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Abstract

This work aims at designing a numerical strategy towards assessing the nocivity of a small defect in terms

of its size and position in a structure, at low computational cost, using only a mesh of the defect-free

reference structure. The modification of the fields induced by the presence of a small defect is taken into

account by using asymptotic corrections of displacements or stresses. This approach helps determining the

potential criticality of defects by considering trial micro-defects with varying positions, sizes and mechanical

properties, taking advantage of the fact that parametric studies on defect characteristics become feasible

at virtually no extra computational cost. The proposed treatment is validated and demonstrated on two

numerical examples involving 2D elastic configurations.
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1. Introduction

The role played by defects in the onset and development of rupture is crucial and has
to be taken into account in order to assess the potential failure of mechanical structures.
Difficulties in this context include (i) the length scale of defects often being much smaller
than the structure length scale, and (ii) the frequent randomness of the location, nature
and geometry of defects. Even with deterministic approaches, taking such defects into
consideration by standard methods entails geometrical discretizations at the defect scale,
leading to costly computations and hindering parametric studies for varying defect location
and characteristics.

We address situations that require modeling a single small flaw, or a moderate number
of such flaws, and therefore do not pertain to homogenization. Such isolated defects are
usually either omitted (if small enough) or fully modelled. In the former case, initiation and
eventual propagation of cracks leading to failure may be missed, while the latter case both
complicates finite element (FE) model preparation and significantly increases computational
costs due to severe mesh refinement in the region surrounding a modelled flaw.
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In this work, we propose to address the latter issues by resorting to an efficient two-scale
numerical strategy which can accurately predict the mechanical state perturbation caused
by isolated inhomogeneities embedded in an elastic (background) material, without directly
modeling them. To ensure computational efficiency, the analysis uses only a FE mesh for
the defect-free structure, whose mesh size is hence not influenced by the (small) defect scale.
The latter is instead taken into account by means of an asymptotic expansion, as previously
done in [1, 2, 3] for modeling surface-breaking void defects (see also [4] where the concept of
topological derivative [5, 6, 7] is used for predicting the eventual nocivity of surface-breaking
small cracks). Here we are addressing the case of a small internal inhomogeneity (or a finite
number thereof) embedded in an elastic solid. This includes traction-free voids as a special
case, thus covering (small) objects variously referred to in the literature (see e.g. [8, 9, 10]) as
inhomogeneities, heterogeneities, cracks, holes, porosities, inclusions... We rely on existing
results on small-inhomogeneity asymptotics for elastic solids [11, 12, 13, 14, 6, 7], which
prominently involve elastic moment tensors (EMTs) associated with elastic inhomogeneities
[11, 12, 6], and combine them into a simple computational treatment, whose capabilities
(prominently among them the ability to conduct inexpensive parametric studies) are then
demonstrated on two examples.

The paper is organized as follows. After defining the relevant background and trans-
mission problems (Sec. 2), the small-inhomogeneity asymptotic expansion in terms of the
displacement perturbation is introduced, focusing on the far field, in Section 3. Therein, the
key ingredients for its evaluation (elastostatic Green’s tensor and EMT) are surveyed, and
the resulting proposed computational treatment is given. Two validation and demonstra-
tion examples are then presented in Section 4. Section 5 closes the paper with concluding
remarks and directions for future work.

2. Problem definition

We consider a linearly elastic body occupying a bounded domain Ω ⊂ Rd (where d = 2
or 3 is the spatial dimensionality), whose boundary Γ is partitioned as Γ = ΓD ∪ ΓN , with
ΓD ∩ ΓN = ∅ to ensure well-posedness of boundary value problems. The parts ΓD and
ΓN respectively support a prescribed traction t̄ and a prescribed displacement ū, while a
body force density f is applied in Ω. These boundary conditions are chosen for definiteness,
and any other set of well-posed boundary conditions could be chosen instead with minimal
changes. On the basis of this fixed geometrical and loading configuration, we consider

n n

n

Figure 1: Reference (a) and perturbed (b) solids. The inhomogeneity Ba located at z is the shaded
subdomain in (b). 2



two situations, namely (i) a reference solid characterized by a given elasticity tensor C,
which defines the background solution, and (ii) a perturbed solid constituted of the same
background material except for a small inhomogeneity whose material is characterized by
the elasticity tensor C?. The aim of this work is to formulate a computational approach
allowing to treat case (ii) as a perturbation of the background solution (i), in particular
avoiding any meshing at the small inhomogeneity scale. This will be achieved by applying
known results on the asymptotic expansion of the displacement perturbation with respect
to the small characteristic size a of the inhomogeneity to case (ii).

2.1. Background solution (case (i))
The background solution in terms of displacement field u arising in the reference solid

Ω with elasticity tensor C (Fig. 1a) due to prescribed excitation (f , t̄, ū), corresponding to
case (i) above, solves the problem

div(C : ε[u]) + f = 0 in Ω, t[u] = t̄ on ΓN , u = ū on ΓD, (1)

where the linearized strain tensor ε[w] and the traction vector t[w] associated with a given
displacement w are given by

(a) ε[w] = (∇w +∇Tw)/2, (b) t[w] = (C : ε[w]) · n, (2)

with n denoting the unit outward normal to Γ. In (2b) and hereinafter, symbols ’·’ and ’:’
denote single and double inner products.

2.2. Transmission problem for a small inhomogeneity (case (ii))
The elastic body occupies the same domain Ω but now contains a small defect, in the

form of an inhomogeneity located at z ∈ Ω, embedded in the background material (Fig. 1b).
The inhomogeneity occupies the domain Ba := z + aB, where the smooth fixed domain
B ⊂ Rd centered at the origin defines the defect shape, and has elastic properties described
by the tensor C?. The inhomogeneous elastic properties of the whole perturbed solid are
therefore defined as

Ca := C + ∆CχBa , (3)

where χD is the characteristic function of a domain D and ∆C := C? − C denotes the
elasticity tensor perturbation.

The displacement field ua arising in the solid containing the small inhomogeneity Ba due
to the same prescribed excitation (f , t̄, ū), solves the transmission problem

div(Ca : ε[ua]) + f = 0 in Ba ∪ (Ω \Ba), t[ua] = t̄ on ΓN , ua = ū on ΓD,

ua|− = ua|+ and t?[ua] |− = t[ua] |+ on ∂Ba,
(4)

where the traction operator t? is defined by (2b) with C replaced by C? and the ± subscripts
indicate traces relative to Ba and Ω \Ba, respectively.

3. Computation of small-inhomogeneity solution asymptotics

This section develops our proposed methodology. The small-inhomogeneity asymptotic
expansion in terms of the displacement perturbation is introduced, focusing on the far field,
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in Sec. 3.1. The key ingredients for its evaluation, namely the elastostatic Green’s tensor and
elastic moment tensors, are surveyed in Secs. 3.2 and 3.3, respectively, the resulting proposed
computational treatment being then given in Sec. 3.4. Some useful explicit formulas for the
plane strain case are finally gathered in Sec. 3.5.

3.1. Asymptotic approximation of displacement perturbation
We begin by introducing the displacement perturbation

va := ua − u, (5)

where ua and u solve problems (4) and (1), respectively corresponding to the perturbed and
background configurations. An asymptotic analysis of va with respect to the characteristic
defect size a provides a way to evaluate the influence of the location, size, shape and material
characteristics of defects on the solution ua. Available asymptotic approximations, such as
those used in this work, nearly always rely on a constitutive linearity assumption (here,
linear elasticity), with the notable exception of [15].

Two kinds of asymptotic expansions of va may be defined, namely inner and outer
expansions [16]. They focus on the two scales involved: (a) the structure scale, where points
are described using ”ordinary” coordinates x ∈ Ω, and (b) the defect scale corresponding to
the characteristic length a of the inhomogeneity, with rescaled coordinates x̄ := (x − z)/a.
This description is directly related to the slow and fast variables used in [1, 2].

Inner expansion. The inner expansion has the form [17], [6, Prop. 3.2]

va(x) = avB[E](x̄) + o(a), E = ∇u(z), (6)

having set vB[E] := uB[E]−E·x̄ in terms of the solution uB[E] of the free-space transmission
problem (FSTP)

div(C? : ε[uB]) = 0 in Rd \ B, div(C : ε[uB]) = 0 in B,∣∣uB(x̄)−E · x̄
∣∣→ 0 for |x̄| → ∞,

uB|− = uB|+ and t?[uB] |− = t[uB] |+ on ∂B,
(7)

i.e. the auxiliary problem of a perfectly bonded inhomogeneity B embedded in an infinite
elastic medium and subjected to the constant remote stress C : E for given E ∈ Rd×d

sym. Such
solutions vB are known analytically for simple inhomogeneity shapes [10], in terms of the
solution to the famous Eshelby inclusion problem [18]. Expansion (6) essentially effects a
zoom at the inhomogeneity scale a; it is expressed in terms of the fast coordinates x̄, and is
valid for finite x̄, i.e. within a neighbourhood of Ba whose diameter is of order O(a).

Outer expansion. The outer expansion, on the other hand, is given by [12, Thm. 11.4]

va(x) = −∇(1)G(z,x) : A(B,C,∆C) : ∇u(z)ad + o(ad), x 6= z, (8)

where G is the elastostatic Green’s tensor (defined next in Sec. 3.2), ∇(1)G denotes the
gradient with respect to the first argument of the two-point function G, and A is the
elastic moment tensor (EMT) associated with the inhomogeneity (Sec. 3.3). Expansion (8)
is expressed in terms of the slow coordinates x and is valid at any finite (independent on a)
distance from the inhomogeneity, i.e. at the structure scale. Expansion matching techniques
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then allow to blend inner and outer expansions into a unique expansion valid uniformly in
Ω [16]; exploiting this approach is however left for future work.

Asymptotic correction. We study in this work the computation of the asymptotic correction

ṽa(x) := −∇(1)G(z,x) : A(B,C,∆C) : ∇u(z)ad (9)

i.e. the leading contribution to the outer approximation (8). We will consider two compu-
tational scenarios, namely (a) fixed inclusion location z and varying evaluation point x, or
(b) fixed evaluation point x and varying inclusion location z. The key ingredients of (9)
are (i) ∇u(z), the gradient of the background solution at the inhomogeneity location (or,
equivalently, its strain or stress at that point), (ii) the gradient ∇(1)G(z,x) of the Green’s
tensor G, and (iii) the elastic moment tensor (EMT) A. Ingredient (i) being a natural
outcome of a FEM solution of the background problem (1), we focus on the definition and
numerical evaluation of ∇(1)G(z,x) and A.

3.2. Elastostatic Green’s tensor

3.2.1. Definition and symmetry properties

The elastostatic Green’s tensor appearing in (8) and (9) is defined as G(ξ,x) = ek ⊗
Gk(ξ,x), where the displacement field Gk(ξ,x) is the response at ξ ∈ Ω of the background
body subjected to (i) a unit point force applied at x ∈ Ω along the coordinate direction ek
and (ii) homogeneous boundary conditions, i.e.:

−div(C : ε[Gk(·,x)]) = δ(· − x)ek in Ω,

t[Gk(·,x)] = 0 on ΓN (1 ≤ k ≤ d) (10)

Gk(·,x) = 0 on ΓD,

where δ denotes the unit Dirac mass at the coordinate origin. In the above definition,
and wherever component notation is used, Einstein’s summation convention over repeated
indices implicitly applies.

Symmetry relations. The elastostatic Green’s tensor verifies the symmetry relationship

G(z,x) = GT (x, z), i.e. Gk
i (z,x) = Gi

k(x, z), (11a)

(for a proof, apply Maxwell-Betti’s reciprocity theorem to the displacement fields Gk(·,x)
and Gi(·, z) in the domain Ω, recalling that they are elastic solutions for unit point forces
δ(·−x)ek and δ(·−z)ei, respectively, and that they satisfy identical homogeneous boundary
conditions on Γ). Relationships (11a) hold for any (x, z) ∈ Ω× Ω, x 6= z. Writing them for
(x + dx, z + dz) ∈ Ω× Ω and extracting first-order contributions in dx, dz, we have

∇(1)G
k
i (z,x) · dz +∇(2)G

k
i (z,x) · dx = ∇(1)G

i
k(x, z) · dx +∇(2)G

i
k(x, z) · dz

for all dx, dz, implying the symmetry relationship

∇(1)G
k
i (z,x) = ∇(2)G

i
k(x, z) (x, z) ∈ Ω× Ω with x 6= z, 1 ≤ i, k ≤ d. (11b)
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3.2.2. Decomposition of G

We now introduce the following additive decomposition of G:

G(·,x) = G∞(· − x) +Gc(·,x), (12)

where G∞ is the (singular) full-space Green’s tensor (also called fundamental tensor), while
the complementary (non-singular) tensor Gc is defined in order for G to satisfy the homo-
geneous boundary conditions of problem (10). Decomposition (12) allows to exploit the fact
that the fundamental tensor G∞ = ek⊗Gk

∞ is known analytically. Indeed, the displacement
field Gk

∞ (1 ≤ k ≤ d) arising from a unit point force applied along direction k at the origin,
which satisfies

div(C : ε[Gk
∞]) + δek = 0 in Rd,

is given for an arbitrary anisotropic background material (up to arbitrary translations if
d = 2) by the Fourier integral [10]

G∞(x) =
1

(2π)d

∫
Rd

exp
(

iη · x
)
N(η) dV (η), x ∈ R3 \ {0}, (13)

where, for given η ∈ R3, the second-order tensor N(η) is given by

N(η) = K−1(η), Kik(η) = Cijk`ηjη` (14)

(note that K(η), known as the acoustic tensor or the Christoffel tensor, is indeed invertible
for any η 6= 0 by virtue of C being positive definite). The tensor field G∞ is singular at
x = 0 (the order of singularity is well-known to be O(|x|−1) for d = 3 or O(ln |x|) for
d = 2, and can be deduced from the representation (13)). It is also clearly invariant under
translations, i.e. unit point forces applied at x ∈ Rd generate displacements G∞(ξ − x) at
ξ ∈ Rd . If the background material is isotropic, the Fourier integral (13) can be evaluated
in closed form, yielding Kelvin’s solution (see Sec. 3.5 for the plane strain case).

The symmetry relations (11a,b) hold for G(·,x) replaced with G∞(· − x), which in fact
possesses additional symmetry properties and satisfies

G∞(ξ − x) = G∞(x− ξ) = GT
∞(x− ξ), (15a)

∂ξG∞(ξ − x) = ∇G∞(ξ − x) = −∇G∞(x− ξ). (15b)

Properties (11a,b) and (15a,b) will play an important role in the actual evaluation of the
asymptotic correction (9).

3.2.3. Complementary Green’s tensor

The second part of decomposition (12) namely the complementary part Gc = ek⊗Gk
c of

the Green’s tensor, is the correction applied toG∞ due to the finite size of Ω, and is bounded
at ξ = x. More precisely, by virtue of problem (10) being linear, each Gk

c (1 ≤ k ≤ d) solves
the following elastostatic boundary-value problem (BVP) with regular boundary data and
vanishing zero body force density:

div(C : ε[Gk
c (·,x)]) = 0 in Ω,

Gk
c (·,x) = −Gk

∞(· − x) on ΓD,

t[Gk
c (·,x)] = −t[Gk

∞(· − x)] on ΓN .

(16)
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implying that Gk
c (ξ,x) is C∞ for ξ,x ∈ Ω. Problem (16) involves Gk

∞ and its derivatives
on Γ, with the traction operator t[·] still defined by (2b); all these quantities are known
analytically, in closed form if the background medium is isotropic (see Sec. 3.5).

To evaluate ∇(1)G(z,x) used in the asymptotic correction (9), it seems natural to solve
numerically problem (16) forGk

c (1 ≤ k ≤ d) and then compute∇(1)G(z,x) = ∇G∞(z−x)+
∇(1)Gc(z,x). However, while ∇G∞ is known analytically (see (28) for the plane strain case),
∇Gc must in general be evaluated via numerical differentiation of the computed solution for
Gc, a step which is likely to entail loss of accuracy. Moreover, solving (16) for given x allows
to evaluate ṽa via (9) for a fixed evaluation point x and varying inhomogeneity locations
z, i.e. is convenient for scenario (b) but potentially costly for scenario (a) (with scenarios
as defined after Eq. (9)). We therefore propose two distinct strategies for the evaluation of
∇(1)G, according to whether scenario (a) or (b) is to be considered.

Case (a): fixed flaw location and varying evaluation point. For this situation, solving prob-
lem (16) for each evaluation point x would incur significant computational costs. We pro-
pose an alternative approach, which consists in finding a governing elasticity problem for
∇(1)G(z, ·) with z fixed. We begin by using the symmetry relationship (11a) in (9), so as to
swap the roles of x and z, to obtain (in component form)

[ṽa]k (x) = −∂(1)jG
k
i (z,x)Aijmnum,n(z)ad

= −∂(2)jG
i
k(x, z)Aijmnum,n(z)ad

(17)

with notations ∂(1)j and ∂(2)j, respectively, indicating partial differentiation with respect to
the j-th coordinate of the first and second argument of G. Now, decomposition (12) implies

Gi
k(·, z) = [Gi

∞]k(· − z) + [Gi
c]k(·, z), (18)

where Gi
c(·, z) is governed by problem (16) with x replaced by z and k by i. Moreover,

∇(2)Gc may be defined by simply differentiating the BVP (16) with respect to the second
argument of Gc, which acts in (16) as a parameter, and solving the resulting derivative BVP
for ∇(2)Gc. Accordingly, each displacement field H i

j(·, z) := ∂(2)jG
i
c(·, z) (1 ≤ i, j ≤ d)

solves the BVP

div(C : ε[H i
j(·, z)]) = 0 in Ω,

H i
j(·, z) = ∂(1)jG

i
∞(·, z) on ΓD,

t[H i
j(·, z)] = t[∂(1)jG

i
∞(·, z)] on ΓN .

(19)

Explicit formulas for the boundary data in problems (19) are given in Sec. 3.5 for the case
of isotropy and plain strain, see Eqs. (28) and (29). Then, the asymptotic correction ṽa can
be evaluated using

ṽa(x) = ṽa,∞(x) + ṽa,c(x) =:
(
∂(1)jG

i
∞(x− z)−H i

j(x, z)
)
Aijmnum,n(z)ad (20)

(having introduced in (17) the Green’s tensor decomposition (18), and used (15b) for G∞).
Evaluating the above expression a priori entails numerically solving the d2 problems (19),
which are set on the unperturbed (defect-free) configuration.
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Case (b): varying flaw location and fixed evaluation point. For this situation, it seems im-
possible to derive a problem similar to (19) whose unknown is ∂(1)jG

k
i (·,x) or ∂(2)jG

i
k(x, ·),

with x fixed, because the partial derivative ∂(1)j or ∂(2)j now acts on the field point rather
than the source point, and differentiating the boundary conditions in (16) w.r.t. the field
point will not yield the correct boundary conditions for the problem governing ∂(1)jG

k
i (·,x)

or ∂(2)jG
i
k(x, ·) (whereas, as done previously, differentiating the BCs in (16) w.r.t. the source

point is valid). Consequently:

(i) For computing displacement corrections of the form (17), one may solve problems (16)
and differentiate the resulting numerical solution (e.g. by differentiating the finite
element approximation).

(ii) For computing strain or stress corrections, requiring derivatives of (17), one notes that

∂` [ṽa]k (x) = −∂(2)`∂(1)jG
k
i (z,x)Aijmnum,n(z)ad

= −∂(1)j[H
k
` (z,x)]iAijmnum,n(z)ad (21)

Such evaluations may therefore be effected by solving problem (19) with z = x (i.e.
the source point for problem (19) set equal to the fixed evaluation point x), and then
differentiating the resulting numerical solution for Hk

` (·,x).

To understand the BC differentiation w.r.t. field point issue, consider as an example the
function u(x, y) = x2 + y2 − 1 solving ∆u = 4 in D and u = 0 on ∂D, D being the unit
disk. The partial derivative w := ∂xu = 2x solves ∆w = 0 in D (i.e. the field equation
is the derivative of the original field equation); however the boundary data w = 2x on ∂D
cannot be inferred from the original problem, since u needs for this to be known at least in
a neighbourhood of ∂D.

3.3. Elastic moment tensor

The EMT A associated with an inhomogeneity of shape B and stiffness C? embedded in
a background medium of stiffness C is defined by

A : E =

∫
B

∆C : ∇uB[E] dV, ∀E ∈ Rd×d
sym, (22)

where uB[E] solves the FSTP (7). The EMT carries important microstructural information,
as it depends on the material properties C,C? and, through B, on the inhomogeneity shape
and orientation.

Main properties. The EMT (22) has the following known properties [11, 6, 14]:

1. Symmetry: A has major and minor symmetries;
2. Scaling: A(λB,C,C?) = λdA(B,C,C?) for any λ > 0;
3. Sign: A is positive definite (resp. negative definite) if all solutions Λ of the eigenvalue

problem (∆C − ΛC) :E = 0 are positive (resp. negative), i.e. if the inhomogeneity is
stiffer (resp. softer) than the background.

On examining (20) in light of the minor symmetry of A, we find that solving the d(d+ 1)/2
problems (19) for 1 ≤ i ≤ j ≤ d, instead of the d2 problems for all i, j, is sufficient.
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EMT for an ellipsoidal inhomogeneity. When B is an ellipsoid, ∇uB[E] is constant inside
B [18, 10], allowing A to be expressed in closed form [11, 6]:

A = |B|C : (C + ∆C : S)−1 : ∆C, (23)

where S = S(B,C) denotes the (fourth-order) Eshelby tensor of the normalized inclusion B.
The evaluation of A then essentially rests on that of S. In the general anisotropic case, the
Cartesian components of S in an orthonormal frame aligned with the principal directions
of B are given in the three-dimensional case by [10]

Sijkl =
1

8π
Cmnkl

∫
Σ

[ηjNim(η) + ηiNjm(η)] ηn dS(η̂), (24)

where Σ := {η̂ ∈ R3, |η̂| = 1} is the unit sphere, η := a−1
1 η̂1e1 +a−1

2 η̂2e2 +a−1
3 η̂3e3, (a1, a2, a3

being the principal semiaxes of B), and N is defined by (14). A similar formula holds for
the plane-strain case. Evaluation of (24) in general requires numerical quadrature (see e.g.
[6, 19]). When C is isotropic, the formula (24) can be evaluated analytically in closed form.

3.4. Computational procedure
The considerations of Secs. 3.1 to 3.3 translate into a computational procedure allowing

an efficient evaluation of the asymptotic correction ṽa. The procedure can be decomposed
into six steps, described next and summarized in Table 1. It requires finite element (FE)
analyses using a mesh of the background solid (whose design does not involve the defect
length scale), denoted MH . The subscript H refer to the characteristic element size for this
mesh; likewise, finite element solutions computed on this mesh (i.e. fields defined by nodal
interpolation based on mesh MH) will be labelled with a superscript H (e.g. uH).

In Step 1, we compute uH , the FE approximation on MH of the background solution u
defined by problem (1). The subsequent steps 2 to 6 aim at correcting uH without meshing
the inhomogeneity. As emphasized in Table 1, steps 2 to 4 only require the inhomogeneity
position z, while steps 5 and 6 also need the inhomogeneity properties.

For a given inhomogeneity position z ∈ Ω, we extract ∇uH(z), the gradient of the back-
ground displacement (step 2). Steps 3 and 4 then perform the computation of the gradient
of the Green’s tensor as given by decomposition (18). Step 3 uses the relevant derivatives

Table 1: Summary of the computational procedure for ṽH
a .

Step Description eq. number
1 compute uH (1)

inhomogenity position z

2 extract ∇uH(z)
3 evaluate ∇G∞(x, z) (28)

(prepare BC’s for ∇Gc) (28), (29)
4 compute [H i

j]
H for 1 ≤ i ≤ j ≤ d (19)

inhomogeneity properties B,C?

5 evaluate A(B,C,C?) (23) or (24)
6 evaluate ṽHa and uHa (9), (25)

9
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Figure 2: Plot of the component ∂(1)1[G1
∞]1 of G∞, whose boundary trace is used in the BCs of

problem (19).

of G∞ (see (28) and (29) for the plane strain case) for (i) evaluating the corresponding
contribution to ṽa in (9) and (ii) setting up the boundary data of problem (19). Clearly,
special attention needs to be given to the preparation and correct imposition of these BCs.
A surface plot of component ∂(1)1[G1

∞]1, used as boundary data in problem (19), is shown
for illustration purposes in Fig. 2. Step 4 then effects the computation of finite element
solutions [H i

j]
H of the d(d+ 1)/2 problems (19) for 1 ≤ i ≤ j ≤ d.

Next, given the shape B and material properties C? of the inhomogeneity, we compute
in step 5 the EMT A(B,C,∆C) using (23). Finally, Step 6 completes the evaluation of ṽHa
and the asymptotic approximation ũHa of the transmission solution through

ṽHa :=
(
∂(1)j[G

i
∞]H(· − z)− [H i

j]
H(·, z)

)
AijmnuHm,n(z)ad, ũHa := uH + ṽHa . (25)

It is important to note that the computation of EMT requires negligible effort, whereas
simulating different inhomogeneities using fine meshes necessitates separate runs on fine
meshes, each of which having to be prepared beforehand.

Multiple defects. Several defects B`
a (1 ≤ ` ≤ m), with fixed locations z` and diameters

proportional to the same small length parameter a, can be considered simultaneously by
simply setting ṽHa =

∑
` ṽ

`,H
a (where ṽ`,Ha is the asymptotic correction (25) for the `-th

defect considered in isolation), since terms coupling different defects occur only in higher-
order contributions to inner or outer solution expansions (see e.g. [7]).

Varying defect characteristics. The structure of asymptotic correction formulas such as (25)
greatly facilitates parametric studies for varying defect characteristics. All defect parameters
except its location occur only in the EMT A, so that varying the defect shape, orientation
or material parameters only requires modifying A. In addition, how to efficiently vary the
defect location was addressed in Sec. 3.2.3. The ability to conduct inexpensive parametric
studies is illustrated in the second example of Sec. 4.
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3.5. The plane strain case

We collect here, for convenience, known explicit expressions for plane strain conditions of
(i) the Kelvin fundamental solution and its relevant derivatives and (ii) the elastic moment
tensor for an elliptical inhomogeneity, on which the numerical examples of Sec. 4 are based.

Green’s tensor. Kelvin’s fundamental displacement for plane strain conditions is given by

[Gi
∞]k(r) =

1

8πµ(1− ν)

[
r̂ir̂k − (3−4ν)δik ln

r

r′

]
r ∈ R2 \ {0}; i, k = 1, 2 (26)

where r = |r| = (r · r)1/2, r̂ = r−1r, and r′ denotes an arbitrary reference length. In this
case, G∞ as given by (26) is in fact the response of a three-dimensional infinite body to an
infinite line (passing through the origin and directed along e3) of unit point loads, see e.g.
[20, 21], and is defined up to an arbitrary translation (defined by r′). Then, introducing (26)
in Hooke’s law yields Kelvin’s stress tensor Σ∞, whose components are given by

[Σi
∞]k`(r) =

−1

4π(1− ν)r
[2r̂kr̂ir̂` + (1−2ν)(δikr̂` + δi`r̂k − δk`r̂i)] . (27)

The boundary data involved in the boundary conditions of problems (19) are then found by
straightforward differentiation of (26) and (27):

∂(1)j[G
i
∞]k(x, z) =

−1

8πµ(1− ν)r

[
2r̂ir̂j r̂k − δij r̂k − δkj r̂i + (3−4ν)δikr̂j

]
, (28)

∂(1)j[Σ
i
∞]k`(x, z) =

−1

4π(1− ν)r2

[
2(−4r̂ir̂j r̂kr̂` + δjkr̂ir̂` + δj`r̂ir̂k + δij r̂kr̂`)

+ (1−2ν)(−2(δikr̂j r̂` + δi`r̂j r̂k − δk`r̂ir̂j)

+ δikδj` + δi`δjk − δijδk`)
]
. (29)

Elastic moment tensor. The Eshelby tensor for an elliptical inclusion B in plane strain can
be found from (24) by considering the limiting case of a 3D ellipsoidal inclusion infinitely
elongated in the x3 direction. Assuming C to be isotropic, analytical evaluation of the
2D version of (24) yields the following explicit expressions for the nonzero Eshelby tensor
components [10, Eq. 11.22]:

S1111 = A(1−m)(3 + γ +m), S1122 = A(1−m)(1− γ −m),

S2222 = A(1−m)(3 + γ −m), S2211 = A(1 +m)(1− γ +m), (30)

S1212 = A(1 +m2 + γ),

where A = 1/[8(1− ν)], γ = 2(1−2ν), and m = (a1− a2)/(a1 + a2), with a1 and a2 denoting
the semi-axes of the ellipse B. The frame (e1, e2) is aligned with the principal directions of
B. The EMT is then evaluated by using (30) in (23).

11



(130, 150)

(a) Uniaxially loaded square sample (b) Thick beam under bending load

Figure 3: Geometry and boundary conditions for Example 1 (a) and Example 2 (b).

4. Numerical examples

The proposed treatment is now illustrated on two examples, each featuring a single small
elliptic flaw. The first example involves a square sample under uniaxial loading (Fig. 3a),
while the bending of a thick beam is considered in the second (Fig. 3b). The numerical results

(a) Reference solid, coarse mesh MH (289 nodes) (b) Perturbed solid, fine mesh Mh (2464 nodes)

(c) Zoom around the defect zone of Mh

Figure 4: Finite element meshes. In mesh Mh, the disk D of radius R containing elements surround-
ing the defect is shown in blue, the remaining part Ω \D in red.

12



to follow were obtained by means of the code FEAP [22], using meshes made of three-noded
triangular elements with continuous piecewise-linear displacement interpolation.

4.1. Example 1

The coarse analysis mesh MH (Fig.4a) is regular and features 289 nodes. In addition, a
fine comparison mesh Mh (Fig.4b) modeling the inhomogeneity (i.e. entailing mesh refine-
ment at the defect scale in a neighbourhood of Ba), featuring 2464 nodes, was set up for
comparing the ”brute force” solution uha of problem (4) to its asymptotic approximation ũHa .
All finite element solutions discussed in this section (such as ũHa or uha) are labelled with the
characteristic element size H or h (with h ≤ H) of the mesh used for computing them.

We first present the comparison of the computed asymptotic correction ṽHa against the
reference solution vha , obtained on Mh as vha := uha−uh (computing the background solution
uh requires completing Mh with a fine mesh of the interior of Ba if the defect is a hole).

Considering a defect in the form of an elliptic inhomogeneity (with the material properties
given as E = 380000 MPa, and ν = 0.18, E?/E = 0.5) with semiaxes a1 = 4 mm, a2 =
2 mm, Figure 5 shows contour plots of both Cartesian components of ṽHa and vha , which can
be observed to agree well (recalling that the asymptotic correction (9) is only meaningful
outside a fixed neighbourhood of Ba). In addition, ṽHa is plotted along the cross-section

[ṽH
a
]1

−1

0

1

x 10
−4 [vha ]1

−1

0

1

x 10
−4

[ṽH
a
]2

−3

−2

−1

0

1

2

3

x 10
−4 [vha ]2

−3

−2

−1

0

1

2

3

x 10
−4

Figure 5: Contour plots of the asymptotic approximation ṽH
a (left) and its reference value vh

a (right),
respectively evaluated on MH and Mh. The defect is an elliptic inhomogeneity with semiaxes a1 =
2 mm, a2 = 1 mm and E?/E = 0.5.
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,v

h a

[ṽHa ]1
[vha ]1

(a) Comparison of [ṽHa ]1 and [vha ]1

0 50 100 150 200

−1

0

1

x 10
−4

x1

[ṽ
H a
] 1

[ṽHa,∞]1

[ṽHa,c]1

[ṽHa ]1

(b) Comparison of [ṽHa ]1, [ṽHa∞
]1 and [ṽHa,c]1

Figure 6: Plots along cross-section A−A.

A− A defined in Fig. 3a, and compared to the reference solution vha (Fig. 6a) and to the
contributions ṽHa,∞ and ṽHa,c (Fig. 6b). In Fig. 6a, a good agreement is again observed between
the asymptotic corrrection ṽHa and the reference vha except, as expected, in a neighbourhood
of the defect; in Fig. 6b, contributions ṽHa,∞ and ṽHa,c are seen to behave like the corresponding
parts of the Green’s tensor: ṽa,∞ diverges, while ṽHa,c remains bounded, as x→ z.

Computing ṽHa entailed four FE solutions on MH (one for the background problem (1),
three for problems (19) with 1 ≤ i ≤ j ≤ 2), each requiring about .15s, while obtaining
comparison solution uha on the fine mesh Mh required about 6.6s. While these CPU timings
are all very moderate, our approach applied to this example performs about ten times
faster than straightforward analyses on meshes involving the defect scale, and this relative
advantage is expected to increase for similar analyses on three-dimensional configurations.

4.2. Convergence
We proceed with a numerical study of the convergence of ṽa to va as a → 0. To this

aim, we define a discrepancy indicator R(a) between the asymptotic correction (transferred
to the fine mesh Mh to enable comparisons) and the reference perturbation solution:

R(a) = a−2‖ve‖L2(Ω\D) = a−2‖ṽhHa − vha‖L2(Ω\D). (31)

where ṽhHa is the projection of ṽHa (computed on MH) on the fine mesh Mh through the
mesh transfer operator ϕhH such that whH := ϕhHwH is the interpolation on Mh of the
values of wH at the nodes of Mh. In view of (9) and considering that ∂(1)j[G

i
∞](· − z) can

be evaluated analytically, we have :

ṽhHa :=
(
∂(1)j[G

i
∞]h(· − z)−ϕhH [∂(2)jG

i
c]
H(·, z)

)
AijmnuHm,n(z)a2. (32)

In equation (31), ‖f‖L2(X) denotes the L2(X) norm of a vector-valued function f defined on
a domain X, given by

‖f‖2
L2(X) :=

∫
X

‖f‖2 dV, (33)
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Figure 7: Plot of discrepancy R(a) against the normalized inhomogeneity size. Line 1: a1/a2 = 2,
E/E? = 2 and θ = 0; line 2: a1/a2 = 2, E/E? = 0.5 and θ = π/4; line 3: a1/a2 = 1, E/E? = 2

D is a fixed neighbourhood of Ba, and the a−2 factor in (31) stems from the fact that ṽa is
the O(a2) approximation of va in Ω \D. Here, D is chosen as the disk of radius Rd centered
at z (Fig. 4b), with Rd kept fixed as a varies.

The discrepancy R(a) is plotted against a/L, the normalized characteristic size of the
inhomogeneity, in Fig. 7, for several choices (given in the figure caption) of inhomogeneity
shape, stiffness and orientation θ with respect to the x1 axis. We observe that R(a) = O(a2)
for not-too-small inclusion sizes (Log(a/L) ≥ −3.5); this is the expected theoretical be-
haviour of R(a) as a→ 0, as the O(a) contribution to R(a) is expected to vanish [23, 7] for
all inhomogeneities with centrally-symmetric shape (such as ellipses). For smaller defects,
the theoretical behavior of R(a) = O(a2) (which accounts only for asymptotic approxima-
tion errors) is no longer observed due to FE discretization errors becoming comparatively
significant (see [24] for an analysis of the interplay between asymptotic and FE errors for
the Poisson equation with Dirichlet boundary conditions).

4.3. Example 2

This example concerns the bending of a simply supported beam (of size 200×50) loaded
on its top side with uniformly distributed normal load t̄2 = −30 MPa (Fig. 3b). The material
properties are given as E = 380000 MPa, and ν = 0.18. The inhomogeneity is taken as an
elliptic hole located at z = (115, 10), whose major semiaxis a1 has an inclination angle θ
relative to the x1 direction (Fig. 3b). The defect size is defined in terms of the semiaxes
a1 = 4, a2 = 2, except where stated differently. For this bending example the perturbation
caused by the inhomogeneity will be examined in terms of the stress perturbation, which is
usually taken as the quantity of interest for the design of structural components. Accordingly,
we will focus on the evaluation of the asymptotic approximation σ̃Ha := C : ε[ṽHa ], valid
except inside a neighbourhood of Ba, of the (linear elastic) stress perturbation induced by
the defect, and its comparison with the reference stress perturbation σha := Ca : ε[vha ].
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[σ̃a]11 on MH

−50

0

50

[σa]11 on Mh
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Figure 8: Contour plots of the asymptotic approximation σ̃H
a of the stress perturbation (upper plots)

and the reference perturbation σh
a (lower plots). The plots on the right are zooms showing both

fields in the vicinity of z. The elliptic hole is located at z = (115, 10), and its inclination is θ = 0.
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[σ̃a]M along A − A

σ
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[σ̃H
a ]M

[σ̃h
a ]M

[σh
a ]M

Figure 9: Comparison of the asymptotic approximation in terms of stress perturbation computed on
the fine (σ̃h

a) and coarse (σ̃H
a ) meshes against the reference perturbation σh

a along the cross-section
A−A, for the inhomogeneity of Fig. 8 (lower plots), whose vertical position is x2 = 10.

Both quantities are shown (in terms of their component σ11) as contour plots in Fig. 8.
The asymptotic stress perturbation σ̃Ha , computed on MH , compares well with its reference
counterpart σha computed on Mh (recalling that σ̃Ha is not valid inside a neighbourhood of
Ba, as exemplified in the blow-up views shown in Fig. 8, right). The scale −50 ≤ σ ≤ 50 and
the colormap are chosen so as to emphasize the far field character of the outer expansion,
based on (8).

We next examine von Mises equivalent stress solutions (rather than individual stress
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(b) θ = 90◦, varying aspect ratio a1/a2

Figure 10: Asymptotic approximation in terms of the von Mises stress perturbation [σ̃H
a ]M along the

coordinate x2 spanning the cross-section A−A. The elliptic hole is located at z = (115, 10).

components) evaluated along the coordinate x2 spanning the vertical cross-section A − A
(see Fig. 3b, also indicated in the left plots of Fig. 8). For completeness, this comparison,
shown in Fig. 9, also includes the asymptotic approximation σ̃ha obtained using the fine mesh
Mh, which coincides with the reference mesh in Ω \Ba. The asymptotic approximations σ̃Ha
(coarse) and σ̃ha (fine) are seen to agree well with one another and with the reference σha.

Having verified our approach we now use the asymptotic approximation σ̃Ha to test the
stress perturbation for various inhomogeneity orientations and shapes, searching for the hy-
pothetical defect(s) which might be critical. This study benefits from the developed method
and its main advantage: for given background and inhomogeneity properties (both being
isotropic for this example) and position z, we can compute stress perturbation distributions
in Ω\Ba for various inhomogeneity orientations, shapes and sizes (i.e. various values of θ and
a1, a2 for this example) at almost no additional computational cost. Searching for critical
defects just requires simple evaluations of EMTs for different inhomogeneity geometries.

To illustrate the procedure and possible uses of the developed method, we firstly give
the evolution of the Mises stress perturbation distribution along the cross-section A− A in
Fig. 10 a). Here the inhomogeneity is taken as an elliptic hole (visible on the lower plots in
Fig. 8), located at z = (115, 10), whose ratio of principal axes is a1/a2 = 2. The orientation
of the elliptic hole is defined as the angular parameter θ. It is noticeable in Fig. 10 a) that for
the chosen model problem with the given beam geometry, load, and shape and properties
of the inhomogeneity, the orientation of θ = 90◦ yields the highest stress perturbation
along the cross-section (see yellow curve in Fig. 10a)). Thus, for the chosen defect this
orientation can be deemed the most critical one. To complete this illustrative example, we
now keep the orientation fixed to θ = 90◦ and observe the influence of the inhomogeneity
shape, considering three shapes defined by (a1, a2) = (4, 2), (4

√
2,
√

2) or (8, 1) (so that the
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Figure 11: Comparison of the background and total stress fields along the cross-section A−A, for the
case a1, a2 = (8, 1), θ = 90◦.

defect surface area is kept fixed). The equivalent stresses for the corresponding asymptotic
approximations are shown in Fig. 10b. Not surprisingly, increasing principal axes ratios (i.e.
sharper defect shapes) produce higher stress perturbations. We emphasize again that such
parametric studies are conducted at almost no additional computational cost.

Although results in Figs. 8 to 10 focus on the stress perturbation, criticality is expected to
depend on the total stress σa := Ca : ε[ua], which is using the present method approximately
evaluated as σa ≈ σH + σ̃Ha , where σH := C : ε[uH ] is the background stress as evaluated
on the analysis mesh. In Fig. 11, we show (in terms of their von Mises equivalent stress)
the background and the (asymptotic approximation of the) total stress for the case a1, a2 =
(8, 1), θ = 90◦, noting that the latter significantly deviates from the former.

4.4. Beam bending example with varying flaw

We now illustrate the stress perturbation analysis where the flaw location z varies while
the evaluation point x is fixed (scenario (b) of Sec. 3.2). In this case, we aim at finding the
most critical location of a defect with respect to a given criterion evaluated at a fixed point
of interest (given as e.g. xZOI in Fig. 3). Remember that in this case we first solve the BVP
(19) setting z = xZOI , and then differentiate the resulting numerical solution for Hk

` (·,x).
Accordingly, the contour plots of Fig. 12 show for given x (taken as x = (100, 5)) the

map z 7→ [σH(x)+σ̃Ha (x; z)]M of the von Mises equivalent stress of the total stress at x with
varying flaw locations z, the flaw being taken as an elliptic hole. The first, second and third
columns of Fig. 12 correspond to the semiaxes (a1, a2) being equal to (4, 2), (4

√
2,
√

2), and
(8, 1), respectively, while the rows 1 to 4 correspond to flaw orientations θ equals to 0◦, 45◦,
90◦, and 120◦, respectively. Such plots provide a “sensitivity map” (of stress w.r.t. defect
location). Similar sensitivity maps could be defined for any quantity of interest defined in
terms of the total stress field, e.g. maximum equivalent stress over Ω or resulting loads.

This ”inverse” approach again takes advantage of the fact that, for given background
configuration and stress-based quantity of interest (here the total stress at a given location
x), the defect location and other characteristics can be varied at virtually no cost. The
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Figure 12: Contour plots of the asymptotic approximation in terms of Mises stress perturbation [σ̃a]M
with the varying flaw z, and fixed evaluation point x = (100, 5) denoted with +. The flaw is taken
as elliptic hole given as follows. Semiaxes (a1, a2) for: column 1 - (4, 2); column 2 - (4

√
2,
√

2);
column 3 - (8, 1). Orientations θ for: row 1 - 0◦; row 2 - 45◦; row 3 - 90◦; row 4 - 120◦.

only difference from the ”direct” approach of scenario (a) is that (21) requires the complete
background strain field (rather than its value at one location).

5. Conclusion and perspectives

A numerical strategy for predicting the perturbation caused by small isolated inhomo-
geneities in elastic solids has been developed, implemented and demonstrated. The treat-
ment is based on a two-scale asymptotic expansion which separates defect and structure
length scales through inner and outer expansions. We focused on the structure scale, and
hence on the computation of corrections based on outer expansions. Meshing the isolated
inhomogeneity (with the attendant mesh preparation and computational costs) is avoided,
the whole analysis relying on a mesh that is suitable for the background (i.e. defect-free)
configuration. Key ingredients of the outer asymptotics-based correction, namely Green’s
tensors and elastic moment tensors, were presented and the details about their computa-
tion given. The two numerical examples show satisfactory behavior in terms of accuracy,
convergence (with small defect size) and flexibility (for inexpensive parametric studies).

The next steps of this work include (i) matching the inner and outer asymptotic ex-
pansions to obtain uniform expansions, (ii) applying the developed strategy to assess the
criticality of defects by considering virtual micro-defects and varying their positions, sizes
and mechanical properties, and in particular (iii) incorporate randomness of micro-defect
characteristics in such analyses. Criticality assessment will thus be greatly aided by the
ability of conducting comprehensive parametric studies for varying flaw types, locations,
orientations and characteristics. Defect randomness can for example affect products output
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by many manufacturing processes, e.g. casting (where defects such as porosities, hetero-
geneities and cavities are expected, see e.g. [8]) or welding (creating defects such as cracks,
gas holes, hydrogen inclusions and porosities, see e.g. [9]). Addressing these real-life prob-
lems for which the homogenization techniques do not apply is a long-term perspective of the
proposed asymptotics-based numerical strategy.
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