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Introduction

Distributed cooperative control of a multi-agent system (MAS) usually requires significant exchange of information between agents. In early contributions, see, e.g., [START_REF] Olfati-Saber | Consensus and cooperation in networked multi-agent systems[END_REF][START_REF] Wei | Consensus tracking under directed interaction topologies: Algorithms and experiments[END_REF], communication is considered permanent. Recently, more practical approaches have been proposed. For example, in [START_REF] Wen | Flocking of multi-agent dynamical systems with intermittent nonlinear velocity measurements[END_REF][START_REF] Wen | Consensus in multi-agent systems with communication constraints[END_REF][START_REF] Wen | Consensus of second-order multi-agent systems with delayed nonlinear dynamics and intermittent communications[END_REF], communication is intermittent, alternating phases of permanent communication and of absence of communication. Alternatively, communication may only occur at discrete time instants, either periodically as in [START_REF] Garcia | Cooperative control with general linear dynamics and limited communication: Periodic updates[END_REF], or triggered by some event, as in [START_REF] Dimarogonas | Distributed event-triggered control for multi-agent systems[END_REF][START_REF] Fan | Distributed event-triggered control of multi-agent systems with combinational measurements[END_REF][START_REF] Viel | New state estimator for decentralized event-triggered consensus for multi-agent systems[END_REF][START_REF] Zhang | Distributed event-triggered control for consensus of multi-agent systems[END_REF].

This paper proposes a strategy to reduce the number of communications for displacement-based formation control while following a desired reference trajectory. Agent dynamics are described by Euler-Lagrange models and include perturbations. This work extends results presented in [START_REF] Qingkai | Distributed formation stabilization for mobile agents using virtual tensegrity structures[END_REF] by introducing an event-triggered strategy, and results of [START_REF] Liu | Distance-based formation shape stabilisation via event-triggered control[END_REF][START_REF] Sun | Generalized controllers for rigid formation stabilization with application to event-based controller design[END_REF][START_REF] Tang | Event-triggered formation control of multi-agent systems[END_REF]] by addressing systems with more complex dynamics than a simple integrator. To obtain efficient distributed control laws, each agent uses an estimator of the state of the other agents. The proposed distributed communication triggering condition (CTC) involves the inter-agent displacements and the relative discrepancy between actual and estimated agent states. A single a priori trajectory has to be evaluated to follow the desired path. Effects of state perturbations on the formation and on the communications are analyzed. Conditions for the Lyapunov stability of the MAS have been introduced. The absence of Zeno behavior is proved. This paper is organized as follows. Related work is detailed in Section 2. Some assumptions are introduced in Section 3 and the formation parametrization is described in Section 4. As the problem considered here is to drive a formation of agents along a desired reference trajectory, the designed distributed control law consists of two parts. The first part (see Section 4) drives the agents to some target formation and maintains the formation, despite the presence of perturbations. It is based on estimates of the states of the agents described in Section 4.3. The second part (see Section 5) is dedicated to the tracking of the desired trajectory. Communication instants are chosen locally by each agent using an event-triggered approach introduced in Section 6. A simulation example is considered in Section 7 to illustrate the reduction of the communications obtained by the proposed approach. Finally, conclusions are drawn in Section 8.
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Event-triggered communication is a promising approach to save energy. It is well-suited to applications where communications should be minimized, e.g., to improve furtivity, reduce energy consumption, or limit collisions between transmitted data packets. Application examples with such constraints are exposed, e.g., in [START_REF] Linsenmayer | Event-triggered control of multi-agent systems with double-integrator dynamics: Application to vehicle platooning and flocking algorithms[END_REF][START_REF] Linsenmayer | Event-triggered control for vehicle platooning[END_REF] for the case of a fleet of vehicles, or in [START_REF] Aragues | Distributed consensus algorithms for merging feature-based maps with limited communication[END_REF] where agents aim at merging local feature-based maps. The main difficulty consists in determining the CTC that will ensure the completion of the task assigned to the MAS, e.g., reaching some consensus, maintaining a formation, etc. In a distributed strategy, the states of the other agents are not permanently available, thus each agent usually maintains estimators of the state of its neighbours to evaluate their control laws. Nevertheless, without permanent communication, the quality of the state estimates is difficult to evaluate. To address this issue, each agent maintains an estimate of its own state using only the information it has shared with its neighbours. When the discrepancy between this own state estimate and its actual state reaches some threshold, the agent triggers a communication. This is the approach considered, e.g., in [START_REF] Dimarogonas | Distributed event-triggered control for multi-agent systems[END_REF][START_REF] Garcia | Cooperative control with general linear dynamics and limited communication: Centralized and decentralized event-triggered control strategies[END_REF][START_REF] Garcia | Decentralized event-triggered consensus of linear multi-agent systems under directed graphs[END_REF][START_REF] Seyboth | Event-based broadcasting for multi-agent average consensus[END_REF][START_REF] Viel | New state estimators and communication protocol for distributed event-triggered consensus of linear multi-agent systems with bounded perturbations[END_REF][START_REF] Viel | New state estimator for decentralized event-triggered consensus for multi-agent systems[END_REF][START_REF] Zhu | Event-based consensus of multi-agent systems with general linear models[END_REF]. These works differ by the complexity of the agents' dynamics [START_REF] Garcia | Cooperative control with general linear dynamics and limited communication: Centralized and decentralized event-triggered control strategies[END_REF][START_REF] Seyboth | Event-based broadcasting for multi-agent average consensus[END_REF][START_REF] Zhu | Event-based consensus of multi-agent systems with general linear models[END_REF], the structure of the state estimator [START_REF] Dimarogonas | Distributed event-triggered control for multi-agent systems[END_REF][START_REF] Garcia | Decentralized event-triggered consensus of linear multi-agent systems under directed graphs[END_REF][START_REF] Viel | New state estimators and communication protocol for distributed event-triggered consensus of linear multi-agent systems with bounded perturbations[END_REF][START_REF] Viel | New state estimator for decentralized event-triggered consensus for multi-agent systems[END_REF], and the determination of the threshold for the CTC [START_REF] Seyboth | Event-based broadcasting for multi-agent average consensus[END_REF][START_REF] Viel | New state estimators and communication protocol for distributed event-triggered consensus of linear multi-agent systems with bounded perturbations[END_REF].

Most of the event-triggered approaches have been applied in the context of consensus in MAS [START_REF] Dimarogonas | Distributed event-triggered control for multi-agent systems[END_REF][START_REF] Garcia | Decentralized event-triggered consensus of linear multi-agent systems under directed graphs[END_REF][START_REF] Seyboth | Event-based broadcasting for multi-agent average consensus[END_REF]. This paper focuses on distributed formation control, which has been considered in [START_REF] Liu | Distance-based formation shape stabilisation via event-triggered control[END_REF][START_REF] Sun | Generalized controllers for rigid formation stabilization with application to event-based controller design[END_REF][START_REF] Tang | Event-triggered formation control of multi-agent systems[END_REF]. Formation control consists in driving and maintaining all agents of a MAS to some reference, possibly time-varying configuration, defining, e.g., their relative positions, orientations, and speeds. Various approaches have been considered, such as behavior-based flocking [START_REF] Arboleda | Identification of v-formations and circular and doughnut formations in a set of moving entities with outliers[END_REF][START_REF] Olfati-Saber | Flocking for multi-agent dynamic systems: Algorithms and theory[END_REF][START_REF] Craig | Steering behaviors for autonomous characters[END_REF][START_REF] Rochefort | Guidance of flocks of vehicles using virtual signposts[END_REF][START_REF] Vicsek | Novel type of phase transition in a system of self-driven pinproceedingss[END_REF], or formation tracking [START_REF] Arboleda | Identification of v-formations, circular, and doughnut formations in a set of moving entities with outliers[END_REF][START_REF] Chao | Uav formation flight based on nonlinear model predictive control[END_REF][START_REF] Do | Formation tracking control of unicycle-type mobile robots with limited sensing ranges[END_REF][START_REF] Mei | Distributed coordinated tracking with a dynamic leader for multiple euler-lagrange systems[END_REF][START_REF] Ren | Decentralized scheme for spacecraft formation flying via the virtual structure approach[END_REF].

Behavior-based flocking [START_REF] Arboleda | Identification of v-formations and circular and doughnut formations in a set of moving entities with outliers[END_REF][START_REF] Olfati-Saber | Flocking for multi-agent dynamic systems: Algorithms and theory[END_REF][START_REF] Craig | Steering behaviors for autonomous characters[END_REF][START_REF] Rochefort | Guidance of flocks of vehicles using virtual signposts[END_REF][START_REF] Vicsek | Novel type of phase transition in a system of self-driven pinproceedingss[END_REF] imposes several behavior rules (attraction, repulsion, imitation) to each agent. Their combination leads the MAS to follow some desired behavior. Such approach requires the availability to each agent of observations of the state of its neighbours. These observations may be deduced from measurements provided by sensors embedded in each agent or from information communicated by its neighbours. In all cases, these observations are assumed permanently available. In addition, if a satisfying global behavior may be obtained by the MAS, behavior-based flocking cannot impose a precise configuration between agents.

Different formation-tracking methods have been considered. In leader-follower techniques [START_REF] Arboleda | Identification of v-formations, circular, and doughnut formations in a set of moving entities with outliers[END_REF][START_REF] Chao | Uav formation flight based on nonlinear model predictive control[END_REF][START_REF] Do | Formation tracking control of unicycle-type mobile robots with limited sensing ranges[END_REF][START_REF] Mei | Distributed coordinated tracking with a dynamic leader for multiple euler-lagrange systems[END_REF], based on mission goals, a trajectory is designed only for some leader agent. The other follower agents, aim at tracking the leader as well as maintaining some target formation defined with respect to the leader. A virtual leader has been considered in [START_REF] Chao | Collision-free uav formation flight control based on nonlinear mpc[END_REF][START_REF] Chao | Uav formation flight based on nonlinear model predictive control[END_REF][START_REF] Rochefort | Mthodes pour le guidage coopratif[END_REF] to gain robustness to leader failure. This requires a good synchronization among agents of the state of the virtual leader. Virtual structures have been introduced in [START_REF] Ren | Decentralized scheme for spacecraft formation flying via the virtual structure approach[END_REF][START_REF] Wang | Formation control of multiple nonholonomic mobile robots with limited information of a desired trajectory[END_REF], where the agent control is designed to satisfy constraints between neighbours. Such approaches also address the problem of leader failure. In distancebased control, the constraints are distances between agents. In displacement-based control, relative coordinate or speed vectors between agents are imposed. In tensegrity structures [START_REF] Nabet | Tensegrity models and shape control of vehicle formations[END_REF][START_REF] Qingkai | Distributed formation stabilization for mobile agents using virtual tensegrity structures[END_REF] additional flexibility in the structure is considered by considering attraction and repulsion terms between agents, as formalized by [START_REF] Alfakih | On affine motions and universal rigidity of tensegrity frameworks[END_REF]. In addition to constraints on the structure of the MAS, [START_REF] Sun | A synchronization approach to trajectory tracking of multiple mobile robots while maintaining time-varying formations[END_REF] imposes some reference trajectory to each agent. In most of these works, permanent communication between agents is assumed.

Some recent works combine event-triggered approaches with distance-based or displacement-based formation control [START_REF] Liu | Distance-based formation shape stabilisation via event-triggered control[END_REF][START_REF] Sun | Generalized controllers for rigid formation stabilization with application to event-based controller design[END_REF][START_REF] Tang | Event-triggered formation control of multi-agent systems[END_REF]. In these works, the dynamics of the agents are described by a simple integrator, with control input considered constant between two communications. The proposed CTCs consider different threshold formulations and require each agent to have access to the state of all other agents. A constant threshold is considered in [START_REF] Sun | Generalized controllers for rigid formation stabilization with application to event-based controller design[END_REF]. A time-varying threshold is introduced in [START_REF] Liu | Distance-based formation shape stabilisation via event-triggered control[END_REF][START_REF] Tang | Event-triggered formation control of multi-agent systems[END_REF]. The CTC depends then on the relative positions between agents and the relative discrepancy between actual and estimated agent states. These CTCs reduce the number of triggered communications when the system converges to the desired formation. A minimal time between two communications, named inter-event time, is also defined. Finally, in all these works, no perturbations are considered.

Logic-based control (LBC) techniques have been introduced in [START_REF] Aguiar | Coordinated path-following control for nonlinear systems with logic-based communication[END_REF][START_REF] Rego | A packet loss compliant logic-based communication algorithm for cooperative path-following control[END_REF][START_REF] Xu | Communication logic design and analysis for networked control systems[END_REF][START_REF] Yook | Trading computation for bandwidth: Reducing communication in distributed control systems using state estimators[END_REF] to reduce the number of communications in trajectory tracking problems. MAS with decoupled nonlinear agent dynamics are considered in [START_REF] Aguiar | Coordinated path-following control for nonlinear systems with logic-based communication[END_REF][START_REF] Rego | A packet loss compliant logic-based communication algorithm for cooperative path-following control[END_REF]. Agents have to follow parametrized paths, designed in a centralized way. CTCs introduced by LBC lead all agents to follow the paths in a synchronized way to set up a desired formation. Communication delays, as well as packet losses are considered. Nevertheless, if input-to-state stability conditions are established, absence of Zeno behavior is not analyzed.

qi vector of coordinates of Agent i in some global fixed reference frame R Consider a MAS consisting of a network of N agents which topology is described by an undirected graph G = (N , E). N = {1, 2, ..., N } is the set of nodes and E ⊂ N × N the set of edges of the network. The set of neighbours of Agent i

q vector q T 1 q T 2 . . . q T N T ∈ R N.n ,
is N i = {j ∈ N | (i, j) ∈ E, i = j}. N i is the cardinal number of N i . For some vector x = x 1 x 2 . . . x n T ∈ R n , we define |x| = |x 1 | |x 2 | . . . |x n | T
where |x i | is the absolute value of the i-th component of x. Similarly, the notation x ≥ 0 will be used to indicate that each component x i of x is non negative, i.e., x i ≥ 0 ∀i ∈ {1 . . . n}. A continuous function β (r, s) : [0, a) × [0, ∞) → [0, ∞) is said to belong to class KL if for each fixed s, the function β (., s) is strictly increasing and β (0, s) = 0, and for each fixed r, the function β (r, .) is decreasing and lim s→∞ β (r, s) = 0.

Let q i ∈ R n be the vector of coordinates of Agent i in some global fixed reference frame R and let q = q T 1 q T 2 . . . q T N T ∈ R N.n be the configuration of the MAS. The dynamics of each agent is described by the Euler-Lagrange model

M i (q i ) qi + C i (q i , qi ) qi + G = τ i + d i , (1) 
where τ i ∈ R n is some control input described in Section 4.2, M i (q i ) ∈ R n×n is the inertia matrix of Agent i, C i (q i , qi ) ∈ R n×n is the matrix of the Coriolis and centripetal term on Agent i, G accounts for gravitational acceleration supposed to be known and constant, and d i is a time-varying state perturbation satisfying d i (t) < D max . The state vector of Agent i is x T i = q T i , qT i . Assume that the dynamics satisfy the following assumptions:

A1) M i (q i ) is symmetric positive and there exists k M > 0 satisfying ∀x, x T M i (q i ) x≤ k M x T x. A2) Ṁi (q i )-2C i (q i , qi
) is skew symmetric or negative definite and there exists

k C > 0 satisfying ∀x, x T C i (q i , qi ) x ≤ k C qi x T x. A3) There exists qmax ∈ R n + and qmax ∈ R n + such that |q i | ≤ qmax and | qi | ≤ qmax . A4)
The left-hand side of (1) can be linearly parametrized as

M i (q i ) x 1 + C i (q i , qi ) x 2 = Y i (q i , qi , x 1 , x 2 ) θ i (2) 
for all vectors x 1 , x 2 ∈ R n , where Y i (q i , qi , x 1 , x 2 ) is a regressor matrix with known structure and θ i is a vector of unknown but constant parameters associated with the i-th agent. A5) For each i = 1, . . . , N, θ i is such that θ min,i < θ i < θ max,i , with known θ min,i and θ max,i . Assumptions A1, A2, A3 and A4 have been previously considered, e.g., in [START_REF] Liu | Formation control of mobile robots using distributed controller with sampled-data and communication delays[END_REF][START_REF] Makkar | Lyapunov-based tracking control in the presence of uncertain nonlinear parameterizable friction[END_REF][START_REF] Mei | Distributed coordinated tracking with a dynamic leader for multiple euler-lagrange systems[END_REF].

Moreover, one assumes that A6) each Agent i is able to measure without error its own state x i , A7) there is no packet losses or communication delay between agents.

In what follows, the notations M i and C i are used to replace M i (q i ) and C i (q i , qi ).

Formation control problem

This section aims at designing a decentralized control strategy to drive a MAS to a desired target formation in some global reference frame R, while reducing as much as possible the communications between agents. The target formation is first described in Section 4.1. The potential energy of a MAS with respect to the target formation is introduced to quantify the discrepancy between the target and current formations. The proposed distributed control, introduced in Section 4.2, tries to minimize the potential energy. To evaluate the control input of each agent despite the communications at discrete time instants only, estimators of the coordinate vectors of all agents are managed by each agent, as presented in Section 4.3. The presence of perturbations increases the discrepancy between the state vector and their estimates. A CTC is designed to limit this discrepancy by updating the estimators as described in Section 6.

Formation parametrization

Consider the relative coordinate vector r ij = q i -q j between two agents i and j and the target relative coordinate vector r * ij for all (i, j) ∈ N . A target formation is defined by the set r * ij , (i, j) ∈ N .

The potential energy P (q, t) of the formation represents the disagreement between r ij and r

* ij P (q, t) = 1 2 N i=1 N j=1 k ij r ij -r * ij 2 (3) 
where the k ij = k ji are some spring coefficients, which can be positive or null, and where k ii = 0. P (q, t) has been introduced for tensegrety formations in [START_REF] Nabet | Tensegrity models and shape control of vehicle formations[END_REF][START_REF] Qingkai | Distributed formation stabilization for mobile agents using virtual tensegrity structures[END_REF]. The minimum number of non-zero coefficients k ij i, j ∈ N to properly define a target formation is N -1. Indeed, for a given r * , all target relative coordinate vectors r * ij between any pair of agents i and j can be expressed from components of r * . Nevertheless, a number of non-zero k ij larger than N -1 introduces robustness in the formation, in particular with respect to the loss of an agent. The values of the k ij s that make a given r * an equilibrium formation may be chosen using the method developed in [START_REF] Qingkai | Distributed formation stabilization for mobile agents using virtual tensegrity structures[END_REF].

Definition 1

The MAS asymptotically converges to the target formation with a bounded error iff there exists some 1 > 0 such as

lim t→∞ P (q, t) 1 . (4) 
A control law designed to reduce the potential energy P (q, t) allows a bounded convergence of the MAS. To describe the evolution of P (q, t), one introduces as in [START_REF] Qingkai | Distributed formation stabilization for mobile agents using virtual tensegrity structures[END_REF] 

g i = ∂P (q, t) ∂q i = N j=1 k ij r ij -r * ij (5) ġi = N j=1 k ij ṙij -ṙ * ij (6) 
s i = qi + k p g i (7) 
where g i and ġi characterize the evolution of the discrepancy between the current and target formations and k p is a positive scalar design parameter.

Distributed control

The control law proposed in [START_REF] Qingkai | Distributed formation stabilization for mobile agents using virtual tensegrity structures[END_REF] is defined as τ i = τ i (q i , qi , q) and aims at reducing P (q, t), thus making the MAS converge to the target formation in case of permanent communication. In this approach, each agent evaluates its control input using the state vectors of its neighbours obtained via permanent communication.

Here, in a distributed context with limited communications between agents, agents cannot have permanent access to q. Thus, one introduces the estimate qi j of q j performed by Agent i to replace the missing information in the control law. The MAS configuration estimated by Agent i is denoted as qi = qiT 1 . . . qiT N T ∈ R N.n . The way qi j is evaluated is described in Section 4.3.

In a distributed context with limited communications, with the help of qi , Agent i is able to evaluate

ḡi = N j=1 k ij rij -r * ij (8) si = qi + k p ḡi (9) 
with rij = q i -qi j and ṙij = qi -qi j . Using ḡi and si , Agent i is able to evaluate the following adaptive distributed control input to be used in (1)

τ i q i , qi , qi , qi = -k s si -k g ḡi + G -Y i (q i , qi , k p ġi , k p ḡi ) θi , (10) θi 
= Γ i Y i (q i , qi , k p ġi , k p ḡi ) T si (11) 
with k g > 0, k s ≥ 1 + k p (k M + 1) a design parameter and Γ i an arbitrary symmetric positive definite matrix.

Section 4.3 introduces the estimator qi j of q j needed in [START_REF] Do | Formation tracking control of unicycle-type mobile robots with limited sensing ranges[END_REF].

Communication protocol and estimator dynamics

In what follows, the time instant at which the k-th message is sent by Agent j is denoted t j,k . Let t i j,k be the time at which the k-th message sent by Agent j is received by Agent i. In this paper, we assume that there is no communication delay between agents. Therefore, t i j,k = t j,k for all i ∈ N j . When a communication is triggered at t i,k for Agent i, it broadcasts a message containing t i,k , q i (t i,k ), qi (t i,k ) and its estimated matrix θi (t i,k ). Once a message is received by neighbours of Agent i, its content is used to update their estimate of the state of Agent i as presented in the next section.
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Fig. 1. Example of transmission times t i,k by Agent i of k-th message and reception times t j i,k of k-th message by Agent j.

Estimator dynamics

Following the idea of [START_REF] Viel | New state estimators and communication protocol for distributed event-triggered consensus of linear multi-agent systems with bounded perturbations[END_REF][START_REF] Viel | New state estimator for decentralized event-triggered consensus for multi-agent systems[END_REF], the estimate qi j of q j made by Agent i is evaluated considering

M i j qi j qi j + Ĉi j qi j , qi j qi j + G = τ i j , ∀t ∈ t i j,k , t i j,k+1 (12) 
qi j t i j,k = q j t i j,k (13) 
qi j t i j,k = qj t i j,k , (14) 
where M i j qi j and Ĉi j qi j , qi j are estimates of M j and C j computed from Y j qi j , qi j , x, y and θj t i j,k using

M i j qi j x + Ĉi j qi j , qi j y = Y j qi j , qi j , x, y θj t i j,k . (15) 
The estimator [START_REF] Garcia | Cooperative control with general linear dynamics and limited communication: Centralized and decentralized event-triggered control strategies[END_REF] managed by Agent i requires an estimate τ i j of τ j evaluated by Agent j. This estimate, used by Agent i, is evaluated as

τ i j = -k s ŝi j -k g ĝi j + G -Y j qi j , qi j , k p ġi j , k p ĝi j θi j ( 16 
) θi j = Γ j Y j qi j , qi j , k p ġi j , k p ĝi j T ŝi j (17) θi j t i j,k = θj t i j,k (18) 
where ŝi

j = qi j + k p ĝi j , ĝi j = N k=1 k jk ri jk -r * jk , ġi j = N k=1 k jk ṙi jk -ṙ * jk , ri jk = qi j -qi k
, and θi j is the estimate of θj .

Errors appear between q i and its estimate qj i obtained by an other Agent j due to the presence of state perturbations, the non-permanent communication, and the mismatch between θ i , θi , and θi . The errors for the estimates performed by Agent j are expressed as

e j i = qj i -q i , j ∈ N (19) e j = qj -q. ( 20 
)
These errors are used in Section 6 to trigger communications when e i i and ėi i become too large. Figure 2 summarizes the overall structure of the estimator and controller.

Remark 2

The structure of the estimator for τ i j is chosen so as to get an accurate estimate for q in order to keep the e i i s and ėi i s small. In absence of perturbations, i.e., when D max = 0 and if θ i is perfectly known, i.e., θi = θi i = θ i , the estimation error e i i introduced in ( 19) vanishes. The price to be paid for the use of this estimator structure for τ i j is that every agent needs to maintain an estimator of the state of all other agents.

Communication protocol

When a communication is triggered at t i,k for Agent i, it broadcasts a message containing t i,k , q i (t i,k ), qi (t i,k ) and its estimated θi (t i,k ). We assume that this message is received by all other agents, either directly when the network is fully connected, or after several hops when the network is connected. The latter case requires the use of a flooding protocol [START_REF] Heinzelman | Adaptive protocols for information dissemination in wireless sensor networks[END_REF][START_REF] Rahman | Controlled flooding in wireless ad-hoc networks[END_REF]. Since communications have been assumed without delay, one has qi i (t) = qj i (t) for all (i, j) ∈ N 2 . This simplifies the stability study in Appendix 9.1. which may be time-varying. In this section, the MAS has to follow some reference trajectory q * 1 (t), while remaining in a desired formation. Agent 1, taken as the reference agent, aims at following q * 1 (t). It is assumed that all agents have access to q * 1 (t). Moreover, assume that the target formation can be time-varying and is represented by the relative configuration vector r * (t). Therefore the reference trajectory of each agent can be expressed as

q * i (t) = q * 1 (t) + r * i1 (t).
To guarantee that individual reference trajectories can be tracked by each agent, it is assumed that for i = 1, . . . , N ,

| q * i | < qmax (21) |q * i | < qmax . ( 22 
)
Definition 3 The MAS reaches its tracking objective iff there exists 1 > 0 and 2 > 0 such that (4) is satisfied and

lim t→∞ q 1 (t) -q * 1 (t) 2 , (23) 
i.e., iff the reference agent asymptotically converges to the reference trajectory, and the MAS asymptotically converges to the target formation with bounded errors.

A distributed control law is designed to satisfy this target. Introduce the trajectory error terms

ε i = q i -q * i εj i = qj i -q * i .
The terms g i , ḡi , ĝj i , si and ŝj i introduced in Sections 4 are now redefined as follows to address the trajectory tracking problem

g i = N j=1 k ij r ij -r * ij + k 0 ε i (24) ḡi = N j=1 k ij rij -r * ij + k 0 ε i ( 25 
)
ĝj i = N j=1 k ij rj ij -r * ij + k 0 εj i ( 26 
)
s i = qi -q * i + k p g i (27) si = qi -q * i + k p ḡi ( 28 
)
ŝj i = qj i -q * i + k p ĝj i ( 29 
)
where k 0 ≥ 0 is a positive design parameter which may be used to control the tracking error with respect to the reference trajectory. When no reference trajectory is considered, k 0 = 0.

From these terms, a new distributed control input to be used in (1) is defined for Agent i as

τ i = -k s si -k g ḡi + G -Y i (q i , qi , ṗi , pi ) θi (30) θi = Γ i Y i (q i , qi , ṗi , pi ) T si ( 31 
)
where pi = k p ḡi -q * i and ṗi = k p ġi -q * i .

The estimators maintained by Agent i are defined with the same dynamics as 12 but the evaluation of the estimate τ i j of τ j is now evaluated as

τ i j = -k s ŝi j -k g ĝi j + G -Y j qi j , qi j , ṗi j , pi j θi j (32) 
θi j = Γ j Y j qi j , qi j , ṗi j , pi j T ŝi j (33) 
where ŝi j = qi j -q * j + k p ĝi j , pi j = k p ĝi j -q * j and ṗi j = k p ġi j -q * j .

The communication protocol introduced in Section 4.3.2 remains the same. The way the estimator [START_REF] Garcia | Cooperative control with general linear dynamics and limited communication: Centralized and decentralized event-triggered control strategies[END_REF][START_REF] Garcia | Cooperative control with general linear dynamics and limited communication: Periodic updates[END_REF][START_REF] Garcia | Decentralized event-triggered consensus of linear multi-agent systems under directed graphs[END_REF] for the state of all agents is defined with the control input [START_REF] Rochefort | Mthodes pour le guidage coopratif[END_REF][START_REF] Rochefort | Guidance of flocks of vehicles using virtual signposts[END_REF] and the absence of communication delays ensure that xi i = xj i for all pair of agents i and j in the network.

Event-triggered communications

Theorem 4 introduces a CTC used to trigger communications to ensure a bounded asymptotic convergence of the MAS to the target formation. The initial value of the state vectors are considered to be known by all agents. In practice, this condition can be satisfied by triggering a communication from all agents at time t = 0 to initialize the estimates of the state of the neighbours of all agents.

Let

k max = max = 1 . . . N j = 1 . . . N (k j ) and k min = min = 1 . . . N j = 1 . . . N (k j = 0) , α i = N j=1 k ij , α min = min i=1,...,N α i and
α max = max i=1,...,N α i . Define also for θi ∈ R p and θi = θi,1 , . . . , θi,p

T ∆θ i,max =      max θi,1 -θ min,i,1 , θi,1 -θ max,i,1 . . . max θi,p -θ min,i,p , θi,p -θ max,i,p      (34) 
and ∆θ i = θi -θ i .

Theorem 4 Consider a MAS with agent dynamics given by ( 1) and the control law [START_REF] Ren | Decentralized scheme for spacecraft formation flying via the virtual structure approach[END_REF]. Consider some design parameters η ≥ 0, η 2 > 0, 0 < b i < ks kskp+kg ,

c 3 = min 1, k 1 , k p , k 0 , 2k 0 2k 0 + αminkmin kmax max {1, k M } and k 1 = k s -1 + k p (k M + 1)
. In absence of communication delays, the system (1) is input-to-state practically stable (ISpS) and the agents can be driven to some target formation such that

lim t→∞ N i=1 k 0 ε i 2 + 1 2 P (q, t) ≤ ξ ( 35 
)
with ξ = N k g c 3 D 2 max + η + c 3 ∆ max ( 36 
)
where ∆ max = max i=1:N sup t>0 ∆θ T i Γ -1 i ∆θ i , if the communications are triggered when one of the following conditions is satisfied

k s sT i si + k p k g ḡT i ḡi + η ≤ α 2 M k e e iT i e i i + k p k M ėiT i ėi i + α M k 2 C k p e i i 2 N j=1 k ji qi j + η 2 2 + k g b i qi -q * i 2 + k p e i i   α 2 M 1 + |Y i | ∆θ i,max 2 + |Y i | ∆θ i,max 2 1 + |Y i | ∆θ i,max 2   (37) 
qi

≥ qi i + η 2 (38) 
with k e = k s k 2 p + k g k p + kg bi , and

Y i = Y i (q i , qi , ṗi , pi ).
The proof of Theorem 4 is given in Appendix 9.1.

Corollary 5 Consider a MAS with agent dynamics given by (1) and the control law [START_REF] Ren | Decentralized scheme for spacecraft formation flying via the virtual structure approach[END_REF]. For any Agent i, let t i,k and t i,k+1 be two consecutive communication instants at which the CTC of Theorem 4 have been satisfied. Then

t i,k+1 -t i,k > 0.
The proof of Corollary 5 is provided in Appendix 9.2.

The CTCs proposed in Theorem 4 are analyzed assuming that the estimators of the state of the agents and the communication protocol is such that

∀ (i, j) ∈ N × N , xi i (t) =x j i (t) ( 39 
) xi i (t i,k ) =x i i (t i,k ) , (40) 
where ( 39) is called the estimate synchronization condition and (40) the estimator reset condition. Theorem 4 is valid independently of the way the estimate xi i of x i is evaluated provided that (39) and ( 40) are satisfied.

From [START_REF] Sun | A synchronization approach to trajectory tracking of multiple mobile robots while maintaining time-varying formations[END_REF] and [START_REF] Tang | Event-triggered formation control of multi-agent systems[END_REF], one sees that η can be used to adjust the trade-off between the bound ξ on the formation and tracking errors and the amount of triggered communications. If η = 0, there is no perturbation and θ i is perfectly known, the system converges asymptotically.

The CTC [START_REF] Vicsek | Novel type of phase transition in a system of self-driven pinproceedingss[END_REF] is related to the discrepancy between qi and qi i . Choosing a small value of η 2 may lead to frequent communications. On the contrary, when η 2 is large, [START_REF] Tang | Event-triggered formation control of multi-agent systems[END_REF] is more likely to be satisfied. A value of η 2 that corresponds to a trade-off between the two CTCs ( 37) and ( 38) has thus to be found to minimize the amount of communications.

The CTCs [START_REF] Tang | Event-triggered formation control of multi-agent systems[END_REF] and (38) mainly depend on e i i and ėi i . A communication is triggered by Agent i when the state estimate xi i of its own state vector x i is not satisfying, i.e., when e i i and ėi i becomes large. To reduce the number of triggered communications, one has to keep e i i and ėi i as small as possible. This may be achieved by increasing the accuracy of the estimator, as proposed in Section 4.3, but possibly at the price of a more complex structure for the estimator.

The perturbations have a direct impact on e i i and ėi i , and, as a consequence, on the frequency of communications. (36) shows the impact of D max and η on the formation and tracking errors: in presence of perturbations, the formation and tracking errors cannot reach a value below a minimum value due to the perturbations. At the cost of a larger formation and tracking errors, η can reduce the number of triggered communications and so can reduce the influence of perturbations on the CTC [START_REF] Tang | Event-triggered formation control of multi-agent systems[END_REF].

The discrepancy between the actual values of M i and C i and of their estimates M i i and Ĉi i determines the accuracy of θi , so ∆θ i,max , and the estimation errors. Even in absence of state perturbations, due to the linear parametrization, it is likely that M i i = M i , Ĉi i = C i and ∆θ i,max > 0, which leads to the satisfaction of the CTCs at some time instants. Thus, the CTC (37) leads to more communications when the model of the agent dynamics is not accurate, requiring thus more frequent updates of the estimate of the states of agents.

The choice of the parameters α M , k g , k p and b i also determines the number of broadcast messages. Choosing the spring coefficients k ij such that α i = N j=1 k ij is small leads to a reduction in the number of communication triggered due to the satisfaction of (37).

Simulation results

The performance of the proposed algorithm is evaluated considering a set of N = 6 agents. Two models will be considered to describe the dynamics of the agents. The first model consists in the dynamical system M i (q i ) qi + C i (q i , qi ) qi = τ i + d i with q i ∈ R 2 and where

M i = 1 0 0 1 C i ( qi ) = 0.1 0 0 0.1 qi . (41) 
Then the vectors θi (0) = θj i (0), i = 1, . . . , N are obtained using [START_REF] Aguiar | Coordinated path-following control for nonlinear systems with logic-based communication[END_REF]. In place of the estimator in Section 4.3 a first less accurate estimate of x j made by Agent i, is evaluated as

qi j (t) = q j t i j,k (42) 
qi j (t) = qj t i j,k . (43) 
This estimator allows one to better observe the tradeoff between the potential energy of the formation and the communication requirements.

For this dynamical model, the parameters of the control law [START_REF] Ren | Decentralized scheme for spacecraft formation flying via the virtual structure approach[END_REF] and the CTC (37) have been selected as:

k M = M i = 1, k C = C i = 0.1, k p = 1, k g = 15, k s = 1 + k p (k M + 1), b i = 1
kg , and k 0 = 2.

Surface ship (SS)

The second model considers surface ships with coordinate vectors

q i = x i y i ψ i T ∈ R 3 , i = 1 . . . N , in a local
earth-fixed frame. For Agent i, (x i , y i ) represents its position and ψ i its heading angle. The dynamics of the agents is described by the surface ship dynamical model taken from [START_REF] Kyrkjeb | Output synchronization control of ship replenishment operations: Theory and experiments[END_REF], assumed identical for all agents, and expressed in the body frame as

M b,i vi + C b,i (v i ) v i + D b,i v i = τ b,i + d b,i , (44) 
where v i = u i v i r i T is the velocity vector in the body frame, τ b,i is the control input, d b,i is the perturbation, and

M b,i =     25.8 0 0 0 33.8 1.0115 0 1.0115 2.76     C b,i (v i ) =     0 0 -33.8v i -1.0115r i 0 0 25.8u i 33.8v i + 1.0115r i -25.8u i 0     D b,i =     0.72 0 0 0 0.86 -0.11 0 -0.11 -0.5     .
At t = 0, one assumes that Agent i has access to estimates M i b,i of M b,i , Ĉi b,i of C b,i , and Di b,i of D b,i described as

M i b,i = 1 3×3 + 0.1Ξ M i M b,i Ĉi b,i = 1 3×3 + 0.1Ξ C i C b,i Di b,i = 1 3×3 + 0.1Ξ D i D b,i ,
where 1 3×3 is the 3 × 3 matrix of ones, Ξ M i , Ξ C i , and Ξ D i are matrices which components are independent and identically Bernoulli random variables with values in {-1, 1}, and is the Hadamard product. These estimates are transmitted at t = 0 to all other agents. As a consequence, the estimates of M b,i and C b,i made by all agents at t = 0 are all identical.

The model ( 44) is expressed with the coordinate vectors q i in the local earth-fixed frame using the transform

qi = J i (ψ i ) v i J i (ψ i ) =     cos ψ i -sin ψ i 0 sin ψ i cos ψ i 0 0 0 1    
where J i (ψ i ) is a simple rotation around the z-axis in the earth-fixed coordinate. Define

J -T i = J -1 i T .
Then, [START_REF] Wen | Consensus in multi-agent systems with communication constraints[END_REF] can be rewritten as

J -T i M b,i J -1 i qi + J -T i C b,i (v) -M b,i J -1 i Ji + D b,i J -1 i qi = J -T i τ b + J -T i d b,i
and so

M i (q i ) qi + C i (q i , qi ) qi = τ i + d i where M i (q i ) = J -T M b J -1 , C i (q i , qi ) = J -T i C b,i J -1 i qi -M b,i J -1 i Ji + D b,i J -1 ,
and τ i is the control input in earth-fixed coordinates as defined in [START_REF] Ren | Decentralized scheme for spacecraft formation flying via the virtual structure approach[END_REF].

The vectors θi (0) = θj i (0), i = 1, . . . , N are obtained using (2). The estimator described in Section 4.3 is employed.

For this dynamical model, the parameters of the control law [START_REF] Ren | Decentralized scheme for spacecraft formation flying via the virtual structure approach[END_REF] and the CTC (37) have been selected as:

k M = M i = 33.8, k C = C v (1 N ) = 43.96, k p = 6, k g = 20, k s = 1 + k p (k M + 1), b i = 1
kg , and k 0 = 1.5.

Simulation parameters

One chooses the components of the initial value x (0) of the state vector as

q (0) =         -0.35 -1.11 0     T     4.59 -4.59 0     T     4.72 2.42 0     T     0.64 1.36 0     T     3.53 1.56 0     T     -1.26 3.36 0     T     T ,
and q (0) = 0 N n×1 . The vector of relative target configurations corresponds to a hexagonal formation

r * =         0 0 0     T     2 0 0     T     3 √ 3 0     T     2 2 √ 3 0     T     0 2 √ 3 0     T     -1 √ 3 0     T     T .
Using the approach developed in [START_REF] Qingkai | Distributed formation stabilization for mobile agents using virtual tensegrity structures[END_REF], the following matrix and are thus such that d i (t) ≤ D max . Let N m be the total number of messages broadcast during a simulation. The performance of the proposed approach is evaluated comparing N m to the maximum number of messages that can be broadcast N m = N T /∆t ≥ N m . The percentage of residual communications is defined as R com = 100 Nm N m . R com indicates the percentage of time slots during which a communication has been triggered.

K = [k ij ] i = 1 . . . N j = 1 . . . N can be computed from r * K = 0.1             0 
When a tracking has to be performed, one considers the target trajectory of the first agent

q * 1 (t) =     4 sin (0.4t) 4 cos (0.4t) 0.4t     ,
the other agents having to remain in formation. Define the tracking error ε 0 = q 1 -q * 1 .

Formation control with DI

Figure 3 shows the evolution of the communication ratio R com and of the potential energy at t = T . For all simulations, one has P (q, T ) ≤ ξ for the different values of D max and η.

In Figure 3 (a), the number of communications obtained once the system has converged increases as the level of perturbations becomes more important, as expected. Increasing η in the CTC 37 helps reducing R com . Nevertheless, increasing η also increases the potential energy P (q, T ) of the formation, as can be seen in Figure 3 (b). In Figure 3 (b), when η ≥ 3, one observes that the potential energy starts to decrease with the level of perturbation D max to increase again when D max gets large. To explain this surprising behavior, Figure 3 (c) shows that there exists a threshold R com = 2.25 below which the potential energy significantly increases to ensure proper convergence. Therefore η should be chosen such that R com remains above this threshold. Even large values of D max can be tolerated provided that η is chosen large enough to provide a sufficient amount of communications.

Formation control with ship dynamical model

Figure 4 shows the trajectories of the agents when the control (30) is applied and the communications are triggered according to the CTC of Theorem 4. Figure 4 (a) illustrates the results obtained using the accurate estimator [START_REF] Garcia | Cooperative control with general linear dynamics and limited communication: Centralized and decentralized event-triggered control strategies[END_REF], Figure 4(b) illustrates results obtained using the simple estimator [START_REF] Wei | Consensus tracking under directed interaction topologies: Algorithms and experiments[END_REF]. The agents converge to the desired formation with a limited number of communications, even in presence of perturbations.

Figure 5 shows the evolution of R com and of P (q, T ) parametrized by η for different values of D max . For all simulations, one has P (q, T ) ≤ ξ for the different values of D max and η. As expected and shown in Section 7.2, the potential energy obtained once the system has converged increases with D max . It can also be observed that increasing η reduces the number of messages broadcast, without a significant impact on P (q, T ), contrary to what was observed with the DI with simple estimator.

Tracking control with DI

The simulation duration is T = 3.5 s.

Figures 6 and7 show the evolution of the communication ratio R com , the potential energy and the tracking error at t = T .

In Figure 6 (a), the number of communications obtained once the system has converged decreases as the level of perturbation becomes more important, especially when η is small, which was not excepted. Such behavior is not observed with the accurate estimator [START_REF] Garcia | Cooperative control with general linear dynamics and limited communication: Centralized and decentralized event-triggered control strategies[END_REF], where R com increases when the perturbations become more important, as illustrated in Figure 9 (a) with the ship model. This behavior can be explained by the fact a large D max makes ḡi and si larger, which reduces the number of times the CTC (37) is satisfied, even if the error e i i is also affected. Difference with accurate estimator is the error e i i is keeping small by the estimator, so the influence of perturbations is more significant on e i i than on ḡi or si , which leads to a larger number of communications triggered. 37) can help reducing R com . It can be seen that there exists for R com a threshold (R com = 7) which R com cannot reach : we can deduce a minimal number of communications is required for system converge with the constant estimator ( 42)- [START_REF] Wen | Flocking of multi-agent dynamical systems with intermittent nonlinear velocity measurements[END_REF].

Figures 6 (b) and(c) show that the potential energy of the formation P (q, t) and the tracking error ε 0 increase when the perturbation level increases. The influence of parameter η is also illustrated: Figure 7 shows that a larger value of η leads to an increase of P (q, t), but reduces ε 0 . Indeed, the less communications, the more difficult it is for some Agent i to be synchronized with the others agents to reach the target formation. However, be less synchronized with the other agents allows Agent i to be more synchronized with its target trajectory q * i , inducing a small tracking error ε 0 . Thus, a trade off between the P (q, t) and ε 0 has to be reached. 

Tracking with surface ship model

The simulation duration is T = 2.5 s. In Figure 9 (a), the number of communications obtained once the system has converged increases as the level of perturbations becomes more important. The parameter η in the CTC 37 can help to reduce R com . Figure 9 (b) and (c) show that the potential energy of the formation P (q, t) and the tracking error ε 0 also increase when the perturbation level increases. Influence of parameter η is also illustrated : Figure 9 (c) shows that increasing η results in make ε 0 decrease when D max > 200. Influence of η on P (q, t) is less clearly detectable than in the case of the DI model.

In Figure 10, it can be observed that R com cannot be reduced below the value of 1: a minimum number of communications is indeed required to converge with the accurate estimator [START_REF] Garcia | Cooperative control with general linear dynamics and limited communication: Centralized and decentralized event-triggered control strategies[END_REF]. 

Conclusion

This paper presents an adaptive control and event-triggered communication strategy to reach a target formation for multi-agent systems with perturbed Euler-Lagrange dynamics. From estimate information of agents dynamics, an estimator has been proposed to provide the missing information required by the control. Convergence to a desired formation and influence of state perturbations on the convergence and on the amount of required communications have been studied. Tracking control to follow an desire trajectory has been considerate and added to the formation control. A distributed event-triggered condition to converge to a desired formation and follow the reference trajectory while reduce the number of communications have been studied. Simulations have shown the effectiveness of the proposed method in presence of state perturbations when their level remains moderate. The time interval between consecutive communications has been shown to be strictly positive. In future work, the considered problem will be extended to communication delay and package drop. Consider a given value of D max and η, one shows first that the MAS is input-to-state practically stable. One then evaluates the influence of D max and η on the behavior of the MAS.

Proof of the input-to-state practical stability of the MAS

Consider the continuous positive-definite candidate Lyapunov function

V = 1 2 N i=1 s T i M i s i + ∆θ T i Γ -1 i ∆θ i + k g 2 1 2 P (q, t) + N i=1 k 0 q i -q * i 2 (45) 
where

∆θ i = θi -θ i . The time derivative of V is V = N i=1 1 2 s T i Ṁi s i + s T i M i ṡi + ∆θ T i Γ -1 i θi + k g 2 d dt 1 2 P (q, t) + N i=1 k 0 q i -q * i 2 (46) 
where, from [START_REF] Qingkai | Distributed formation stabilization for mobile agents using virtual tensegrity structures[END_REF], one has ṡi = qi -q * i + k p ġi . Injecting [START_REF] Fan | Distributed event-triggered control of multi-agent systems with combinational measurements[END_REF] in [START_REF] Xu | Communication logic design and analysis for networked control systems[END_REF] one obtains

V = N i=1 1 2 s T i Ṁi s i + s T i M i ṡi + ∆θ T i Y i (q i , qi , ṗi , pi ) si + k g 2 d dt 1 2 P (q, t) + N i=1 k 0 q i -q * i 2 . ( 47 
)
The last term in (47) may be written as 1 2

d dt

1 2 P (q, t) + N i=1 k 0 q i -q * i 2 = 1 4 d dt N i=1 N j=1 k ij r ij -r * ij 2 + 1 2 d dt N i=1 k 0 q i -q * i 2 = N i=1   1 2 N j=1 k ij ṙij -ṙ * ij T r ij -r * ij + k 0 ( qi -q * i ) T (q i -q * i )   = N i=1   1 2 N j=1 k ij ( qi -q * i ) T r ij -r * ij -qj -q * j T r ij -r * ij +k 0 ( qi -q * i ) T (q i -q * i ) = N i=1   1 2 N j=1 k ij ( qi -q * i ) T r ij -r * ij -( qi -q * i ) T r ji -r * ji +k 0 ( qi -q * i ) T ε i . (48) 
Since r ji = -r ij , one gets 1 2

d dt

1 2 P (q, t) + N i=1 k 0 q i -q * i 2 = N i=1 ( qi -q * i ) T   N j=1 k ij r ij -r * ij + k 0 ε i   = N i=1 ( qi -q * i ) T g i . (49) 
Combining ( 47) and ( 49), one obtains

V = N i=1 1 2 s T i Ṁi s i + s T i M i ṡi + ∆θ T i Y i (q i , qi , ṗi , pi ) si + k g ( qi -q * i ) T g i . (50) 
One focuses now on the term M i ṡi . Using again [START_REF] Qingkai | Distributed formation stabilization for mobile agents using virtual tensegrity structures[END_REF], one may write

M i ṡi + C i s i = M i (q i -q * i + k p ġi ) + C i ( qi -q * i + k p g i ) (51) 
Using (1), one gets

M i ṡi + C i s i = τ i + d i -G + M i (k p ġi -q * i ) + C i (k p g i -q * i ) , (52) 
where one used (1). Now, introducing [START_REF] Ren | Decentralized scheme for spacecraft formation flying via the virtual structure approach[END_REF], one gets

M i ṡi + C i s i = -k s si -k g ḡi -Y i (q i , qi , k p ġi -q * i , k p ḡi -q * i ) θi +M i (k p ġi -q * i ) + C i (k p g i -q * i ) + d i (53) 
In what follows, one uses Y i in place of Y i (q i , qi , k p ġi -q * i , k p ḡi -q * i ) to lighten notations. Since ∆θ i = θi -θ i , one obtains

s T i M i ṡi = -k s s T i si -k g s T i ḡi -s T i C i s i + s T i (M i (k p ġi -q * i ) + C i (k p g i -q * i )) -s T i Y i (θ i + ∆θ i ) + s T i d i . (54) 20 
Using (2) in (54) leads to

-s T i Y i (θ i + ∆θ i ) = -s T i Y i ∆θ i -s T i (M i (k p ġi -q * i ) + C i (k p ḡi -q * i )) . (55) 
Considering ( 2) and ( 54) in (50), one gets

V = N i=1 1 2 s T i Ṁi s i -k s s T i si -k g s T i ḡi -s T i C i s i + s T i (M i (k p ġi -q * i ) + C i (k p g i -q * i )) -s T i (M i (k p ġi -q * i ) + C i (k p ḡi -q * i )) -s T i Y i ∆θ i + sT i Y i ∆θ i +k g ( qi -q * i ) T g i + s T i d i . (56) 
Now, introduce [START_REF] Nabet | Tensegrity models and shape control of vehicle formations[END_REF] in [START_REF] Qingkai | Distributed formation stabilization for mobile agents using virtual tensegrity structures[END_REF] to get

s i = qi -q * i + k p N i=1 k ij q i -q j -r * ij + k 0 ε i . (57) 
Since e i j = qi j -q j , one gets

s i = qi -q * i + k p N i=1 k ij q i -qi j + e i j -r * ij + k 0 ε i = qi -q * i + k p N i=1 k ij rij -r * ij + k 0 ε i + k p N j = 1 j = i k ij e i j = si + k p E i j , (58) 
with since k ii = 0

E i j = N i=1 k ij e i j . (59) 
Using similar derivations, one may show that

g i = ḡi + E i j . (60) 
Replacing ( 58) and ( 60) in (56), one gets

V = N i=1 s T i 1 2 Ṁi -C i s i -k s s T i si -k g ( qi -q * i + k p g i ) T ḡi +k p s T i M i Ėi j + C i E i j + k p E iT j Y i ∆θ i + k g ( qi -q * i ) T g i + s T i d i . ( 61 
) Let V1 = N i=1 2k p s T i M i Ėi j + C i E i j and V2 = 2k p N i=1 E iT j Y i ∆θ i .
Since 1 2 Ṁi -C i is skew symmetric or definite negative, s T i 1 2 Ṁi -C i s i ≤ 0. For all b > 0 and all vectors x and y of similar size, one has

x T y ≤ 1 2 bx T x + 1 b y T y . (62) 
Using (62) with b = 1, one deduces that

d T i s i ≤ 1 2 D 2 max + s T i s i and that V ≤ N i=1 -k s s T i si -k g k p g T i ḡi + 1 2 s T i s i + 1 2 D 2 max +k g ( qi -q * i ) T (g i -ḡi ) + 1 2 V1 + V2 (63) 
One notices that r ij = q i -q j = q i -qi j + e i j = rij + e i j , thus

s i -si 2 = s T i s i -2s T i si + sT i si k p E i j 2 = s T i s i -2s T i si + sT i si s T i si = - 1 2 k p E i j 2 + 1 2 s T i s i + 1 2 sT i si (64) 
In the same way, from (64), one shows that

g T i ḡi = - 1 2 E i j 2 + 1 2 g T i g i + 1 2 ḡT i ḡi . (65) 
Injecting (65) in (63),

V ≤ N i=1 k s 2 k 2 p E i j 2 -s T i s i -sT i si + k p k g 1 2 E i j 2 -g T i g i -ḡT i ḡi + 1 2 s T i s i + 1 2 D 2 max +k g ( qi -q * i ) T (g i -ḡi ) + 1 2 V1 + V2 ≤ N i=1 - (k s -1) 2 s T i s i - k s 2 sT i si + k s k 2 p + k g k p 2 E i j 2 - 1 2 k p k g g T i g i + ḡT i ḡi + 1 2 D 2 max +k g ( qi -q * i ) T (g i -ḡi ) + 1 2 V1 + V2 . ( 66 
) Using (62) with b = b i > 0, one shows that 2 qT i (g i -ḡi ) ≤ b i qi 2 + 1 bi E i j 2
. Using this result in (66), one gets

V ≤ 1 2 N i=1 -(k s -1) s T i s i -k s sT i si + k s k 2 p + k g k p + k g b i E i j 2 + b i k g qi -q * i 2 -k p k g g T i g i + ḡT i ḡi + D 2 max + 1 2 V1 + V2 . (67) 
Consider now V1 . Using (62) with b = 1, the fact that M i is symmetric positive definite, and that

x T M i x < k M x T x, 22 one obtains N i=1 2k p s T i M i Ėi j + C i E i j ≤ N i=1 k p s T i M i s i + s T i s i + ĖiT j M i Ėi j + E iT j C T i C i E i j ≤ N i=1 k p (k M + 1) s T i s i + k M ĖiT j Ėi j + E iT j C T i C i E i j (68)
Focus now on the terms

E iT j C T i C i E i j N i=1 E iT j C T i C i E i j = N i=1   N j=1 k ij e i j   T C T i C i N =1 k i e i ≤ N i=1 N j=1 N =1 k i k ij C i 2 e iT j e i . (69) 
Using ( 62) with b = 1, one gets

N i=1 E iT j C T i C i E i j ≤ 1 2 N i=1 N j=1 N =1 k i k ij C i 2 e iT j e i j + e iT e i ≤ N i=1 N j=1 N =1 k i k ij C i 2 e iT j e i j ≤ N i=1 α i N j=1 k ij C i 2 e iT j e i j . (70) 
Since one has assumed that [START_REF] Viel | New state estimator for decentralized event-triggered consensus for multi-agent systems[END_REF] and ( 39) are satisfied, one has qi j = qj j , e i j = e j j . As a consequence, 

ij = k ji , N i=1 E iT j C T i C i E i j ≤ N i=1   α M N j=1 k ij e i i 2 C j 2   ≤ N i=1   α M N j=1 k ij e i i 2 k 2 C qj 2   . (72) 
Then, the second CTC (38) leads to

N i=1 E iT j C T i C i E i j ≤ N i=1   α M k 2 C e i i 2 N j=1 k ij qi j + η 2 2   . (73) 
Similarly, one shows that

N i=1 E iT j E i j ≤ N i=1 α 2 M e i i 2 and N i=1 ĖiT j Ėi j ≤ N i=1 α 2 M ėi i 2 . Consider now V2 V2 = 2k p N i=1 E iT j Y i ∆θ i = 2k p N i=1   N j=1 k ij e i j   T Y i ∆θ i . (74) 
Since e i j = e j j , one gets 

V2 = 2k p N i=1   N j=1 k ij e j j   T Y i ∆θ i = 2k p N j=1 N i=1 k ji e i i T Y j ∆θ j = 2k p N i=1 e i i T N j=1 k ji Y j ∆θ j . (75) 
E iT j Y i ∆θ i (76) ≤ k p N i=1 b i2 E iT j E i j + 1 b i2 Y i ∆θ i 2 . ( 77 
) Since N i=1 E iT j E i j ≤ N i=1 α 2 M e i i 2 , one gets V2 ≤ N i=1 k p α 2 M b i2 e i i 2 + 1 b i2 |Y i | |∆θ i | 2 ≤ N i=1 k p α 2 M b i2 e i i 2 + 1 b i2 |Y i | ∆θ i,max 2 , (78) 
where ∆θ i,max is given by [START_REF] Seyboth | Event-based broadcasting for multi-agent average consensus[END_REF].

Since

e i i = 0 n , choosing b i2 = 1+ |Yi|∆θi,max 2 e i i , one obtains V2 ≤ V3 with V3 = N i=1 k p   α 2 M 1 + |Y i | ∆θ i,max 2 e i i e i i 2 + e i i |Y i | ∆θ i,max 2 1 + |Y i | ∆θ i,max 2   = N i=1 k p e i i   α 2 M 1 + |Y i | ∆θ i,max 2 + |Y i | ∆θ i,max 2 1 + |Y i | ∆θ i,max 2   . (79) 
Injecting ( 68), (73), and (79) in (67), one gets

V ≤ 1 2 N i=1 -(k s -1 -k p (k M + 1)) s T i s i -k s sT i si + D 2 max -k p k g g T i g i -k p k g ḡT i ḡi + k g b i qi -q * i 2 + k p k M α 2 M ėi i 2 +α 2 M k s k 2 p + k g k p + k g b i e i i 2 + α M k p k 2 C e i i 2 N j=1 k ij qi j + η 2 2   + 1 2 V3 . (80) 
The CTC (37) leads to

V ≤ 1 2 N i=1 -(k s -1 -k p (k M + 1)) s T i s i -k g k p g T i g i + D 2 max + η V ≤ 1 2 N i=1 -k 1 s T i s i -k g k p g T i g i + D 2 max + η (81) 
with

k 1 = k s -1 -k p (k M + 1).
Following the steps given in Appendix 9.3.1 from (106) to (110), one shows that

V ≤ -c 3 V + N 2 D 2 max + η + c 3 2 N i=1 ∆θ i T Γ -1 i ∆θ i , (82) 
where

c 3 > 0 is a positive constant. Introducing ∆ max = max i=1:N sup t>0 ∆θ T i Γ -1 i ∆θ i , one has V ≤ -c 3 V + N 2 c 3 ∆ max + D 2 max + η . (83) 
Define the function W such that W (0) = V (0) and

Ẇ = -c 3 W + N 2 D 2 max + η + c 3 ∆ max . (84) 
Using the initial condition W (0) = V (0), the solution of (84) is

W (t) = exp (-c 3 t) V (0) + (1 -exp (-c 3 t)) N 2c 3 D 2 max + η + c 3 ∆ max . (85) 
Then, using the Lemma 3.4 in [1] (Comparison lemma), one has V (t) ≤ W (t) and so

V (t) ≤ exp (-c 3 t) V (0) + (1 -exp (-c 3 t)) N 2c 3 D 2 max + η + c 3 ∆ max (86) 
Since M i and Γ i are symmetric, there exists matrices S Mi and S Γi such that M i = S T Mi S Mi and Γ i = S T Γi S Γi . Introduce now

y M = (S M1 s 1 ) T . . . (S Mi s i ) T . . . (S M N s N ) T T (87) 
y Γ = S -1 Γ1 ∆θ 1 T . . . S -1 Γi ∆θ i T . . . S -1 Γ N ∆θ N T T (88) 
y q = (q 1 -q * 1 ) T . . . (q i -q * i ) T . . . (q N -q * N ) T T (89) z = y T M y T Γ k g k 0 y T q kg 2 P (x, t) T (90) 
Then, V (t) can be rewritten as

V (z) = 1 2 z T z. (91) 
Using ( 91) in ( 86), one has ∀t ≥ 0

z (t) 2 ≤ exp (-c 3 t) z (0) 2 + (1 -exp (-c 3 t)) N c 3 D 2 max + η + c 3 ∆ max z (t) ≤ exp (-c 3 t) z (0) 2 + (1 -exp (-c 3 t)) N c 3 [D 2 max + η + c 3 ∆ max ] z (t) ≤ exp (-c 3 t) z (0) 2 + (1 -exp (-c 3 t)) N c 3 [D 2 max + η + c 3 ∆ max ] z (t) ≤ exp - c 3 2 t z (0) + N c 3 [D 2 max + η + c 3 ∆ max ] (92) 
and so

z (t) ≤ β ( z (0) , t) + ρ (93) with ρ = N c3 [D 2 max + η + c 3 ∆ max ], β ( z (0) , t) = exp -c3 2 
t z (0) , and β ∈ KL. Using Definition 2.1 from [START_REF] Jiang | A lyapunov formulation of the nonlinear small-gain theorem for interconnected iss systems[END_REF], (93) implies that the MAS is input-to-state practically stable.

Convergence of V

From (93), we know the system is ISpS. Moreover, from (82), one has

V ≤ -c 3 V + N 2 D 2 max + η + c 3 2 N i=1 ∆θ i T Γ -1 i ∆θ i (94) 
Then, if initially

-c 3 V (0) + N 2 D 2 max + η + c 3 2 N i=1 ∆θ i T Γ -1 i ∆θ i < 0 (95) 
one has V ≤ 0 and V is decreasing. Then, one has from (86)

lim t→∞ V (t) ≤ N 2c 3 D 2 max + η + c 3 ∆ max lim t→∞ 1 2 N i=1 s T i M i s i + ∆θ i T Γ -1 i ∆θ i + k g 2 N i=1 k 0 ε i 2 + 1 2 P (q, t) ≤ N 2c 3 D 2 max + η + c 3 ∆ max lim t→∞ k g 2 N i=1 k 0 ε i 2 + 1 2 P (q, t) ≤ N 2c 3 D 2 max + η + c 3 ∆ max -lim t→∞ 1 2 N i=1 s T i M i s i + ∆θ i T Γ -1 i ∆θ i lim t→∞ N i=1 k 0 ε i 2 + 1 2 P (q, t) ≤ N k g c 3 D 2 max + η + c 3 ∆ max . (96) 
Asymptotically, the formation and tracking error are bounded. 

ḡT i ḡi + η > k g b i qi -q * i 2 . ( 98 
)
To prove the absence of Zeno behavior, i.e., that t i,k+1 > t i,k , one has to show that (98) is satisfied.

Using the property x T y ≥ -1 2 b i2 x T x + 1 bi2 y T y for some b i2 > 0, one deduces that

sT i si = k 2 p ḡT i ḡi + qi -q * i 2 + 2k p ḡT i ( qi -q * i ) ≥ k 2 p -k p b i2 ḡT i ḡi + 1 - k p b i2 qi -q * i 2 . ( 99 
)
Using (99), a sufficient condition for (98) to be satisfied is

k s k 2 p -k p b i2 ḡT i ḡi + k s 1 - k p b i2 qi -q * i 2 + k p k g ḡT i ḡi + η > k g b i qi -q * i 2 k s 1 - k p b i2 qi -q * i 2 + k p k g + k s k 2 p -k p b i2 ḡT i ḡi + η > k g b i qi -q * i 2 k 1 ḡT i ḡi + η > k 2 qi -q * i 2 (100) 
where

k 1 = k p k g + k s k 2 p -k p b i2 and k 2 = k g b i -k s 1 - kp bi2
. To ensure that the inequality (100) is satisfied independently of the values of ḡi and qi , it is sufficient to find b i and b i2 such that k 1 > 0 and k 2 < 0. Consider first k 1 .

k p k g + k s k 2 p -k p b i2 > 0 k g k s > (-k p + b i2 ) k s k p + k g k s > b i2 . (101) 
Focus now on k 2

k g b i -k s 1 - k p b i2 < 0 k g b i k s < 1 - k p b i2 1 b i2 < 1 k p 1 - k g b i k s . (102) 
Since b i2 > 0, one has kgbi ks < 1 and so b i < ks kg . Then

k s k p k s -k g b i < b i2 . (103) 
Finally, one has to find a condition on b i such that (101) and (102) can be satisfied simultaneously

k s k p + k g k s > b i2 > k s k p k s -k g b i . (104) 
One may find b i2 if

k s -k g b i > k 2 s k p k s k p + k g 1 k g k s - k 2 s k p k s k p + k g > b i b i < k s k s k p + k g . ( 105 
)
which also ensures that b i < ks kg . Thus, once b i < ks kskp+kg , there exists some b i2 such that (104) is satisfied. As a consequence t i,k+1 -t i,k > 0. where k m = min {k 1 , k p }. Using (117), one may write

N i=1 g T i g i ≥ N i=1 k 2 0 ε i 2 + 2k 0 + α min k min k max P (q, t) ≥ k 2 N i=1 k 2 0 ε i 2 + 1 2 P (q, t) (107) 
where

k 2 = 2 2k 0 + αminkmin kmax if 2k 0 + αminkmin kmax < 1 2 1 else. Then N i=1 g T i g i ≥ k 2 N i=1 k 2 0 ε i 2 + 1 2 P (q, t) ≥ k 3 N i=1 k 0 ε i 2 + 1 2 P (q, t) (108) 
where

k 3 = k 2 k 0 if k 0 < 1, k 3 = 1 else. Then V ≤ - 1 2 N i=1
k m s T i s i - 

k 3 k g 2 N i=1 k 0 ε i 2 + 1 2 P (q, t) + N 2 D 2 max + η ≤ - 1 k * M 1 2 N i=1 k m k M s T i s i + k 3 k g 2 N i=1 k 0 ε i 2 + 1 2 P (q, t) + N 2 D 2 max + η ≤ - k 4 k * M 1 2 N i=1 k M s T i s i + k g 2 N i=1 k 0 ε i 2 + 1 2 P (q, t) + N 2 D 2 max + η ( 
s T i M i s i + ∆θ i T Γ -1 i ∆θ i + k g 2 N i=1
k 0 ε i 2 + 1 2 P (q, t)

+ N 2 D 2 max + η + c 3 2 N i=1 ∆θ i T Γ -1 i ∆θ i V ≤ -c 3 V + N 2 D 2 max + η + c 3 2 N i=1 ∆θ i T Γ -1 i ∆θ i . ( 110 
)
The evaluation of c 3 is described in Appendix 9. 
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 3 Fig. 3. Evolution of Rcom and P (q, t) for different values of Dmax ∈ 0, 2, 4, 6, 8, 10, 12 , η ∈ 0, 1, 3, 5, 7, 9, 11 , and η2 = 7.5. The DI model and the simple estimator (42)-(43) are considered.
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 6 Figure6(a) illustrates that the parameter η in the CTC (37) can help reducing R com . It can be seen that there exists for R com a threshold (R com = 7) which R com cannot reach : we can deduce a minimal number of communications is required for system converge with the constant estimator (42)-[START_REF] Wen | Flocking of multi-agent dynamical systems with intermittent nonlinear velocity measurements[END_REF].

  Accurate estimator[START_REF] Garcia | Cooperative control with general linear dynamics and limited communication: Centralized and decentralized event-triggered control strategies[END_REF].

  Constant estimator[START_REF] Wei | Consensus tracking under directed interaction topologies: Algorithms and experiments[END_REF].
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 4 Fig.[START_REF] Aragues | Distributed consensus algorithms for merging feature-based maps with limited communication[END_REF]. Hexagonal formation with Dmax = 20, η = 20 and η2 = 7.5. Agents are represented by circles. In (a), Rcom = 2.61% and P (q, T ) = 0.001. In (b) Rcom = 18.25% and P (q, T ) = 0.001.

Fig. 5 .

 5 Fig. 5. Evolution of Rcom and P (q, t) for different values of Dmax ∈ 200, 300, . . . , 700 , η ∈ 0, 50, 100, . . . 750 and η2 = 7.5. Model (44) and accurate estimator (12) are considerate.
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 9 Figures 9 and 10 show the evolution of the communication ratio R com , the potential energy and the tracking error at t = T .
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 6 Fig.6. Evolution of Rcom, P (q, t) and ε0 for different values of Dmax ∈ 0, 2, 4, 6, 8, 10, 12 , η ∈ 0, 1, 3, 5, 7, 9, 11 and η2 = 7.5. Model[START_REF] Wang | Formation control of multiple nonholonomic mobile robots with limited information of a desired trajectory[END_REF] and constant estimator (42)-(43) are considerate.
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 78 Fig. 7. Evolution of Rcom, P (q, t) and ε0 for different values of Dmax ∈ 0, 2, 4, 6, 8, 10, 12 , η ∈ 0, 1, 3, 5, 7, 9, 11 and η2 = 7.5. Model (41) and constant estimator (42)-(43) are considerate.
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 9 Fig. 9. Evolution of Rcom, P (q, t) and ε0 for different values of Dmax ∈ 0, 100, 200, . . . 700 , η ∈ 0, 100, 200, . . . 800 and η2 = 7.5. The SS model (44) and accurate estimator (12) are considered.
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 10991 Fig. 10. Evolution of Rcom, P (q, t) and ε0 for different values of Dmax ∈ 0, 100, 200, . . . 700 , η ∈ 0, 100, 200, . . . 800 and η2 = 7.5. The SS model (44) and accurate estimator (12) are considered.

Let 0 n

 0 = [0, . . . 0] T ∈ R n be the all-zero vector. If e i i = 0 n , one has 2k p e i i T N j=1 k ji Y j ∆θ j = 0. Considering now the case e i i = 0 n . Using (62) with b = b i2 > 0, one obtains V2 = 2k p N i=1

9. 3 From

 3 Complementary proof elements 9.3.1 Differential equation satisfied by V s T i s i -k g g T i g i + D 2 max + η (106)

  109) with k * M = 1 if k M < 1 and k * M = k M else, and k 4 = min (k m , k 3 ). Let c 3 =

3 . 4 .k i k ij k j r ij -r * ij 2 k ij k j r ij -r * ij 2 ≥k ij r ij -r * ij 2 ≥ α min k min N i=1 N j=1 k ij r ij -r * ij 2 ≥k 2 ≥k ij r ij -r * ij 2 ≥ 1 max

 342222221 Let k min = min = 1 . . . N j = 1 . . . N (k j = 0) and α min = min i=1,...,N α i . One may write 2α min k min P (q, t) ij r ij -r * ij α min k min P (q, t) α min k mink max P (q, t) . m , k 3 ) max {1, k M } = min {min {k 1 , k p } , min {k 2 k 0 , 1}} max {1, k M } = min {k 1 , k p , 1, k 2 k 0 } max {1, k M } = min k 1 , k p , 1, k 0 min 2 2k 0 + αminkmin kmax , {1, k M } = min k 1 , k p , 1, k 0 , 2k 0 2k 0 + αminkmin kmax max {1, k M }(126)wherek 1 = k s -1-k p (k M +1), α min = min i=1,...,N α i , k max = max = 1 . . . N j = 1 . . . N (k j ) and k min = min = 1 . . . N j = 1 . . . N (k j = 0)

  configuration of the MAS time at which the k-th message sent by Agent j is received by Agent i.Table1summarizes the main notations used in this paper.

	xi	state vector q T i , qT
	qj	estimate of q performed by Agent j.
	xj i	estimate of xi performed by Agent j.
	e j i	estimation error between qi and qj
	r * ij	desired value for rij.
	q0	reference trajectory
	q * i	reference trajectory for Agent i
	εi	trajectory error for Agent i, εi = qi -q * i
	t j,k time at which the k-th message is sent by Agent j.
	t i j,k	
	Table 1	
	Main notations
	3 Notations and hypotheses

i T of Agent i qj i estimate of qi performed by Agent j. i . rij relative coordinate vector rij = qi -qj between agents i and j.

  𝑔̅ 𝑖 , 𝑔̅ ̇𝑖, 𝑠̅ 𝑖 , Y 𝑖 , Θ ̅ 𝑖

				𝑑 𝑖		
	Agent i						⋮
							Estimate of Agent j
	Control	𝜏 𝑖	Agent dynamics			Control	Agent dynamics	𝑞 ̂𝑖,𝑞 ̂̇𝑖
			𝑀 𝑖 𝑞ï + 𝐶 𝑖 𝑞i + 𝐺 = 𝜏 𝑖 + 𝑑 𝑖	𝑞 𝑖 , 𝑞̇𝑖	𝑔 ̂𝑗 𝑖 , 𝑔 ̂j	𝑀 ̂𝑗𝑖 𝑞 ̂j + 𝐶 ̂𝑗𝑖 𝑞 ̂j = 𝜏̂𝑗 𝑖
	Measure 𝑞 𝑖 and 𝑞i				⋮
							𝑞 ̂𝑁 𝑖 , 𝑞 ̂Ṅ 𝑖
	Estimator of other	𝑞 ̂𝑖, 𝑞 ̂̇𝑖	Communication		
	agents' state			If CTC(𝑒 𝑖 𝑖 , 𝑒̇𝑖 𝑖 , 𝑠̅ 𝑖 , 𝑔̅ 𝑖 ) ≥ 0	Yes	Update 𝑀 ̂𝑗𝑖 and 𝐶 ̂𝑗𝑖
							Receive from Agent 𝑗
	Θ ̅ 𝑗 (𝑡 𝑗,𝑘 𝑖 ), 𝑞 𝑗 (𝑡 𝑗,𝑘 𝑖 ) , 𝑞̇𝑗 (𝑡 𝑗,𝑘 𝑖 ) Receive from Agent 𝑗		Θ ̅ 𝑖 (𝑡 𝑖,𝑘 𝑗 ), 𝑞 𝑖 (𝑡 𝑖,𝑘 𝑗 ) , 𝑞̇𝑖 (𝑡 𝑖,𝑘 𝑗 ) Transmission of	Update 𝑞 ̂𝑗 𝑖 and 𝑞 ̂j 𝑖	Θ ̅ 𝑗 (𝑡 𝑗,𝑘 𝑖 ), 𝑞 𝑗 (𝑡 𝑗,𝑘 𝑖 ), 𝑞j(𝑡 𝑗,𝑘 𝑖 )

𝑖 , 𝑠̂𝑗 𝑖 ,Y 𝑗 , Θ ̂𝑗 𝑖 𝜏̂𝑗 𝑖 Estimate of Agent 1 Estimate of Agent N 𝑞 ̂1 𝑖 , 𝑞 ̂1 𝑖 𝑞 ̂𝑗 𝑖 , 𝑞 ̂j 𝑖 Estimations made by Agent i

  9.2 Proof of ti,k+1 -t i,k > 0 From the CTC (37), a communication is triggered at t = t - i,k when k s sT i si + k p k g ḡT i ḡi + η = α 2 M k e e i i 2 + k p k M ėi = 0.As a consequence, the CTC (37) in Theorem 4 is not satisfied at t = t + i,k iff k s sT i si + k p k g

						2	
						i	
				N			
		+ α M k 2 C k p e i i	2	k ji	qi j + η 2	i	2
				j=1			
		+ k p e i i	  α 2 M 1 + |Y i | ∆θ i,max	2 +	2 1 + |Y i | ∆θ i,max |Y i | ∆θ i,max	2	 	(97)
	with k e = k s k 2 p + k g k p +	kg bi . Then, the estimation errors e i i and ėi i are reset and one has e i i t + i,k	= 0 and
	ėi i t + i,k						

2

+ k g b i qi -q *

a virtual agent may also be considered.

Acknowledgments

We thanks Direction Generale de l'Armement (DGA) and ICODE for a financial support to this study.

Upper-bound on

N i=1 g T i g i From [START_REF] Nabet | Tensegrity models and shape control of vehicle formations[END_REF], one may write

Let

Using the fact that 2a

T (a -b), one gets

Since

Injecting P 1 in (111), one gets

and using (125), one gets

One may write

Using the fact 2a

One has

Injecting this result in (119) leads to

with

(123)