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Topology Optimization of Industrial Robots:
Application to a Five-bar Mechanism

Sébastien Briota,∗, Alexandre Goldsztejna

aLaboratoire des Sciences du Numérique de Nantes (LS2N)
UMR CNRS 6004 – 1 rue de la Noë, 44321 Nantes, France

Abstract

Recent works introduced topology optimization in the design of robots, but the proposed methodologies
led to a local optimization of the performance. Moreover, most of performance indices used are not in strong
relation with easy-to-understand technological requirements.

We propose a methodology that is able to perform a topology optimization for robots, valid globally in the
workspace or for a set of given trajectories, and which is based on the use of technology-oriented performance
criteria. In order to enforce the chosen performance indices to be valid globally, optimal robot configurations
or trajectories for which extreme performance will be attained are computed, and iteratively updated.

In order to decrease the computational time associated with these performance indices, we exploit the
structure of the elastic models in order to reduce their computational complexity.

Finally, we use an optimization algorithm called the Linearization Method which gives results in a compu-
tational time equivalent to standard topology optimization algorithms, but its implementation is less complex
and makes it quite easy to perform modification or improvement.

The methodology is applied for the design of a five-bar mechanism. We show that our approach leaded to
a robust optimization of the robot performance over the whole workspace.

Keywords: Robot design, deformation, natural frequency, topological optimization, linearization method.

1. Introduction1

Robots are expected to perform a large variety of tasks. However, it is not wise to believe that a single2

robot will be able to achieve all conceivable tasks. Inherent robot limitations arise from its own physical3

performance (accuracy, deformation, vibrations, etc.), which are a combination of the performance of the4

mechanical architecture and of the controller.5

Good performance of the mechanical architecture can be obtained via optimal design [1]. The usual design6

methodology proposed by French [2] is illustrated in Fig. 1. The first step is to analyze the need in order to7

formulate the design problem. The second phase focuses on the preliminary design and aims to synthesize8

design concepts (for instance, new types of robot architectures [3, 4]) and to select the best design alternatives9

with respect to given criteria (e.g. complexity [5], singularity [6]). The third phase, denoted as the advanced10

design phase or embodiment of schemes, deals with the computation of the dimensions and shapes of the11

product element in order to fulfill performance criteria in terms of:12

• geometric performance: e.g. workspace size and shape under joint limitations, link collisions [7, 8],13

accuracy under input errors [9], under clearance [10, 11] or link manufacturing errors [12],14

• kinematics / kinetostatics: e.g. velocity transmission ratio [13, 14, 15], effort transmission [16, 17, 18,15

19, 20, 21],16
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Figure 1: French design process [2]

• dynamics: e.g. moving mass reduction [22], maximal input torques [23], static [24] or dynamic balanc-17

ing [25, 26] conditions, decoupled structure of the dynamics equations [27, 28],18

• elasticity: static or dynamic deformations, natural frequencies and vibrations [29, 30, 31].19

The fourth phase is the detailed design stage and consists in obtaining the working drawings of the product el-20

ements, in synthesizing their dimensional and geometric tolerances [32], and in manufacturing the prototypes.21

The design optimization problem treated in the advanced design phase is usually formulated as a multicri-22

teria optimization problem and it is most of the time solved in cascade in order to reduce its complexity [22].23

In a first step, the multicriteria optimization problem takes only into account geometric, kinematic and kineto-24

static constraints and objectives and allows for fixing the primary geometric parameters of the robot (lengths25

of links, angles between the joint axes etc.) [33]. In a second step, the secondary geometric parameters are26

found (size of the link cross-sections, link mass distribution, or more generally link shapes) taken into account27

dynamic, elastostatic and elastodynamic aspects [23].28

The link shape optimization of robots is probably the most time-consuming step of the optimal design29

process. This is due to the complexity of the model involved, especially the elastic models, which must be30

computed thousands of times (and even more) in order to calculate the robot elastic performance in many31

robot configurations for a given set of design variables [22]. This is necessary in order to ensure that the32

performance can be guaranteed in a wide range of robot configurations [15]. As a result, in order to decrease33

the time of computation, a common approach is to reduce the number of design variables. It can be easily34

reduced by doing a parametric optimization [22, 31], i.e. by modeling links using beam theory [34] and35

by considering that the geometry of the beam cross-sections is fixed (for instance, circle, square, rectangle,36

I-shape) but parameterized by a limited number of variables (radius for circles, edge lengths for squares,37

rectangles, I-shapes).38

This approach is known not to be the more accurate for finding the optimal design of links, contrary39

to topology optimization [35]. Topology optimization was for instance used for the design of compliant40

mechanisms [36, 37, 38]. This latter technique aims at optimizing the material distribution in a link in order41

to satisfy performance criteria: a classical problem met in the literature is to minimize the link mass under42

compliance constraints [39]. The link shape is meshed, and deformation and vibration models are computed43

using Finite Element Methods (FEM) [40]. The presence of one element of material is parameterized by a44

design variable varying from 0 to 1, 1 means that there is material while 0 represents a void. As a result, in45

order to have a refined prediction of the link behavior and a refined visualization of the link shape, this method46

usually leads to a vector of design variables in the optimization process containing dozens of thousands of47

components. Topology optimization is thus most of the time computationally expensive due to both the48

complexity of the models involved and the high number of design variables. Therefore, it is few used in robot49

design.50

However, recent works introduced this technique in the design of robots. First attempts optimized the51

robot topology for a single loading case. For instance, [41] optimized the torso of a humanoid robot with52

an objective of minimal mass under compliance constraints while [42, 43] optimized the pelvis of a walking53

robot. [44] employed topology optimization method to develop stiff and light frames of the lower body for54

stable walking of their humanoid robot. [45, 46] both optimized the shape of the upper-arm for a 6-degrees-55

of-freedom (dof) industrial robot. [47] improves the shape of a chassis for a mobile robot.56

Optimizing the robot link shapes for a single loading case does not take into account the intrinsic nature57

of a robot whose performance varies with the configuration, the loading and with the time. Therefore other58
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works proposed alternative approaches. For instance, [48, 49] considered a given set of reference control59

signals for the motion of the robot arm and look at some robot performance, such as overshoot, controller60

settling time, number of oscillations, final deviation or also actuator energy consumption. [50] optimized61

the link shapes of 3-dof robots under varying configurations while addressing the problem of the reduction62

of the computational time by dividing the optimization problem into subproblems with lower computational63

complexity. They minimized the strain energy while constraining the robot mass. [51] optimized the shape64

of the pelvis of a humanoid robot by using equivalent static loads with the objective to minimize the strain65

energy.66

All these works introduced the variation of the robot configuration but they constrained the robot to move67

on a limited set of trajectories. This is because the computation of their performance indices is extremely time-68

consuming. As a result, the optimization is still local, and it is not possible to ensure that the performance69

will be kept along another set of trajectories. Moreover, most of authors used criteria whose physical sense70

is not straightforward: For instance, it is difficult to say what is a good value for the strain energy or for the71

compliance while it seems simpler to understand what are good performance in terms of (static or dynamic)72

deformations, natural frequencies, input torques or actuator energy consumption. These indices are said to be73

“technology oriented” as we can relate their value to some technological constraints, as it will be detailed later74

in the paper.75

In the present paper, we propose a methodology in order to perform a topology optimization for robots,76

valid globally in the workspace or for a set of given trajectories, and which is based on the use of technology-77

oriented performance criteria. In order to enforce the chosen performance indices to be globally valid, optimal78

robot configurations or trajectories for which extreme performance will be attained are computed, and itera-79

tively updated.80

In order to decrease the computational time associated with the computation of performance indices in81

numerous configurations, we exploit the structure of the elastic models (which have the highest computa-82

tional costs) in order to reduce their computational complexity. Indeed, we show that it is possible to use83

configuration-independent model reduction techniques in order to considerably decrease the size of the stiff-84

ness and mass matrices of each link, expressed in their local frame. Then, these reduced matrices are used85

in order to build the configuration-dependent robot elastic models which are shown to be computationally86

efficient.87

Finally, we use an optimization algorithm called the Linearization Method (LM) [52] which has proven,88

for our class of problems, to give results in a computational time equivalent to standard topology optimiza-89

tion algorithms (e.g. Method of Moving Asymptotes (MMA) [53], Optimality Criteria (OC) (for instance,90

see [54]), Projected Gradient [55], Convex Linearization method (CONLIN) [56]) but its implementation is91

less complex and makes it quite easy to perform modification or improvement.92

The paper is written as follows. First, in Section 2, we introduce the LM algorithm. Then, in Section 3, we93

discuss the several technology-oriented performance indices that could be used for our optimization problem94

and explain our choice. We also provide a computationally efficient method for their calculation. Section 495

introduces the procedure to choose the optimal configurations and trajectories that will be used in order to96

compute the robot performance. In Section 5, the topology optimization of a five-bar mechanism is performed.97

Finally, in Section 6, our conclusions are drawn.98

2. Topology optimization formulation and resolution99

2.1. Problem formulation100

The topology optimization problems have the standard form of a nonlinear program:101

min
ρ∈[0,1]n

g(ρ)≤0
h(ρ)=0

f (ρ) (1)102

Each component of the vector of decision variables ρ ∈ [0, 1]n ⊆ Rn represents the density of a given element,103

defined in Section 3. The objective function and the constraints usually model some performance indices104
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(described in the next sections) or constraints on the structure (e.g., some constant mass for easing the solving105

process).106

The main characteristics of these optimization problems is the high number of variables, usually several107

thousands, and the availability of the symbolic expression of the gradient. Therefore, the aim of the solving108

method is basically to use as well as possible the linear models of the constraints to prevent too many function109

and gradient evaluations.110

The most used method for solving this class of problems is MMA [53]. It turns out to be more efficient111

than other methods, and is available under the form of a Matlab code, which is the only one that handles112

multiple inequality and equality constraints. However, it presents several drawbacks that lead us to consider113

alternative methods. First, MMA shows some unexplained surprising behaviors. In particular, it fails on114

badly conditioned problems, e.g., minimizing ρ1 + ρ2 subject to ρ2
1 + 1000ρ2

2 ≤ 11. Second, MMA and its115

corresponding code are very complex, making very difficult any modification or improvement. For these116

reasons, we considered using a more standard optimization method, namely the Linearization Method.117

2.2. The Linearization Method118

The projected gradient method is the most used method for large scale convex optimization. It consists119

in choosing the search direction by projecting the cost function opposite gradient on the constraints. This120

projection is well defined only for convex constraints. A straightforward extension to non-convex problems121

consists in projecting the cost function opposite gradient on the constraint linearization instead of the con-122

straint, and is called the Linearization Method. Up to our knowledge, this method seems to be first introduced123

in [57] (see [58, 59] for more comprehensive studies, including convergence properties of the method), but124

has not been applied to topology optimization so far. The basic idea of the method is a standard iteration125

ρk+1 = ρk + αkdk, where αk is a step size and dk is chosen as illustrated on Figure 2. The feasible set of the126

constraint g(ρ) = ρ2
1 + ρ2

2 − 1 ≤ 0 is the disk, and the linearization of the constraint at ρk is the half-plane127

g(ρk) + ∇g(ρk)(ρ − ρk) ≤ 0. The vector uk = ρk − sk∇ f (ρk) is projected on the linearization of the constraint128

to obtain vk. Then, dk is the vector vk − ρk, depicted as a thick arrow in Figure 2. We see that the projection129

process modifies the cost function gradient (the thin arrow) so that the new direction (the thick arrow) accounts130

the constraint. The scalar sk is used as a second step size for the method. The right hand side diagram of Fig-131

ure 2 shows the vectors dk obtained for different vectors ρk, and clearly illustrates that the method converges132

to the minimizer of the problem for sufficiently small step sizes. Formally, the Linearization Method is defined133

as follows:134

vk = projLk

(
ρk − sk∇ f (ρk)

)
(2)

ρk+1 = ρk + αk (vk − ρk). (3)

with135

Lk = {ρ ∈ Rn : g(ρk) + ∇g(ρk)T (ρ − ρk) ≤ 0, h(ρk) + ∇h(ρk)T (ρ − ρk) = 0}, (4)136

where the inequality stands component-wise. The projection operation projLk
(u) projects the vector u onto137

the set Lk, which is here defined as linear inequality and equality constraints. It is therefore convex, and the138

projection is well defined.139

Implementation details. The projection onto the convex set Lk, although well defined, is difficult in practice140

due to the high number of variables. We used an approximation computed by successive projections [60].141

The high number of variables although prevents any line search, which requires too many function evalua-142

tions. Therefore, we implemented a constant step size strategy αk = 1 and sk = s0 [61]. However, several143

studies have shown that enforcing a maximal norm for the step increases the overall efficiency. Therefore, we144

implemented the following heuristic step size rule:145

αk =

{
1 if ‖vk − ρk‖∞ ≤ ᾱ

ᾱ
‖vk−ρk‖∞

otherwise. (5)146

1Note that providing the diagonal of the Hessian to MMA allows solving this problem, but this second order information is not
available in the problems solved in the present paper.
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Figure 2: Left: Projected gradient. Right: Linearization method (vectors are scaled for the sake of lisibility).

The constants s0 and ᾱ need to be fixed for each problem with the usual drawbacks of constant step size147

methods. Too large initial steps cause divergence, while too small initial steps slow down the convergence.148

However, this behavior is easily identified on the first iterations of the algorithm, and a correct step size is easy149

to find. Another heuristic dedicated to topology optimization has been implemented. Preliminary experiments150

showed that the Linearization Method did not remove enough material during the first iterations. We fixed151

this issue by considering a descent direction with a larger infinite norm, having the effect of removing more152

material. Equation (2) is replaced by vk = projLk

(
ρk − skdk

)
with153

dki =


‖∇ f (ρk)‖∞ if ∇ f (ρk)i > 0
−‖∇ f (ρk)‖∞ if ∇ f (ρk)i < 0
0 otherwise

(6)154

This is indeed a descent direction since ∇ f (ρk)T (−dk) < 0. Finally, a simplified heavy-ball process [59] is155

added to the method to speedup its convergence. An implementation of this Linearization Method is available156

on the website of the second author.157

3. Performance indices158

3.1. Selection of the performance indices159

In our work, we focus on the selection on technology-oriented performance indices whose computational160

cost can be acceptable for an optimization process.161

The selection of the performance indices for the optimization of a mechanical system is not a simple task162

and is highly dependent on the sensitivity of the man-or-the-art. For instance, as mentioned in the introduction,163

past works [50, 51] used as criteria the strain energy or the compliance of the robot, but the physical sense of164

these indices is not straightforward. Indeed, engineers would wonder what is an acceptable value for the strain165

energy or for the compliance of the robot. Other works [48, 49] considered performance such as overshoot,166

controller settling time, number of oscillations, final deviation or also actuator energy consumption. All these167

indices are closer from technological constraints, however the authors constrain the robot to move on a limited168

set of trajectories in order to decrease the computational cost of the problem. Therefore, the optimization of169

the robot stays local.170

In order to solve these issues, we prefer to use for the optimization process the following indices (the list171

is not necessary exhaustive), which can be strongly related to the technological constraints:172

• robot inertial parameters: the authors of [50, 51] used the robot mass as a criterion performance, which173

is one of the most obvious performance index, as the mass plays an important role on the value of the174

input efforts, but also can be linked to the robot cost (lower mass leads to the use of less material for the175
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Figure 3: A five-bar mechanism (the gray pairs denote the actuated joints).

robot design). However, the robot mass is not necessarily the only inertial parameter to be taken into176

account. For instance, as shown in [62], the most influential term in the dynamic model of the five-bar177

mechanism (Fig. 3) is a grouped inertial parameter equal to zzR = zzi1 +`2
i1mi2, where zzi1 is the moment178

of inertia around z0 of the link between the points Ai and Bi computed at Ai, `AiBi is the distance between179

points Ai and Bi and mi2 is the mass of the link between the points Bi and C. Therefore, minimizing zzR180

is more likely to minimize the robot input torques than minimizing the robot mass.181

• robot input efforts or energy consumption: the cost of an actuator is related to its power or to its continu-182

ous or peak torques. We know that, for a usual robot, more than 90 % of the dynamic effects come from183

the “rigid behavior” of the mechanical architecture (remaining 10 % being due to elasticity, impacts184

due to clearance in joints, and unmodelled friction effects) [63]. Therefore, criteria based on the input185

efforts, energy or power consumption can be computed with a very good accuracy neglecting the elastic186

behavior of the links.187

• robot static deformations: static deformations under external (potentially variable) loading are classical188

performance indices when designing a mechanical system.189

• robot natural frequencies: the first natural frequencies are associated with the highest level of energy190

due to vibrations, and the first modes represent the displacements with the highest amplitude. Moreover,191

the first natural frequencies are also used in order to set the bandwidth of controllers: it is usually said192

that the cutoff frequency for a robot controller must be set around the half of the first natural frequency of193

the mechanical architecture [64]. If not, the controller can become unstable due to unmodeled dynamics.194

We believe that natural frequencies are more important indices than the amplitude of the robot dynamic195

deformations used [48, 49, 50, 51]: The lack of accuracy due to oscillation can be compensated thanks196

to advanced controller (e.g. [65, 66]) while low robot natural frequencies cannot be increased through197

control.198

The computation of the robot inertial parameters and input efforts presents no difficulty, and this is the199

reason why they are given in Appendix A and Appendix B. We show in these appendices that the expression200

of all rigid inertial parameters and of the rigid dynamic model is linear with respect to the decision variables.201

Below, we prefer to stress the issue of the calculation of the robot deformations and natural frequencies,202

whose cost of computation is huge, and which must be computed for numerous robot configurations. As203

mentioned in introduction, in order to considerably decrease the computation cost of these performance in-204

dices, we exploit the structure of the elastic models (which have the highest computational costs) in order205

to reduce their computational complexity. Indeed, we show below that it is possible to use configuration-206

independent model reduction techniques in order to considerably decrease the size of the stiffness and mass207

matrices of each link, expressed in their local frame. Then, these reduced matrices are used in order to build208

the configuration-dependent robot elastic models which are shown to be computationally efficient.209
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3.2. Static deformations210

In what follows, we consider a robot made of n bodies. The body i is meshed with m elements. The211

element j of the body i is denoted as the element i j (Fig. 4).212

3.2.1. Material interpolation scheme and stiffness matrix of a link213

Topology optimization uses the same physical model as in the FEM for modelling of a link, except that we214

use an interpolation scheme in order to define an artificial material. This method is called the Solid Isotropic215

Material with Penalization (SIMP, [67]) and is known to be the most effective and the most widely used216

material interpolation scheme. This material interpolation scheme is adopted in order to avoid having a result217

of optimization with too much intermediate material density, i.e. by denoting as ρi j the density associated with218

the element i j, in order to have a black (ρi j = 1) and white (ρi j = 0) solution without too many grey elements219

(0 < ρi j < 1).220

The SIMP scheme is defined as follows:221

Ei j = Emin + ρ
p
i j(E0 − Emin), with ρi j ∈ [0, 1] (7)222

where E0 is the Young’s modulus of the material, Emin is a very small stiffness value assigned to void regions223

in order to prevent the stiffness matrix from becoming singular, p (typically p = 3) is the penalization factor,224

and Ei j is the Young’s modulus of element j of the body i corresponding to the density variable ρi j.225

Then the stiffness matrix associated with the element i j is thus given by:226

Ki j = Ei jK(0)
i j =

(
Emin + ρ

p
i j(E0 − Emin)

)
K(0)

i j (8)227

where K(0)
i j is the stiffness matrix of a single element computed for a Young’s modulus equal to 1, and the228

potential elastic energy of the element is:229

Uei j =
1
2

uT
i jKi jui j (9)230

in which ui j is the vector of the element i j nodal displacements. The total elastic energy of the body i is thus231

equal to232

Uei =

m∑
j=1

Uei j =
1
2

m∑
j=1

uT
i jKi jui j =

1
2

uT
i totKi totui tot (10)233

where234

• ui tot = [uT
i1 . . . u

T
im]T is the vector stacking all nodal displacements for all m elements of the body i235
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• Ki tot is a block-diagonal matrix stacking on its diagonal all elementary stiffness matrices as follows:236

Ki tot =


Ki1 0

. . .

0 Kim

 (11)237

Finally, the link stiffness matrix Ki of the body i can be obtained by taking into account the fact that the238

nodal displacements of the element i j are equal to the nodal displacements of its adjacent elements. As a239

result, the expression of the vector ui tot can be obtained from a reduced set of independent coordinates ui [68]240

as follows:241

ui tot = Jiui (12)242

where, for a single body, Ji is constant. Introducing (12) into (10), we get243

Uei =
1
2

uT
i Kiui (13)244

where Ki = JT
i Ki totJi is the body stiffness matrix which relates the nodal displacements ui to the forces fi245

exerted on the nodes by the relation [34]:246

fi =
∂Uei

∂ui
= Kiui (14)247

In the following the paper, we consider that the components of the vector ui are ordered and split into two248

parts such as249

ui =

[
ui f

ui l

]
(15)250

where ui f is the vector of displacements of the nodes on which no force or displacements are imposed, while251

ui l is the vector of displacements for the nodes which are constrained with forces and/or displacements. The252

nodes whose displacements are represented by the vector ui l are named the interface nodes.253

3.2.2. Efficient computation of the elastostatic model254

The usual computation of the robot elastostatic model is shown in Appendix C. If this approach is used255

for the computation of the robot stiffness matrix K, its final dimension is huge (typically, in our problems, the256

dimension of K is greater than (105 × 105)), thus leading to a huge computational cost for solving the defor-257

mation problem given at equation (C.5), problem which must be solved for any tested robot configurations.258

It is possible to considerably reduce the computational cost for solving the elastostatic model by using a259

model reduction technique for the robot links as follows.260

In order to perform the reduction of the model size, we use the partitioning of the vector ui shown in (15).261

We denote as a the size of the vector ui f and as b the size of the vector ui l. From the definitions of ui f and262

ui l, we also partition the vector fi in (14) such that263

fi =

[
0(a×1)

fi l

]
(16)264

in which 0(a×1) is a zero vector of size a which represents the absence of interaction between the environ-265

ment and the nodes whose displacements are parameterized by ui f . Taking into account the separation of266

components in the vectors ui and fi, the equation (14) can be rewritten as:267 [
0(a×1)

fi l

]
=

K(11)
i K(12)

i
K(21)

i K(22)
i

 [ui f

ui l

]
(17)268

where K(11)
i is a (a × a) matrix, K(12)

i = K(21) T
i is a (a × b) matrix and K(22)

i is a (b × b) matrix.269
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(17) can be split into the two following equations:270

0(a×1) = K(11)
i ui f + K(12)

i ui l (18)271

fi l = K(21)
i ui f + K(22)

i ui l (19)272

By using (18), it is possible to express ui f as a function of the displacements of the interface nodes ui l as:273

ui f = Φs i ui l, in which Φs i = −
(
K(11)

i

)−1
K(12)

i (20)274

Φs i is the matrix of the static modes [69].275

Introducing (20) into (19), we get276

fi l = Kred
i ui l, in which Kred

i = K(21)
i Φs i + K(22)

i (21)277

while the potential elastic energy (13) can be rewritten as278

Uei =
1
2

uT
i lK

red
i ui l (22)279

Kred
i is the reduced stiffness matrix associated with the displacements of the interface nodes of the body i.280

This matrix is usually of small dimension (typically, in our 2D problems, of dimension (6 × 6), while in 3D281

it is of dimension (12 × 12)) and it does not depend on the robot configuration, which is a great advantage282

because it must be computed only once at each step of the optimization algorithm, whatever the number of283

tested configurations for the robot. Indeed, most of the computational cost of its computation is due to the284

computation of the matrix Φs i in (20). However, for two bodies i and k, the computation of the matrices Φs i285

and Φs k is independent. Thus the computation can be made in parallel on multi-core computers in order to286

save computational time.287

288

Considering now the robot made of n bodies, the full potential elastic of the system is given by:289

Ue =

n∑
i=1

Uei =
1
2

n∑
i=1

uT
i lK

red
i ui l =

1
2

ured T
tot Kred

tot ured
tot (23)290

where291

• ured
tot = [uT

1 l . . . u
T
n l]

T is the vector stacking all interface node displacements for all n robot bodies292

• K l is a block-diagonal matrix stacking on its diagonal all bodies stiffness matrices as follows:293

Kred
tot =


Kred

1 0
. . .

0 Kred
n

 (24)294

The reduced robot stiffness matrix Kr can be obtained by taking into account the fact the robot bodies are295

connected altogether through the interface nodes. As a result, the expression of the vector ured
tot can be obtained296

from a reduced set of independent coordinates ur [34, 68] as follows:297

ured
tot = Jr(q)ur (25)298

where Jr(q) depends on the robot configuration q but not on the nodal displacements ur (assumption of small299

perturbations).300

Introducing (25) into (23), we get301

Ue =
1
2

uT
r Krur (26)302
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where Kr = JT
r (q)Kred

tot Jr(q) is the robot stiffness matrix which relates the nodal displacements ur to external303

forces fr exerted on the considered nodes by the relation:304

fr =
∂Ue

∂ur
= Krur (27)305

For a 2D problem, the typical size of the matrix Kr is lower than (6n×6n), n being the number of robot bodies306

((12n × 12n) for 3D problems). Therefore, even if the problems (C.5) and (27) will give exactly the same307

results of computation, the resolution of the equation (27) is much more efficient than the resolution of the308

equation (C.5) due to the considerably reduced size of the problem.309

3.2.3. Stiffness performance index310

Usually, it is not necessary to constrain all deformations ur, but a set of them. Let us define a row vector311

e able to extract c components uc of ur such as uc = e ur. It is then quite usual to constrain the two-norm of312

this vector uc or its square (in order to avoid the use of square roots in the definition of the performance index)313

given by:314

c1 = uT
c uc = uT

r eT e ur (28)315

The derivative of this criterion with respect to the decision variable ρi j is given in Appendix E.316

3.3. Natural frequencies317

3.3.1. Mass matrix of a link318

The mass matrix associated with the element i j is given by:319

Mi j = ρi jM(0)
i j (29)320

where M(0)
i j is the mass matrix of a single element computed for a density equal to 1. Accordingly, the kinetic321

energy of the element due to elastic oscillations is:322

Tei j =
1
2

u̇T
i jMi ju̇i j (30)323

in which u̇i j is the vector of the element i j nodal velocities. The total kinetic energy of the body i is thus equal324

to325

Tei =

m∑
j=1

Tei j =
1
2

m∑
j=1

u̇T
i jMi ju̇i j =

1
2

u̇T
i totMi totu̇i tot (31)326

where Mi tot is a block-diagonal matrix stacking on its diagonal all elementary mass matrices as follows:327

Mi tot =


Mi1 0

. . .

0 Mim

 (32)328

Finally, differentiating (12) with respect to time and recalling that the matrix Ji is constant, we obtain:329

u̇i tot = Jiu̇i (33)330

Introducing (33) into (31), we get331

Tei =
1
2

u̇T
i Miu̇i (34)332

where Mi = JT
i Mi totJi is the body mass matrix.333
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3.3.2. Efficient computation of the elastodynamic model334

The usual computation of the robot elastodynamic model is shown in Appendix D. If this approach is used335

for the computation of the natural frequencies, as previously met for the computation of the elastostatic model,336

the cost of their evaluation will be prohibitive due to the huge dimension of the matrices to evaluate for any337

tested robot configurations.338

It is possible to considerably reduce the computational cost for computing the robot natural frequencies339

by using a Craig-Bampton model reduction technique [69] applied to each robot body as follows.340

The Craig-Bampton model reduction technique for a body is based on the assumption that the body nodal341

coordinates ui f (recall that ui f is the vector of displacements of the nodes on which no force or displacements342

are imposed) can be expressed as a function of the nodal coordinates ui l corresponding to the interface nodes343

plus a term characterizing their vibratory free behavior, as follows:344

ui f = Φs iui l +Φd iqi (35)345

where the term Φs iui l comes from the equation (20) and characterizes the node static displacements and the346

term Φd iqi is an additional term characterizing the body oscillatory behavior. Classically, the matrix Φd i has347

the following form348

Φd i =
[
u(1)

i f . . . u(s)
i f

]
(36)349

where the vector u(k)
i f is the kth eigenmode associated with the equation:350

M(11)
i üi f + K(11)

i ui f = 0 (37)351

in which the matrix K(11)
i is defined in (17) and the matrix M(11)

i is the part of the matrix Mi corresponding to352

the variables üi f . Thus, the dimension of the matrix M(11)
i is (a × a). In Φd i, s vectors are chosen among the353

a eigenmodes associated with (37). Usually, s << a (typically, in our examples, s is lower than 10).354

Now, using (35), the nodal displacement vector ui is thus given by355

ui =

[
ui f

ui l

]
= Bi ui r, where Bi =

[
Φs i Φd i

1b 0(b×s)

]
and ui r =

[
ui l

qi

]
(38)356

in which 1b is the identity matrix of dimension b. Taking into account once again that the matrix B does not357

depend on the robot configuration or of the link deformation (hypothesis of small perturbations), the derivative358

of (38) with respect to time leads to359

u̇i = Bi u̇i r (39)360

By using these transformations of coordinates, the body potential and kinetic elastic energies given at (13)361

and (31) becomes362

Uei =
1
2

uT
i rKi rui r (40)363

Tei =
1
2

u̇T
i rMi ru̇i r (41)364

where Ki r = BT
i Ki totBi and Mi r = BT

i Mi totBi are the reduced body stiffness and mass matrices. These ma-365

trices are usually of small dimension (typically, in our 2D problems, of dimension (12 × 12), while in 3D it is366

of dimension (18 × 18)) and they not depend on the robot configuration, which is a great advantage because367

they must be computed only once at each step of the optimization algorithm, whatever the number of tested368

configurations for the robot. Indeed, similarly as for the elastostatic model, most of the computational cost is369

due to the computation of the matrix Φd i in (36). However, for two bodies i and k, the computation of the370

matricesΦd i andΦd k is independent. Thus the computation can be made in parallel on multi-core computers371

in order to save computational time.372

373
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Considering now the robot made of n bodies, the full potential and kinetic elastic energies of the system374

are given by:375

Ue =

n∑
i=1

Uei =
1
2

n∑
i=1

uT
i rK

red
i ui r =

1
2

udyn T
tot Kdyn

tot udyn
tot (42)376

Te =

n∑
i=1

Tei =
1
2

n∑
i=1

u̇T
i rM

red
i u̇i r =

1
2

u̇dyn T
tot Mdyn

tot u̇dyn
tot (43)377

where378

• udyn
tot = [uT

1 r . . . u
T
n r]

T is the vector stacking all vectors ui r for all n robot bodies379

• Kdyn
tot and Mdyn

tot are block-diagonal matrices stacking on their diagonal all bodies stiffness and mass380

matrices as follows:381

Kdyn
tot =


K1 r 0

. . .

0 Kn r

 , Mdyn
tot =


M1 r 0

. . .

0 Mn r

 (44)382

The reduced robot elastodynamic model can be obtained by taking into account the fact the robot bodies383

are connected altogether through the interface nodes. As a result, the expression of the vector udyn
tot can be384

obtained from a reduced set of independent coordinates ud [34, 68] as follows:385

udyn
tot = Jd(q)ud (45)386

where Jd(q) depends on the robot configuration q but not on the nodal displacements ud (assumption of small387

perturbations). Moreover, for the analysis of the oscillatory free behavior, the configuration q is considered388

constant, thus389

u̇dyn
tot = Jd(q)u̇d (46)390

Introducing (45) and (46) into (42) and (43), we get391

Ue =
1
2

uT
d Kdud (47)392

Te =
1
2

u̇T
d Mdu̇d (48)393

where Kd = JT
d (q)Kdyn

tot Jd(q) and Md = JT
d (q)Mdyn

tot Jd(q) are the reduced robot stiffness and mass matrices.394

Using the Lagrange equations, which state that, in absence of external efforts, we have395

d
dt

(
∂L
∂u̇

)
−
∂L
∂u

= 0 (49)396

where L = Te − Ue, the reduced dynamic equation characterizing the robot free oscillations is397

Mdüd + Kdud = 0 (50)398

A solution ud k of this equation satisfies:399 (
ω2

kMd −Kd
)

ud k = 0 (51)400

where ωk = 2π fk, fk is the natural frequency associated with the kth natural mode of vibrations and ud k is its401

associated eigenvector.402

For a 2D problem, the typical size of matrices Kd and Md is lower than (12n×12n), n being the number of403

robot bodies ((18n × 18n) for 3D problems). Therefore, even if the problems (F.1) and (51) will give exactly404

the same results of computation for the first frequencies, the resolution of the equation (51) is much more405

efficient than the resolution of the equation (F.1) due to the considerably reduced size of the problem.406
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3.3.3. Vibration performance index407

The first robot natural frequency is used as a performance index:408

c2 = f1 (52)409

Its derivative with respect to the decision variables is given in Appendix F.410

4. Selection of the robot configurations and trajectories for the computation of the performance criteria411

All indices presented in Section 3 are configuration dependent (except for the case of the inertial param-412

eters) and are thus local by nature. In the present section, we propose a methodology that can be used in413

order to enforce the chosen performance indices to be valid globally in the workspace or for a set of given414

trajectories. This methodology is based on the choice of optimal robot configurations or trajectories for which415

extreme performance will be attained. This procedure was inspired from [70, 71].416

4.1. Selection of the robot trajectories for the computation of the input efforts417

As presented in the introduction, the main drawback of analyzing the dynamic performances with the418

manipulator input efforts is that they depend on the trajectory. In order to avoid this problem, one idea could419

be to make the manipulator moves on selecting “exciting” trajectories that make it exhibiting the highest420

values of the input efforts. To generate these exciting trajectories, it is necessary to define an optimization421

procedure.422

Several methods for exciting trajectory generation exist [72], the large majority of them being developed423

for dynamic parameter identification purpose. However, these methods have been developed in order to min-424

imize the uncertainty of estimation of the parameters to be identified, which is a different goal from what425

we target, i.e. finding trajectories on which the designed robot will be near to attain its maximal dynamic426

capacities.427

Therefore, we propose to adopt the following strategy, which is based on the assumption that we have428

an a priori estimation of the near-optimal design for the robot link that will be denoted as ρ̂. The choice of429

the variables ρ̂ is discussed in Section 4.3. From Appendix B, we know that the input efforts are linear with430

respect to the decision parameters ρ (see Eq. (B.4)) and that, for our estimated optimal design ρ̂, they will be431

given by:432

τ(t) = Γ(q(t), q̇(t), q̈(t)) ρ̂ (53)433

where t is the current time instant, τ is the vector of robot input efforts, q, q̇, q̈ are the robot active joint434

position, velocity and acceleration, respectively, and the matrix Γ is the Jacobian matrix of τ with respect to435

ρ̂.436

Let us now denote as T a trajectory described by N samples of time, leading to N samples of the joint437

positions, velocities and accelerations (q, q̇, q̈), (qk, q̇k, q̈k) being the value of (q(tk), q̇(tk), q̈(tk)) at the time438

instant tk. Considering all samples, we rewrite (53) as439

y = W ρ̂, where W stacks all samples of Γ such as W =


Γ(q1, q̇1, q̈1)

...

Γ(qN , q̇N , q̈N)

 (54)440

and y stacks all samples of τ such as y = [τ(t1)T . . . τ(tN)T ]T . Knowing a priori values for the actuator441

performance (such as the maximal velocity and motion ranges), the “exciting” trajectory will be found as the442

solution of the following optimization problem:443

max
T

c j(ρ̂) (for j = 4 or j = 5)

under |q̇i(tk)| ≤ q̇i
max

q ∈ [q] and x ∈ [x]
(55)444

where the functions c4 and c5 are defined in (B.10) and (B.11) and represent the squared values of the infinite445

norms of the input efforts and of their root-mean-square along the trajectory T . Usually, we know that the446

infinite norm of the effort should be lower than the actuator peak effort specification, while the root-mean-447

square should be lower than the actuator continuous effort. Moreover,448
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• q̇i(tk) is the value of the actuator i velocity at the sample time tk while q̇i
max is the maximal admissible449

velocity for the actuator i.450

• [q] represents the range of admissible joint configurations while [x] is the range of admission end-451

effector configurations.452

In order to reduce the complexity of the design problem, we parameterize the trajectory T as a succession453

of portions of motions, each portion being parameterized by a typical motion profile (e.g. 5th order polynomial454

laws, bang-bang profiles, etc). Therefore, the decision variables of the problem (55) are restricted to455

• the initial and final robot configurations for each portion of the trajectory T456

• plus the duration of the motion profile corresponding to each portion of the trajectory T .457

4.2. Selection of the robot configurations for the computation of elastic performance458

Similarly as in the previous section, it is considered here that we have an a priori estimation of the near-459

optimal design ρ̂. Therefore, the selection of the poses for the computation of the elastic performance will be460

found by solving the following optimization problems461

• in the case of the static deformations, for a given loading f:462

max
q

c1(ρ̂, f)

under q ∈ [q] and x ∈ [x]
(56)463

Note that several loadings f can be considered, resulting in the resolution of the problem (56) each time464

that the loading is changed.465

• in the case of the natural frequencies:466

min
q

c2(ρ̂)

under q ∈ [q] and x ∈ [x]
(57)467

where the functions c1 and c2 are defined in (28) and (52), and represent the deformations under a loading f468

and the first robot natural frequency, respectively.469

4.3. Discussion on the selection of near-optimal design parameters ρ̂470

The selection of the optimal robot configurations and trajectories defined above depends on an a priori471

value of some near-optimal design parameters ρ̂. This is an issue as we should not have an idea of them before472

solving the design optimization problem.473

A first approach would be to set ρ̂ as the starting point of the optimal design process, i.e. to set all474

components in ρ̂ at 1. This is of course not the best. The approach can be refined by using an iterative475

procedure:476

1. First, set all components in ρ̂ at 1. Let us denote this vector as ρ̂0.477

2. Then, solve the problems (55), (56) and (57) in order to find the exciting configurations q0 and trajec-478

tories T0 corresponding to the design ρ̂0.479

3. Run the design optimization problem (1) during v iterations (in our case study, 100 to 150 iterations480

where enough in our case). Save the final value for the design parameters into the variable ρ̂new.481

4. Start again the steps 2 and 3 until the change in the exciting configurations qnew and trajectories Tnew is482

“too big” (based on a criterion to be defined by the user).483

We used this iterative procedure in what follows. In practice, we ran the previous algorithm during no484

longer than three iterations and it was enough in order to obtain a robust solution.485
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Figure 5: The five-bar mechanism under consideration and its workspace (to scale).

5. Case study: topology optimization of a five-bar mechanism486

5.1. Definition of the optimal design problem in 2D487

In this section, we propose as a case study the topology optimization of a five-bar mechanism (Fig. 3)488

which is a robot composed of five revolute joints, two of them being active (at points A1 and A2) while the489

other are passive. This mechanism with two dof is able to position in a plane its end-effector located at point490

C with coordinates (x y). The bodies between points Ai and Bi are called the proximal links and the bodies491

between points Bi and C are called the distal links. We denote as “leg i” (i = 1, 2) the leg made with the joints492

located at Ai, Bi and C.493

In what follows, we chose as link lengths the design parameters of the DexTAR robot [73], which is a494

five-bar mechanism designed for high-speed pick-and-place operations. The link lengths are thus: `OA1 =495

`OA2 = 0.1375 m, `A1B1 = `A2B2 = 0.23 m and `B1C = `B2C = 0.23 m, where `PQ is the distance between any496

point P and Q (Fig. 3).497

The workspace of the DexTAR robot under consideration is plotted in Fig. 5 with the Type 2 singularity498

loci [74] corresponding to the robot working mode represented on the picture (branch index −1 for leg 1, +1499

for leg 2 [75]).500

In this workspace, we define a rectangular region, associated with the aforementioned branch indices for501

the robot legs, in which we decide to guarantee the robot performance performance as was done in [76]. This502

region is called the regular dextrous workspace [77] and is defined here as a rectangle centred in (0 0.295) m503

of width equal to 0.25 m and of height equal to 0.15 m (Fig. 5). This region fixes the boundaries of the504

space search for finding the optimal robot configurations and trajectories for the computation of the robot505

performance.506

We impose that both proximal (distal, resp.) links have the same shape for two main reasons:507

• this will allow a symmetrical distribution of the mechanism performance in the dextrous workspace508

with respect to the y-axis509

• the number of design variables is divided by two in this case, which decreases the computational time510

for the robot elastic performance.511

Finally, we decide to solve the following optimization problem:512
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• the objective is to minimize the RMS of the actuator torques for any trajectory defined as follows:513

– the trajectories are parameterized by fifth-order polynomial motion profiles [64],514

– the regular dextrous workspace is discretized with a grid made of 21 × 11 = 231 points, as shown515

in Fig. 5, and the initial and final points for the trajectories are selected among these 231 points516

– the duration t f of the trajectory between the initial and final points is parameterized by the function517

t f = 0.75p for p an integer, p ∈ {0, 1, 2, . . . , 8} (thus t f ∈ [0.1001, 1])518

– the exciting trajectory T ∗ selected for being used in the optimal design problem are found by solv-519

ing the optimization problem (55) when considering near-optimal design parameters ρ̂ in which520

all components are equal to 1 for the initial optimization round, or equal to the optimized design521

parameters at the previous design optimization round.522

Due to the symmetry imposed in the leg design and in the location and size of the dextrous operational523

workspace, we consider only the RMS of the actuator of leg 1.524

• the constraints are:525

– to ensure that the elastic translational displacement δC of the end-effector under both external526

loadings f1 = [0 N 100 N 1 Nm]T and f2 = [100 N 0 N − 1 Nm]T (where the components of527

fi represent the force applied at C along the x and y-axes and the moment around z, respectively)528

is lower than δmax = 0.2 mm (in terms of norm) and that the elastic rotational displacement θC of529

the distal link of leg 1 at C is lower than θmax = 0.25 mrad530

– to ensure that the first natural frequency f1 is bigger than fmin = 180 Hz531

wherever in the dextrous regular workspace. The selection of the exciting configurations qδi , qθi (i = 1, 2)532

and q f for the computation of these performance indices is based on the methodology explained in533

Section 4.2 (where qδi is the selected exciting configuration for the computation of the translational534

deformation when the loading fi is applied, while qθi is the selected configuration for the computation of535

the rotational deformation for the same loading; q f is the configuration for the computation of the first536

natural frequency).537

The design optimization problem can thus be formalized as538

min
ρ

F = τ2
1(T ∗)

subject to g1 = δ2
C(f1,qδ1) − δ2

max ≤ 0
g2 = θ2

C(f1,qθ1) − θ2
max ≤ 0

g3 = δ2
C(f2,qδ2) − δ2

max ≤ 0
g4 = θ2

C(f2,qθ2) − θ2
max ≤ 0

g5 = fmin − f1(q f ) ≤ 0

(58)539

In the next section, results obtained when applying this methodology are presented.540

5.2. Results and discussion for the 2D model541

5.2.1. Results542

The initial design domain for the proximal and distal links is represented in Fig. 6. Each link is made543

of two holes (voids) at its extremity in which the joints will be inserted (axis of the motor at points Ai, and544

passive revolute joints for all other holes). For the meshing of the links, QUA4 finite elements (i.e. four-nodes545

rectangular planar elements) of size 1× 1 mm and thickness of 2 cm are used. The planar stress assumption is546

used. This assumption is valid because all links are considered coplanar and the efforts are applied in the links547

plane. If these hypotheses were not verified, other assumptions should have been taken into account [78].548

Links are considered to be made of steel with Young’s modulus E0 = 210 GPa, Poisson’s ratio ν = 0.3549

and density of 7800 kg/m3. As a result, 20932 elements are used for meshing the proximal links while the550

distal links are made of 14208 elements (Figs. 7(a) and 7(b)).551
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Figure 6: Initial design domain for the design of the robot link (to scale). All dimensions are in millimeters.

For all optimization rounds, in order to obtain a smoother layout without checkerboards problem, a filter-552

ing procedure is used that consists in the modification of the density variables assigned to the elements with553

the information of its neighborhoods as was proposed in [79].554

Then, we applied our approach in order to obtain the optimal design of our mechanism. All models and555

optimization algorithms have been encoded with Matlab in the Windows 7 environment.556

We started with the selection of the configurations and trajectories for the computation of the robot perfor-557

mance. The selected configurations for the elastic performance computation are given in Tabs. 1 and 2 (row558

corresponding to round 1) while the trajectory of the computation of the torques is given in Fig. 8. For this559

first round, we use links made of the full initial design domain for the computation of the elastic and dynamic560

performance (Figs. 7(a) and 7(b)).561

We then ran the optimization algorithm during 100 iterations. The results in terms of design for the two562

links is shown in Figs. 7(c) and 7(d).563

We then selected new configurations and trajectories based on the use of the near optimal design of the564

links obtained at the end of the first round. The selected configurations for the elastic performance computation565

are given in Tabs. 1 and 2 (row corresponding to round 2) while the trajectory of the computation of the torques566

is the same as the one presented in Fig. 8. We can see that the configuration qθ2 for the computation of the567

rotational deformations when the wrench f2 is applied changed. This is of critical importance for the global568

robustness of the final solution.569

We then ran the optimization algorithm during 150 iterations and we stopped the computation. The results570

in terms of design for the two links is shown in Figs. 7(e) and 7(f).571

Once again, we selected new configurations and trajectories based on the use of the near optimal design572

of the links obtained at the end of the first round. The new selected configurations for the elastic performance573

computation are given in Tabs. 1 and 2 (row corresponding to round 3) while the trajectory of the computation574

of the torques is still the same as the one presented in Fig. 8. We can see now that all configurations and575

trajectories are unchanged. Therefore we went for the final round of optimization.576

The final results in terms of design for the two links is shown in Figs. 7(g) and 7(h). For this last round,577

there was no constraint on the number of maximal iteration, we waited for the convergence of the algorithm.578

We consider that the algorithm converged when the maximal change between two sequential iterations for any579

component of the density vector ρ is lower than 0.01. The algorithm stopped after 597 iterations, with a max-580

imal constraint violation of 8 · 10−3 % (the maximal deformation in rotation in the whole workspace is equal581

to 0.250008 mrad, instead of 0.25 mrad which is negligible). In totality, the full procedure of optimization582

(including the selections of the trajectories and configurations) took 98 minutes with a Pentium 4 2.70 GHz,583
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Table 1: Configurations (positions of the end-effector) used for the computation of the elastostatic performance
Const. for translational displacements Const. for rotational displacements

qδ1 qδ2 qθ1 qθ2
x [m] y [m] x [m] y [m] x [m] y [m] x [m] y [m]

Round 1 0 0.25 −0.0625 0.25 0 0.25 −0.0625 0.25
Round 2 0 0.25 −0.0625 0.25 0 0.25 0.125 0.37
Round 3 0 0.25 −0.0625 0.25 0 0.25 0.125 0.37

Table 2: Configurations (positions of the end-effector) used for the computation of the elastodynamic performance
q f

x [m] y [m]
Round 1 0 0.25
Round 2 0 0.25
Round 3 0 0.25

16 GB of RAM.584

For this optimal design, the RMS of the torques along the trajectory shown in Fig. 8 is of 98 Nm while it585

was of 27 Nm for the final design, i.e. the torque RMS was divided by almost 4.586

The values of the deformations and natural frequencies within the dextrous workspace are shown in Fig. 9.587

We can see that the deformations (first natural frequency, resp) are lower (bigger, resp.) than the defined588

acceptable values, i.e. that our approach leaded to a robust optimization of the robot performance over the589

whole workspace.590

In order to show the importance of the update of the value of qθ2 between Round 1 and Round 2, we591

optimized the robot for constraints calculated for the configurations and trajectories selected at the initial592

round only (row corresponding to round 1 in Tabs. 1 and 2 for the configurations, Fig. 8 for the trajectory).593

The algorithm stopped after 824 iterations, and 94 minutes of computation on the same computer as previously.594

The final optimized links are shown in Fig. 10 and the values of the deformations and natural frequencies are595

depicted in Fig. 11. It can be shown that the desired boundaries on the deformations are not respected (the596

maximal deformation in rotation in the whole workspace is equal to 0.35 mrad, which is far beyond the limit597

of 0.25 mrad – see Fig. 11(c)). This shows that it is critical to update the selected worst case configuration /598

trajectory during the solving process.599

5.2.2. Discussions600

Comparison of LM and MMA in terms of convergence time. In order to show the efficiency of the Linearization601

Method (LM) for this class of problem, we decided to solve the optimization problem (58) with another602

optimization method known for its computational efficiency: the Method of Moving Asymptotes (MMA) [53].603

We used the Matlab code kindly provided by Prof. K. Svanberg and ran the optimization problem (58) by604

defining the same stopping conditions as previously. The MMA algorithm stopped after 1785 iterations. In605

totality, the full procedure of optimization (including the selections of the trajectories and configurations) took606

143 minutes on the mentioned computer, so almost 45 % of additional time with respect to LM, however, the607

final torque RMS was of 25.9 Nm, i.e. MMA proposes a robot whose torque RMS on the exciting trajectory is608

lower than with LM, but the difference is very low (1 Nm, i.e. almost 1 % of the final objective). The results609

in terms of robot link design with MMA are shown in Fig. 12. Surprisingly, they are sensibly different, which610

seems to indicate that several local minima exist.611

The evolution of the torque RMS as a function of the computational time in the last optimization round612

is shown in Fig. 13. It can be seen than both functions reach the same values of the objective in almost the613

same time, even if MMA goes a bit lower (but in a more longer time) than LM. Thus, LM is a valuable and614

computationally-efficient method for topology optimization.615

Computational efficiency of the reduction techniques. We compared the time requested for the computation616

of the constraints when:617
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(a) Design of the proximal links: initial design domain (b) Design of the distal links: initial design domain

(c) Design of the proximal links: end of round 1 (d) Design of the distal links: end of round 1

(e) Design of the proximal links: end of round 2 (f) Design of the distal links: end of round 2

(g) Design of the proximal links: end of the final round (h) Design of the distal links: end of the final round

Figure 7: Evolution of the design of the five-bar links at the end of each optimization round: the links are shown in gray-scale (black
elements correspond to ρi j = 1, white elements to ρi j = 0, and gray elements to 0 < ρi j < 1)
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Figure 8: Trajectory used for the computation of the input torques.

• they are calculated with the model reduction techniques introduced in Section 3618

• they are calculated without model reduction techniques, as shown in Appendix C and Appendix D.619

On the aforementioned computer, the computation of the constraints when using model reduction tech-620

niques took 4.19 sec. When using the full models, it took 8.22 sec. In order to better understand the benefits of621

the model reduction technique, we plotted in Fig. 14 the evolution of computational cost for the computation622

of the first natural frequency as a function of the number of tested configurations. For the computation of623

a single configuration, the computational costs are equivalent (4.41 sec for the model reduction technique,624

4.19 sec without it). The benefits appear when we compute the natural frequency for two configurations: in625

this case, the total computation time with the model reduction technique is of 4.52 sec, to be compared with626

8.37 sec in order to compute the frequency without reduction technique. For twenty configurations, the com-627

putation with model reduction techniques took 6.44 sec, instead of 85 sec without it. Therefore, using model628

reduction techniques allows the considerable decrease of the computational cost in robot design optimization.629

5.3. Solving the problem in 3D630

The optimization problem can also be solved in 3D, even if in such a case the computational time is631

increase. In Fig. 15, we show the proximal and distal links of a five-bar mechanism which have been obtained632

when solving the following optimization problem:633

• the objective was to minimize the robot mass634

• the constraints are to ensure that the elastic translational displacement δC of the end-effector under the635

external loading f = [0 N 50 N 10 N 0 Nm 0 Nm 1 Nm]T (where the components of f represent636

the force applied at C along the x, y and z-axes and the moment around the x, y and z-axes, respectively)637

is lower than δmax = 0.025 mm (in terms of norm) and that the elastic rotational displacement θC of the638

distal link of leg 1 at C is lower than θmax = 0.25 mrad wherever in the dextrous regular workspace. The639

selection of the exciting configurations qδ and qθ for the computation of these performance indices was640

the based in the methodology explained in Section 4.2.641

The design optimization problem can thus be formalized as642

min
ρ

F = mrobot

under g1 = δ2
C(f,qδ) − δ2

max ≤ 0
g2 = θ2

C(f,qθ) − θ2
max ≤ 0

(59)643

Here, we chose as link lengths the design parameters of the DexTAR robot [73] from the company Meca-644

demic. The link lengths are thus: `OA1 = `OA2 = 0.056 m, `A1B1 = `A2B2 = 0.09 m and `B1C = `B2C = 0.09 m645
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Figure 9: Evolution of the deformations and of the first natural frequency in the workspace for the optimized design

(a) Design of the proximal links (b) Design of the distal links

Figure 10: Optimal designs of the five-bar links using the configurations and trajectories selected at the initial round for the compu-
tation of the objective and constraints: the links are shown in gray-scale (black elements correspond to ρi j = 1, white elements to
ρi j = 0, and gray elements to 0 < ρi j < 1)
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(e) First natural frequency

Figure 11: Evolution of the deformations and of the first natural frequency in the workspace for the optimized design using the
configurations and trajectories selected for the initial round.

(a) Design of the proximal links (b) Design of the distal links

Figure 12: Optimal designs of the five-bar links using MMA algorithm: the links are shown in gray-scale (black elements correspond
to ρi j = 1, white elements to ρi j = 0, and gray elements to 0 < ρi j < 1)
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Figure 13: Torque RMS as a function of the computational time in the last optimization round for LM (full line) and MMA (dotted
line) procedures.
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Figure 14: Evolution of computational cost for the computation of the first natural frequency as a function of the number of tested
configurations.

(Fig. 3). The selected dextrous regular workspace is a rectangle of dimension 12 × 4 cm centred in x = 0 m646

and y = 0.11 m.647

The initial design domain for the proximal and distal links is represented in Fig. 16 (planar view, the initial648

width of both links is of 20 mm). For the meshing of the links, HEXA8 finite elements (i.e. eight-nodes cubic649

planar elements) of size 1.3 × 1.3 × 1.3 mm are used. Links are considered to be made of steel with Young’s650

modulus E0 = 210 GPa, Poisson’s ratio ν = 0.3 and density of 7800 kg/m3. As a result, 75200 elements are651

used for meshing the proximal links while the distal links are made of 21760 elements.652

We consider that the algorithm converged when the maximal change between two sequential iterations for653

any component of the density vector ρ is lower than 0.05. The algorithm stopped after 4 hours and 42 minutes654

of computation with a Pentium 4 2.70 GHz, 24 GB of RAM.655

In order to accelerate the computation of the elastostatic properties by avoiding the inversion of the ma-656

trices K(11)
i in (20) for both links, we computed the matrices Φs i using a “pcg” (Preconditioned Conjugate657

Gradient) algorithm [80]. Indeed, we computed each column of the matrix Φs i by solving the system of658

equations with the “pcg” algorithm:659

K(11)
i Φs i j = −K(12)

i j (60)660

in which Φs i j (K(12)
i j , resp.) is the jth column of Φs i (K(12)

i , resp.). The computation can be accelerated by661
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(a) Design of the proximal links (b) Design of the distal links

Figure 15: Optimal designs of the five-bar links using 3D models
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Figure 16: Initial design domain for the design of the robot link (planar view, to scale). The initial width of both links is of 20 mm.
All dimensions are in millimeters.

doing a computation in parallel of each column of the matrix Φs i (indeed, we used 6 CPUs in parallel on our662

computer to do so).663

We also introduced in the optimization problem some constraints on the limits of the first natural fre-664

quency. The results obtained were similar to the ones shown in Fig. 15, but with much longer computational665

time (around 6 days and 8 hours). This considerable increase of the computational cost was due to the calcu-666

lation of the matrices Φd i in (36) for both links which is obtained by solving an eigenvalue problem of large667

dimension (matrices of size (256581 × 256581) for the proximal links). Furthermore, it should be mentioned668

that this eigenvalue problem cannot be solved in Matlab with the classical “eig” or “eigs” functions which669

requests too much memory allocation (our computer went out of memory), but with a “lobpcg” (Locally Op-670

timal Block Preconditioned Conjugate Gradient) algorithm [81] which is known to be efficient for computing671

eigenvalues problems of very large dimensions.672

6. Conclusion673

Topology optimization aims at optimizing the material distribution in a link or a set of links in order to sat-674

isfy performance criteria related to the link elastic behavior. Recent works introduced topology optimization675

in the design of robots, but the proposed methodology led to a local optimization of the robot performance (for676

a few trajectories or configurations). Moreover, most of performance indices used are not in strong relation677

with easy-to-understand technological requirements.678

In the present paper, our primary contribution was the proposition of a methodology that was able to per-679

form a topology optimization for robots, valid globally in the workspace or for a set of given trajectories, which680
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was based on the use of technology-oriented performance criteria. In order to enforce the chosen performance681

indices to be globally valid, optimal robot configurations or trajectories for which extreme performance will682

be attained are computed, and iteratively updated.683

In order to decrease the computational time associated with the computation of performance indices in684

numerous configurations, we exploited the structure of the elastic models in order to reduce their computa-685

tional complexity. Indeed, we showed that it was possible to use configuration-independent model reduction686

techniques in order to considerably decrease the size of the stiffness and mass matrices of each link, expressed687

in their local frame. Then, these reduced matrices are used in order to build the configuration-dependent robot688

elastic models which are shown to be computationally efficient.689

We used an optimization algorithm called the Linearization Method which has proven, for our class of690

problems, to give results in a computational time equivalent to standard topology optimization algorithms but691

its implementation was less complex and made it quite easy to perform modification or improvement.692

The methodology was successfully applied for the design of a five-bar mechanism and we showed that693

our approach leaded to a robust optimization of the robot performance over the whole workspace. We also694

showed that the Linearization Method algorithm was as competitive as the standard algorithms for topology695

optimization in terms of convergence time, such as the Method of Moving Asymptotes.696

Finally, we would like to mention that the proposed approach is not software dependent: we used Mat-697

lab for finite element modeling for reasons of simplicity, but co-simulation with any FEA software able to698

communicate with Matlab (or another software allowing the encoding of the optimization procedure) could699

be used.700

Appendix A. Inertial parameters701

Inertial parameters are performance indices which are global by nature, as they do not depend on the robot702

configuration. As known from [64], each robot body can be characterized by ten (rigid) inertial parameters: its703

mass, three first moments of inertia (also called static moments), three moments of inertia and three products704

of inertia.705

Let us consider the body i meshed with m elements. For the element j of the body i, denoted as the element706

i j, we define as:707

• xi j, yi j and zi j the position of the origin Mi j of the element i j in the local frame (Oi, xi, yi, zi) attached708

to the body i (Fig. 4).709

• ρi j the density associated with the element i j,710

• mi j the mass of this element,711

As a result, and from [64], we have the following formulas for the computation of the inertial parameters:712

• body’s mass: mi =
∑m

j=1 mi jρi j,713

• body’s first moments of inertia: mxi =
∑m

j=1 mi jxi jρi j, myi =
∑m

j=1 mi jyi jρi j and mzi =
∑m

j=1 mi jzi jρi j,714

• body’s moments of inertia: xxi =
∑m

j=1 mi j(y2
i j + z2

i j)ρi j, yyi =
∑m

j=1 mi j(x2
i j + z2

i j)ρi j, zzi =
∑m

j=1 mi j(x2
i j +715

y2
i j)ρi j,716

• body’s products of inertia: xyi =
∑m

j=1 mi jxi jyi jρi j, xzi =
∑m

j=1 mi jxi jzi jρi j, yzi =
∑m

j=1 mi jyi jzi jρi j.717

Grouping all inertial terms for the body i in the vector χi = [mi mxi myi mzi xxi yyi zzi xyi xzi yzi]T , we718
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finally have the following expression:719

χi = Ψi ρi, where Ψi = mi j



1 1 . . . 1
xi1 xi2 . . . xim

yi1 yi2 . . . yim

zi1 zi2 . . . zim

y2
i1 + z2

i1 y2
i2 + z2

i2 . . . y2
im + z2

im
x2

i1 + z2
i1 x2

i2 + z2
i2 . . . x2

im + z2
im

x2
i1 + y2

i1 x2
i2 + y2

i2 . . . x2
im + y2

im
xi1yi1 xi2yi2 . . . ximyim

xi1zi1 xi2zi2 . . . ximzim

yi1zi1 yi2zi2 . . . yimzim



and ρi =


ρi1
ρi2
...

ρim

 (A.1)720

in which mi j is a constant mass as we consider here that the body is meshed with equal size elements. The721

matrix Ψi is the Jacobian of χi with respect to ρi.722

Grouping all inertial terms for all bodies in the vector χ = [χT
1 . . . χT

n ]T (n being the number of robot723

bodies), we finally get the expression:724

χ = Ψ ρ, where Ψ =


Ψ1 . . . 0
...

. . .
...

0 . . . Ψn

 and ρ =


ρ1
...

ρn

 (A.2)725

Any linear combination of the inertial parameters can be then obtained by multiplying the vector χ by a row726

vector a leading to a performance criterion c1 equal to727

c3 = aχ = aΨ ρ (A.3)728

The performance criterion c3 is linear with the decision variables ρ and the computation of its derivative with729

respect to ρ is straightforward.730

Note that the linear combinations allowing the computation of the grouped inertial parameters with the731

most effects on the dynamics of the robot can be found using the methods [82, 83].732

Appendix B. Input efforts and energy consumption733

From [64], we know that the input efforts, power and energy functions of any robot (assuming that the734

robot is rigid) are linear with respect to the inertial parameters, i.e. we have:735

τ = Φ(q, q̇, q̈)χ (B.1)736

P = q̇Tτ = q̇TΦ(q, q̇, q̈)χ (B.2)737

H = h(q, q̇)χ (B.3)738

where τ is the vector of robot input efforts, P is the power delivered by the actuators, H is the total energy of739

the system, q, q̇, q̈ are the robot active joint position, velocity and acceleration, respectively, and the matrix740

Φ(q, q̇, q̈) is the Jacobian matrix of τwith respect to χ (and is also called the observation matrix) while h(q, q̇)741

is the Jacobian matrix of H with respect to χ. By introducing (A.2) into (B.1) and (B.3), we obtain742

τ = Γ(q, q̇, q̈) ρ, where Γ(q, q̇, q̈) = Φ(q, q̇, q̈)Ψ (B.4)743

P = α(q, q̇, q̈) ρ, where α = q̇TΓ(q, q̇, q̈) = q̇TΦ(q, q̇, q̈)Ψ (B.5)744

H = β(q, q̇) ρ, where β(q, q̇) = h(q, q̇)Ψ (B.6)745

The power P and energy H could be used directly as performance criteria. However, two different (but746

complementary) performance indices could be defined from the expression of the input efforts:747
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• the infinite norm ‖τi‖∞ of the input effort for the motor i (τi being the ith component of the vector τ)748

along the trajectory (q, q̇, q̈) that should be lower than the actuator peak effort specification,749

• the root-mean-square τi of the input effort for the motor i along the trajectory (q, q̇, q̈) than should be750

lower than the actuator continuous effort specification.751

In order to compute these indices, let us sample the trajectory (q, q̇, q̈) at a given frequency, leading to752

N samples for (q, q̇, q̈). We denote as yi the vector containing all values of τi computed along the sampled753

trajectory (q, q̇, q̈): the kth component of yi is equal to τ(k)
i = Γi(qk, q̇k, q̈k) ρ, where (qk, q̇k, q̈k) is the value of754

(q, q̇, q̈) at the sample k and Γi is the ith row of Γ. As a result, yi takes the form:755

yi = Wi ρ, where Wi =


Γi(q1, q̇1, q̈1)

...

Γi(qN , q̇N , q̈N)

 (B.7)756

By definition, we have757

‖τi‖∞ = max
√

yi ∗ yi (B.8)758

in which the operator “∗” represents the term-by-term product and759

τi =

√
yT

i yi

N
(B.9)760

In order to avoid conserving square roots in the expressions of the performance criteria, it is better to use761

as performance index the square of the infinite norm ‖τi‖∞ and of the root-mean-square τi. As a result, by762

using (B.7), the selected performance criteria based on the input efforts are:763

c4 = ‖τi‖
2
∞ = max(yi ∗ yi) = max (Wi ρ ∗Wi ρ) (B.10)764

c5 = τ2
i =

1
N

yT
i yi =

1
N
ρT WT

i Wi ρ (B.11)765

The derivatives of these quadratic forms with respect to the decision variables is still straightforward. Obvi-766

ously, all these criteria will differ depending on the chosen trajectory (q, q̇, q̈). Discussion on the selection of767

an optimal trajectory is the aim of the Section 4.768

Appendix C. Usual computation of the robot elastostatic model769

Considering the robot made of n bodies, and by using the expression of the body potential energy (13),770

the full potential elastic of the system is given by:771

Ue =

n∑
i=1

Uei =
1
2

n∑
i=1

uT
i Kiui =

1
2

uT
totKtotutot (C.1)772

where773

• utot = [uT
1 . . . u

T
n ]T is the vector stacking all nodal displacements for all n robot bodies774

• Ktot is a block-diagonal matrix stacking on its diagonal all bodies stiffness matrices as follows:775

Ktot =


K1 0

. . .

0 Kn

 (C.2)776
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The robot stiffness matrix K can be obtained by taking into account the fact the robot bodies are connected777

altogether through the interface nodes. As a result, the expression of the vector utot can be obtained from a778

reduced set of independent coordinates u as follows [34, 68]:779

utot = J(q)u (C.3)780

where J(q) depends on the robot configuration q but not on the nodal displacements u (assumption of small781

perturbations).782

Introducing (C.3) into (C.1), we get783

Ue =
1
2

uT Ku (C.4)784

where K = JT (q)KtotJ(q) is the robot stiffness matrix which relates the nodal displacements u to external785

forces f exerted on the nodes by the relation [68]:786

f =
∂Ue

∂u
= Ku (C.5)787

Appendix D. Usual computation of the robot natural frequencies788

Considering the robot made of n bodies, and by using the expression of the body kinetic energy (31) the789

full kinetic elastic of the system is given by:790

Te =

n∑
i=1

Tei =
1
2

n∑
i=1

u̇T
i Miu̇i =

1
2

u̇T
totMtotu̇tot (D.1)791

where Mtot is a block-diagonal matrix stacking on its diagonal all bodies mass matrices as follows:792

Mtot =


M1 0

. . .

0 Mn

 (D.2)793

Differentiating (C.3) with respect to time, and keeping in mind that for the robot frequency analysis, the794

configuration q is nominal is considered as constant:795

u̇tot = J(q)u̇ (D.3)796

Introducing (D.3) into (D.1), we get797

Te =
1
2

u̇T Mu̇ (D.4)798

where M = JT (q)MtotJ(q) is the robot mass matrix.799

Using the Lagrange equations, which state that, in absence of external efforts, we have800

d
dt

(
∂L
∂u̇

)
−
∂L
∂u

= 0 (D.5)801

where L = Te−Ue in which the expression of Ue comes from (C.1), we get the dynamic equation characterizing802

the robot free oscillations803

Mü + Ku = 0 (D.6)804

A solution ut k of this equation satisfies:805 (
ω2

kM −K
)

ut k = 0 (D.7)806

where ωk = 2π fk, fk is the natural frequency associated with the kth natural mode of vibrations and ut k is its807

associated eigenvector.808

28



Appendix E. Derivative of the elastostatic performance index with respect to the decision variables809

The derivative of the criterion (28) with respect to the decision variable ρi j is equal to:810

∂c1

∂ρi j
= 2uT

c e
∂ur

∂ρi j
(E.1)811

The term ∂ur
∂ρi j

can be obtained by the differentiation of the equation (27) with respect to the decision812

variable ρi j:813

0 =
∂

∂ρi j
(Krur) =

∂Kr

∂ρi j
ur + Kr

∂ur

∂ρi j
(E.2)814

leading thus to815

∂ur

∂ρi j
= −K−1

r
∂Kr

∂ρi j
ur (E.3)816

The computation of the derivative of the matrix Kr with respect to the decision variable is not computa-817

tionally efficient (problem of data storage due to the large number of decision variables), but, by analyzing the818

expression (E.3), we see that it is not necessary to compute ∂Kr
∂ρi j

but the product ∂Kr
∂ρi j

ur which can be obtained819

in a more efficient way. Indeed, by using (25), this product becomes equal to820

∂Kr

∂ρi j
ur = JT

r (q)



0
. . .

∂Kred
i

∂ρi j

. . .

0


Jr(q)ur = JT

r (q)



0
. . .

∂Kred
i

∂ρi j

. . .

0


ured

tot (E.4)821

or also822

∂Kr

∂ρi j
ur = JT

r (q)



0
...

∂Kred
i

∂ρi j
ui l
...

0


(E.5)823

where
∂Kred

i
∂ρi j

is the ith block term on the diagonal, all other terms being null.824

Then, by differentiating the equation (21), it is possible to compute the term
∂Kred

i
∂ρi j

ui l in (E.5) as follows:825

∂Kred
i

∂ρi j
ui l =

∂

∂ρi j

(
K(21)

i Φs i + K(22)
i

)
ui l =

∂K(21)
i

∂ρi j
Φs iui l + K(21)

i
∂Φs i

∂ρi j
ui l +

∂K(22)
i

∂ρi j
ui l (E.6)826

The derivatives of K(21)
i and K(22)

i , which are nothing else than the derivatives of the terms of the matrix Ki827

given in (17), can be found from the differentiation of the matrix Ki given by:828

∂Ki

∂ρi j
= p ρp−1

i j E0 JT
i



0
. . .

K(0)
i j

. . .

0


Ji (E.7)829

where K(0)
i j is the jth block term on the diagonal, all other terms being null.830
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The other terms K(21)
i

∂Φs i
∂ρi j

in (E.6) can be found from the differentiation of the expression K(11)
i Φs i =831

−K(12)
i deduced from (20)832

∂K(11)
i

∂ρi j
Φs i + K(11)

i
∂Φs i

∂ρi j
= −

∂K(12)
i

∂ρi j
⇒

∂Φs i

∂ρi j
= −

(
K(11)

i

)−1
∂K(11)

i

∂ρi j
Φs i +

∂K(12)
i

∂ρi j

 (E.8)833

in which the derivatives of K(11)
i and K(12)

i can be found from the partitioning of the matrix ∂Ki/∂ρi j in (E.7),834

using the same partitioning as for the matrix Ki of (17).835

Finally, by multiplying this equation by K(21)
i (which is equal to K(12) T

i ) and by using the expression of836

Φs i given in (20), we found837

K(21)
i

∂Φs i

∂ρi j
= ΦT

s i

∂K(11)
i

∂ρi j
Φs i +

∂K(12)
i

∂ρi j

 (E.9)838

Appendix F. Derivative of the elastodynamic performance index with respect to the decision variables839

From [84], we know that derivative of the criterion (52) with respect to the decision variable ρi j can be840

obtained as follows. First, let us consider the Rayleigh quotient which is given by:841

ω2
k =

uT
d kKud k

uT
d kMud k

(F.1)842

Expanding (F.1) for the first mode of vibration, we have843

uT
d 1Kdud 1 − ω

2
1uT

d 1Mdud 1 = 0 (F.2)844

By introducing (12), (36) and (46) into (F.2), we know that845

uall = JdBJtotud 1 = Jallud 1, where B =


B1 0

. . .

0 Bn

 and Jtot =


J1 0

. . .

0 Jn

 (F.3)846

and that847

Kd = JT
allKallJall, Md = JT

allMallJall (F.4)848

in which Jall = JdBJtot and uall = [uT
1 tot . . . u

T
n tot]

T groups all nodes variables (ui tot being defined in (10)), and849

where850

Kall =


K1 tot 0

. . .

0 Kn tot

 and Mall =


M1 tot 0

. . .

0 Mn tot

 (F.5)851

Thus, introducing all these expressions in (F.2), we get852

uT
allKalluall − ω

2
1uT

allMalluall = 0 (F.6)853

Then, differentiating (F.6) with respect to ρi j, we get the derivative of ω1 with respect to ρi j as:854

∂ω1

∂ρi j
=

1
2ω1uT

allMduall

uT
all

(
∂Kall

∂ρi j

)
uall − ω

2
1 uT

all

(
∂Kall

∂ρi j

)
uall + 2

∂uT
all

∂ρi j

(
Kall − ω

2
1Mall

)
uall

 (F.7)855

where856

∂Kall

∂ρi j
=



0
. . .

∂Ki tot
∂ρi j

. . .

0


and

∂Mall

∂ρi j
=



0
. . .

∂Mi tot
∂ρi j

. . .

0


(F.8)857
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in which the expressions of ∂Ki tot
∂ρi j

and ∂Mi tot
∂ρi j

are given by858

∂Ki tot

∂ρi j
= p ρp−1

i j E0



0
. . .

K(0)
i j

. . .

0


(F.9)859

and860

∂Mi tot

∂ρi j
=



0
. . .

M(0)
i j

. . .

0


(F.10)861

where K(0)
i j and M(0)

i j are defined at (8) and (29), respectively, and they are the jth block terms on the diagonal,862

all other terms being null.863

As, at the natural frequency f1,
(
Kall − ω

2
1Mall

)
uall = 0, and taking into account that f1 = 2πω1, we finally864

have:865

∂ f1
∂ρi j

=
1

4πω1uT
allMduall

(
uT

all

(
∂Kall

∂ρi j

)
uall − ω

2
1 uT

all

(
∂Kall

∂ρi j

)
uall

)
(F.11)866
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