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I
mage-guided hepatic surgery is progressively becom-
ing a standard for certain interventions. However,
limited dose radiation requirements result in lower

quality images, making it difficult to localize tumors
and other structures of interest. In this paper we pro-
pose an automatic registration method exploiting the
matching of the vascular trees, visible in both pre and
intra-operative images. The graphs are automatically
matched using an algorithm combining a Gaussian Pro-
cess Regression and biomechanical model. This process
is automatic, does not require any initialization and han-
dles large intra-operative deformations.

1 INTRODUCTION

Cone-Beam Computed Tomography (CBCT) is an imaging
technique in which the X-ray tube and detector panel rotate
around the patient, making it easier to deploy in an operating
room. While its use is rapidly evolving, it suffers from
limited image quality. As a consequence, certain lesions are
not visible in CBCT images. This problem can be addressed
by fusing intra-operative images with pre-operative data in
order to compensate for their lack of detail.

Research in image fusion can be split in two main cate-
gories: image-based and feature-based methods [8]. Image-
based methods take advantage of the intensity on the whole
images. However they are sensitive to the definition of an
appropriate similarity metric and they are highly dependent
on initial conditions. In feature-based methods, registration
is determined from a set of sparse corresponding features.
Such methods tend to be less accurate away from the fea-
tures. In either case, a model of deformation is needed to
extrapolate the displacement field computed at the feature
level to the entire organ. Such deformation models do not
usually ensure that the deformation is physically coherent
with the organ biomechanics.

The central idea of our paper is to use a biomechanical
model in combination with a vessel graph matching method
to compute physically plausible elastic registration of the
pre- and intra-operative images of a vascularized organ.

2 Method
The core of our method consists in extracting the vascular
tree from both the pre and intra-operative images, and then
automatically match the associated graphs. A biomechanical
model of the liver is then used to extrapolate the displace-
ment field over the entire organ.

2.1 Extraction of vascular graphs
The vascular tree is segmented in both the pre-operative CT
and the intra-operative CBCT images using pipeline that
combines the methods described in [7] and [10]. The seg-
mented images are converted to topologies composed of
nodes and edges organized to a tree using center-line extrac-
tion. We employ an algorithm based on Dijkstra minimum
cost spanning tree originally presented in [9] and extended
in [4]. The liver parenchyma is segmented from the pre-
operative CT using ITKSnap.

2.2 GPR-based vessel graph matching
Our graph matching algorithm is based on [6]. It does
not require initialization and handles partial matching as
well as topological differences. The method relies on Gaus-
sian process regression (GPR) which is a non-parametric
kernel-based probabilistic model used to compute a smooth
geometrical mapping[5]. In the initial phase, the algorithm
iteratively constructs a set of hypotheses where one hypothe-
sis corresponds to a set of matched bifurcations in the source
and target graphs. Each hypothesis chosen by the matching
process is associated with a quality measure which is the
normalized number of inliers, i.e. the proportion of mapped
source graph points close to the target graph. However the
hypothesis selection of this algorithm is not reliable enough
for the intra-operative data large deformation we need to
handle. Therefore we improved it by recomputing the num-
ber inliers metric using the biomechanical model (described
in section 2.3) transformation to select the best hypothesis.

2.3 Simulating soft tissue deformations
In order to improve the graph matching algorithm as well as
to perform the augmentation of the intra-operative view, we
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chose to rely on a biomechanical model of the organ, able to
handle large deformations and computationally very efficient.
We follow the approach of [3] for creating a patient-specific
representation, based on a co-rotational linear elastic formu-
lation. The model requires the finite element mesh of the
organ of interest. In the actual scenario, we employ a mesh
composed of linear tetrahedra which is generated using the
method presented in [1] directly from the binary mask of the
liver. For both the graph-matching and augmentation, the
deformations imposed are modeled by prescribed displace-
ments of points: let us suppose that the actual point si located
inside the volume of the liver should be displaced to a new
position ti. First, the position si is mapped to its embedding
tetrahedra via barycentric mapping which remains constant
during the deformation. Then, the FE model is deformed
using the vector (ti − si) as the prescribed displacement of
the mapped position si which is imposed to the model via
penalty method.

3 Experiments and results

We applied our method to one swine dataset with large de-
formations due to different pose, pneumoperitoneum and
laparoscopic surgical manipulation. The Fig. 1 shows the
intra-operative CBCT image, where the vascular tree is not
clearly visible. Then the tree and the preoperative model is
augmented in Fig. 2.

Three inserted landmarks, up to 7.61 cm distant from
bifurcations, were used to compute the target registration
error (TRE). Our method achieve a mean TRE of 7.64 mm
with 4.24 mm standard deviation. We compared it to the
GPR matching [6], that results in mean TRE 13.7 mm with
6.67 mm standard deviation. The GPR deformation and
matching becomes unreliable with large deformation and few
matching features far from interest landmarks, the common
intra-operative scenario. The Fig. 3 depicts this scenario and
results.

One human liver deformation was simulated using Hyper-
elastic Saint VenantKirchhoff model. Perpendicular pressure
forces were applied on most of the liver surface, to produce
a deformation similar to the one in [2]. The deformed vessel
bifurcations have a 6.27 mm mean, 5.77 mm standard de-
viation, 22.4 maximum displacement. To resemble CBCT
vessels segmentation target graph leafs were randomly re-
moved until only 60% of original bifurcations remained and
2 mm random noise was added. A coarse volumetric mesh
with 1328 evenly distributed nodes, that cover the entire liver,
was deformed and used to compute the TRE. Our method
achieved TRE of 5.38 mm with 3.67 mm standard deviation.
While the GPR matching [6] results are mean TRE 18.0 mm
with 11.1 mm standard deviation.

4 Discussion and conclusion

We have demonstrated that the use of a (bio)mechanical
model noticeable improves the evaluation of the matching
hypotheses. The computed deformation of the liver outside
the registered domain has a good accuracy, leading the way

Figure 1: Intra-operative CBCT. Vessels are difficult to identify.
The inserted landmarks are in green

Figure 2: Augmented CBCT, showing clearly the vascular tree (in
blue) and the target and registered landmarks (in dark
and light green respectively).

Figure 3: Axial and sagital view of the registered graphs. The
target graph is in green. The registered graphs using
the GPR and the biomechanical model are plotted in
black and red, respectively. Similarly the evaluation
landmarks centroids.

to a useful tool for clinicians. Using the visible liver surface
may probably help us to increase the global accuracy in the
near future.
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