡𝑗,𝑘
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𝑖  
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Update  �̂�𝑗
𝑖  and �̂�𝑗

𝑖  

Update  �̂�𝑗
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𝑖  

⋮ 

⋮ 

 �̂�𝑁
𝑖  , �̇̂�𝑁

𝑖  

 

�̂�𝑖,�̇̂�𝑖  
 
 
 

 �̂�𝑗
𝑖  , �̇̂�𝑗
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𝑖,Y𝑗, Θ̂𝑗

𝑖  
 �̂�𝑗

𝑖   

Estimate of Agent 1 

Estimate of Agent N 

 �̂�1
𝑖  , �̇̂�1

𝑖  

 

 �̂�𝑗
𝑖  , �̇̂�𝑗

𝑖  

 

Estimations made by Agent i 

Fig. 2. Formation control system architecture

5 Time-varying formation and tracking

Consider, without loss of generality, the first agent as a reference agent 1 and introduce the target relative con-

figuration vector r∗ =
[
r∗T11 . . . r∗T1N

]T
which may be time-varying. In this section, the MAS has to follow some

reference trajectory q∗1 (t), while remaining in a desired formation. Agent 1, taken as the reference agent, aims at
following q∗1 (t). It is assumed that all agents have access to q∗1 (t). Moreover, assume that the target formation can
be time-varying and is represented by the relative configuration vector r∗ (t). Therefore the reference trajectory of
each agent can be expressed as q∗i (t) = q∗1 (t) + r∗i1 (t).

To guarantee that individual reference trajectories can be tracked by each agent, it is assumed that for i = 1, . . . , N ,

|q̇∗i |< q̇max (21)

|q̈∗i |< q̈max. (22)

Definition 3 The MAS reaches its tracking objective iff there exists ε1 > 0 and ε2 > 0 such that (4) is satisfied and

lim
t→∞

‖q1 (t)− q∗1 (t)‖ 6 ε2, (23)

i.e., iff the reference agent asymptotically converges to the reference trajectory, and the MAS asymptotically converges
to the target formation with bounded errors.

A distributed control law is designed to satisfy this target. Introduce the trajectory error terms

εi = qi − q∗i
ε̂ji = q̂ji − q

∗
i .

The terms gi, ḡi, ĝ
j
i , s̄i and ŝji introduced in Sections 4 are now redefined as follows to address the trajectory tracking

1 a virtual agent may also be considered.
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problem

gi =

N∑
j=1

kij
(
rij − r∗ij

)
+ k0εi (24)

ḡi =

N∑
j=1

kij
(
r̄ij − r∗ij

)
+ k0εi (25)

ĝji =

N∑
j=1

kij

(
r̂jij − r

∗
ij

)
+ k0ε̂

j
i (26)

si = q̇i − q̇∗i + kpgi (27)

s̄i = q̇i − q̇∗i + kpḡi (28)

ŝji = ˙̂qji − q̇
∗
i + kpĝ

j
i (29)

where k0 ≥ 0 is a positive design parameter which may be used to control the tracking error with respect to the
reference trajectory. When no reference trajectory is considered, k0 = 0.

From these terms, a new distributed control input to be used in (1) is defined for Agent i as

τi =−kss̄i − kg ḡi +G− Yi (qi, q̇i, ˙̄pi, p̄i) θ̄i (30)

˙̄θi = ΓiYi (qi, q̇i, ˙̄pi, p̄i)
T
s̄i (31)

where p̄i = kpḡi − q̇∗i and ˙̄pi = kp ˙̄gi − q̈∗i .

The estimators maintained by Agent i are defined with the same dynamics as 12 but the evaluation of the estimate
τ̂ ij of τj is now evaluated as

τ̂ ij =−ksŝij − kg ĝij +G− Yj
(
q̂ij ,

˙̂qij ,
˙̂pij , p̂

i
j

)
θ̂ij (32)

˙̂
θij = ΓjYj

(
q̂ij ,

˙̂qij ,
˙̂pij , p̂

i
j

)T
ŝij (33)

where ŝij = ˙̂qij − q̇∗j + kpĝ
i
j , p̂

i
j = kpĝ

i
j − q̇∗j and ˙̂pij = kp ˙̂gij − q̈∗j .

The communication protocol introduced in Section 4.3.2 remains the same. The way the estimator (12-14) for the
state of all agents is defined with the control input (32,33) and the absence of communication delays ensure that

x̂ii = x̂ji for all pair of agents i and j in the network.

6 Event-triggered communications

Theorem 4 introduces a CTC used to trigger communications to ensure a bounded asymptotic convergence of the
MAS to the target formation. The initial value of the state vectors are considered to be known by all agents. In
practice, this condition can be satisfied by triggering a communication from all agents at time t = 0 to initialize the
estimates of the state of the neighbours of all agents.

Let kmax = max
` = 1 . . . N

j = 1 . . . N

(k`j) and kmin = min
` = 1 . . . N

j = 1 . . . N

(k`j 6= 0) , αi =
∑N
j=1 kij , αmin = mini=1,...,N αi and

αmax = maxi=1,...,N αi. Define also for θ̄i ∈ Rp and θ̄i =
[
θ̄i,1, . . . , θ̄i,p

]T

∆θi,max =


max

{∣∣θ̄i,1 − θmin,i,1

∣∣ , ∣∣θ̄i,1 − θmax,i,1

∣∣}
...

max
{∣∣θ̄i,p − θmin,i,p

∣∣ , ∣∣θ̄i,p − θmax,i,p

∣∣}
 (34)
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and ∆θi = θ̄i − θi.

Theorem 4 Consider a MAS with agent dynamics given by (1) and the control law (30). Consider some design
parameters η ≥ 0, η2 > 0, 0 < bi <

ks
kskp+kg

,

c3 =
min

{
1, k1, kp, k0, 2k0

(
2k0 + αminkmin

kmax

)}
max {1, kM}

and k1 = ks−1+kp (kM + 1). In absence of communication delays, the system (1) is input-to-state practically stable
(ISpS) and the agents can be driven to some target formation such that

lim
t→∞

N∑
i=1

k0 ‖εi‖2 +
1

2
P (q, t) ≤ ξ (35)

with

ξ =
N

kgc3

[
D2

max + η + c3∆max

]
(36)

where ∆max = maxi=1:N

(
supt>0

(
∆θTi Γ−1

i ∆θi
))

, if the communications are triggered when one of the following
conditions is satisfied

kss̄
T
i s̄i + kpkg ḡ

T
i ḡi + η ≤ α2

M

(
kee

iT
i e

i
i + kpkM ė

iT
i ė

i
i

)
+ αMk

2
Ckp

∥∥eii∥∥2
N∑
j=1

kji

[∥∥∥ ˙̂qij

∥∥∥+ η2

]2
+ kgbi ‖q̇i − q̇∗i ‖

2

+ kp
∥∥eii∥∥

α2
M

(
1 + ‖|Yi|∆θi,max‖2

)
+

‖|Yi|∆θi,max‖2(
1 + ‖|Yi|∆θi,max‖2

)
 (37)

‖q̇i‖ ≥
∥∥∥ ˙̂qii

∥∥∥+ η2 (38)

with ke = ksk
2
p + kgkp +

kg
bi

, and Yi = Yi (qi, q̇i, ˙̄pi, p̄i).

The proof of Theorem 4 is given in Appendix 9.1.

Corollary 5 Consider a MAS with agent dynamics given by (1) and the control law (30). For any Agent i, let ti,k
and ti,k+1 be two consecutive communication instants at which the CTC of Theorem 4 have been satisfied. Then
ti,k+1 − ti,k > 0.

The proof of Corollary 5 is provided in Appendix 9.2.

The CTCs proposed in Theorem 4 are analyzed assuming that the estimators of the state of the agents and the
communication protocol is such that ∀ (i, j) ∈ N ×N ,

x̂ii (t) =x̂ji (t) (39)

x̂ii (ti,k) =xii (ti,k) , (40)

where (39) is called the estimate synchronization condition and (40) the estimator reset condition. Theorem 4 is
valid independently of the way the estimate x̂ii of xi is evaluated provided that (39) and (40) are satisfied.

From (35) and (37), one sees that η can be used to adjust the trade-off between the bound ξ on the formation and
tracking errors and the amount of triggered communications. If η = 0, there is no perturbation and θi is perfectly
known, the system converges asymptotically.

9



The CTC (38) is related to the discrepancy between q̇i and ˙̂qii . Choosing a small value of η2 may lead to frequent
communications. On the contrary, when η2 is large, (37) is more likely to be satisfied. A value of η2 that corresponds
to a trade-off between the two CTCs (37) and (38) has thus to be found to minimize the amount of communications.

The CTCs (37) and (38) mainly depend on eii and ėii. A communication is triggered by Agent i when the state
estimate x̂ii of its own state vector xi is not satisfying, i.e., when eii and ėii becomes large. To reduce the number of
triggered communications, one has to keep eii and ėii as small as possible. This may be achieved by increasing the
accuracy of the estimator, as proposed in Section 4.3, but possibly at the price of a more complex structure for the
estimator.

The perturbations have a direct impact on eii and ėii, and, as a consequence, on the frequency of communications. (36)
shows the impact of Dmax and η on the formation and tracking errors: in presence of perturbations, the formation
and tracking errors cannot reach a value below a minimum value due to the perturbations. At the cost of a larger
formation and tracking errors, η can reduce the number of triggered communications and so can reduce the influence
of perturbations on the CTC (37).

The discrepancy between the actual values of Mi and Ci and of their estimates M̂ i
i and Ĉii determines the accuracy of

θ̄i, so ∆θi,max, and the estimation errors. Even in absence of state perturbations, due to the linear parametrization,

it is likely that M̂ i
i 6= Mi, Ĉ

i
i 6= Ci and ∆θi,max > 0, which leads to the satisfaction of the CTCs at some time

instants. Thus, the CTC (37) leads to more communications when the model of the agent dynamics is not accurate,
requiring thus more frequent updates of the estimate of the states of agents.

The choice of the parameters αM, kg, kp and bi also determines the number of broadcast messages. Choosing the

spring coefficients kij such that αi =
∑N
j=1 kij is small leads to a reduction in the number of communication triggered

due to the satisfaction of (37).

7 Simulation results

The performance of the proposed algorithm is evaluated considering a set of N = 6 agents. Two models will be
considered to describe the dynamics of the agents.

7.1 Models of the agent dynamics and estimator

7.1.1 Double integrator with Coriolis term (DI)

The first model consists in the dynamical system

Mi (qi) q̈i + Ci (qi, q̇i) q̇i = τi + di

with qi ∈ R2 and where

Mi =

[
1 0

0 1

]
Ci (q̇i) =

[
0.1 0

0 0.1

]
‖q̇i‖ . (41)

Then the vectors θ̄i (0) = θ̂ji (0), i = 1, . . . , N are obtained using (2). In place of the estimator in Section 4.3 a first
less accurate estimate of xj made by Agent i, is evaluated as

q̂ij (t) = qj
(
tij,k
)

(42)

˙̂qij (t) = q̇j
(
tij,k
)
. (43)

This estimator allows one to better observe the tradeoff between the potential energy of the formation and the
communication requirements.

For this dynamical model, the parameters of the control law (30) and the CTC (37) have been selected as: kM =
‖Mi‖ = 1, kC = ‖Ci‖ = 0.1, kp = 1, kg = 15, ks = 1 + kp (kM + 1), bi = 1

kg
, and k0 = 2.
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7.1.2 Surface ship (SS)

The second model considers surface ships with coordinate vectors qi =
[
xi yi ψi

]T
∈ R3, i = 1 . . . N , in a local

earth-fixed frame. For Agent i, (xi, yi) represents its position and ψi its heading angle. The dynamics of the agents
is described by the surface ship dynamical model taken from [17], assumed identical for all agents, and expressed in
the body frame as

Mb,iv̇i + Cb,i (vi) vi +Db,ivi = τb,i + db,i, (44)

where vi =
[
ui vi ri

]T
is the velocity vector in the body frame, τb,i is the control input, db,i is the perturbation,

and

Mb,i =


25.8 0 0

0 33.8 1.0115

0 1.0115 2.76



Cb,i (vi) =


0 0 −33.8vi − 1.0115ri

0 0 25.8ui

33.8vi + 1.0115ri −25.8ui 0



Db,i =


0.72 0 0

0 0.86 −0.11

0 −0.11 −0.5

 .

At t = 0, one assumes that Agent i has access to estimates M̂ i
b,i of Mb,i, Ĉ

i
b,i of Cb,i, and D̂i

b,i of Db,i described as

M̂ i
b,i =

(
13×3 + 0.1ΞM

i

)
�Mb,i

Ĉib,i =
(
13×3 + 0.1ΞC

i

)
� Cb,i

D̂i
b,i =

(
13×3 + 0.1ΞD

i

)
�Db,i,

where 13×3 is the 3 × 3 matrix of ones, ΞM
i , ΞC

i , and ΞDi are matrices which components are independent and
identically Bernoulli random variables with values in {−1, 1}, and � is the Hadamard product. These estimates are
transmitted at t = 0 to all other agents. As a consequence, the estimates of Mb,i and Cb,i made by all agents at
t = 0 are all identical.

The model (44) is expressed with the coordinate vectors qi in the local earth-fixed frame using the transform

q̇i = Ji (ψi) vi

Ji (ψi) =


cosψi − sinψi 0

sinψi cosψi 0

0 0 1


where Ji (ψi) is a simple rotation around the z-axis in the earth-fixed coordinate. Define J−Ti =

(
J−1
i

)T
. Then, (44)

can be rewritten as

J−Ti Mb,iJ
−1
i q̈i + J−Ti

[
Cb,i (v)−Mb,iJ

−1
i J̇i +Db,i

]
J−1
i q̇i = J−Ti τb + J−Ti db,i

and so
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Mi (qi) q̈i + Ci (qi, q̇i) q̇i = τi + di

where
Mi (qi) = J−TMbJ

−1,

Ci (qi, q̇i) = J−Ti

[
Cb,i

(
J−1
i q̇i

)
−Mb,iJ

−1
i J̇i +Db,i

]
J−1,

and τi is the control input in earth-fixed coordinates as defined in (30).

The vectors θ̄i (0) = θ̂ji (0), i = 1, . . . , N are obtained using (2). The estimator described in Section 4.3 is employed.

For this dynamical model, the parameters of the control law (30) and the CTC (37) have been selected as: kM =
‖Mi‖ = 33.8, kC = ‖Cv (1N )‖ = 43.96, kp = 6, kg = 20, ks = 1 + kp (kM + 1), bi = 1

kg
, and k0 = 1.5.

7.1.3 Simulation parameters

One chooses the components of the initial value x (0) of the state vector as

q (0) =



−0.35

−1.11

0


T 

4.59

−4.59

0


T 

4.72

2.42

0


T 

0.64

1.36

0


T 

3.53

1.56

0


T 
−1.26

3.36

0


T 

T

,

and q̇ (0) = 0Nn×1. The vector of relative target configurations corresponds to a hexagonal formation

r∗ =




0

0

0


T 

2

0

0


T 

3
√

3

0


T 

2

2
√

3

0


T 

0

2
√

3

0


T 
−1
√

3

0


T 

T

.

Using the approach developed in [27], the following matrix K = [kij ]
i = 1 . . . N

j = 1 . . . N

can be computed from r∗

K = 0.1



0 1.85 0 0.926 0 1.85

1.85 0 1.85 0 0.926 0

0 1.85 0 1.85 0 0.926

0.926 0 1.85 0 1.85 0

0 0.926 0 1.85 0 1.85

1.85 0 0.926 0 1.85 0


and αi =

∑N
j=1 kij = 0.463, for all i = 1, . . . , N and αM = 0.463.

A fully-connected communication graph is considered. The simulation duration is T = 2s. Matlab’s ode45 integrator
is used with a step size ∆t = 0.01 s. Since time has been discretized, the minimum delay between the transmission of
two messages by the same agent is set to ∆t. The perturbation di (t) is assumed of constant value over each interval of
the form [k∆t, (k + 1) ∆t[. The components of di (t) are independent realizations of zero-mean uniformly distributed
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noise U
(
−Dmax√

3
, Dmax√

3

)
and are thus such that ‖di (t)‖ ≤ Dmax. Let Nm be the total number of messages broadcast

during a simulation. The performance of the proposed approach is evaluated comparing Nm to the maximum number
of messages that can be broadcast Nm = NT/∆t ≥ Nm. The percentage of residual communications is defined as
Rcom = 100Nm

Nm
. Rcom indicates the percentage of time slots during which a communication has been triggered.

When a tracking has to be performed, one considers the target trajectory of the first agent

q̇∗1 (t) =


4 sin (0.4t)

4 cos (0.4t)

0.4t

 ,
the other agents having to remain in formation. Define the tracking error ε0 = q1 − q∗1 .

7.2 Formation control with DI

Figure 3 shows the evolution of the communication ratio Rcom and of the potential energy at t = T . For all
simulations, one has P (q, T ) ≤ ξ for the different values of Dmax and η.

In Figure 3 (a), the number of communications obtained once the system has converged increases as the level of
perturbations becomes more important, as expected. Increasing η in the CTC 37 helps reducing Rcom . Nevertheless,
increasing η also increases the potential energy P (q, T ) of the formation, as can be seen in Figure 3 (b). In Fig-
ure 3 (b), when η ≥ 3, one observes that the potential energy starts to decrease with the level of perturbation Dmax

to increase again when Dmax gets large. To explain this surprising behavior, Figure 3 (c) shows that there exists a
threshold Rcom = 2.25 below which the potential energy significantly increases to ensure proper convergence. There-
fore η should be chosen such that Rcom remains above this threshold. Even large values of Dmax can be tolerated
provided that η is chosen large enough to provide a sufficient amount of communications.

7.3 Formation control with ship dynamical model

Figure 4 shows the trajectories of the agents when the control (30) is applied and the communications are triggered
according to the CTC of Theorem 4. Figure 4 (a) illustrates the results obtained using the accurate estimator (12),
Figure 4(b) illustrates results obtained using the simple estimator (42). The agents converge to the desired formation
with a limited number of communications, even in presence of perturbations.

Figure 5 shows the evolution of Rcom and of P (q, T ) parametrized by η for different values of Dmax. For all sim-
ulations, one has P (q, T ) ≤ ξ for the different values of Dmax and η. As expected and shown in Section 7.2, the
potential energy obtained once the system has converged increases with Dmax. It can also be observed that increasing
η reduces the number of messages broadcast, without a significant impact on P (q, T ), contrary to what was observed
with the DI with simple estimator.

7.4 Tracking control with DI

The simulation duration is T = 3.5 s.

Figures 6 and 7 show the evolution of the communication ratio Rcom, the potential energy and the tracking error at
t = T .

In Figure 6 (a), the number of communications obtained once the system has converged decreases as the level of
perturbation becomes more important, especially when η is small, which was not excepted. Such behavior is not
observed with the accurate estimator (12), where Rcom increases when the perturbations become more important, as
illustrated in Figure 9 (a) with the ship model. This behavior can be explained by the fact a large Dmax makes ‖ḡi‖
and ‖s̄i‖ larger, which reduces the number of times the CTC (37) is satisfied, even if the error

∥∥eii∥∥ is also affected.

Difference with accurate estimator is the error eii is keeping small by the estimator, so the influence of perturbations
is more significant on eii than on ‖ḡi‖ or ‖s̄i‖, which leads to a larger number of communications triggered.
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Fig. 3. Evolution of Rcom and P (q, t) for different values of Dmax ∈
{

0, 2, 4, 6, 8, 10, 12
}

, η ∈
{

0, 1, 3, 5, 7, 9, 11
}

, and

η2 = 7.5. The DI model and the simple estimator (42)-(43) are considered.

Figure 6 (a) illustrates that the parameter η in the CTC (37) can help reducing Rcom . It can be seen that there exists
for Rcom a threshold (Rcom = 7) which Rcom cannot reach : we can deduce a minimal number of communications is
required for system converge with the constant estimator (42)-(43).

Figures 6 (b) and (c) show that the potential energy of the formation P (q, t) and the tracking error ε0 increase when
the perturbation level increases. The influence of parameter η is also illustrated: Figure 7 shows that a larger value
of η leads to an increase of P (q, t), but reduces ε0. Indeed, the less communications, the more difficult it is for some
Agent i to be synchronized with the others agents to reach the target formation. However, be less synchronized with
the other agents allows Agent i to be more synchronized with its target trajectory q∗i , inducing a small tracking
error ε0. Thus, a trade off between the P (q, t) and ε0 has to be reached.
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(a) Accurate estimator (12).
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(b) Constant estimator (42).

Fig. 4. Hexagonal formation with Dmax = 20, η = 20 and η2 = 7.5. Agents are represented by circles. In (a), Rcom = 2.61%
and P (q, T ) = 0.001. In (b) Rcom = 18.25% and P (q, T ) = 0.001.
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Fig. 5. Evolution of Rcom and P (q, t) for different values of Dmax ∈
{

200, 300, . . . , 700
}

, η ∈
{

0, 50, 100, . . . 750
}

and

η2 = 7.5. Model (44) and accurate estimator (12) are considerate.

7.5 Tracking with surface ship model

The simulation duration is T = 2.5 s.

Figures 9 and 10 show the evolution of the communication ratio Rcom, the potential energy and the tracking error
at t = T .

In Figure 9 (a), the number of communications obtained once the system has converged increases as the level of
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Fig. 6. Evolution of Rcom, P (q, t) and ε0 for different values of Dmax ∈
{

0, 2, 4, 6, 8, 10, 12
}

, η ∈
{

0, 1, 3, 5, 7, 9, 11
}

and η2 = 7.5. Model (41) and constant estimator (42)-(43) are considerate.

perturbations becomes more important. The parameter η in the CTC 37 can help to reduce Rcom . Figure 9 (b)
and (c) show that the potential energy of the formation P (q, t) and the tracking error ε0 also increase when the
perturbation level increases. Influence of parameter η is also illustrated : Figure 9 (c) shows that increasing η results
in make ε0 decrease when Dmax > 200. Influence of η on P (q, t) is less clearly detectable than in the case of the DI
model.

In Figure 10, it can be observed that Rcom cannot be reduced below the value of 1: a minimum number of commu-
nications is indeed required to converge with the accurate estimator (12).
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Fig. 7. Evolution of Rcom, P (q, t) and ε0 for different values of Dmax ∈
{

0, 2, 4, 6, 8, 10, 12
}

, η ∈
{

0, 1, 3, 5, 7, 9, 11
}

and η2 = 7.5. Model (41) and constant estimator (42)-(43) are considerate.
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Fig. 8. Hexagonal formation and tracking problem with Dmax = 50, η = 50, and η2 = 7.5. Circles represents agents (top
figure) and communication events (bottom figure). Rcom = 5%, P (q, T ) = 0.001 and ‖ε0‖ = 0.1. T = 6 s.

8 Conclusion

This paper presents an adaptive control and event-triggered communication strategy to reach a target formation for
multi-agent systems with perturbed Euler-Lagrange dynamics. From estimate information of agents dynamics, an
estimator has been proposed to provide the missing information required by the control. Convergence to a desired
formation and influence of state perturbations on the convergence and on the amount of required communications
have been studied. Tracking control to follow an desire trajectory has been considerate and added to the formation
control. A distributed event-triggered condition to converge to a desired formation and follow the reference trajectory
while reduce the number of communications have been studied. Simulations have shown the effectiveness of the
proposed method in presence of state perturbations when their level remains moderate. The time interval between
consecutive communications has been shown to be strictly positive.
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Fig. 9. Evolution of Rcom, P (q, t) and ε0 for different values of Dmax ∈
{

0, 100, 200, . . . 700
}

, η ∈
{

0, 100, 200, . . . 800
}

and η2 = 7.5. The SS model (44) and accurate estimator (12) are considered.

In future work, the considered problem will be extended to communication delay and package drop.
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Fig. 10. Evolution of Rcom, P (q, t) and ε0 for different values of Dmax ∈
{

0, 100, 200, . . . 700
}

, η ∈
{

0, 100, 200, . . . 800
}

and η2 = 7.5. The SS model (44) and accurate estimator (12) are considered.

9 Appendix

9.1 Proof of Theorem 4

Consider a given value of Dmax and η, one shows first that the MAS is input-to-state practically stable. One then
evaluates the influence of Dmax and η on the behavior of the MAS.

9.1.1 Proof of the input-to-state practical stability of the MAS

Consider the continuous positive-definite candidate Lyapunov function

V =
1

2

N∑
i=1

(
sTi Misi + ∆θTi Γ−1

i ∆θi
)

+
kg
2

[
1

2
P (q, t) +

N∑
i=1

k0 ‖qi − q∗i ‖
2

]
(45)

where ∆θi = θ̄i − θi . The time derivative of V is

V̇ =

N∑
i=1

[
1

2
sTi Ṁisi + sTi Miṡi + ∆θTi Γ−1

i
˙̄θi

]
+
kg
2

d

dt

[
1

2
P (q, t) +

N∑
i=1

k0 ‖qi − q∗i ‖
2

]
(46)

where, from (27), one has ṡi = q̈i − q̈∗i + kpġi. Injecting (11) in (46) one obtains

V̇ =

N∑
i=1

[
1

2
sTi Ṁisi + sTi Miṡi + ∆θTi Yi (qi, q̇i, ˙̄pi, p̄i) s̄i

]

+
kg
2

d

dt

[
1

2
P (q, t) +

N∑
i=1

k0 ‖qi − q∗i ‖
2

]
. (47)
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The last term in (47) may be written as

1

2

d

dt

[
1

2
P (q, t) +

N∑
i=1

k0 ‖qi − q∗i ‖
2

]

=
1

4

d

dt

N∑
i=1

N∑
j=1

kij
∥∥rij − r∗ij∥∥2

+
1

2

d

dt

N∑
i=1

k0 ‖qi − q∗i ‖
2

=

N∑
i=1

1

2

N∑
j=1

kij
(
ṙij − ṙ∗ij

)T (
rij − r∗ij

)
+ k0 (q̇i − q̇∗i )

T
(qi − q∗i )


=

N∑
i=1

1

2

N∑
j=1

kij

[
(q̇i − q̇∗i )

T (
rij − r∗ij

)
−
(
q̇j − q̇∗j

)T (
rij − r∗ij

)]
+k0 (q̇i − q̇∗i )

T
(qi − q∗i )

]
=

N∑
i=1

1

2

N∑
j=1

kij

[
(q̇i − q̇∗i )

T (
rij − r∗ij

)
− (q̇i − q̇∗i )

T (
rji − r∗ji

)]
+k0 (q̇i − q̇∗i )

T
εi

]
. (48)

Since rji = −rij , one gets

1

2

d

dt

[
1

2
P (q, t) +

N∑
i=1

k0 ‖qi − q∗i ‖
2

]
=

N∑
i=1

(q̇i − q̇∗i )
T

 N∑
j=1

kij
(
rij − r∗ij

)
+ k0εi


=

N∑
i=1

(q̇i − q̇∗i )
T
gi. (49)

Combining (47) and (49), one obtains

V̇ =

N∑
i=1

[
1

2
sTi Ṁisi + sTi Miṡi + ∆θTi Yi (qi, q̇i, ˙̄pi, p̄i) s̄i + kg (q̇i − q̇∗i )

T
gi

]
. (50)

One focuses now on the term Miṡi. Using again (27), one may write

Miṡi + Cisi = Mi (q̈i − q̈∗i + kpġi) + Ci (q̇i − q̇∗i + kpgi) (51)

Using (1), one gets

Miṡi + Cisi = τi + di −G+Mi (kpġi − q̈∗i ) + Ci (kpgi − q̇∗i ) , (52)

where one used (1). Now, introducing (30), one gets

Miṡi + Cisi =−kss̄i − kg ḡi − Yi (qi, q̇i, kp ˙̄gi − q̈∗i , kpḡi − q̇∗i ) θ̄i
+Mi (kpġi − q̈∗i ) + Ci (kpgi − q̇∗i ) + di (53)

In what follows, one uses Yi in place of Yi (qi, q̇i, kp ˙̄gi − q̈∗i , kpḡi − q̇∗i ) to lighten notations. Since ∆θi = θ̄i − θi, one
obtains

sTi Miṡi =−kssTi s̄i − kgsTi ḡi − sTi Cisi + sTi (Mi (kpġi − q̈∗i ) + Ci (kpgi − q̇∗i ))

−sTi Yi (θi + ∆θi) + sTi di. (54)
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Using (2) in (54) leads to

−sTi Yi (θi + ∆θi) =−sTi Yi∆θi − sTi (Mi (kp ˙̄gi − q̈∗i ) + Ci (kpḡi − q̇∗i )) . (55)

Considering (2) and (54) in (50), one gets

V̇ =

N∑
i=1

[
1

2
sTi Ṁisi − kssTi s̄i − kgsTi ḡi − sTi Cisi + sTi (Mi (kpġi − q̈∗i ) + Ci (kpgi − q̇∗i ))

− sTi (Mi (kp ˙̄gi − q̈∗i ) + Ci (kpḡi − q̇∗i ))− sTi Yi∆θi + s̄Ti Yi∆θi

+kg (q̇i − q̇∗i )
T
gi + sTi di

]
. (56)

Now, introduce (24) in (27) to get

si = q̇i − q̇∗i + kp

[
N∑
i=1

kij
(
qi − qj − r∗ij

)
+ k0εi

]
. (57)

Since eij = q̂ij − qj , one gets

si = q̇i − q̇∗i + kp

[
N∑
i=1

kij
(
qi − q̂ij + eij − r∗ij

)
+ k0εi

]

= q̇i − q̇∗i + kp

[
N∑
i=1

kij
(
r̄ij − r∗ij

)
+ k0εi

]
+ kp

N∑
j = 1

j 6= i

kije
i
j

= s̄i + kpE
i
j , (58)

with since kii = 0

Eij =

N∑
i=1

kije
i
j . (59)

Using similar derivations, one may show that
gi = ḡi + Eij . (60)

Replacing (58) and (60) in (56), one gets

V̇ =

N∑
i=1

[
sTi

[
1

2
Ṁi − Ci

]
si − kssTi s̄i − kg (q̇i − q̇∗i + kpgi)

T
ḡi

+kps
T
i

(
MiĖ

i
j + CiE

i
j

)
+ kpE

iT
j Yi∆θi + kg (q̇i − q̇∗i )

T
gi + sTi di

]
. (61)

Let

V̇1 =

N∑
i=1

2kps
T
i

(
MiĖ

i
j + CiE

i
j

)
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and

V̇2 = 2kp

N∑
i=1

EiTj Yi∆θi.

Since 1
2Ṁi − Ci is skew symmetric or definite negative, sTi

[
1
2Ṁi − Ci

]
si ≤ 0. For all b > 0 and all vectors x and y

of similar size, one has

xT y ≤ 1

2

(
bxTx+

1

b
yT y

)
. (62)

Using (62) with b = 1, one deduces that dTi si ≤ 1
2

(
D2

max + sTi si
)

and that

V̇ ≤
N∑
i=1

[
−kssTi s̄i − kgkpgTi ḡi +

1

2
sTi si +

1

2
D2

max

+kg (q̇i − q̇∗i )
T

(gi − ḡi)
]

+
1

2

(
V̇1 + V̇2

)
(63)

One notices that rij = qi − qj = qi − q̂ij + eij = r̄ij + eij , thus

‖si − s̄i‖2 = sTi si − 2sTi s̄i + s̄Ti s̄i∥∥kpEij∥∥2
= sTi si − 2sTi s̄i + s̄Ti s̄i

sTi s̄i =−1

2

∥∥kpEij∥∥2
+

1

2
sTi si +

1

2
s̄Ti s̄i (64)

In the same way, from (64), one shows that

gTi ḡi = −1

2

∥∥Eij∥∥2
+

1

2
gTi gi +

1

2
ḡTi ḡi. (65)

Injecting (65) in (63),

V̇ ≤
N∑
i=1

[
ks
2

(
k2
p

∥∥Eij∥∥2 − sTi si − s̄Ti s̄i
)

+ kpkg
1

2

(∥∥Eij∥∥2 − gTi gi − ḡTi ḡi
)

+
1

2
sTi si +

1

2
D2

max

+kg (q̇i − q̇∗i )
T

(gi − ḡi)
]

+
1

2

(
V̇1 + V̇2

)
≤

N∑
i=1

[
− (ks − 1)

2
sTi si −

ks
2
s̄Ti s̄i +

ksk
2
p + kgkp

2

∥∥Eij∥∥2 − 1

2
kpkg

(
gTi gi + ḡTi ḡi

)
+

1

2
D2

max

+kg (q̇i − q̇∗i )
T

(gi − ḡi)
]

+
1

2

(
V̇1 + V̇2

)
. (66)

Using (62) with b = bi > 0, one shows that 2q̇Ti (gi − ḡi) ≤
(
bi ‖q̇i‖2 + 1

bi

∥∥Eij∥∥2
)

. Using this result in (66), one gets

V̇ ≤ 1

2

N∑
i=1

[
− (ks − 1) sTi si − kss̄Ti s̄i +

(
ksk

2
p + kgkp +

kg
bi

)∥∥Eij∥∥2
+ bikg ‖q̇i − q̇∗i ‖

2

−kpkg
(
gTi gi + ḡTi ḡi

)
+D2

max

]
+

1

2

(
V̇1 + V̇2

)
. (67)

Consider now V̇1. Using (62) with b = 1, the fact that Mi is symmetric positive definite, and that xTMix < kMx
Tx,
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one obtains

N∑
i=1

2kps
T
i

(
MiĖ

i
j + CiE

i
j

)
≤

N∑
i=1

kp

(
sTi Misi + sTi si +

[
ĖiTj MiĖ

i
j + EiTj CTi CiE

i
j

])
≤

N∑
i=1

kp

(
(kM + 1) sTi si +

[
kM Ė

iT
j Ėij + EiTj CTi CiE

i
j

])
(68)

Focus now on the terms EiTj CTi CiE
i
j

N∑
i=1

EiTj CTi CiE
i
j =

N∑
i=1

 N∑
j=1

kije
i
j

T

CTi Ci

(
N∑
`=1

ki`e
i
`

)

≤
N∑
i=1

N∑
j=1

N∑
`=1

ki`kij ‖Ci‖2 eiTj ei`. (69)

Using (62) with b = 1, one gets

N∑
i=1

EiTj CTi CiE
i
j ≤

1

2

N∑
i=1

N∑
j=1

N∑
`=1

ki`kij ‖Ci‖2
(
eiTj e

i
j + eiT` e

i
`

)
≤

N∑
i=1

N∑
j=1

N∑
`=1

ki`kij ‖Ci‖2
(
eiTj e

i
j

)
≤

N∑
i=1

αi

N∑
j=1

kij ‖Ci‖2
(
eiTj e

i
j

)
. (70)

Since one has assumed that (40) and (39) are satisfied, one has q̂ij = q̂jj , e
i
j = ejj . As a consequence,

N∑
i=1

N∑
j=1

kij
∥∥eij∥∥2

=

N∑
i=1

N∑
j=1

kij

∥∥∥ejj∥∥∥2

=

N∑
i=1

N∑
j=1

kji
∥∥eii∥∥2

. (71)

and since kij = kji,

N∑
i=1

EiTj CTi CiE
i
j ≤

N∑
i=1

αM

N∑
j=1

[
kij
∥∥eii∥∥2 ‖Cj‖2

]
≤

N∑
i=1

αM

N∑
j=1

[
kij
∥∥eii∥∥2

k2
C ‖q̇j‖

2
] . (72)

Then, the second CTC (38) leads to

N∑
i=1

EiTj CTi CiE
i
j ≤

N∑
i=1

αMk
2
C

∥∥eii∥∥2
N∑
j=1

kij

(∥∥∥ ˙̂qij

∥∥∥+ η2

)2

 . (73)

Similarly, one shows that
N∑
i=1

EiTj Eij ≤
N∑
i=1

α2
M

∥∥eii∥∥2
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and

N∑
i=1

ĖiTj Ėij ≤
N∑
i=1

α2
M

∥∥ėii∥∥2
.

Consider now V̇2

V̇2 = 2kp

N∑
i=1

EiTj Yi∆θi

= 2kp

N∑
i=1

 N∑
j=1

kije
i
j

T

Yi∆θi. (74)

Since eij = ejj , one gets

V̇2 = 2kp

N∑
i=1

 N∑
j=1

kije
j
j

T

Yi∆θi

= 2kp

N∑
j=1

N∑
i=1

(
kjie

i
i

)T
Yj∆θj

= 2kp

N∑
i=1

eii
T

N∑
j=1

kjiYj∆θj . (75)

Let 0n = [0, . . . 0]
T ∈ Rn be the all-zero vector. If eii = 0n, one has 2kpe

i
i
T
∑N
j=1 kjiYj∆θj = 0. Considering now the

case eii 6= 0n. Using (62) with b = bi2 > 0, one obtains

V̇2 = 2kp

N∑
i=1

EiTj Yi∆θi (76)

≤ kp
N∑
i=1

(
bi2E

iT
j Eij +

1

bi2
‖Yi∆θi‖2

)
. (77)

Since
∑N
i=1E

iT
j Eij ≤

∑N
i=1 α

2
M

∥∥eii∥∥2
, one gets

V̇2 ≤
N∑
i=1

kp

(
α2

Mbi2
∥∥eii∥∥2

+
1

bi2
‖|Yi| |∆θi|‖2

)

≤
N∑
i=1

kp

(
α2

Mbi2
∥∥eii∥∥2

+
1

bi2
‖|Yi|∆θi,max‖2

)
, (78)

where ∆θi,max is given by (34).
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Since eii 6= 0n, choosing bi2 =
1+‖|Yi|∆θi,max‖2

‖eii‖
, one obtains V̇2 ≤ V̇3 with

V̇3 =

N∑
i=1

kp

α2
M

(
1 + ‖|Yi|∆θi,max‖2∥∥eii∥∥

)∥∥eii∥∥2
+

∥∥eii∥∥ ‖|Yi|∆θi,max‖2(
1 + ‖|Yi|∆θi,max‖2

)


=

N∑
i=1

kp
∥∥eii∥∥

α2
M

(
1 + ‖|Yi|∆θi,max‖2

)
+

‖|Yi|∆θi,max‖2(
1 + ‖|Yi|∆θi,max‖2

)
 . (79)

Injecting (68), (73), and (79) in (67), one gets

V̇ ≤ 1

2

N∑
i=1

[
− (ks − 1− kp (kM + 1)) sTi si − kss̄Ti s̄i +D2

max

−kpkggTi gi − kpkg ḡTi ḡi + kgbi ‖q̇i − q̇∗i ‖
2

+ kpkMα
2
M

∥∥ėii∥∥2

+α2
M

(
ksk

2
p + kgkp +

kg
bi

)∥∥eii∥∥2
+ αMkpk

2
C

∥∥eii∥∥2
N∑
j=1

kij

[∥∥∥ ˙̂qij

∥∥∥+ η2

]2+
1

2
V̇3. (80)

The CTC (37) leads to

V̇ ≤ 1

2

N∑
i=1

[
− (ks − 1− kp (kM + 1)) sTi si − kgkpgTi gi +D2

max + η
]

V̇ ≤ 1

2

N∑
i=1

[
−k1s

T
i si − kgkpgTi gi +D2

max + η
]

(81)

with k1 = ks − 1− kp (kM + 1).

Following the steps given in Appendix 9.3.1 from (106) to (110), one shows that

V̇ ≤ −c3V +
N

2

[
D2

max + η
]

+
c3
2

N∑
i=1

(
∆θi

TΓ−1
i ∆θi

)
, (82)

where c3 > 0 is a positive constant. Introducing ∆max = maxi=1:N

(
supt>0

(
∆θTi Γ−1

i ∆θi
))

, one has

V̇ ≤ −c3V +
N

2

[
c3∆max +D2

max + η
]
. (83)

Define the function W such that W (0) = V (0) and

Ẇ = −c3W +
N

2

[
D2

max + η + c3∆max

]
. (84)

Using the initial condition W (0) = V (0), the solution of (84) is

W (t) = exp (−c3t)V (0) + (1− exp (−c3t))
N

2c3

[
D2

max + η + c3∆max

]
. (85)

Then, using the Lemma 3.4 in [1] (Comparison lemma), one has V (t) ≤W (t) and so

V (t) ≤ exp (−c3t)V (0) + (1− exp (−c3t))
N

2c3

[
D2

max + η + c3∆max

]
(86)
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Since Mi and Γi are symmetric, there exists matrices SMi
and SΓi

such that Mi = STMi
SMi

and Γi = STΓi
SΓi

.
Introduce now

yM =
[

(SM1s1)
T
. . . (SMisi)

T
. . . (SMN

sN )
T
]T

(87)

yΓ =
[ (
S−1

Γ1
∆θ1

)T
. . .
(
S−1

Γi
∆θi

)T
. . .
(
S−1

ΓN
∆θN

)T ]T
(88)

yq =
[

(q1 − q∗1)
T
. . . (qi − q∗i )

T
. . . (qN − q∗N )

T
]T

(89)

z =
[
yTM yTΓ

√
kgk0y

T
q

√
kg
2 P (x, t)

]T
(90)

Then, V (t) can be rewritten as

V (z) =
1

2
zT z. (91)

Using (91) in (86), one has ∀t ≥ 0

‖z (t)‖2 ≤ exp (−c3t) ‖z (0)‖2 + (1− exp (−c3t))
N

c3

[
D2

max + η + c3∆max

]
‖z (t)‖ ≤

√
exp (−c3t) ‖z (0)‖2 + (1− exp (−c3t))

N

c3
[D2

max + η + c3∆max]

‖z (t)‖ ≤
√

exp (−c3t) ‖z (0)‖2 +

√
(1− exp (−c3t))

N

c3
[D2

max + η + c3∆max]

‖z (t)‖ ≤ exp
(
−c3

2
t
)
‖z (0)‖+

√
N

c3
[D2

max + η + c3∆max] (92)

and so

‖z (t)‖ ≤ β (‖z (0)‖ , t) + ρ (93)

with ρ =
√

N
c3

[D2
max + η + c3∆max], β (‖z (0)‖ , t) = exp

(
− c32 t

)
‖z (0)‖, and β ∈ KL. Using Definition 2.1 from [16],

(93) implies that the MAS is input-to-state practically stable.

9.1.2 Convergence of V

From (93), we know the system is ISpS. Moreover, from (82), one has

V̇ ≤ −c3V +
N

2

[
D2

max + η
]

+
c3
2

N∑
i=1

(
∆θi

TΓ−1
i ∆θi

)
(94)

Then, if initially

−c3V (0) +
N

2

[
D2

max + η
]

+
c3
2

N∑
i=1

(
∆θi

TΓ−1
i ∆θi

)
< 0 (95)
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one has V̇ ≤ 0 and V is decreasing. Then, one has from (86)

lim
t→∞

V (t) ≤ N

2c3

[
D2

max + η + c3∆max

]
lim
t→∞

1

2

N∑
i=1

(
sTi Misi + ∆θi

TΓ−1
i ∆θi

)
+
kg
2

(
N∑
i=1

k0 ‖εi‖2 +
1

2
P (q, t)

)
≤ N

2c3

[
D2

max + η + c3∆max

]
lim
t→∞

kg
2

(
N∑
i=1

k0 ‖εi‖2 +
1

2
P (q, t)

)
≤ N

2c3

[
D2

max + η + c3∆max

]
− lim
t→∞

1

2

N∑
i=1

(
sTi Misi + ∆θi

TΓ−1
i ∆θi

)
lim
t→∞

N∑
i=1

k0 ‖εi‖2 +
1

2
P (q, t) ≤ N

kgc3

[
D2

max + η + c3∆max

]
. (96)

Asymptotically, the formation and tracking error are bounded.

9.2 Proof of ti,k+1 − ti,k > 0

From the CTC (37), a communication is triggered at t = t−i,k when

kss̄
T
i s̄i + kpkg ḡ

T
i ḡi + η = α2

M

(
ke
∥∥eii∥∥2

+ kpkM
∥∥ėii∥∥2

)
+ αMk

2
Ckp

∥∥eii∥∥2
N∑
j=1

kji

[∥∥∥ ˙̂qij

∥∥∥+ η2

]2
+ kgbi ‖q̇i − q̇∗i ‖

2

+ kp
∥∥eii∥∥

α2
M

(
1 + ‖|Yi|∆θi,max‖2

)
+

‖|Yi|∆θi,max‖2(
1 + ‖|Yi|∆θi,max‖2

)
 (97)

with ke =
(
ksk

2
p + kgkp +

kg
bi

)
. Then, the estimation errors eii and ėii are reset and one has eii

(
t+i,k

)
= 0 and

ėii

(
t+i,k

)
= 0. As a consequence, the CTC (37) in Theorem 4 is not satisfied at t = t+i,k iff

kss̄
T
i s̄i + kpkg ḡ

T
i ḡi + η > kgbi ‖q̇i − q̇∗i ‖

2
. (98)

To prove the absence of Zeno behavior, i.e., that ti,k+1 > ti,k, one has to show that (98) is satisfied.

Using the property xT y ≥ − 1
2

(
bi2x

Tx+ 1
bi2
yT y

)
for some bi2 > 0, one deduces that

s̄Ti s̄i = k2
pḡ
T
i ḡi + ‖q̇i − q̇∗i ‖

2
+ 2kpḡ

T
i (q̇i − q̇∗i )

≥
(
k2
p − kpbi2

)
ḡTi ḡi +

(
1− kp

bi2

)
‖q̇i − q̇∗i ‖

2
. (99)

Using (99), a sufficient condition for (98) to be satisfied is
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ks
(
k2
p − kpbi2

)
ḡTi ḡi + ks

(
1− kp

bi2

)
‖q̇i − q̇∗i ‖

2
+ kpkg ḡ

T
i ḡi + η > kgbi ‖q̇i − q̇∗i ‖

2

ks

(
1− kp

bi2

)
‖q̇i − q̇∗i ‖

2
+
[
kpkg + ks

(
k2
p − kpbi2

)]
ḡTi ḡi + η > kgbi ‖q̇i − q̇∗i ‖

2

k1ḡ
T
i ḡi + η > k2 ‖q̇i − q̇∗i ‖

2
(100)

where k1 =
[
kpkg + ks

(
k2
p − kpbi2

)]
and k2 =

[
kgbi − ks

(
1− kp

bi2

)]
. To ensure that the inequality (100) is satisfied

independently of the values of ḡi and q̇i, it is sufficient to find bi and bi2 such that k1 > 0 and k2 < 0. Consider first
k1.

kpkg + ks
(
k2
p − kpbi2

)
> 0

kg
ks

> (−kp + bi2)

kskp + kg
ks

> bi2. (101)

Focus now on k2

kgbi − ks
(

1− kp
bi2

)
< 0

kgbi
ks

< 1− kp
bi2

1

bi2
<

1

kp

(
1− kgbi

ks

)
. (102)

Since bi2 > 0, one has
kgbi
ks

< 1 and so bi <
ks
kg

. Then

kskp
ks − kgbi

< bi2. (103)

Finally, one has to find a condition on bi such that (101) and (102) can be satisfied simultaneously

kskp + kg
ks

> bi2 >
kskp

ks − kgbi
. (104)

One may find bi2 if

ks − kgbi >
k2
skp

kskp + kg

1

kg

(
ks −

k2
skp

kskp + kg

)
> bi

bi <
ks

kskp + kg
. (105)

which also ensures that bi <
ks
kg

. Thus, once bi <
ks

kskp+kg
, there exists some bi2 such that (104) is satisfied. As a

consequence ti,k+1 − ti,k > 0.
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9.3 Complementary proof elements

9.3.1 Differential equation satisfied by V

From (81), one gets

V̇ ≤ 1

2

N∑
i=1

[
−km

(
sTi si − kggTi gi

)
+D2

max + η
]

(106)

where km = min {k1, kp}. Using (117), one may write

N∑
i=1

gTi gi ≥
N∑
i=1

k2
0 ‖εi‖

2
+

(
2k0 +

αminkmin

kmax

)
P (q, t)

≥ k2

(
N∑
i=1

k2
0 ‖εi‖

2
+

1

2
P (q, t)

)
(107)

where

k2 =

{
2
(

2k0 + αminkmin

kmax

)
if
(

2k0 + αminkmin

kmax

)
< 1

2

1 else.

Then

N∑
i=1

gTi gi ≥ k2

(
N∑
i=1

k2
0 ‖εi‖

2
+

1

2
P (q, t)

)

≥ k3

(
N∑
i=1

k0 ‖εi‖2 +
1

2
P (q, t)

)
(108)

where k3 = k2k0 if k0 < 1, k3 = 1 else. Then

V̇ ≤ −1

2

N∑
i=1

(
kms

T
i si
)
− k3kg

2

(
N∑
i=1

k0 ‖εi‖2 +
1

2
P (q, t)

)
+
N

2

(
D2

max + η
)

≤ − 1

k∗M

[
1

2

N∑
i=1

km

(
kMs

T
i si
)

+
k3kg

2

(
N∑
i=1

k0 ‖εi‖2 +
1

2
P (q, t)

)]
+
N

2

(
D2

max + η
)

≤ − k4

k∗M

[
1

2

N∑
i=1

(
kMs

T
i si
)

+
kg
2

(
N∑
i=1

k0 ‖εi‖2 +
1

2
P (q, t)

)]
+
N

2

(
D2

max + η
)

(109)

with k∗M = 1 if kM < 1 and k∗M = kM else, and k4 = min (km, k3). Let c3 = k4
k∗
M

and one gets

V̇ ≤ −c3

[
1

2

N∑
i=1

[
sTi Misi + ∆θi

TΓ−1
i ∆θi

]
+
kg
2

(
N∑
i=1

k0 ‖εi‖2 +
1

2
P (q, t)

)]

+
N

2

[
D2

max + η
]

+
c3
2

N∑
i=1

∆θi
TΓ−1

i ∆θi

V̇ ≤ −c3V +
N

2

[
D2

max + η
]

+
c3
2

N∑
i=1

(
∆θi

TΓ−1
i ∆θi

)
. (110)

The evaluation of c3 is described in Appendix 9.3.4.
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9.3.2 Upper-bound on
∑N
i=1 g

T
i gi

From (24), one may write

N∑
i=1

gTi gi =

N∑
i=1

 N∑
j=1

kij
(
rij − r∗ij

)
+ k0εi

T  N∑
j=1

kij
(
rij − r∗ij

)
+ k0εi


=

N∑
i=1


∥∥∥∥∥∥
N∑
j=1

kij
(
rij − r∗ij

)∥∥∥∥∥∥
2

+ ‖k0εi‖2 + 2 (k0εi)
T

 N∑
j=1

kij
(
rij − r∗ij

)
 . (111)

Let

P1 =

N∑
i=1

εTi

 N∑
j=1

kij
(
rij − r∗ij

) . (112)

Since rij − r∗ij = qi − qj −
(
q∗i − q∗j

)
= εi − εj ,

P1 =

N∑
i=1

N∑
j=1

kijε
T
i (εi − εj)

=

N∑
i=1

N∑
j=1

kij
(
εTi εi − εTi εj

)
. (113)

Using the fact that 2aT b = aTa+ bT b− (a− b)T (a− b), one gets

P1 =

N∑
i=1

N∑
j=1

kij

(
‖εi‖2 −

1

2

(
‖εi‖2 + ‖εj‖2 − ‖εi − εj‖2

))
. (114)

Since kij = kji and εi − εj = rij − r∗ij

P1 =
1

2

N∑
i=1

N∑
j=1

kij ‖εi‖2 −
1

2

N∑
i=1

N∑
j=1

kji ‖εj‖2 +
1

2

N∑
i=1

N∑
j=1

kij
∥∥rij − r∗ij∥∥2

=
1

2

N∑
i=1

N∑
j=1

kij ‖εi‖2 −
1

2

N∑
i=1

N∑
j=1

kij ‖εi‖2 + P (q, t)

= P (q, t) . (115)

Injecting P1 in (111), one gets

N∑
i=1

gTi gi =

N∑
i=1


∥∥∥∥∥∥
N∑
j=1

kij
(
rij − r∗ij

)∥∥∥∥∥∥
2

+ ‖k0εi‖2

+ 2k0P (q, t) (116)

and using (125), one gets
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N∑
i=1

gTi gi ≥
N∑
i=1

k2
0 ‖εi‖

2
+

(
2k0 +

αminkmin

kmax

)
P (q, t) (117)

9.3.3 Upper-bound on
∑N
i=1

∥∥∥∑N
j=1 kij

(
rij − r∗ij

)∥∥∥2

One may write N∑
i=1

∥∥∥∥∥∥
N∑
j=1

kij
(
rij − r∗ij

)∥∥∥∥∥∥
2

=

N∑
i=1

 N∑
j=1

kij
(
rij − r∗ij

)T (
N∑
`=1

ki` (ri` − r∗i`)

)

=

N∑
i=1

N∑
`=1

N∑
j=1

ki`kij
(
rij − r∗ij

)T
(ri` − r∗i`) (118)

Using the fact 2aT b = aTa+ bT b− (a− b)T (a− b)

N∑
i=1

∥∥∥∥∥∥
N∑
j=1

kij
(
rij − r∗ij

)∥∥∥∥∥∥
2

=

N∑
i=1

1

2

N∑
`=1

N∑
j=1

ki`kij

[∥∥rij − r∗ij∥∥2
+ ‖ri` − r∗i`‖

2 −
∥∥rij − r∗ij − (ri` − r∗i`)

∥∥2
] (119)

One has (
rij − r∗ij

)
− (ri` − r∗i`) = (rij − ri`)−

(
r∗ij − r∗i`

)
(120)

= r`j − r∗`j (121)

Injecting this result in (119) leads to

N∑
i=1

∥∥∥∥∥∥
N∑
j=1

kij
(
rij − r∗ij

)∥∥∥∥∥∥
2

=

N∑
i=1

1

2

N∑
`=1

N∑
j=1

ki`kij

[∥∥rij − r∗ij∥∥2
+ ‖ri` − r∗i`‖

2 −
∥∥r`j − r∗`j∥∥2

] (122)

with kmax = max
` = 1 . . . N

j = 1 . . . N

(k`j)

kmax

N∑
i=1

∥∥∥∥∥∥
N∑
j=1

kij
(
rij − r∗ij

)∥∥∥∥∥∥
2

≥
N∑
i=1

1

2

N∑
`=1

N∑
j=1

ki`kijk`j

[∥∥rij − r∗ij∥∥2
+ ‖ri` − r∗i`‖

2 −
∥∥r`j − r∗`j∥∥2

]
kmax

N∑
i=1

∥∥∥∥∥∥
N∑
j=1

kij
(
rij − r∗ij

)∥∥∥∥∥∥
2

≥ 1

2

N∑
i=1

N∑
`=1

N∑
j=1

ki`kijk`j
∥∥rij − r∗ij∥∥2

+
1

2

N∑
i=1

N∑
`=1

N∑
j=1

ki`kijk`j ‖ri` − r∗i`‖
2

− 1

2

N∑
i=1

N∑
`=1

N∑
j=1

ki`kijk`j
∥∥r`j − r∗`j∥∥2

kmax

N∑
i=1

∥∥∥∥∥∥
N∑
j=1

kij
(
rij − r∗ij

)∥∥∥∥∥∥
2

≥ 1

2

N∑
i=1

N∑
`=1

N∑
j=1

ki`kijk`j
∥∥rij − r∗ij∥∥2

+
1

2

N∑
i=1

N∑
`=1

N∑
j=1

ki`kijk`j
∥∥rij − r∗ij∥∥2

− 1

2

N∑
i=1

N∑
`=1

N∑
j=1

ki`kijk`j
∥∥rij − r∗ij∥∥2

kmax

N∑
i=1

∥∥∥∥∥∥
N∑
j=1

kij
(
rij − r∗ij

)∥∥∥∥∥∥
2

≥ 1

2

N∑
i=1

N∑
`=1

N∑
j=1

ki`kijk`j
∥∥rij − r∗ij∥∥2

. (123)
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Let kmin = min
` = 1 . . . N

j = 1 . . . N

(k`j 6= 0) and αmin = mini=1,...,N αi. One may write

N∑
i=1

N∑
`=1

N∑
j=1

ki`kijk`j
∥∥rij − r∗ij∥∥2

=

N∑
i=1

N∑
`=1

ki`

N∑
j=1

kijk`j
∥∥rij − r∗ij∥∥2

≥
N∑
i=1

N∑
`=1

ki`kmin

N∑
j=1

kij
∥∥rij − r∗ij∥∥2

≥
N∑
i=1

αikmin

N∑
j=1

kij
∥∥rij − r∗ij∥∥2

≥ αminkmin

N∑
i=1

N∑
j=1

kij
∥∥rij − r∗ij∥∥2

≥ 2αminkminP (q, t) (124)

Injecting (124) in (123) one gets

kmax

N∑
i=1

∥∥∥∥∥∥
N∑
j=1

kij
(
rij − r∗ij

)∥∥∥∥∥∥
2

≥ αminkminP (q, t)

N∑
i=1

∥∥∥∥∥∥
N∑
j=1

kij
(
rij − r∗ij

)∥∥∥∥∥∥
2

≥ αminkmin

kmax
P (q, t) . (125)

9.3.4 Evaluation of c3

One has

c3 =
k4

k∗M

=
min (km, k3)

max {1, kM}

=
min {min {k1, kp} ,min {k2k0, 1}}

max {1, kM}

=
min {k1, kp, 1, k2k0}

max {1, kM}

=
min

{
k1, kp, 1, k0 min

{
2
(

2k0 + αminkmin

kmax

)
, 1
}}

max {1, kM}

=
min

{
k1, kp, 1, k0, 2k0

(
2k0 + αminkmin

kmax

)}
max {1, kM}

(126)

where k1 = ks−1−kp (kM + 1), αmin = mini=1,...,N αi , kmax = max
` = 1 . . . N

j = 1 . . . N

(k`j) and kmin = min
` = 1 . . . N

j = 1 . . . N

(k`j 6= 0)
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