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Abstract. 

Recently, there has been a significant emphasis on the forecasting of the elec-

tricity demand due to the increase in the power consumption. This paper presents 

the computational modeling of electricity consumption based on Neural Network 

(NN) training algorithms. The noise in signals, which are caused by various ex-

ternal factors, often corrupt demand series and influence consequently on the 

model performance. For accurate electricity demand forecasting, we propose a 

novel approach that combines a NN MLP (multilayer perceptron) with VMD 

(variational mode decomposition)-based signal filtering. Using the daily electric-

ity demand series of EDF (Electricté De France) obtained from the UCI machine 

learning repository, this paper demonstrates that the proposed VMD-NN model 

greatly improves the forecasting error comparing to existing stationary stochastic 

process such as the autoregressive moving average (ARMA) model. 

Keywords:  neural network algorithms, time series, household electricity con-

sumption forecast, variational mode decomposition, multiresolution analysis 

1 Introduction 

Domestic energy consumption [1] is the total amount of energy used in a house for 

household work. The amount of energy used per household varies widely depending on 

the standard of living of the country, the climate, and the age and type of residence. 

Energy demand forecasting is a very important task in the electric power distribution 

system to enable appropriate planning for future power generation. Quantitative and 

qualitative methods have been utilized previously for the electricity demand forecast-

ing. These methods fail to provide effective results. With the development of the ad-

vanced tools, these methods are replaced by efficient forecasting techniques. According 

to common classifications [2], demand forecasting models are classified based on two 

different criteria: the forecasting horizon and the aim of the forecast, also we can divide 

them into linear and nonlinear models and a third group consists of models that use a 

combination of both.  

 



This paper presents an improved method for forecasting, we use the VMD-NN 

model. The VMD is a fully adaptive method for the analysis of nonlinear and non-

stationary properties of time series. The original series will be decomposed by the VMD 

method into several high and low frequency signals. These sub-series will be used in 

the NN model in order to make the prediction. The forecasting results of this work have 

revealed that the VMD-NN model outperforms the NN itself and the ARMA models. 

The rest of this paper is organized as follows: Section 2 introduces the notions of the 

classical forecasting models namely the autoregressive moving average and the artifi-

cial neural networks. Section 3 shows in details the theory of the recently developed 

variational mode decomposition. Section 4 contains our experiments and results, we 

start this part by defining the practical error measurement, we describe different steps 

to get the optimal training algorithm on our dataset, and we sum up our work with some 

simple quantitative performance evaluations compared to the baseline models. Section 

5 concludes on the effectiveness of our novel approach, and includes some future di-

rections and expected improvements. 

2 Classical Forecasting Methods 

2.1 ARMA Process 

The various researches [3] have used these methods with time series data for the electric 

power consumption. In [4] Zhu, Guo, and Feng studied the issue of household energy 

consumption in China from the year 1980 to 2009 with construction on of VAR model. 

There were two forecasting methods that used ARIMA and BVAR. The results showed 

that both of them can predict the sustained growth of household energy consumption 

(HEC) trends. Ediger and Akar [5] applied SARIMA (Seasonal ARIMA) methods to 

estimate the future primary fuel energy demand in Turkey from the years 2005 to 2020. 

The research work of Contreras et al. [6] applied ARIMA methods to predict next day 

electricity price in Californian markets. Conejo et al. [7] applied wavelet transform and 

ARIMA models to predict day-ahead electricity price of mainland Spain in year 2002.  

In this paper, we use the ARMA process [8, 9] as a reference model. It has become 

a popular linear statistical model for stationary time series analysis and forecasting. The 

ARMA (p,q) generating process is given by  

 φ(B) vt = θ(B) et  

where vt and et are respectively the actual value and random error at time period t, B is 

the backshift operator. The error term et are assumed to be independently and identi-

cally distributed (iid) with a mean E(et) = 0 and a variance V(et) = σ2. The polynomials 

φ(B) and θ(B) are given by 

 φ(B) = (1−φ1B−···−φpBp) 

 θ(B) = (1−θ1B−···−θqBq)  

where p is the number of autoregressive orders, q is the number of moving average 

orders, θ is the autoregressive coefficient, and φ is the moving average coefficient. 



In particular, the autoregressive (AR) component is expressed by the coefficients φ 

that represent a linear relationship between the value predicted by the model at time t 

and the past values of the interest rate variation time series. Similarly, the moving av-

erage (MA) component is expressed by the coefficients θ that represent a linear rela-

tionship between the value predicted by the model at time t and the error term e. 

2.2 Artificial Neural Networks 

Based on some literature reviews, the non-linear models, derived from the artificial 

neural networks (ANNs), have gained more and more attention since the second half of 

the 80’s. This evolution is due to the fact that certain researchers achieved great ad-

vances on ANNs.  

Artificial neural networks in Fig.1 [10] are a class of statistical learning models in-

spired by the physiology of biological neural networks. Each neuron performs a specific 

kind of computation. First, a weighted sum of the input variables and the bias term b is 

built, with the result being then processed by an activation function f(t). Once the single 

neuron operation is specified, one can easily calculate the network outputs given an 

input vector by evaluating the output of each layer by forward input propagation. The 

result is a function of the network configuration, i.e. its topology and the value of the 

connection weights. It will be the job of the training phase to learn the weights in order 

to induce the desired computation. 

 

 
Fig. 1. Schematics of a fully connected multilayer perceptron with four inputs and a 

bias unit. The weighted input sum is added to the bias term and then enters as argu-

ment of the activation function f which generates the output (Neuromaster, 2015) 

 

This has been overcome by the back-propagation [11, 12] algorithm; nowadays it is 

widely applied in training multilayer perceptron. Given a supervised training set {xi, ti: 

i = 1...N} with xi input variables and ti target variables, we denote by yi the correspond-

ent output computed by the network when xi is fed forward. In general, we have ti ≠ yi. 

A global error on the training set can be then defined as a quadratic function of the form  



 

and can be seen as a function of the network weights w. Other error definitions are 

possible, for example by choosing a different norm. The idea behind back propagation 

is to minimize this error by updating the weights using the gradient descend [13] 

method (with k as iteration index), i.e. 

 

The calculation of the partial derivatives is thus crucial for the algorithm. It is done 

by using directly the dependence of the error function on the training set instances. 

When all the instances have been used, one ‘epoch’ of training is completed. Usually 

many epochs of training are needed in order for the error function to converge to a local 

or global minimum, resulting in longer training periods. 

3 Variational Mode Decomposition 

 More recently, a new multiresolution technique called variational mode Decomposi-

tion (VMD) was introduced by Dragomiretskiy and Zosso (2014) yields better results 

in signal processing domain specifically in the case of signals without prior knowledge. 

In [14], they propose an entirely non-recursive variational mode decomposition model. 

The model looks for an ensemble of modes and their respective center frequencies. We 

apply this technique on our dataset before using the predictive neural network model 

described in Section 2.2. In this part, we mentioned a few concepts and tools from signal 

processing that will constitute the building blocks of the VMD model. 

 

3.1 Denoising Problem 

Using a simple denoising problem, an underlying signal f0 consist of an unknown signal 

f corrupted by an additive noise, namely the zero-mean Gaussian noise. The use of the 

Wiener filter is to estimate the unknown signal using an original signal as input. The 

filter is based on a statistical theory in order to minimize the mean squared error clas-

sically addressed using Tikhonov regularization [15].   

 

The Euler-Lagrange equations are typically solved in Fourier domain: 

 

where 𝑓 is the fourier transform of the signal f. This solution corresponds to convolu-

tion with a Wiener filter, where α represents the variance of the white noise, and the 

signal has a low-pass 1/w2 power spectrum prior.  



3.2 Constrained Model 

For a multicomposition real valued signal 𝑓, VMD assumes that 𝑓 is composed of a 

given number of subsignals 𝑢𝑘 (modes). Each mode is regarded as an amplitude-mod-

ulated and frequency-modulated (AM-FM) signal and has mostly compact frequency 

𝜔𝑘 around a center pulsation [16].  

To assess the bandwidth of the modes, the following scheme is proposed by Drago-

miretskiy and Zosso (2014): 

(a) Compute the associated analytic signal by means of the Hilbert transform to obtain 

a unilateral frequency spectrum for each mode. 

(b) Shift the frequency spectrum of each mode to the baseband by mixing with an ex-

ponential tuned to the estimated center frequency. 

(c) Estimate the bandwidth through the 𝐻1 Gaussian smoothness of the frequency trans-

lated function, that is, the squared 𝐿2-norm of the gradient. 

The resulted constrained variational problem is the following: 

 

where f is the signal, u is its mode, w is the frequency, σ is the Dirac distribution, t is 

time script, k is number of modes, and ∗ denotes convolution.  

Thus, we intend to minimize the sum of the bandwidths defined as the squared L2-

norm of the gradient of the demodulated signal components. To solve the constrained 

variational problem [16], the augmented Lagrangian is introduced and the non-con-

strained variational problem is gotten by 

 

 

 

where 𝛼 denotes the balancing parameter of the fidelity constraint and λ is the lagran-

gian multiplier. The saddle point here is to get the optimal solutions of uk and wk using 

the alternate direction method of multipliers (ADMM). 

3.3 Minimization with respect to uk 

The subproblem can be written as the following equivalent minimization problem: 



 

The solution of this quadratic optimization problem is found by using Parse-

val/Plancherel Fourier isometry and exploiting the Hermitian symmetry [16]. All the 

modes can be obtained from the below equation in the frequency domain through up-

dating each mode and its center frequency 𝜔𝑘 constantly: 

 

This equation is regarded as the Wiener filtering result of the current residue with signal 

prior 1/ (w - wk)2. Consequently, the mode in time domain is obtained as the real part 

of the inverse Fourier transform of this filtered analytic signal. 

3.4 Minimization with respect to wk 

As before, the optimization takes place in the Fourier domain. The relevant subproblem 

thus reads: 

 
The new center frequency is put at the center of gravity of the corresponding mode’s 

power spectrum, which can be updated by 

 

4 Experimentation 

4.1 Performance Measure 

The forecasting performance [9] is examined using the root mean of squared errors 

(RMSE). It measures the deviation between actual and predicted values. A small value 

of RMSE means that the predicted time series values are closed to the actual values. 

Thus, it can be used to evaluate the prediction error. The computation of this criterion 

is given as follows: 

 
where v and p represent respectively the actual and predicted value and n is the total 

number of the sample data points. 



4.2 Data Preprocessing and Training 

This research used dataset [17] about the electric power consumption in one household 

that has a sampling rate one minute over a long period of time from the years 2006 to 

2010. Following the existing study [3], we use the “Global Active Power” variable 

which is the household global minute-averaged active power (in kilowatt). 

The raw data were not ready for constructing the forecast model because some values 

are missing and the recorded time frames are inappropriate. The lack of some infor-

mation [3] may decrease the predictive efficiency of the forecasting model. To fill the 

missing data, we use the previous value, where we assume that the current data will be 

similar to the previous ones as shown in Fig.2.  

 

 
Fig. 2. Fill the missing data by the previous value “0.244” (extracted from [3]) 

 

We aggregate the minute-by-minute data into daily observations, and then we got a 

new sample of 1442 data points. In Fig.3, we represent the shape of the daily HEC time 

series. It is clearly shown that the data points are highly fluctuated and non-stationary, 

since their means and variances change over time. 

The data is divided into two parts. The first group is the training dataset which con-

tain data from 26/12/2006 to 31/12/2009 (1112 observations) for the construction of the 

predictive models. The second group is the test sample which contain data from 

01/01/2010 to 26/11/2010 (330 observations). 

We want to predict the future value based on n previous days, where n is consid-

ered as the window size of the time series. There is no specific rule to define the win-

dow, in our case, we choose the first thirty lags for training the artificial neural net-

works.  

http://www.investopedia.com/terms/v/variance.asp


 
Fig. 3. The daily time series of the Global Active Power from 2006 to 2010 

 

The main aim of this work is to determine the optimal NN for electricity demand 

forecasting. The model is generated by using the grid search cross validation technique. 

In brief, the grid search is simply an exhaustive searching algorithm with a manual 

specified subset for hyperparameter optimization. It must be guided by some perfor-

mance metric, typically measured by the k-fold cross-validation. The cross validation 

algorithm does this by splitting the training dataset into k subsets and takes turns train-

ing models on all subsets except one which is held out, and evaluating model perfor-

mance on the held out validation dataset. The process is repeated until all subsets are 

given an opportunity to be the held out validation set. The performance measure is then 

averaged across all models that are created. 

We used this technique to identify the number of layers (length) and the number of 

neurons in each layer (width).  First, we vary the length from 1 to 5 layers with a width 

of 10, 60, 110 neurons per layer. We found that the optimal model structure consists of 

a hidden layer with 110 neurons. Then, we tried again the algorithm for one layer with 

a range of neurons between 90 and 120; the record gives 100 neurons as the best fit. 

Thus, the optimal neural network is composed of one layer with 100 neurons. Through-

out the training, we use an epoch equal to 1000. Considering that, one epoch is a mul-

tiple number of iterations for the gradient descent updates until we show all the data to 

the NN, and then start again. 

As proposed in this paper, we work on the VMD-based signal filtering method to 

reduce the noise. The VMD algorithm requires predetermining the number of varia-

tional modes to be extracted. However, it is not easy to set a rule to determine an ap-

propriate number of modes. 

On the one hand, we tried our experiments on the training sample with mode = 6 in 

order to exemplify the theory described in Section 3. We illustrate in Fig.4 the results 

of the VMD algorithm on the non-stationary HEC dataset in order to assess the clarifi-

cation of the proposed approach (Dragomiretskiy & Zosso, 2014). 

https://en.wikipedia.org/wiki/Brute-force_search
https://en.wikipedia.org/wiki/Cross-validation_(statistics)


 

Fig. 4. Applying the VMD = 6 on the train sample 

One can clearly see an oscillating low-frequency pattern. The first mode captures the 

low-frequency oscillation of the baseline. Then, the distinct spikes of the train sample 

create important higher-order harmonics in the next modes. The 6th mode is the highest 

frequency mode and contains the most noise with a highly non-sinusoidal spikes.  

On the other hand, in order to contribute to the forecasting system, we repeatedly 

apply the VMD algorithm on every window of the time series to elaborate the modes. 

We tried our experiments on different levels of decomposition: 8, 10, 15, and 20. In 

each case, the modes are integrated in the optimized MLP model for 7 day-ahead fore-

cast. Based on the RMSE values explained in the Section 4.1, we found that VMD = 

15 gives the most efficient result.  

 

 
Fig. 5. The VMD-NN model components 

 



As a partial conclusion, the following diagram in Fig.5 explains the different steps 

of the hybrid combination VMD-NN model in order to build this novel forecasting ap-

proach. We mean by signal S(t), the series values that correspond to the window range 

from 1 to 30. Applying the VMD on each signal, we obtain the 15 different variational 

modes. Then, using the previous optimized MLP (100,) as indicated in Fig.5, we con-

sidered the variational modes as inputs of the model in order to obtain the prediction on 

horizon h. 

4.3 Results 

We define the Carbon Copy as the model that takes exactly the same value of the pre-

vious day, which means that the predicted value is equal to the actual value. For com-

parison purpose with ARMA models (Chujai et al., 2013), the horizon h = 7 was em-

ployed. 

Based on the test sample and the optimal models, we make a summary of the RMSE 

values shown in the table 1. Using the NN model, we found a significant improvement 

in the error comparing to ARMA process for the proposed dataset. The RMSE de-

creases from 0.34 to 0.272. However, the novel approach VMD-NN model clearly 

shows an efficient reduction in the error among all the previous studies. Its correspond-

ing RMSE is equal to 0.077. The VMD-NN greatly outperforms the NN itself by de-

creasing the RMSE from 0.272 to 0.077 for predicting the household electricity con-

sumption dataset. 

 

Models RMSE h = 7 

Carbon Copy 0.374 

ARMA (Chujai et al. [3]) 0.340 

NN 0.272 

VMD-NN 0.077 

Table 1. RMSE comparative analysis 

 

Thus, based on the VMD-NN model, the RMSE analysis shows that we divide the error 

by 4.4 (~ 0.34/0.077) comparing to ARMA, and by 3.5 (~ 0.272/0.077) comparing to 

NN. 

The VMD technique cannot be applied to ARMA model. The variational modes can-

not be implemented in its algorithm, since it only involves regressing the variable on 

its own lagged (i.e. past) values. 

The RMSE of the VMD-NN could be also minimized by making a new optimization 

of the hyperparameters of the neural network. But, as long as we get a significant de-

crease in the RMSE, we restrict our study to the MLP (100,) to show the effectiveness 

of the VMD comparing to the same previous MLP. 

In Fig. 6, we only plot the first 150 observations of the test sample to clearly show 

the difference between the curve of the predicted and original values. The curves are 

very close to each other, thus the VMD-NN model fits the data very well. 

 



 
Fig. 6. The actual versus predicted values 

 

Besides the RMSE measures, we also examined the distribution of the forecast errors 

in order to check the normality of the distribution. The histogram in Fig.7 shows that 

the errors are normally distributed between [-0.3, 0.3] where the highest point on the 

curve represents the most probable event in the error close to zero, while all other pos-

sible occurrences are equally distributed around the center, creating a downward-slop-

ing line on each side of the peak. 

 

 
Fig. 7. The histogram (left) and the Q-Q plot (right) of the forecast errors 

 

We use the Q-Q plot in Fig.7 as a test to verify the normality.  Roughly speaking, 

the Q-Q plot take the sample data, sort it in ascending order, and then plot them versus 

quantiles calculated from a theoretical distribution known as the standard normal dis-

tribution with mean 0 and standard deviation 1. If both sets of quantiles come from the 

same distribution, we should see the points converge to the straight line. As long as the 

blue points in Fig.7 are close to the red line, the normality can be assumed, and we have 

stability in the model error. 

5 Conclusion 

Due to the lack of research on this UCI dataset, our objective was to build a forecast 

system to make some improvement comparing to existing studies specifically on a daily 

level. Experiments with RMSE statistical criteria, clearly demonstrate that VMD-based 

Neural Network model significantly achieved the lowest forecasting error among mod-

els. This indicates that this novel approach can be used as a very promising methodol-

ogy specifically for non-stationary and noisy time series. The VMD is considered as a 



new adaptive multiresolution technique, and this is the main advantage of adopting this 

approach.  

Finally, a comparative study of accuracy of the VMD combined with other machine 

learning models such as support vector machines could be considered for future works 

to also examine its effectiveness. 
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