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ABSTRACT: There are no published studies describing the strength quadrupled gracilis tendon alone and quadrupled semite-

ndinosus tendon alone in the configuration used for anterior cruciate ligament (ACL) reconstruction. The primary objective was to 
compare the mechanical properties of grafts used for ACL reconstruction during a tensile failure test. The secondary objective was to 
evaluate the effect of uniform suturing on graft strength. Fifteen pairs of knees were used. The mechanical properties of five types of 
ACL grafts were evaluated: patellar tendon (PT), sutured patellar tendon (sPT), both hamstring tendons (GST4), quadrupled 
semitendinosus (ST4), and quadrupled gracilis (G4). Validated methods were used to perform the tensile tests to failure and to record the 
results. Student’s t-test was used to compare the various samples. The maximum load to failure was 630.8N (! 239.1) for the ST4, 
473.5N (! 176.9) for the GST4, 413.3N (! 120.4) for the sPT, and 416.4N (! 187.7) for the G4 construct. Only the ST4 had a significantly 
higher failure load than the other grafts. The sPT had a higher failure load than the PT. The ST4 construct had the highest maximum 
load to failure of all the ACL graft types in the testing performed here. Uniform suturing of the grafts improved their ability to 
withstand tensile loading. 
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The choice of grafts for anterior cruciate ligament
(ACL) reconstruction is not without consequences. One
of the advantages of using the hamstring tendons—
gracilis (G) and semitendinosus (ST)—is that harvest-
ing these tendons leads to lower morbidity than
harvesting a bone-patellar tendon-bone graft. Use of
the these tendons provides sufficient strength, limits
extensor mechanism weakening and lessens anterior
knee pain.1–7 However, harvesting the G and ST
reduces flexion strength and control over internal
rotation.8,9 Recent studies have shown the ST alone
can be used as a graft.10–12 However, the ST muscle-
tendon unit controls knee rotation in full extension.13

Using the gracilis tendon only should reduce the
morbidity induced by harvesting both hamstring ten-
dons and preserve the semitendinosus.

Zamarra et al.14 evaluated the potential of using
quadrupled gracilis alone or tripled semitendinosus
alone to reconstruct the ACL. Authors demonstrated
that semitendinosus or gracilis tendon for ACL
reconstruction could satisfactorily restore knee kine-
matics and the in situ forces to those for the intact
ACL. Nonetheless, Abramowitch et al, demonstrated
differences between the semitendinosus and gracilis
tendons in terms of their quasi-static mechanical and
non-linear viscoelastic properties.15 These results
were not unexpected given that Kilger et al, in a
biomechanical cadaveric study had already showed
that gracilis has a higher modulus than the semi
tendinosus.16

Among those studies, several others studies have
reported on the strength of each individual tendon17–19

but none has determined graft strength in the configu-
ration used for ACL reconstruction.There are no

published values for the strength of a quadrupled
gracilis (G4) construct or information on the maximum
load that a graft in its surgical configuration can
withstand before failing.

We wanted to explore the mechanical properties of
grafts used for ACL reconstruction. Specifically, we
wanted to compare the properties of the tendons
currently considered as the gold standard for ACL
surgery in athletes with the properties of a quadrupled
G4 construct.

The primary objective was to compare the mechani-
cal properties of the various grafts used for ACL
reconstruction during a tensile failure test. The sec-
ondary objective was to evaluate the effect of uniform-
ly suturing the patellar tendon graft on its tensile
strength. The main outcome measure was the maxi-
mum load at failure (N). The secondary outcome
measures were stiffness (N.mm"1), and elongation at
failure (mm).

MATERIALS AND METHODS
Materials
Thirty cadaver knees from 15 donors were used for the study.

The cadavers were stored at 4 ˚C. The donors had a mean

age at death of 54 years (range 17–70). The knees had no

wounds or macroscopic signs of injury. All knees had joint

range of motion measured with a goniometer of at least 0–

130˚. This study was approved by our facility’s institutional

review board.

Graft Harvesting
All grafts were harvested at our university’s anatomy

laboratory. A midline skin incision was performed. The

gracilis and semitendinosus were identified in the lower part

of the incision after opening the sartorius aponeurosis. These

tendons were detached from their muscle bodies with an

open tendon stripper, and then cut from their tibial attach-

ment at the periosteum. The patellar tendon was harvested

using a standard method20 with tibial and patellar bone

blocks.



Graft Preparation
The various grafts were tested under the same conditions

used during surgery in terms of graft size and configuration.

The surgical techniques were reproduced exactly. The right

patellar tendon was left in its native configuration (PT). The

left patellar tendon (sPT) was sutured uniformly over its

entire length using #2 Vicryl suture (polyglactin 910).

The hamstring tendons from the left knee were used

together. After being folded over, they were sutured uniform-

ly over their entire length. Vicryl suture was used to bind

the four strands together. The gracilis and semitendinosus

were harvested separately from the right leg and then

prepared separately into quadrupled graft constructs using

the TLS1 system (FH Orthopedics, Heimsbrunn, France).

These were also sutured uniformly over their entire length.

This resulted in four test groups (Fig. 1):

$ Patellar tendons (PT and sPT).
$ Quadrupled hamstring tendon graft (GST4).
$ Quadrupled semitendinosus graft (ST4).
$ Quadrupled gracilis graft (G4).

The diameter was measured for GST4, ST4, and G4 using

a previously described technique21 and the cross-

sectional area (CSA) was calculated from the diameter.

Graft Preservation
The prepared grafts were stored at "4 ˚C in a cold freezing

solution containing saline and 10% dimethylsulfoxide. They

were removed from the freezer the evening before testing

and kept at room temperature (21 ˚C) for at least 12h. This

processing does not alter the mechanical properties of

tendons.20

Methods
Graft Fixation
The graft was gripped at both ends using two serrated jaw

clamps22 as recommended for tendon allografts23. The clamps

were tightened with a torque wrench.

Measurements
Each set of grips was attached to a materials testing system

(Instrom 33001, Instron, Canton, MA) (Fig. 2) to apply tensile

loads. Measurements were performed using the system’s

software (BlueHill1, Instrom SA France, Elancourt, France).

Each graft was preloaded to 10N, and then cycled 100

times between 50 and 200N at 0.5Hz. A tensile test was then

performed using a 10mm/min crosshead speed until the graft

failed. This sequence is a standard, validated test protocol.18

The maximum load at failure (N), elongation at failure (mm)

and linear stiffness (N.mm"1) were automatically measured

by the software during the failure test. (Supplementary file 1)

Statistical Analysis
The statistical analysis was performed with the Excel 2011

(Microsoft Corp, Redmond, WA) and XLSTAT 2011 (Addinsoft

SARL, Paris, France) software packages. The normal distribu-

tion of the measured variables was verified using the Shapiro-

Wilk test and the homogeneity of variances was verified using

Fisher’s f-test and Levene’s test to ensure the conditions had

been met for parametric testing. The significance threshold

was set at p< 0.05. The descriptive analysis consisted of

mean, median and standard deviation values. A comparative

analysis was performed using the paired Student’s t-test.

Linear regression was performed to assess the correlation

between cross sectional area and each biomechanical variable.

RESULTS
Maximum Load at Failure
The entire data set is provided in Table 1 and Figure 3.
The ST4 construct had the highest mean load at
failure, followed by the PT, G4, and GST4. All the PT
samples failed at the tendon-bone junction, while the
all GST4, ST4, and G4 samples failed midsubstance.

Only the ST4 had a significantly higher failure load
than the other grafts (Table 1). The failure loads of the
PT, GST4, and G4 were 70%, 62%, and 66% of that of
the ST4, respectively. Sutured patellar tendons had a

Figure 1. Samples of the different grafts studied. A¼PT and sPT, B¼GST4 before preparation, C¼ST4, D¼G4.



significantly higher failure load than native PT con-
structs. There were no differences between the mean
values of the other graft types.

Elongation at Failure
The entire data set is provided in Table 2 and Figure 4.
The GST4 construct had the greatest mean elongation
at failure, followed by the ST4, G4 and PT.

The mean elongation value of the sutured PT
samples was significantly less than the mean value
of the GST4, ST4, and G4 groups, but was similar to
that of the native PT samples (Table 2). There were
no significant differences between the mean values of
all the other pairs. The patellar tendon had the
smallest elongation at failure of all the tendons
evaluated.

Figure 2. Materials testing system (Instron 33001, Instron, Canton, MA) and test configuration used in the current study.

Table 1. Summary of Maximum Load at Failure (N) Measured for All Graft Types and Comparison of Maximum Load

at Failure for the Five Types of Fraft

N Minimum Maximum Mean Std. Dev.

sPT 16 214.35 650.35 413.29 120.41

PT 16 208.78 499.24 319.56 92.04

GST4 16 266.14 860.03 473.49 176.90

ST4 16 408.13 1123.44 630.82 239.15

G4 16 242.71 1068.83 416.41 187.68

Paired Differences

95% Confidence Interval

Mean Std. Dev. Std. Error Lower Upper t Sig. (Two-Tail Test)

Pair 1 sPT– 93.73 79.09 19.77 51.58 135.88 4.740 .000*

Pair 2 sPT– "60.19 232.37 58.09 "184.01 63.62 "1.03 .317

Pair 3 sPT– "217.52 261.06 65.26 "356.63 "78.41 "3.33 .005*

Pair 4 sPT– "3.11 245.35 61.33 "133.85 127.62 ".051 .960

Pair 5 GST4– "157.33 341.66 85.41 "339.39 24.73 "1.84 .045*

Pair 6 GST4– 57.07 244.96 61.24 "73.45 187.61 .932 .366

Pair 7 ST4–G4 214.41 216.33 54.08 99.13 329.68 3.964 .001*

PT, Patellar tendon; sPT, Sutured patellar tendon; GST4, Doubled gracilis and semitendinosus together; ST4, Quadrupled
semitendinosus; G4, Quadrupled gracilis.Paired student’s t-test.Bold value represents values which are statistically significant.*Indi-
icates statistically significant difference.



Stiffness
The entire data set is provided in Table 3 and Figure 5.
The ST4 construct was the stiffest, followed by the
GST4, G4, and PT.

Only the ST4 was significantly stiffer than the
other grafts (Table 3). There were no differences
between the mean stiffness values of the other graft
types.

Cross Sectional Area
The mean CSA was 31.89þ/"6.5mm2 for G4, 35.41þ/
"7.1mm2 for GST4 and 38.85 þ/" 7.6mm2 for ST4
(Table 4). The differences between each grafts was
statistically significant. Nonetheless there was no
correlation between the CSA and maximum load at
failure neither elongation at failure or fitness consider-
ing all the samples or each graft separately.

DISCUSSION
The aim of this study was to explore the mechanical
properties of grafts used for ACL reconstruction. The
maximum tensile load that can be withstood by a
quadrupled Gracilis construct (G4) was 416N!187

(range: 242–1069N), which is similar to the reference
tendon grafts, namely the patellar tendon and qua-
drupled semitendinosus and gracilis (GST4). Only
the quadrupled semitendinosus (ST4) had a signifi-
cantly higher maximum load at failure than the
other tendons. This study also provided validation of
uniform suturing significantly increasing graft
strength.

Nonetheless these results must be tempered by this
study’s limitations. The tensile testing was performed
with tissues that had been frozen at "4 ˚C and then
thawed. Several studies have explored the effect of
freezing and thawing tendons on their mechanical
properties.14,24–26 Based on the results of these stud-
ies, the mechanical properties of tendons are unaffect-
ed when fewer than three, gradual freeze-thaw cycles
are performed.

The fact that the age of the donors is higher than
that of the patients who typically undergo ligament
reconstruction is another study limitation. The effect
of age has been evaluated in 82 human patellar
tendons from donors between 17 and 54 years of age.27

These tendons were tested at strain rates of either

Figure 3. Box-and-whisker plot of the maximum load at failure for each graft type. PT: Patellar tendon, sPT: Sutured patellar
tendon, GST4: Doubled gracilis and semitendinosus together, ST4: Quadrupled semitendinosus, G4: Quadrupled gracilis.



10%/s or 100%/s. Only the specimens tested at 100%/s
had a lower modulus of elasticity (25% decrease) in
older patients. The other mechanical parameters were
unchanged with age.

The fixation method is also another basic consider-
ation, as it can affect the results of tensile tests.28

Novel serrated jaw clamps that allow tendons to be
tested in a simple and reproducible manner have
recently been described by Shi et al.22 Resin-
based clamps and cryoclamps are difficult to work
with and have not been explicitly validated.29–31 Pap
et al.23 recently validated a fixation method for auto-
grafts that uses the serrated jaw clamps described by
Shi et al. by comparing them with other types of
clamps. This is the type of clamp used in the current
study. It was improved by precisely tightening the
grips with a torque wrench.

All the grafts in the current study were preloaded
before being pulled to failure. It has been shown that
preloading during testing helps to reduce the loss of
strength and stiffness that the tendon graft undergoes
due to their viscoelastic properties.32 Tendons are
temporarily prestrengthened when they undergo pre-
conditioning.33 This can be attributed to the progres-
sive recruitment of collagen fibers. However this effect
was only observed when the preconditioning was less
than 1,000 s long. Beyond this period, fatigue micro-
fractures can occur and reduce the tendon’s strength.
It has been recommended that the preconditioning
protocol not exceed 9% elongation, so as to not reduce
graft strength.26

In the current study, the quasistatic tensile testing
was carried out with a slow crosshead speed so as to
not bring the tendon’s viscoelastic properties into play.
Tensile strength is reduced when slower elongation
speeds are used. When ligaments and tendons are
loaded more quickly, there is an increased risk of
damaging these structures.34

The maximum load values in the current study
were much lower than published values. The leading
studies on this topic reported maximum load values of
1719N!1167.80 (range: 456–4546N), which is nearly
three times higher than reported here.17–19 It was also
surprising to see that this difference did not apply to
the stiffness values, which were consistent with our
data.

The first reason is related to donor age. The studies
reporting the highest failure loads were also those
with the youngest donors (20–30 years).17,19,35 The
effects of age on tendon strength was described by
Noyes et al.36 although the results were not statisti-
cally significant. Hashemi et al.37 also showed that age
reduced tendon strength and presented a linear re-
gression model to predict tendon strength using vari-
ous parameters, including age.

A second reason revolves around the method used
to induce tendon failure. The study with the largest
number of ACL grafts and highest published loading
values had a significant bias.19 The tensile testing
system consisted of pulling on the tendon by dropping
a weight from a set height. The maximum load and
stiffness were measured using a custom, but non-

Table 2. Summary of Maximum Elongation at Failure (mm) Measured for All Graft Types and Comparison of

Maximum Elongation at Failure for the Five Types of Graft

N Minimum Maximum Mean Std. Dev.

sPT 16 .26 12.01 5.13 4.08

PT 16 .42 26.14 7.02 6.81

GST4 16 .26 42.04 21.21 11.55

ST4 16 2.97 23.71 13.06 7.22

G4 16 2.10 45.72 18.03 10.60

Paired Differences

95% Confidence Interval

Mean Std. Dev. Std. Error Lower Upper t Sig. (Two-Tail Test)

Pair 1 sPT– "1.89 8.03 2.01 "6.17 2.38 ".944 .360

Pair 2 sPT– "16.08 10.64 2.66 "21.75 "10.41 "6.04 .000*

Pair 3 sPT–ST4 "7.93 9.28 2.32 "12.88 "2.99 "3.42 .004*

Pair 4 sPT–G4 "12.90 12.60 3.15 "19.62 "6.18 "4.09 .001*

Pair 5 GST4– 8.14 14.88 3.72 .21 16.08 2.18 .045*

Pair 6 GST4– 3.18 15.87 3.96 "5.27 11.64 .80 .435

Pair 7 ST4– "4.96 12.19 3.04 "11.46 1.53 "1.62 .124

PT, Patellar tendon; sPT, Sutured patellar tendon; GST4, Doubled gracilis and semitendinosus together; ST4, Quadrupled
semitendinosus; G4, Quadrupled gracilis.Paired Student’s t-test.Bold value represents values which are statistically significant.*Indi-
icates statistically significant difference.



validated accelerometer-based device. These methodo-
logical considerations call the validity of their results
into question.

The third aspect relates to the elongation speed
used in the various studies. Many of these tensile tests
used elongation rates greater than 5mm/s (about 10%/
s). Under these conditions, the tensile tests were not
being performed under static conditions, thus bringing
the tendon’s viscoelastic properties into play. This
could explain the higher maximum load values
reported in these studies. We performed an ANOVA
test on the published data and found a relationship
between the elongation rate and maximum failure
load (p¼0.032). However, this potential tendon stiff-
ening as the elongation rate increases must still be
demonstrated with specific biomechanical studies.

Finally while CSA were significantly different be-
tween each graft, we did not observe significant correla-
tion between cross sectional area and maximum load at
failure or stiffness. Recent studies of Abramowitch et al,
found differences between the semitendinosus and graci-
lis tendons in terms of their quasi-static mechanical and
non-linear viscoelastic properties, and the variation of
these properties along their length. This suggests that

other morphological and biochemical parameters than
CSA have to be investigated.

CONCLUSION
Biomechanical assessment of tendons grafts in the
configuration used for anterior cruciate ligament
(ACL) reconstruction may have a significant and
direct impact on clinical practice. Based on the
results of this study, the G4 seems to have bio-
mechanical properties that are suited to being used
alone during ACL reconstruction. The biomechanical
properties of the ST4 are also suitable for use
during ACL reconstruction, especially because it
had the highest maximum load at failure of all the
grafts evaluated. This makes the ST4 our graft of
choice for ACL reconstruction. However, the G4 is
useful in cases of partial ACL rupture where it can
augment the native ligament.30,31,38,39 It could be
used in cases of isolated anteromedial bundle
tears.32–34,38,40,41 It would be strong enough while
also reducing the risk of impingement in the notch
because of its smaller volume.12,35 This study’s
findings related to implant suturing are consistent
with a recent study42 showing that suturing the

Figure 4. Box-and-whisker plot of the maximum elongation at failure for each graft type. PT: Patellar tendon, sPT: Sutured patellar
tendon, GST4: Doubled gracilis and semitendinosus together, ST4: Quadrupled semitendinosus, G4: Quadrupled gracilis.



Table 3. Summary of Stiffness (N.mm"1) Measured for All Graft Types and Comparison of Stiffness for the Five

Types of Graft

N Minimum Maximum Mean Std. Dev.

sPT 16 92.72 447.35 158.80 89.54

PT 16 106.34 311.90 164.60 52.03

GST4 16 121.44 258.04 198.49 44.92

ST4 16 92.72 401.25 249.78 75.91

G4 16 109.20 258.04 192.85 41.01

Paired Differences

95% Confidence Interval

Mean Std. Dev. Std. Error Lower Upper t Sig. (Two-Tail Test)

Pair 1 sPT– "5.79 97.30 24.32 "57.64 46.05 ".23 .815

Pair 2 sPT– "39.69 94.01 23.50 "89.78 10.40 "1.68 .112

Pair 3 sPT– "90.97 102.97 25.74 "145.84 "36.10 "3.53 .003*

Pair 4 sPT–G4 "34.04 117.37 29.34 "96.59 28.49 "1.16 .264

Pair 5 GST4– "51.28 75.38 18.84 "91.45 "11.11 "2.72 .016*

Pair 6 GST4– 5.64 65.00 16.25 "28.99 40.28 .34 .733

Pair 7 ST4– 56.92 93.95 23.48 6.86 106.99 2.42 .028*

PT, Patellar tendon; sPT, Sutured patellar tendon; GST4, Doubled gracilis and semitendinosus together; ST4, Quadrupled
semitendinosus; G4, Quadrupled gracilis.Paired Student’s t-test.Bold value represents values which are statistically significant.

Figure 5. Box-and-whisker plot of the stiffness for each graft type. PT: Patellar tendon, sPT: Sutured patellar tendon, GST4: Doubled
gracilis and semitendinosus together, ST4: Quadrupled semitendinosus, G4: Quadrupled gracilis.



graft construct increases its failure load. If these
results are confirmed by in vivo studies, surgeons
could prepare their grafts in a similar manner.
However, it would have to be shown that suturing
does not negatively affect the ligamentization pro-
cess before this method is adopted clinically.
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