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On quartic double fivefolds and the matrix factorizations of exceptional quaternionic representations

We study quartic double fivefolds from the perspective of Fano manifolds of Calabi-Yau type and that of exceptional quaternionic representations. We first prove that the generic quartic double fivefold can be represented, in a finite number of ways, as a double cover of P 5 ramified along a linear section of the Spin 12 -invariant quartic in P 31 . Then, using the geometry of the Vinberg's type II decomposition of some exceptional quaternionic representations, and backed by some cohomological computations performed by Macaulay2, we prove the existence of a spherical rank 6 vector bundle on such a generic quartic double fivefold. We finally use the existence this vector bundle to prove that the homological unit of the CY-3 category associated by Kuznetsov to the derived category of a generic quartic double fivefold is C ⊕ C[3].

1 Introduction

Manifolds of Calabi-Yau type

Manifolds of Calabi-Yau type were defined by Iliev and Manivel [START_REF] Iliev | Fano Manifolds of Calabi-Yau type[END_REF] as compact complex manifolds of odd dimension whose middle dimensional Hodge structure is similar to that of a Calabi-Yau threefold. More precisely, following [START_REF] Iliev | Fano Manifolds of Calabi-Yau type[END_REF]:

Definition 1.1.1. Let X be a smooth complex compact algebraic variety of odd dimension 2n + 1, for n ≥ 1. We say that X is of Calabi-Yau type if the following three conditions hold:

1. The middle dimensional Hodge structure of X is numerically similar to that of Calabi-Yau threefold, that is: h n+2,,n-1 (X) = 1, and h n+p+1,n-p (X) = 0, for p ≥ 2.

2. For any generator τ ∈ H n+2,n-1 (X), the contraction map:

H 1 (X, T X ) ∩ τ -→ H n-1 (X, Ω n+1 (X)
is an isomorphism.

3. The Hodge numbers h k,0 (X) vanish, for all 1 ≤ k ≤ 2n.

Remark 1.1.2. By Serre duality, a smooth threefold with trivial canonical bundle automatically satisfies condition 2 in the above definition. On the other hand, for smooth manifolds of dimension bigger than four, it seems highly non-trivial to check this condition.

Potential examples of Fano manifolds of Calabi-Yau type (namely the cubic sevenfold and the quartic double fivefold) appeared some time ago in the Physics literature (see [START_REF] Candelas | Generalized Calabi-Yau Manifolds and the Mirror of a Rigid Manifold[END_REF][START_REF] Schimmrigk | Mirror Symmetry and String Vacua from a Special Class of Fano Varieties[END_REF][START_REF] Becker | Moduli stabilization in nongeometric backgrounds[END_REF]). They were used to describe the mirrors of some rigid Calabi-Yau threefolds obtained as crepant resolutions of product of elliptic curves divided by some well-chosen finite groups (we refer to [START_REF] Candelas | Generalized Calabi-Yau Manifolds and the Mirror of a Rigid Manifold[END_REF][START_REF] Schimmrigk | Mirror Symmetry and String Vacua from a Special Class of Fano Varieties[END_REF][START_REF] Becker | Moduli stabilization in nongeometric backgrounds[END_REF] for more details). These examples have been put into a more systematic mathematical treatment in [START_REF] Iliev | Fano Manifolds of Calabi-Yau type[END_REF]. Physicists were however not too far from exhausting all possible examples of complete intersections in (weighted) projective spaces which should be of Calabi-Yau type. Indeed, an inspection of Hodge numbers for smooth complete intersections in weighted projective spaces reveals the following: Proposition 1.1.3 (section 3.1 of [START_REF] Iliev | Fano Manifolds of Calabi-Yau type[END_REF]). Let X be a smooth complete intersection of Calabi-Yau type in a weighted projective space. Assume that dim X ≥ 4, then X is necessarily one of the following:

1. a smooth cubic sevenfold in P 8 , 2. a smooth quartic double fivefold in P(1, 1, 1, 1, 1, 1, 2), 3. a transverse intersection of a smooth cubic and a smooth quadric in P 7 .

Remark 1.1.4. We do not assert that all examples appearing in the above proposition are of Calabi-Yau type. Indeed, as mentioned in remark 1.1.2, it is non-trivial to check that condition 2 in definition 1.1.1 holds for these examples. As far as generic cubic sevenfolds and generic quartic double fivefolds are concerned, Iliev and Manivel proved that they are of Calabi-Yau type if and only if they can be represented, in a finite number of ways, as a linear sections of the projective dual of a certain homogeneous space associated to them (see [START_REF] Iliev | Fano Manifolds of Calabi-Yau type[END_REF], section 4.4, proposition 4.5 and remarks thereafter). For the cubic sevenfold, this finite representation property is proved in [START_REF] Iliev | On cubic hypersurfaces of dimensions 7 and 8[END_REF]. The quartic double fivefold will be dealt with in the present paper.

The case of the transverse intersection of a smooth cubic and a smooth quadric in P 7 is a bit more mysterious. Indeed, it is not immediately clear what finite representation statement should be equivalent to the fact that it is of Calabi-Yau type. That would certainly be a very interesting example to explore in more details.

The manifolds exhibited in proposition 1.1.3 have a lot in common with the archetypal Calabi-Yau threefold : the quintic threefold. We will enumerate some interesting geometric and cohomological properties of the quintic threefold which have been (even partially) shown to be true for the above manifolds.

1. Clemens proved that the Griffiths group of smooth quintic in P 4 is not finitely generated [START_REF] Clemens | Homological equivalence, modulo algebraic equivalence, is not finitely generated[END_REF]. Favero, Iliev and Katzarkov defined a notion of Griffiths group for the manifolds which appear in proposition 1.1.3. Using some earlier work of Voisin [START_REF] Voisin | Une approche infinitésimale du théorème de H. Clemens sur les cycles d'une quintique générale de P 4[END_REF], they showed that the Griffiths group of these manifolds have an infinitely generated Griffiths group [START_REF] Favero | On the Griffiths groups of Fano manifolds of Calabi-Yau Hodge type[END_REF]. We refer to the earlier work of Albano and Collino for the case of the cubic sevenfold [START_REF] Albano | On the Griffiths group of the cubic sevenfold[END_REF].

2. Beauville proved that a generic quintic in P 4 has a finite number of determinantal representations [START_REF] Beauville | Determinantal hypersurfaces[END_REF]. In [START_REF] Iliev | On cubic hypersurfaces of dimensions 7 and 8[END_REF], Iliev and Manivel generalized Beauville's result in the case of cubic sevenfold : a generic cubic in P 8 can be represented, in a finite number of ways, as a linear sections of the E 6 -invariant cubic hypersurface in P 26 , the Cartan cubic.

3. Any line bundle on the quintic threefold is spherical (i.e. its Ext-algebra is isomorphic to C ⊕ C[3]) and spherical objects provide non-trivial auto-equivalences of the derived category of the quintic threefold (see [START_REF] Seidel | Braid group actions on derived categories of coherent sheaves[END_REF]). Kuznetsov proved that the derived categories of the manifolds appearing in proposition 1.1.3 always contain a semi-orthogonal component which is a Calabi-Yau category of dimension 3 [START_REF] Kuznetsov | Calabi-Yau and fractional Calabi-Yau categories[END_REF]. Furthermore, Iliev and Manivel exhibited examples of spherical vector bundles contained in the CY-3 category associated to the derived category of a generic cubic sevenfold [START_REF] Iliev | On cubic hypersurfaces of dimensions 7 and 8[END_REF].

4. Generic quintinc threefolds are endowed with a so-called Yukawa coupling which satisfies very interesting equations (see [START_REF] Morrison | Mirror symmetry and rational curves on quintic threefolds : a guide for mathematicians[END_REF] for instance). It is explained in [START_REF] Candelas | Generalized Calabi-Yau Manifolds and the Mirror of a Rigid Manifold[END_REF] that similar properties hold for the Yukawa coupling constructed on generic cubic sevenfolds. [START_REF] Iliev | Fano Manifolds of Calabi-Yau type[END_REF] ask if this could be true for any manifold of Calabi-Yau type.

Obviously, we do not claim that this enumeration is exhaustive in any sense. In fact, this is quite the opposite : we hope that many other remarkable features of the quintic threefold will be shared by the complete intersection manifolds of Calabi-Yau type.

Generic quartic double fivefolds

In this paper, we will focus on quartic double fivefolds. Any such manifold is the zero locus of a weighted homogeneous polynomial of the form f 4 (z 1 , . . . , z 6 ) + x 2 in P(1, 1, 1, 1, 1, 1, 2) where f 4 is an element of S 4 C 6 . Our main results are the following:

Theorem 1 (see Theorem 2.2.1). The generic quartic double fivefold can be represented, in a finite number of ways, as a double cover of P 5 ramified along a linear section of the Spin 12 -invariant quartic Q Spin 12 ⊂ P 31 (the Igusa quartic). As a consequence, the generic quartic double fivefold is a manifold of Calabi-Yau type.

Theorem 2 (see Theorem 3.2.3). The 3 dimensional Calabi-Yau category associated to the derived category of the generic quartic double fivefold contains a rank 6 spherical vector bundle.

Our proof of Theorem 1 uses the strategy already highlighted in [AR96, Bea00, IM13]. Namely, if P Spin 12 is an equation for the Spin 12 invariant quartic Q Spin 12 ⊂ P 31 , we prove that the pull-backs of the partial derivatives of P Spin 12 to C[z 1 , . . . , z 6 ] by a generic 32 × 6 matrix generate S 4 C 6 . We then deduce that the natural map: G(6, ∆)/ /Spin 12 -→ S 4 C 6 / /GL 6 which associates to L ∈ G(6, ∆) its intersection with Q Spin 12 ⊂ P(∆) is generically étale. The computation of the dimension of the space generated by the pull-backs of the partial derivatives of P Spin 12 to C[z 1 , . . . , z 6 ] is done using Macaulay2 [GS].

In order to demonstrate Theorem 2, we use the basic geometry of some exceptional quaternionic representations ([GW95, [START_REF] Clerc | Special prehomogeneous vector spaces associated to F4, E6, E7, E8 and simple Jordan algebras of rank 3[END_REF][START_REF] Slupinski | The geometry of special symplectic representations[END_REF]). We first start with the Vinberg type II decomposition of the Lie algebra e 6 :

e 6 = C * ⊕ ( 3 C 6 ) * ⊕ gl 6 ⊕ 3 C 6 ⊕ C, (1) 
The properties of type II grading for exceptional quaternionic representations representations entail that for any y ∈ 3 C 6 , we have:

(ad e 6 y ) 4 (X -β ) = P SL 6 (y).X β , where X -β and X β are generators of the one-dimensional factors appearing in degree -2 and 2 in the decomposition (1) and P SL 6 is the equation of the SL 6 invariant quartic Q SL 6 ⊂ P( 3 C 6 ). As (ad e 6 y ) 2 is an element of gl * 6 ≃ gl 6 , we deduce that the pair ((ad e 6 y ) 2 , (ad e 6 y ) 2 ) is a matrix factorization of P SL 6 (see lemma 3.2.1). The matrices B = (ad e 6 y ) 2 + ix.I 6 and C = (ad e 6 y ) 2 -ix.I 6 form therefore a matrix factorization of P SL 6 (y)+x 2 . Restricting B and C to a generic P 5 ⊂ P( 3 C 6 ), we deduce the existence of a specific matrix factorization for the quartic double fivefold ramified along a generic fourfold linear section of Q SL 6 . Cohomological properties of the restriction of the cokernel of B to the quartic double fivefold determined by the choice of this P 5 will play a crucial role in the proof of Theorem 2.

In [START_REF] Iliev | On cubic hypersurfaces of dimensions 7 and 8[END_REF], Iliev and Manivel used similar ideas in order to construct a spherical rank 9 vector bundle on the generic cubic sevenfold. Their proof that this vector bundle is spherical highlights the impressive virtuosity of the authors in manipulating the Borel-Bott-Weil Theorem in type E 6 . Our cohomological study of the cokernel of B is certainly less elegant but it has the merit to be more accessible to the layman : we compute the necessary Extgroups using Macaulay2 [GS]. The implementation of the matrix representing (ad e 6 y ) 2 + ix.I 6 follows an explicit description given in [START_REF] Kimura | A classification of irreducible prehomogeneous vector spaces and their relative invariants[END_REF].

In order to prove Theorem 2, we consider the type II decomposition:

e 7 = C * ⊕ ∆ * ⊕ so 12 ⊕ C ⊕ ∆ ⊕ C.
(2)

Once again, the properties of type II grading for quaternionic representations yield that for any z ∈ ∆, we have:

(ad e7 z ) 4 (X -β ) = P Spin 12 (z).X β ,
where X -β and X β are generators of the one-dimensional factors appearing in degree -2 and 2 in the decomposition (2) and P Spin 12 is the equation of the Spin 12 -invariant quartic Q Spin 12 ⊂ P(∆).

Let L ⊂ P(∆) be a generic P 5 and denote by X L the quartic double fivefold ramified over L ∩ Q Spin 12 . The restrictions to L of the matrices B = (ad e7 z ) 2 + ix.I 12 and C = (ad e7 z ) 2 -ix.I 12 provide a matrix factorization of the equation of X L in P(1, . . . , 1, 2). If L 0 is a generic P 5 in P( 3 C 6 ), we are able to relate the cohomological properties of the restriction to X L of cokernel of B(ad e7 z ) 2 + ix.I 12 to those of the restriction to X L 0 of the cokernel of B(ad e 6 y ) 2 + ix.I 6 . We then deduce that a twist of the restriction to X L of the cokernel of B is the spherical rank 6 vector bundle whose existence is claimed in Theorem 2.

In the last section of this paper, we discuss a «topological» application of the existence of a spherical vector bundle on the generic quartic double fivefold. In [START_REF] Abuaf | Homological units[END_REF], the concept of homological unit was introduced for a large class of triangulated categories as a replacement for the algebra H • (O X ) when the category under study is not (necessarily) the derived category of a projective variety. We prove here (see section 3.3) that the homological unit of the 3 dimensional Calabi-Yau category associated to the derived category of a generic quartic double fivefold is C ⊕ C[3]. This computation shows that the 3-dimensional Calabi-Yau category associated to the derived category of a generic double quartic fivefold is really a non-commutative analogue of a Calabi-Yau threefold, and not just a triangulated category whose Serre functor is the shift by [3].

Acknowledgements : I am very grateful to Matt B. Young for patiently explaining to me some aspects of [START_REF] Candelas | Generalized Calabi-Yau Manifolds and the Mirror of a Rigid Manifold[END_REF], [START_REF] Schimmrigk | Mirror Symmetry and String Vacua from a Special Class of Fano Varieties[END_REF] and [START_REF] Becker | Moduli stabilization in nongeometric backgrounds[END_REF]. I am very thankful to Laurent Manivel for crucial pointers in the proofs of Lemmas 3.2.1 and 3.2.4 and for pointing out to me that it is non-trivial to check condition 2 in the definition of manifolds of Calabi-Yau type.

2 Linear sections of the Spin 12 invariant quartic in P 31

The Spin 12 quartic invariant in P 31

We will start this section with a quick reminder of the work of Igusa [START_REF] Igusa | A classification of spinors up to dimension twelve[END_REF] on spinors of dimension 12. Let ∆ be one of the half-spin representation of dimension 32 for the group Spin 12 . Recall that, as a vector space, we have:

∆ ≃ C ⊕ 2 C 6 ⊕ 4 C 6 ⊕ 6 C 6
Igusa proves that P(∆) is a prehomogeneous space for Spin 12 and that this space has a relative invariant which is of degree 4. Let us denote by P Spin 12 the equation of this relative invariant and by Q Spin 12 ⊂ P 31 the corresponding quartic hypersurface. Igusa gives an explicit description for P Spin 12 , namely :

P Spin 12 (x) = x 0 Pff((x i,j ))+y 0 Pff((y i,j ))+ i<j Pff((X i,j )) Pff((Y i,j ))- 1 4   x 0 y 0 - i<j x i,j y i,j   2 , for x = x 0 + i<j x i,j
.e i ∧ e j + i<j y i,j .(e i ∧ e j ) * + y 0 .e 1 ∧ e 2 ∧ e 3 ∧ e 4 ∧ e 5 ∧ e 6 in which (x i,j ) (resp. (y i,j )) is the alternating matrix determined by the x i,j (resp. y i,j ) and

(X i,j ) (resp. (Y i,j
)) is the alternating matrix obtained from (x i,j ) (resp. (y i,j )) by crossing out its i-th and j-th lines and columns.

Remark 2.1.1. The quartic hypersurface in P 31 which equation is given above is the tangent variety of the spinor variety S 12 ⊂ P 31 . This spinor variety appears in the third line of the Tits-Freudenthal magic square as the symplectic Grassmannian G ω (H 3 , H 6 ) where H is the algebra of complexified quaternions. In [START_REF] Landsberg | The Projective Geometry of Freudenthal's Magic Square[END_REF], Landsberg and Manivel found a general formula for the equation of the tangent variety of the homogeneous spaces which appear in the third line of the magic square. Namely, this formula gives a uniform presentation for the equation of the tangent variety of v 3 (P 1 ) ⊂ P 3 , G w (3, 6) ⊂ P 13 , G(3, 6) ⊂ P 19 , S 12 ⊂ P 31 and E 7 /P 7 ⊂ P 55 .

Four-dimensional linear sections of the quartic

Q Spin 12 ⊂ P 31
In [START_REF] Iliev | On cubic hypersurfaces of dimensions 7 and 8[END_REF], Iliev and Manivel proved that a generic cubic hypersurface in P 8 can be written, in a finite umber of ways, as a linear section of the E 6 invariant cubic in P 26 . They observed a similar numerical coincidence in the case of quartic hypersurfaces in P 5 . More precisely, let us denote by M 4 4 the moduli space of quartic hyperurfaces in P 5 . There is a natural map Φ : G(6, ∆)/ /Spin 12 -→ M 4 4 , which is given by restriction of the quartic Q Spin 12 to a given P 5 ⊂ P 31 . Note that the singular locus of Q Spin 12 has dimension 24, so that a generic 4-dimensional linear section of Q Spin 12 is smooth.

Iliev and Manivel noted that both M 4 4 and G(6, ∆)/ /Spin 12 have dimension 90 and they ask if the map Φ is dominant. We answer positively to their question :

Theorem 2.2.1. Let Φ : G(6, ∆)/ /Spin 12 -→ M 4
4 be the map which associates to L the quartic L ∩ Q Spin 12 . The map Φ is generically étale and dominant. In particular a generic quartic hypersurface in P 5 can be represented as a linear section of Q Spin 12 ⊂ P(∆) in a finite number of ways. As a consequence, the generic quartic double fivefold is a manifold of Calabi-Yau type.

Proof. First of all, we notice that G(6, ∆) = M 6×∆ / /GL 6 and that M 4 4 = S 4 C 6 / /GL 6 , where M 6×∆ is the space of linear maps from C 6 to ∆. Furthermore, the map Φ is the descent of the natural map:

φ : M 6×∆ -→ S 4 C 6 (m) i,j -→ P Spin 12 (m 1,1 .z 1 + • • • + m 1,6 .z 6 , • • • , m 32,1 .z 1 + • • • + m 32,6 .z 6 ),
where z 1 , • • • , z 6 is a basis for (C 6 ) * . In order to prove Theorem 2.2.1, we just need to prove that the differential of φ is generically surjective. The differential of φ at a point (m) i,j ∈ M 6×∆ is given by :

dφ (m i,j ) : M 6×∆ -→ S 4 C 6 (q) i,j -→ 32 i=1   6 j=1 q i,j .z j   × ∂P Spin 12 ∂x i (m 1,1 .z 1 + • • • + m 1,6 .z 6 , • • • , m 32,1 .z 1 + • • • + m 32,6 .z 6 ),
where x 1 , • • • , x 32 is a basis of ∆ * in which the equation of P Spin 12 is given. As a consequence, in order to prove that dφ is generically surjective, we only have to prove the lemma below.

Lemma 2.2.2. For generic m ∈ M 6×∆ , the dimension of the subspace of S 4 C 6 generated by the:

{z j . ∂P Spin 12 ∂x i (m 1,1 .z 1 + • • • + m 1,6 .z 6 , • • • , m 32,1 .z 1 + • • • + m 32,6 .z 6 )} i=1•••32,j=1•••6
has dimension 126 and is equal to S 4 C 6 .

Proof. We use Macaulay2 to prove that the lemma. A similar algorithm is provided in [START_REF] Beauville | Determinantal hypersurfaces[END_REF] in order to prove that a general threefold in P 4 of degree less than 5 is Pfaffian.

Finally, using proposition 4.5 (and comments thereafter) of [START_REF] Iliev | On cubic hypersurfaces of dimensions 7 and 8[END_REF], we deduce from the finite representation statement we just proved that the generic quartic double fivefold is a manifold of Calabi-Yau type.

Matrix factorizations on generic quartic double fivefolds

In this section we prove the existence of a spherical rank 6 vector bundle on the double cover of P 5 ramified over a general fourfold linear section of Q Spin 12 . In fact, we will derive the vanishing properties of this vector bundle from those of a rank 3 coherent sheaf defined on the double quartic fivefold ramified over a general section of Q SL 6 ⊂ P( 3 C 6 ). Thus, we start our study with a particular matrix factorization on the SL 6 -invariant quartic Q SL 6 ⊂ P( 3 C 6 ), whose cokernel will be the sheaf we are interested in.

3.1 Foretaste : matrix factorizations on quartic double fivefolds ramified over linear sections of

Q SL 6 ⊂ P( 3 C 6 )
Let u 1 , . . . , u 6 be a basis of C 6 and let y 1 , . . . , y 20 be coordinates on 3 C 6 such that any y ∈ 3 C 6 can be written y = y 1 .u 1 ∧ u 2 ∧ u 3 + . . . + y 20 .u 5 ∧ u 5 ∧ u 6 . Denote by P SL 6 the equation of Q SL 6 . The explicit formula for Q SL 6 is given, for instance, on page 83 of [START_REF] Kimura | A classification of irreducible prehomogeneous vector spaces and their relative invariants[END_REF]. Denote by: Y then we have:

P SL 6 (y) = y 1 y 20 -Tr(Y (a) Y (b) ) 2 +4y 1 det(Y (b) )+4y 20 det(Y (a) )-4 i,j det(Y (a) i,j ) det(Y (b) i,j ),
where

Y (a) i,j (resp. Y (b) i,j ) is the matrix obtained from Y (a) (resp. Y (b)
) by crossing its i-th line and j-th comlumn. We recall the expression of a special matrix factorization of P SL 6 that was explicited by Kimura and Sato (see [START_REF] Kimura | A classification of irreducible prehomogeneous vector spaces and their relative invariants[END_REF] page 80 and 81). For k = 1 . . . 6, define the operators:

D k : k C 6 -→ k-1 C 6 ⊗ C 6 u i 1 ∧ . . . ∧ u i k -→ k r=1 (-1) k-r u i 1 ∧ . . . ∧ u i r-1 ∧ u i r+1 ∧ . . . ∧ u i k ⊗ u ir .
For each y ∈ 3 C 6 and each z ∈ 4 C 6 , we have (z ⊗1)∧D 3 (y) ∈ 6 C 6 ⊗C 6 = τ ⊗C 6 , where τ = u 1 ∧. . .∧u 6 is the canonical volume form on 6 C 6 . Hence, there exists a bilinear map L : 4 C 6 × 3 C 6 -→ C 6 such that (z ⊗ 1) ∧ D 3 (y) = τ ⊗ L(z, y) for all y ∈ 3 C 6 and z ∈ 4 C 6 . Now, for each y ∈ 3 C 6 , we define an operator:

S y : C 6 -→ C 6 θ -→ L(θ ∧ y, y)
Kimura and Sato proves the following ([KS77], proposition 7 page 81): Proposition 3.1.1. For all y ∈ 3 C 6 , we have S 2 y = P SL 6 (y).I 6 , where I 6 is the 6 × 6 identity.

We will give the explicit form of the matrix S y , when y = y 1 .u 1 ∧ u 2 ∧ u 3 + . . . + y 20 .u 5 ∧ u 5 ∧ u 6 . Since it is too big to be reasonably displayed in L A T E X, we write it in Macaulay2 code (and in any case, we will need this presentation to perform computer-aided calculations with it). Proof. Trivial (though lengthy) handmade computations. One checks with Macaulay2 that S 2 y = P SL 6 (y).I 6 .

As a consequence of proposition 3.1.1, we have a exact sequence in P( 3 C 6 ):

0 -→ C 6 ⊗ O P( 3 C 6 ) (-2) Sy -→ C 6 ⊗ O P( 3 C 6 ) -→ F -→ 0,
where F is a sheaf scheme-theoretically supported on Q SL 6 . Let L ⊂ P( 3 C 6 ) be a generic P 5 . By restricting the above sequence on L, we get a sequence:

0 -→ C 6 ⊗ O L (-2) Sy| L -→ C 6 ⊗ O L -→ F | L -→ 0.
The matrix S L := S y | L has full rank at a generic point of L and drops rank on Q SL 6 ∩ L.

We deduce that F L is the push-forward of a pure sheaf (say F L ) living on Q SL 6 ∩ L. Since deg (Q SL 6 ∩ L) = 4 and deg (det(S L )) = 12, we find that rank(F L ) = 3.

Remark 3.1.3. The above argument shows that F is the push-forward of a rank 3 sheaf on Q SL 6 (which we denote by F ). Remember that Q SL 6 ⊂ P( 3 C 6 ) is the projective dual of G(3, (C 6 ) * ) ⊂ P( 3 (C 6 ) * ) and we have a diagram:

I G(3,(C 6 ) * )/P( 3 (C 6 ) * ) q x x ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ p % % ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ G(3, (C 6 ) * ) Q SL 6
where

I G(3,(C 6 ) * )/P( 3 (C 6 ) * ) is the projectivization of the conormal bundle of G(3, (C 6 ) * ) in P( 3 (C 6 ) * ). It is very likely that F = p * q * Q(m)| L , where Q(m)
is an appropriate twist of the quotient bundle on G(3, 6). See sections 3.3 and 3.4 of [START_REF] Iliev | On cubic hypersurfaces of dimensions 7 and 8[END_REF], where a similar phenomenon is shown to be true for the E 6 -invariant cubic in P 26 .

If L ⊂ P( 3 C 6 ) is a generic P 5 with coordinates z 1 , . . . , z 6 , we denote by P (L) SL 6 the restriction of P SL 6 to L. Let X L be the projective subvariety of P(1, 1, 1, 1, 1, 1, 2) determined by P (L) SL 6 (z 1 , . . . , z 6 ) + x 2 = 0. This is a quartic double fivefold ramified over a L ∩ Q SL 6 . We denote by W L the weighted homogeneous polynomial P (L) SL 6 (z 1 , . . . , z 6 ) + x 2 . A result of Orlov (see Theorem 3.11 and remark 3.12 of [START_REF] Orlov | Derived categories of coherent sheaves and triangulated categories of singularities[END_REF]) shows that there is a semi-orthogonal decomposition:

D b (X L ) = D b (GrW L ), O X L , O X L (1), O X L (2), O X L (3) ,
where D b (GrW L ) is the derived category of graded matrix factorization of the weighted homogeneous polynomial W L . If X L was smooth then, as explained in [START_REF] Iliev | Fano Manifolds of Calabi-Yau type[END_REF] and [START_REF] Kuznetsov | Calabi-Yau and fractional Calabi-Yau categories[END_REF], the category D b (GrW L ) would be a Calabi-Yau category of dimension 3. The singular locus of Q SL 6 ⊂ P( 3 C 6 ) has dimension 14. Hence, for any linear space L ⊂ P( 3 C 6 ) of dimension 5, the variety X L is singular. Thus, if E L is a coherent sheaf in D b (GrW L ) whose jumping locus coincide with the singular locus of X L , then one can not expect that Ext

3 (E L , E L ) ≃ Hom(E L , E L ) * and Ext 2 (E L , E L ) ≃ Ext 1 (E L , E L ) * .
It will be however very helpful to keep this idea in mind when we will extend our study to linear sections of Q Spin 12 ⊂ P(∆). For now, we focus on the cohomological properties of the cokernel of a matrix factorization in D b (GrW L ) constructed from S L . Consider the matrices :

B L = S L + ix.I 6 C L = S L -ix.I 6
where S L is the restriction to L of the matrix S y defined in proposition 3.1.2 and I 6 is the 6 * 6 identity. We observe that B L × C L = C L × B L = W L .I 6 and that B L is weighted homogeneous of degree 2. We deduce that (B L , C L ) ∈ D b (GrW L ). The following is the main technical result of this subsection:

Theorem 3.1.4. Let L ⊂ P( 3 C 6 ) be a generic P 5 with coordinates z 1 , . . . , z 6 . Let B L = S L +ix.I 6 and C L = S L -ix.I 6 , where S L is the restriction to L of the matrix S explicited in proposition 3.1.2. Denote by E L the restriction to X L of the cokernel of B L . The coherent sheaf E L has rank 3 and we have:

Hom X L (E L , E L ) = C and Ext 1 X L (E L , E L ) = 0.
Proof. The sheaf E L has rank 3 since it is the cokernel of 6 * 6 homogeneous matrix with quadratic entries whose degenerating locus is a quartic hypersurface in P(1, . . . , 1, 2). We provide a Macaulay2 code to prove that Hom(E L , E L ) = C and that Ext 1 (E L , E L ) = 0.

We first recall the expression of the matrix S y we found in proposition 3.1.2 defined over the ring Z/313.Z[i, y 1 , . . . , y 20 , z 1 , . . . , z 6 , x], where i is the square root of -1, y 1 , . . . , y 20 and z 1 , . . . , z 6 have degree 1 and x has degree 2. We then create a random 6 * 20 matrix with integer coefficients. This matrix represents the equations defining L. We then create a matrix (denoted K1) which is the restriction of S y to L. For technical reasons while working with Macaulay2, we must first define it over Z/313.Z[i, y 1 , . . . , y 20 , z 1 , . . . , z 6 , x] and then replicate it over Z/313.Z[i, z 1 , . . . , z 6 , x].

i_8 : L = random(ZZ^20,ZZ^6,Height=>50) i_9 : L2 = L**U i_10 : L3 = L2 * matrix{{z_1},{z_2},{z_3},{z_4},{z_5},{z_6}} i_11 : K = mutableMatrix(S_y) i_12 : for k from 0 to 5 do (for i from 0 to 5 do (for j from 1 to 20 do K_(k,i) = sub(K_(k,i), y_j => L3_(j-1,0)))) i_13 : K = matrix(K) i_14 : K1 = mutableMatrix(T,6,6) i_15 : for k from 0 to 5 do (for j from 0 to 5 do K1_(k,j) = sub(K_(k,j),T)) i_16 : K1 = matrix(K1)

We finally create the matrix B L and its cokernel E L . We finally compute Hom(E L , E L ) and Ext 1 (E L , E L ).

i_17 :use T i_18 : A = matrix{{w*x,0,0,0,0,0},{0,w*x,0,0,0,0},{0,0,w*x,0,0,0}, {0,0,0,w*x,0,0},{0,0,0,0,w*x,0},{0,0,0,0,0,w*x}} Q SL 6 ∩L (F L , F L ) = C 21 . Hence, going to the double cover of P 5 ramified over Q SL 6 ∩ L kills the 21 deformation directions of the cokernel of the initial matrix factorization. We have no explanation for this phenomenon.

Matrix factorizations on quartic double fivefolds ramified over linear

sections of Q Spin 12 ⊂ P(∆)

The goal of this subsection is to prove the existence of rank 6 spherical vector bundles on quartic double fivefolds ramified over general linear sections of Q Spin 12 ⊂ P(∆). Since we proved in the first section of this paper that a general quartic in P 5 is a linear section of Q Spin 12 ⊂ P(∆), this implies that our results hold for a generic quartic double fivefold. We will use the vanishing result we obtained in section 3.1 for the rank 3 sheaves E L which are defined on quartic double fivefolds ramified over general linear sections of Q SL 6 ⊂ P( 3 C 6 ) and a representation theoretic reduction to go from quartic double fivefolds ramified over linear sections of Q SL 6 to quartic double fivefolds ramified over general linear sections of Q Spin 12 . We start with a representation theoretic description of the matrix factorization we exhibited in the previous subsection.

Let g be a simple Lie algebra over C and denote by β the highest root of g (we have chosen a fixed Cartan subalgebra of g). We say that g has a type II decomposition if there exists a graded decomposition of g :

g = g -2 ⊕ g -1 ⊕ g 0 ⊕ g 1 ⊕ g 2 , such that [g i , g k ] ⊂ g i+k , g -2 = C.X -β and g 2 = C.X β .
If such a decomposition happens, Vinberg [START_REF] Vinberg | Classification of homogeneous nilpotent elements of a semisimple graded Lie algebra[END_REF] proves that g 1 is a prehomogeneous space under the restricted adjoint action of G 0 , where G 0 is a simply connected group algebraic group with Lie algebra g 0 . Let x ∈ g 1 and let ad x = [x, .] be the adjoint operator associated to x. By the grading property, we know that ad x is of degree 1, (ad x ) 2 is of degree 2 and (ad x ) 4 is of degree 4. The operator (ad x ) 4 can been then seen as a map:

(ad x ) 4 : g -2 -→ g 2 .
Since g -2 = C.X -β and g 2 = C.X β , we have (ad x ) 4 (X -β ) = P (x).X β , where P is a G 0 -invariant polynomial. We say that g has maximal rank 4 if the polynomial P is nonidentically zero (see [START_REF] Gross | On quaternionic discrete series representations and their continuations[END_REF]). In this case, since ad x is linear in x, we deduce that P must have degree 4. The polynomial P is thus a degree 4 relative invariant for the prehomogeneous space (G 0 , g 1 ). The maximal rank 4 representation have been tabulated in [START_REF] Gross | On quaternionic discrete series representations and their continuations[END_REF] and they are the following:

g G 0 g 1 dim g 1 B SL 2 × C * × SO d C 2 ⊗ C d 2d (d odd) D SL 2 × C * × SO d C 2 ⊗ C d 2d (d even) F 4 C * × Sp 6 ( 3 C 6 ) 0 14 E 6 C * × SL 6 3 C 6 20 E 7 C * × Spin 12 ∆ 32 E 8 C * × E 7 minuscule 56 
We focus on the type II decomposition

e 6 = C ⊕ ( 3 C 6 ) * ⊕ gl 6 ⊕ 3 C 6 ⊕ C.
For y ∈ 3 C 6 , the graded decomposition above shows that (ad y ) 2 : gl 6 -→ C. Hence, we can identify (ad y ) 2 as a 6 × 6 matrix. Furthermore, we have the following: Lemma 3.2.1. The pair ((ad y ) 2 , (ad y ) 2 ) is a matrix factorization of P SL 6 .

Proof. Consider the SL 6 -equivariant map:

Π SL 6 : 3 C 6 -→ End(C 6 ) y -→ (ad y ) 2 • (ad y ) 2 .
Since (ad y ) 4 = 0, we know that the map Π is not identically zero. The map Π is polynomial of degree 4, so that we get a non-zero SL 6 -equivariant linear map which lifts Π SL 6 :

Π SL 6 : S 4 ( 3 C 6 ) -→ End(C 6 )
Furthermore, a computation with Lie [CvLL] shows that the decomposition into SL 6 irreducible representations of S 4 ( 3 C 6 ) is :

S 4 ( 3 C 6 ) = [0, 0, 4, 0, 0]+[1, 0, 2, 0, 1]+[2, 0, 0, 0, 2]+[0, 0, 2, 0, 0]+[0, 1, 0, 1, 0]+[0, 0, 0, 0, 0],
where [0, 0, 0, 0, 0] represents P SL 6 .C. On the other hand, the decomposition of End(C 6 ) into SL 6 irreducible representations is:

End(C 6 ) = [1, 0, 0, 0, 1] + [0, 0, 0, 0, 0],
where [0, 0, 0, 0, 0] is id C 6 .C. By Schur's lemma, we deduce that Π SL 6 = c.P SL 6 ⊗ id C 6 , with c a non-zero scalar. Thus, we find that:

(ad y ) 2 • (ad y ) 2 = c.P SL 6 .id C 6 ,
with c = 0. This proves the lemma.

We will identify this matrix factorization with the one exhibited in the previous section. Proposition 3.2.2. For all y ∈ 3 C 6 , we have:

(ad y ) 2 = S y ,
where S y is the endomorphism of C 6 defined in proposition 3.1.1 Proof. Following [START_REF] Hitchin | The Geometry of Three-Forms in Six Dimensions[END_REF], section 2, one observes that for all y ∈ 3 C 6 ≃ ( 3 C 6 ) * and for all θ ∈ C 6 , we have:

τ ⊗ S y (θ) = A (ι(θ, y) ∧ y) ,
where ι :

C 6 × ( 3 C 6 ) * -→ ( 2 C 6
) * is the interior product and A is the identification

( 5 C 6 ) * ≃ τ ⊗ C 6
given by the volume form τ . Furthermore, following remark 2.17 of [START_REF] Slupinski | The geometry of special symplectic representations[END_REF], we notice that y ∈ 3 C 6 and for all θ ∈ C 6 , we have:

(ad y ) 2 (θ) = A (ι(θ, y) ∧ y) .
This concludes the proof of the proposition.

We are now in position to prove the main result of this section:

Theorem 3.2.3. The generic quartic double fivefold is endowed with a spherical rank 6 vector bundle.

Proof. Let X be a generic quartic double fivefold and let Y be the double cover of P(∆) ramified along Q Spin 12 . By the results of section 2, we know that X is the fiber product of Y with a generic L ∈ G(6, ∆). As a consequence, we have to prove the existence of such a matrix factorization for X L = Y × P(∆) L, when L ∈ G(6, ∆) is generic.

Consider the type II decomposition:

e 7 = C * ⊕ ∆ * ⊕ so 12 ⊕ C ⊕ ∆ ⊕ C.
As e 7 endowed with this decomposition has maximal rank 4, we know that:

(ad z ) 4 (X -β ) = P Spin 12 (z).X β ,
for all z ∈ ∆. Since (ad z ) 2 ∈ so * 12 ≃ so 12 ⊂ gl 12 , we can see (ad z ) 2 as a 12 * 12 matrix. We have the following : Lemma 3.2.4. The pair ((ad z ) 2 , (ad z ) 2 ) z∈∆ is a matrix factorization of P Spin 12 .

Proof. The proof is similar to that of Lemma 3.2.1. We check with Lie [CvLL] that the decomposition into Spin 12 irreducible representations of S 4 ∆ is :

S 4 ∆ = [0, 0, 0, 0, 0, 4]+[0, 1, 0, 0, 0, 2]+[0, 2, 0, 0, 0, 0]+[0, 0, 0, 0, 0, 2]+[0, 0, 0, 1, 0, 0]+[0, 0, 0, 0, 0, 0],

where [0, 0, 0, 0, 0] represents P Spin 12 .C. Furthermore the decomposition of End(C 12 ) into Spin 12 irreducible representations is:

End(C 12 ) = [2, 0, 0, 0, 0, 0] + [0, 1, 0, 0, 0, 0] + [0, 0, 0, 0, 0, 0]
where [0, 0, 0, 0, 0, 0] is id C 12 .C

The matrix factorization that will be of chief interest for us is closely related to the pair ((ad z ) 2 , (ad z ) 2 ) z∈∆ . In the following we write ad g z when we want to specify with which Lie algebra we work.

There is a type I decomposition:

so 12 = 2 C 6 ⊕ gl 6 ⊕ 4 C 6 .
(3)

If one chooses the quadratic form on C 12 defined on a fixed basis by:

J 12 =        0 0 • • • 0 1 0 0 • • • 1 0 . . . . . . . . . . . . . . . 0 1 • • • 0 0 1 0 • • • 0 0       
, then the decomposition of so 12 as in equation ( 3) can be restated in the matrix context as follows. Any P ∈ so 12 can be written:

P = A K M -A t ,
where A ∈ gl 6 , A t is the transpose of A with respect to the anti-diagonal and K, M are skew-symmetric matrices with respect to the anti-diagonal. Hence, for any z ∈ ∆, we have:

(ad e7 z ) 2 = A z K z M z -A t z ,
where A z ∈ gl 6 , A t z is the transpose of A z with respect to the anti-diagonal and K z , M z are skew-symmetric matrices with respect to the anti-diagonal. Furthermore, we observe that the type II decomposition:

e 7 = C * ⊕ ∆ * ⊕ so 12 ⊕ C ⊕ ∆ ⊕ C,
combined with the type I decompositions:

so 12 = 2 C 6 ⊕ gl 6 ⊕ 4 C 6 ∆ = (C 6 ) * ⊕ 3 C 6 ⊕ C 6
gives a bigraded decomposition:

e 7 =              C * ⊕ (C 6 ) * ⊕ 3 C 6 ⊕ C 6 ⊕ (-2, 0) (-1, -1) (-1, 0) (-1, 1) 2 C 6 ⊕ gl 6 ⊕ C ⊕ 4 C 6 ⊕ (0, -1) (0, 0) (0, 1) (C 6 ) * ⊕ 3 C 6 ⊕ C 6 ⊕ C (1, -1) (1, 0) (1, 1) (2, 0)             
This means that for z ∈ e 7 of bidegree (a, b), we have ad z : e 7 (i,k) -→ e 7 (i+a,k+b) . In particular, if y ∈ 3 C 6 is of bidegree (1, 0), the bigraded decomposition above implies: As a consequence, for y ∈ 3 C 6 of bidegree (1, 0), the matrix representation of (ad e7 y ) 2 is:

(ad e7 
(ad e7 y ) 2 = A y 0 0 -A t y
Furthermore, the above bigraded decomposition of e 7 can also be obtained (but with swapped bigrading) from the type I decompositions:

e 7 = (V (ω 6 , E 6 )) * ⊕ e 6 ⊕ C ⊕ V (ω 6 , E 6 ) V (ω 6 , E 6 ) = (C 6 ) * ⊕ 2 C 6 ⊕ C 6
and the type II decomposition:

e 6 = C ⊕ ( 3 C 6 ) * ⊕ gl 6 ⊕ 3 C 6 ⊕ C.
This establishes that A y is the matrix representation of (ad e 6 y ) 2 for any y ∈ 3 C 6 ⊂ ∆. Hence, thanks to Proposition 3.2.2, we have for all y ∈ 3 C 6 :

(ad e7 y ) 2 = S y 0 0 -S t y
where S y is the matrix we studied in Section 3.1.

Let L be a P 5 in P(∆) and denote by BL = (ad The pair ( BL , CL ) is thus a matrix factorization of the polynomial defining X L in P(1, . . . , 1, 2).

Denote by ẼL the cokernel of the restriction to X L of BL . If L is not included in Q Spin 12 , then X L is the degenerating locus of BL . Since deg(X L ) = 4, we find that ẼL has generically rank 6.

Let L 0 generic inside P( 3 C 6 ). By the above discussion on the bigraded decomposition of e 7 , we know that:

BL 0 = B L 0 0 0 -B t L 0
where B L 0 is the matrix factorization of x 2 + P (L 0 ) SL 6 (z) we studied in section 3.1. As a consequence, ẼL 0 = E L 0 ⊕ G L 0 , where G L 0 is the restriction to X L 0 of the cokernel of -B t L 0 . One can prove that G L 0 ≃ E * L 0 (2), but that won't be useful for the proof. Using a similar Macaulay2 algorithm to the one used for the proof of Theorem 3.1.4, we find that:

Ext 1 X L 0 (E L 0 , G L 0 ) = Ext 1 X L 0 (G L 0 , E L 0 ) = 0 and Hom X L 0 (E L 0 , G L 0 ) = Hom X L 0 (G L 0 , E L 0 ) = 0.
By Theorem 3.1.4, we deduce that:

Ext 1 X L 0 ( ẼL 0 , ẼL 0 ) = 0
and

Hom X L 0 ( ẼL 0 , ẼL 0 ) = λ.I 6 0 0 µ.I 6 , λ, µ ∈ C .
Let L ⊂ P(∆) a generic P 5 . We will describe the algebra Ext • ( ẼL , ẼL ). Consider X the family of quartic double fivefolds obtained as a double cover of P 5 ramified along linear sections of Q Spin 12 ⊂ P(∆). We have:

X = Y × P(∆) P(R),
where P(R) is the projectivization of the tautological bundle over G(6, ∆) and Y is the double cover of P(∆) ramified along Q Spin 12 . The natural projection π : X -→ G(6, ∆) is a proper and flat morphism. Let Ẽ be the rank 6 sheaf defined on Y as the cokernel of the restriction to Y of the matrix representing (ad e7 z ) 2 + x.I 12 , for z ∈ P(∆) and x of degree 2. We denote by Ẽ the pull-back of Ẽ to X . We observe that for any L ∈ G(6, ∆) which intersects Q Spin 12 properly, we have:

Ẽ | π -1 (L) = ẼL .
By the discussion above, we know that:

Ext 1 X L 0 ( ẼL 0 , ẼL 0 ) = 0 and Hom X L 0 ( ẼL 0 , ẼL 0 ) = λ.I 6 0 0 µ.I 6 , λ, µ ∈ C ,
for generic L 0 ∈ G(6, 3 C 6 ). Since the morphism π : X -→ G(6, ∆) is proper and flat and the base G(6, ∆) is smooth, the semi-continuity Theorem implies that:

Ext 1 X L ( ẼL , ẼL ) = 0 and Hom X L ( ẼL , ẼL ) ⊂ λ.I 6 0 0 µ.I 6 , λ, µ ∈ C .
Furthermore, for generic L, we have:

BL = A L K L M L -A t L ,
with K L , M L = 0. We deduce that Hom X L ( ẼL , ẼL ) = C.I 12 . Finally, for generic L ∈ G(6, ∆), the section L ∩ Q Spin 12 is smooth and by [START_REF] Kuznetsov | Calabi-Yau and fractional Calabi-Yau categories[END_REF], we have a decomposition:

D b (X L ) = A X L , O X L , O X L (1), O X L (2), O X L (3) ,
where A X L is a CY -3 category. Using the resolution:

0 -→ C 12 ⊗ O P(1,...,1,2) (-2) -→ C 12 ⊗ O P(1,...,1,2) -→ i * ( ẼL ) -→ 0,
we easily prove that ẼL (-1) ∈ A X L and ẼL (-2) ∈ A X L . Since A X L is a CY-3 category, we deduce that Ext 3 ( ẼL , ẼL ) = Hom( ẼL , ẼL ) * = C and that Ext 2 ( ẼL , ẼL ) = Ext 1 ( ẼL , ẼL ) = 0. This establishes that ẼL (-1) and ẼL (-2) are spherical rank 6 vector bundles contained in A X L and finishes the proof of Theorem 3.2.3.

The following is analogous to remark 3.1.3. Remark 3.2.5. It is certainly worth noting that the cokernel of the matrix factorization (ad e7 z ) 2 , (ad e7 z ) 2 is a rank 6 coherent sheaf living on Q Spin 12 ∈ P(∆). We have a diagram: 
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Homological unit of the CY-3 category associated to a generic quartic double fivefold

In [START_REF] Abuaf | Homological units[END_REF], the concept of homological unit was introduced for a large class of triangulated categories as a replacement for the algebra H • (O X ) when the category under study is not (necessarily) the derived category of a projective variety. This notion has been further explored in [Kru], where intriguing examples of units have been constructed and in [Abu], where it was used to define hyper-Kähler categories. We give a quick reminder on the definition and basic properties of the homological units.

Definition 3.3.1. Let C be an abelian category and ϕ : C -→ N be a function. We say that ϕ is a rank function if it is additive with respect to exact sequences in C . We say that ϕ is trivial if its image is {0}.

We provide the definition of homological units for an abelian category endowed with a rank function.

Definition 3.3.2. Let C be an abelian category with enough injectives and with a nontrivial rank function. Let T be a full admissible subcategory in D b (C ). A graded algebra T • is called a homological unit for T (with respect to C ), if T • is maximal for the following properties :

1. for any object F ∈ T , there exists a pair of morphisms i F : T • → Hom • (F , F ) and t F : Hom • (F , F ) → T • with the properties:

• the morphism i F : T • → Hom • (F , F ) is a graded algebra morphism which is functorial in the following sense. Let F , G ∈ T and let a ∈ T k for some k.

Then, for any morphism ψ : F → G , there is a commutative diagram:

F i F / / ψ F [k] ψ[k] G i G / / G [k]
• the morphism t F :: Hom • (F , F ) → T • is a graded vector spaces morphism which satisfies the dual functoriality property of i F .

2. for any F ∈ T which rank (seen as an object in D b (C )) is not vanishing, the morphism t F splits i F as a morphism of graded vector spaces.

With hypotheses as above, an object F ∈ T is said to be unitary, if Hom • (F , F ) = T • , where T • is a homological unit for T .

We notice the following facts (see [START_REF] Abuaf | Homological units[END_REF]):

1. If T contains a unitary object whose rank is not zero with respect to the chosen rank function on D b (C ), then the homological unit with respect to this rank function is necessarily unique. This follows from the maximality condition imposed in definition 3.3.2.

2. Let T be an admissible subcategory of D b (Coh(X) G ) where X is a smooth projective variety and G a reductive group acting linearly on X. Assume that there exists a G-equivariant line bundle L ∈ Pic(X) such that L ∈ T . Then, the homological unit of T with respect to the natural rank function is

H • (O X ) G .
3. Let X and Y be smooth projective varieties of dimension less or equal to 4 such that D b (X) ≃ D b (Y ). It is proved in [START_REF] Abuaf | Homological units[END_REF] that the algebras H • (O X ) and H • (O Y ) are isomorphic. This suggests that the homological unit of a triangulated category of geometric origin could be independent of the embedding into the derived category of a smooth projective variety (at least if the dimensions of the varieties are small enough).

In case T contains a spherical object whose rank is non-zero, the homological unit is easily computed: Lemma 3.3.3. Let T ⊂ D b (X) be an admissible subcategory of the derived category of a smooth projective variety. Assume that T is a CY-n category and that it contains a spherical object whose rank is non-zero. Then, the homological unit of T (with respect to the natural rank function coming from

D b (X)) is C ⊕ C[n].
Proof. Since T is a CY-n category, Serre duality shows the algebra C ⊕ C[n] embeds functorially via the trace map into the algebra Ext • (F , F ), for any F ∈ T whose rank is non-zero. Furthermore, the category T contains an object whose rank is non-zero and whose Ext-algebra is C ⊕ C[n]. We deduce that the homological unit of

T is C ⊕ C[n].
From this lemma and Theorem 3.2.3, we deduce the: Corollary 3.3.4. Let X be a generic quartic double fivefold and let A X the CY-3 category associated to the derived category of this fivefold. The homological unit of

A X is C ⊕ C[3].
This contrasts sharply with the fact that H • (O X ) = C, when X is a quartic double fivefold. This corollary also suggests a natural question on the homological units of the CY-3 categories potentially associated to a manifolds of Calabi-Yau type, namely: Question 3.3.5. Let X be a manifold of Calabi-Yau type. Assume that a semi-orthogonal component of the derived category of X is a CY-3 category. Is the homological unit of this CY-3 category C ⊕ C[3]?

It is proved in [START_REF] Iliev | On cubic hypersurfaces of dimensions 7 and 8[END_REF], that the CY-3 category associated to the derived category of a generic cubic sevenfold contains a spherical rank 9 vector bundle. Hence, by the above lemma, the homological unit of this CY-3 category is C ⊕ C[3]. Thus, as far as manifolds of Calabi-Yau type obtained as generic complete intersections of dimension bigger than 4 in weighted projective spaces are concerned, in order to answer the above question we only need to prove that the CY-3 category associated to the transverse intersection of a generic cubic and a generic quadric in P 7 contains a spherical vector bundle.
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  i_1 : kk = ZZ/313 i_2 : VV = kk[y_1..y_20] i_3 : R = kk[w,z_1,z_2,z_3,z_4,z_5,z_6,x,Degrees=>{0,1,1,1,1,1,1,2}] i_4 : J = ideal(w^2+1) i_5 : T = R/J i_6 : U = VV**T i_7 : S_y = ...

  = B**T1 i_26 : FL = coker BL i_27 : X = Proj T1 i_28 : EL = sheaf FL i_29 : Hom(EL,EL) i_30 : Ext^1(EL,EL)In about one hour and a half on a portable workstation, Macaulay2 gives the expected answer:Remark 3.1.5. The vanishing of the Ext 1 for the matrix factorization B L is somehow quite remarkable. Indeed, one computes with Macaulay2 that Ext 1

e7 z ) 2 |

 2 L +ix.I 12 and CL = (ad e7 z ) 2 | L -ix.I 12 . We observe that:BL × CL = CL × BL = (x 2 + P (L)Spin 12 (z)).I 12 .

  Spin 12 where S 12 * ⊂ P(∆ * ) is one of the connected component of the orthogonal Grassmannian OG(6, 12 * ) in the (dual) spinor embedding and I S 12 * /P(∆ * ) is the projectivization of the conormal bundle of S 12 in P(∆ * ). It is very likely that this rank 6 coherent sheaf is p * q * Q(m)| L , where Q(m) is an appropriate twist of the quotient bundle on S 12 * .

* Q