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Abstract

The Graph Edit Distance (GED) problem is a very interesting problem
that relates to Graph Matching (GM) problems, wherever a graph models
a problem-defined pattern. Solving the GED problem leads to compute the
matching between two given graphs by minimizing their GED, which is also
called a dissimilarity measure between them. It has many application do-
mains such as structural pattern recognition and chemical Structure-Activity
Relationships (SAR). GEDE" (Edges no Attributes) is a sub-problem of
the GED problem that deals with a special type of graphs where edges do
not carry attributes. They are both NP-hard problems and it is difficult to
find the optimal solution in reasonable time. Many heuristics exist in the
literature that give suboptimal solutions. Some other works have used math-
ematical programming tools to model and solve these two problems. The
present work takes advantage of a powerful Mixed Integer Linear Program
(MILP) formulation and proposes a heuristic called Local Branching to solve
the GEDP"4 problem. Mainly, a MILP model is iteratively modified by
adding additional constraints to define neighborhoods in the solution space,
which are explored using a black-box solver. A problem-dependent explo-
ration is performed to find efficient solutions. Lastly, the proposed heuristic
is evaluated considering two factors: its computational time and solution
quality against literature heuristics and exact methods. The computational
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experiments reported in this paper show that the proposed local branch-
ing heuristic strongly outperforms the literature heuristics for the GEDFn4
problem.
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1. Introduction

Graphs have been widely used to model objects and patterns, especially
in fields like pattern recognition, biology and cheminformatics. A graph con-
sists of two sets: vertices and edges. The first set represents a certain number
of components that form an object, and the set of edges models the relations
between those components. Moreover, vertices and edges can carry informa-
tion and characteristics via sets of nominal or numerical (or both) values,
which are called attributes or labels. In pattern recognition field, graphs are
used to represent, for instance, objects in images or videos and also to exploit
the relations between them. In chemistry field and precisely when consid-
ering the chemical molecules, graphs form a natural representation of the
atom-bond structure of molecules. Each vertex of the graph then represents
an atom, while an edge represents a molecular bond ([1]). Figure 1 shows
an example of graphs modeling objects in images and chemical molecules.
After modeling the objects using graphs, an important task is to compare
the graphs between each other. This is useful to perform pattern search and
classification, object tracking and recognition and many other tasks. In the
graph space, graph comparison can be achieved by solving the Graph Match-
ing (GM) problems. The solution of a GM problem enables comparing two
graphs and find similarities between the objects (modeled by the graphs).
GM problems are known to be challenging and hard to solve, therefore in
the literature there is a growing interest in finding efficient and fast methods
for such problems.

In the literature, GM problems are separated into different categories.
Conte et al. ([3]) presented a list of matching problems that basically falls
into two main categories: exact isomorphism and error tolerant GM prob-
lems. Solving exact isomorphism problems leads to decide if two graphs are
identical in terms of structure and attributes on the vertices and edges. In
the case of error-tolerant problems, it is intended to find the best match-
ing between two graphs even if they differ in their structure and/or their



Figure 1: Example of graphs modeling objects in images on the left ([2]), and a chemical
molecule with its associated graph on the right.

attributes. The second category of problems is more important, especially
in the task of finding dissimilarities between unknown and known objects.
A well-known problem that belongs to the category of error-tolerant GM
problems is the Graph Edit Distance (GED) problem. Solving this problem
implies minimizing a dissimilarity measure that stands for the cost needed
to transform one graph into another through a series of edit operations ([4]).
The available edit operations are substitution, insertion and deletion for ver-
tices or edges, and a cost is associated to each operation. The dissimilarity
measure is then defined by the sum of the costs of the edit operations re-
alized. Figure 2 shows an example of two graphs edit operations. In the
past years, the GED problem has gained more attention, mainly because it
has been shown to generalize other GM problems such as maximum common
subgraph, graph and subgraph isomorphism ([5, 6]). Due to its application in
domains like cheminformatics, a sub-problem of the GED problem, referred
to as GED®"4 problem, has recently attracted the attention of researchers.
This sub-problem differs from the GED problem by the fact that the input
graphs do not have attributes on their edges, implying a null cost for edge
substitution operations. Zeng et al. ([7]) have shown that this particular case
of the GED problem with unitary costs for deletion and insertion edit opera-
tions is NP-hard. This implies by the way that GED®"4 and GED problems
are so. From the literature it is evinced that, despite its interest, there is a
lack of efficient heuristic algorithms dedicated to the GED®"4 problem.
Many algorithms can be found that deal with the GED problem and sub-
sequently with GED®". They can be split into two categories: exact and
heuristic methods. Starting with the exact ones, two Mixed Integer Lin-
ear Program (MILP) formulations are proposed by Lerouge et al. ([8]) to
solve the GED problem. The first is a direct formulation of the problem,
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Figure 2: GED process to transform a graph G into graph G’. Edit operations: Substitu-
tion of uy — vg, uz — vy and ey 3 — fop; deletion of ve and eq o

since it consists in minimizing the cost of matching the vertices plus the
cost of matching the edges (matching implies either substitution, deletion or
insertion). The second MILP is a reformulation of the first MILP, with a
reduced number of variables and constraints. A very efficient MILP formu-
lation (M ILP’H) is introduced by Justice and Hero ([9]), but it is restricted
to the GEDP"4 problem. A quadratic formulation for the GED problem,
referred to as Quadratic Assignment Problem (QAP), has been proposed by
Bougleux et al. ([10]). The quadratic objective function is the cost of as-
signing vertices and edges simultaneously. Moving to the heuristic methods,
an approach called Bipartite Graph matching (BP) to solve the GED prob-
lem is introduced by Riesen et al. ([11]). It consists in solving the Linear
Sum Assignment Problem (LSAP) for vertices only, with a cost matrix that
includes costs of vertices and edges. Given two graphs G and G’, a cost as-
signment matrix [Cy;] is computed: any element Cj; corresponds to the cost
of the edit operation required to transform vertex u; from G into v; from G'.
Also, Cj; includes an estimation of the cost induced by matching the inci-
dent edges. Solving the resulting assignment problem yields a matching of
vertices from which a matching of the edges can be deduced. BP is known to
be very fast, but it only considers the local structure around vertices, rather
than the global one. Later on, many improvements have been proposed as
in ([12, 13, 14]), where mainly the cost matrix used is modified and more
information about the neighborhood of vertices are considered. Neuhaus et
al. ([15]) introduced another heuristic that relies on a beam-search method
to solve the GED problem. It mainly builds the search tree for all possible
vertex and edge edit operations that can occur, and then only processes a



fixed number (the beam size) of nodes per level of the search tree. An in-
teresting algorithm is presented by Ferrer et al. ([16]) which is basically a
combination of BP and beam-search approaches. It solves the LSAP prob-
lem to compute an initial solution, and then it tries to improve it by a local
search. Two matched vertices are swapped and result in a new solution. The
enumeration of the swapped vertices is performed using beam-search. Al-
ways in the context of heuristic approaches, Bougleux et al. ([17]) recently
have proposed two algorithms called Integer Projected Fixed Point (IPFP)
and Graduate Non Convexity and Concavity Procedure (GNCCP). Both use
the QAP formulation for the GED problem to compute an initial solution
and then iteratively try to improve it by using mathematical transformations
and projection methods. All these methods have been designed mainly for
the GED problem but can be also applied to the GED®™* problem.

In the present work, a Local Branching (LocBra) heuristic is proposed to
deal with the GED®"4 problem. LocBra was originally introduced by Fis-
chetti et Lodi ([18]), as a general metaheuristic based on MILP formulations.
Typically, a local branching heuristic is a local search algorithm, which im-
proves an initial solution by exploring a series of defined neighborhoods via
the solution of restricted MILP formulations. The intention of this work is to
provide an efficient and dedicated local branching heuristic for the GED®n4
problem, which strongly outperforms the available literature heuristics.

The remainder is organized as follows. Section 2 presents the definition of
the GED and GED?" problems and a review of the M ILP7 formulation.
Section 3 is devoted to a more detailed presentation of the literature’s heuris-
tics for the GED problem. Section 4 details the proposed local branching
heuristic, while Section 5 reports the results of the intensive computational
experiments. Finally, Section 6 highlights some concluding remarks.

2. Definition and modelisation of the GED®"4 problem

2.1. The GED®™ problem
To introduce the general GED problem, the definition of the attributed
and undirected graph is first given.

Definition 1. An attributed and undirected graph is a 4-tuple G = (V, E, u, )
where, V' is the set of vertices, E is the set of edges, such that E CV x V,
pu:V — Ly (resp. £€: E — Lg) is the function that assigns attributes to a
vertex (resp. an edge), with Ly (resp. Lg) the set of all possible attributes
for vertices (resp. edges)



Ly and Ly may contain either numeric or symbolic (or both) attributes.

Next, given two graphs G = (V, E, ,&) and G' = (V' E' )1/, £'), solving
the GED problem consists in finding the least cost complete edit path that
transforms one graph source G into another graph target G’. An edit path
is a set of vertices and edges edit operations, which are:

e u — v: substitution of two vertices u € V and v € V| i.e. u is matched
with v

u — e: deletion of vertex u € V

e ¢ — v: insertion of vertex v € V'

e — f: substitution of two edges e € E and f € F’, i.e. e is matched
with f

e — €: deletion of edge e € £
e ¢ — f: insertion of edge f € £’

with e refers to the null vertex or edge to represent deletion and insertion.
Therefore, an edit path is of this form \(G,G") = {o1,...,0r}, with o; an
elementary vertex or edge edit operation and k is the number of operations.
A complete edit path differs from an edit path by some properties and re-
strictions such as: k is a finite positive number, a vertex/edge can have at
most one edit operation applied on it.

Definition 2. The Graph Edit Distance between two graphs G and G’ is
defined by:

Apmin(G,G") = min 4(o; 1

6.6 D SIN®) 0

AET(G,G'
0 ENG,G")

where ['(G, G') is the set of all complete edit paths, d,,;, represents the
minimal cost obtained by a complete edit path \(G,G"), and ¢ is a function
that assigns the costs to elementary edit operations e.g. for u € V,v € V/,
l(u —v) =||p(u) — /' (v)]|L, a defined distance measure between two sets of
attributes. Generally, a positive constant is used for deletion and insertion
edit operations e.g. f(u — €) =Ll(e > v) =7,Yu € Vv € V' and 7 € R™.
Edge operations follow the same logic as vertices for their edit operations
costs.



For the GED¥" problem, the graphs are the same as in Definition 1,
except that the attribute set for edges is empty (Lrp = {¢}). Consequently,
the costs of edge edit operations are 0 for substitution and a constant for
insertion and deletion (i.e. f(e — f) = 0, l(e — €) = lle — f) = T,
Vee E,f € F).

2.2. The MILP’® formulation

MILP7H is a mathematical formulation proposed in ([9]) that deals with
the GEDF" problem. The main idea consists in determining the permu-
tation matrix minimizing the L; norm of the difference between adjacency
matrix of the input graph and the permuted adjacency matrix of the target
one. The details about the construction of the model can be found in ([9])
and only a short description is provided here. The formulation is as follows:

N N ]
w,syterggNXN (f(x’ 5t) = Z Zg (p(ue), 1 (vg) iy + (5 T (855 + tz‘j)>)

i=1 j=1
(2)
such that

N N
ZAz‘kxkj - Zﬂ%cA/cj + 85 —tij =0 Vi, j € {1, N} (3)
k=1 c=1

N N
D wa=) my=1Vke{l,N} (4)
i=1 j=1

where A and A" are the adjacency matrices of graphs G and G’ respectively,
0 (u(wi), f/(v;)) — R* is the cost function that measures the distance be-
tween two vertices attributes. Matrices x, s and t are boolean permutation
matrices of size N x N, with N = |V| + |V/|. x represents the vertices
matching i.e. x;; = 1 means vertex u; € V U {e} is matched with vertex
v; € V'U{e}. Matrices s and ¢ are for edges matching. Hence, the objective
function (Eq. 2) minimizes both, the cost of vertices and edges matching.
Constraints 3 guarantee that when matching two couples of vertices, the
edges between them have to be matched. Constraints 4 guarantee the in-
tegrity of the permutation matrix z.

The M ILP7 formulation is the core formulation used in the local branch-
ing heuristic proposed in this paper to solve the GED®"4 problem. This
formulation was shown to be the most efficient for the GED®"4 problem
among the other formulations found in the literature [19].
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3. A review of the literature heuristics

In this section, details about the literature heuristics that solve the GED
and GEDF" problems are provided.

BeamSearch is a heuristic for the GED problem presented by Neuhaus et
al. ([15]). A beam-search heuristic is an algorithm that explores a truncated
search tree to compute a feasible solution to the problem. Given two graphs
G = (V,E,u,&) and G = (V' E', i/, &), the heuristic first picks a vertex
u € V at the root node, and builds the child nodes corresponding to all
possible edit operations on u. For all v € V', all substitution edit operations
are (u — v), plus one delete operation (u — €). This defines the first level
of the search tree. Then, only the first a nodes, starting from the left side of
the tree, are selected to continue the construction of the search tree, with «
the beam size, which is an input parameter to the algorithm. For each of the
selected nodes, another vertex u € V' is chosen and the process for creating
and selecting child nodes is repeated. Reaching the bottom of the search
tree means a complete edit path is built by the way defining a solution. The
best solution found is finally returned. This method is known to be very fast
because generally the chosen beam size is small.

SBPBeam is a heuristic for the GED problem introduced by Ferrer et al.
([16]). It combines two heuristics: the bipartite (BP) graph matching and the
beam search heuristics. The first one has been originally presented in ([11])
and consists in building a special cost matrix for vertices assignment. Given
two graphs G = (V, E, u, &) and G' = (V', E', i/, '), the cost matrix is of size
N x N, with N = |V| + |V'], and is divided into four parts. The first one
represents the substitution of vertices and is of size |V | x|V’|. The second and
third parts are respectively for vertices deletion and insertion and are of size
V| x |[V] and |V'| x |[V']. Only diagonal values represent valid assignments,
so the rest is set to a high value (00) to avoid being selected. Finally, the
fourth part is just to complete the matrix and preserve the symmetric form:
it is of size |V'| x |V| and contains only 0 values. The cost matrix is then as
follows:



[ Cil1 €C12 ... Cim | Cle OO ... OO i
Co1 Coa i Com | OO Cae
00
Chl Cph2 .. Cpm | OO ... OO Cpe (5>
Cel OO oo | 0 0
00 Co - 0
oo | ¢ . .0
| 00 ... 00 Cen | O ... 0 0
with n = |V] and m = |V'|. The cost computation for substitution,

deletion and insertion are computed by adding the cost induced by assigning
one vertex to another, and the cost of assigning the edges connected directly
to both vertices (estimation for edges assignment induced by matching two
vertices). The problem becomes a linear sum assignment problem (LSAP),
which can be solved in polynomial time. This approach is very fast but
it only considers information about the local structure around vertices of
the graphs. The SBPBeam heuristic uses a beam-search approach as a local
search to improve the initial solution obtained by the BP heuristic. Each level
of the search tree corresponds to all possible exchanges of the components
(vertices or edges) of two edit operations from the initial solution. At each
node the cost of the edit path is computed and the best solution found so far
is updated. A selected number of nodes are kept at each level of the search
tree, according to the value of the beam size. As the chosen beam size is
usually small, in practice, SBPBeam heuristic is very fast.

IPFP is a heuristic that solves the GED problem and has been proposed
by Bougleux et al. ([17]). It is based on a heuristic proposed in ([20]) to
find a solution to the quadratic assignment problem (QAP). Bougleux et
al. model the GED problem as a QAP problem and then propose to apply
IPFP heuristic to compute a solution. The idea of IPFP is to try to lin-
early approximate the quadratic objective function by its 1st-order Taylor’s
expansion around an initial solution 2°. The quadratic function is derived to
obtain a linear function. From this linear function, a new LSAP problem is
solved to obtain a solution b, which gives the direction of the largest possible
decrease in the quadratic function. Then, the quadratic function consists in
minimizing the QAP in the continuous domain along the direction given by
b. This is repeated and after some iterations the method converges to a local
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Figure 3: Local branching flow. a) depicts the left and right branching. b) shows the
neighborhoods in the solution space

minimum of the relaxed problem. Generally, IPFP converges very fast but
the solution quality obtained highly depends on the initial solution 2°, which
can be computed using fast heuristics such as BeamSearch or BP heuristics.
To limit the computational time, the method has a maximum number of
iterations (it) before it stops, in case it has not converged.

GNCCEP is introduced by Bougleux et al. in ([17]). It is also a heuristic
for the GED problem that works similarly to IPFP by approximating the
QAP problem. The quadratic objective function is reformulated as a convex-
concave function by introducing a parameter ¢ that controls the concavity
and convexity of the function. The heuristic decreases iteratively the value
of ¢ by small positive quantities (e.g. d = 0.1) in order to smoothly switch
between convex and concave relaxations. Each time, it minimizes the new
objective function using IPFP heuristic. GNCCP converges when ( reaches

the value of —1 or when a valid vertices assignment is found at an iteration.
More details about IPFP and GNCCP heuristics can be found in ([17]).

4. A Local Branching Heuristic for the GED®"4 problem

4.1. Main features of the Local Branching heuristic

This section covers the functionalities and the main features of the local
branching heuristic specifically implemented to solve the GED®™4 problem.
This heuristic version follows the original version introduced by Fischetti and
Lodi ([18]), with improvements outlined when appropriate.
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Algorithm 1: LocBra algorithm

H oW N =

© 0 N o ok WwN

10
11
12

13
14
15
16
17
18
19

20
21
22
23
24

bestUB := UB := oo; 2* := T := 7 := undefined;
tl := elapsed_time := dv := ¢ := dv_cons := 0;
mode_dv := false; opt := false; first_loop := true;
Function
LocBra(k, k_dv, total_time_limit, node_time_limit, dv_max, _max, dv_cons_max)
Output: z*, opt
InitLocBra();
ImprovedSolution();
elapsed_time := tl;
while elapsed_time < total_time_limit and dv < dv_maz and dv_cons < dv_cons-max do
tl := min{tl, total_time_limit — elapsed_time};
status := MIP_SOLVER(tl, UB, 7);
tl := node_time_limit;
if f(z) = f(z) and mode_dv = true then ( :=(+ 1 else
(.= 0;
if ¢ > (_max then Diversification(); continue;
if status = “opt_sol_found” then
if = # ¥ then ImprovedSolution() else
Diversification() ;
end
if status = ”infeasible” then Diversification() ;
if status = “feasible_sol_found” then
if f(Z) < UB then
‘ ImprovedSolution();
else
if mode_dv = false then Intensification() else
Diversification();
end
end
elapsed_time := elapsed_time + tl;
end
End

11



MILP formulations are very efficient to model hard combinatorial opti-
mization problems. Often, the solution of these formulations is done using
a black-box solver, e.g. CPLEX. This kind of exact approach is not capable
of solving real-life instances, mainly because the size of the instances are big
and require a lot of computational time and very large memory size. How-
ever, since many years an increasing number of publications have shown the
efficiency of heuristics based on the solution of the MILP formulations. This
is the case of the local branching method (referred to as LocBra) that is
developed here specifically for the GEDF"4 problem. This method is a local
search heuristic, which embeds the truncated solution of MILP’H formula-
tion into a search tree. The basis of LocBra is illustrated in Figure 3. First,
LocBra starts with an initial solution 2°, and defines its k-opt neighborhood
N(2° k) (with k a given parameter to the method). The defined neighbor-
hood contains the solutions that are within a distance no more than k from
2% (in the sense of the Hamming distance). This is translated by adding the
following local branching constraint to the base MILP’H formulation:

A(z,2°) = Z 1 —z45) Z zi; <k (6)

(i,4)€S° (1,4) 50

with, S° = {(4,)/2%; = 1}. This new model is then solved leading to the
search of the best solution in N(z° k). This step, which corresponds to
node 2 in Figure 3-a, is referred to as the intensification phase. If a new
solution z! is found, the constraint (Eq. 6) is replaced by A(z,2%) >k + 1,
and the right branch emanating from node 1 is explored. This guarantees
that an already visited solution space will not be visited again. Next, a left
branch is created but now using the solution z': the neighborhood N (z!, k) is
explored by solving the M I LP7# formulation with the constraint A(x, z!) <
k added (node 4 in Figure 3-a). Then, the process is repeated until a stopping
criterion is met, e.g. a total time limit is reached. Note that solving the
sub-problems (with local branching constraints) may not be possible in a
reasonable amount of time, because they can be also hard to solve. For
this reason, a node time limit is imposed when solving the sub-problems.
Therefore, during the exploration of the neighborhood N(z?, k) of the solution
2%, it may occur that no improving solution is found or even the solver is not
able to find a feasible solution during the node time limit. For instance,
assuming at node 6 in Figure 3-a, the solution of the M ILP’H plus equation
A(z,z*) < k does not lead to a feasible solution in the given time limit. Then,

12



in LocBra a complementary intensification step is applied, by replacing the
last constraint on 2% by A(z,2?) < k/2 and solving the new sub-problem:
this results in the exploration of a reduced neighborhood around 2. If again,
no feasible solution is found (node 7 in Figure 3-a), then a diversification step
is applied to jump to another point in the solution space. Since it is a more
complex and problem-dependent mechanism than the original one proposed
by Fischetti and Lodi, its description is then given in section 4.2. Figure 3-b
shows the evolution of the solution search and the neighborhoods.

4.2. Problem-dependent features of the Local Branching heuristic

The efficiency of the LocBra heuristic for solving the GED®"4 problem
has been improved by adapting certain mechanisms of the method.

The first particularization relates to the choice of the variables for defining
the search space. Traditionally, in a local branching heuristic all boolean
variables are considered to define the local branching constraint A(z, z*) < k.
However, for the GED®"4 problem it turns out that the crucial variables are
the z;;’s, which model the vertices matching. Other sets of variables (s;; and
t;;) in MILP’H which correspond to edge matching, can be easily fixed by
the solver as soon as the vertices are matched. Letting LocBra explores the
solution space only on the basis of the z;; variables, leads to the consideration
of a smaller number of variables in the local branching constraint. By the
way, this strengthens the local search by avoiding fast convergence towards
local optima. Consequently, the local branching constraint is:

A(I,l’p): Z (1_xij)+ Z IUSII{Z (7)
(i,)€SP (i.9)¢S?P
with, SP = {(i,7)/x7; = 1}.

Another important improvement is proposed for the diversification mech-
anism, where also not all binary variables are included but a smaller set of
important variables is used instead. Note that, again only x;; variables that
represent vertices matching are considered. The diversification constraint is

then
N(ah)= > (I—zy)+ Y. @y >kd (8)

(i,j)ESfmp (i:j)EBimP\Sfmp

with By, the index set of binary important variables and S}, = {(i,7) €
Bimp/x}; = 1}. The notion of important variable is based on the idea that
when changing its value from 1 — 0 (or the opposite), it highly impacts

13



the objective function value. Forcing the solver to modify such variables
enables escaping from local optima and changes the macthing. Accordingly,
By is obtained by computing a special cost matrix [M;;] for each possible
assignment of a vertex u; € V U {e}, to a vertex v; € V' U {e}.

[ ¢ + 60 C1o + 619 ce C1v/| -+ 01|V’| Cie + fle
o1 + bo Co2 + 02y D Copyr) Oy Coe + 02¢
M= : : : : : (9)
avp+0vin qupt+Ove . quivy 0y quie+8|V]e
Ce1 + Oel Ca+0e2 ... cqui+ eV 0

Each value M;; = ¢;; +0,;, where ¢;; is the vertex edit operation cost induced
by assigning vertex w; to vertex v;, and 6;; is the cost of assigning the set
of edges E; = {(u;,w) € E} to E; = {(v;,w') € E'}. This assignment
problem, of size maz(|E;|, | E;|) x max(|E;|, |Ej|), is solved by the Hungarian
algorithm ([21]) which requires O(maz(|E;|, |E;|)?) time. Next, the standard
deviation is computed at each row of the matrix [M,;], resulting in a vector
o = |01, ...,0pv|]. Typically, a high value of o; means that the contribution to
the objective function of the matching of vertex u; € V' U {¢} with a vertex
v; € V' strongly varies depending on v;. Such variables are considered as
important. To isolate the ones with the highest o; values, a simple clustering
algorithm is applied. Two clusters C,,;, and C,,, are built by starting with
the minimum o,,;, and maximum o,,,, values as the centers of the clusters.
Vu; € VU {e} if |0y — avge,,,,| < |oi — avge,,,.| then o; — Cip, otherwise
;i = Chaz, With avge

. and avgc,,,, the averages of the selected values in
the clusters. Every time a value o; is added to C,;, or Chhas, its average
value avgc,, , or avgc,,, is updated. Finally, for every o; belonging to C,,4,
cluster, the indexes of all the binary variables z;; that correspond to the
assignment of vertex u; are added to Bj,,. Finally, note that kg, used in the
diversification constraint is chosen to be greater than k (in constraint 7), in
order to guarantee better diversification.

Preliminary experiments, not reported here, have shown that such a di-
versification significantly improves the local branching heuristic, better than
the original one introduced by Fischetti and Lodi ([18]), which was quite
inefficient for escaping local optima. Regardless of the quality of the new
solution (whether better or worse than the current best solution), what is
important is that the diversification mechanism succeeds in diversifying the
search. Then, the intensification steps afterwards lead to a deep exploration

max
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of the solution space around the new solution.

4.3. The Local Branching algorithm

A detailed algorithmic presentation of LocBra heuristic is provided in
Algorithm 1, and the details of the functions used are given in Appendix A.
The core function of the heuristic takes the following parameters as input:

1.

2.

k, is the neighborhood size.

k_dv, is for diversification to guarantee that the next solution to be
found is far from the current one by at least k_dv changes of binary
variables.

. total time_limit, is the total running time allowed for LocBra before

stopping.

node_time_limit, is the maximum running time given to the solver at
any node to solve the MILP7H formulation.

{_max, is used to force a diversification step after a sequence of /_max
intensification steps returning solutions with the same objective func-
tion value. This parameter avoids spending a lot of time searching in
a region where no improving solutions are found.

dv_mazx, is the maximum number of diversification steps allowed during
the execution of LocBra. The rational for such a parameter comes from
preliminary experiments, which have shown that first diversification
steps are useful to reach very good solutions. Then, this parameter
enables to decrease the global execution time without losing in the
quality of the returned solution by LocBra.

dv_cons_max, serves as a stopping criterion, when consecutive diversi-
fication steps have returned solutions with the same value of the objec-
tive function, then the heuristic stops. When this situation occurs, then
the diversification mechanisms is inefficient in allowing the heuristic to
escape from the current local optima.

From the above list of parameters, the stopping criterion of the proposed
LocBra heuristic does not only rely on the total time spent: the algorithm
stops whenever one of these three conditions is met:
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(i) the total execution time exceeds the total_time_limit,

(ii) the number of diversification steps done during the search exceeds
dv_mazx,

(iii) the number of consecutive diversification steps done exceeds dv_cons_maz.

The output of the algorithm is the best solution found (z*) and a flag to
indicate whether it has been proved to be optimal or not (opt). The initial
solution 2° used by LocBra is obtained by solving MILP’H formulation
within a time limitation of node_time_limit seconds. First, it calls InitLocBra
function that initializes the heuristic by computing an initial solution Z (it is
the first solution 2° as introduced in Section 4.1). If at this point, MILP’H
is solved to optimality or no feasible solution has been found, the heuristic
halts and returns the available solution and/or the status. Otherwise, the
current solution z is set to the solution found and the exploration begins.
Lines 2 to 23 present the core of the heuristic as previously described. At
each iteration and after a left /right branching constraint is added, the solver
is called through MIP_Solver(tl,UB,Z) function, and the returned status is
considered to make the next decision. Note that, ¢l variable corresponds to
the time limit imposed when solving MILP'H & and UB are, respectively,
the solution computed by the solver (new solution) and its objective function
value. Three possible statuses may occur:

(i) Optimal solution is found at a branch, and then two cases must be
distinguished (line 11). If the new solution Z is better than the current
solution z, then ImprovedSolution is called to update the current and
best solutions (if needed), and to define a new neighborhood by adding
the constraint Eq. 7 using the new solution z. If the new solution z
and the last solution z are equal, i.e. & = Z, then Diversification is
called to skip the current neighborhood and search in a different region
in the search space. Diversification function ensures that the current
solution is skipped with a distance k_dv, and the upper bound UB is
reset to oo to allow finding a new solution even if it is worse than the
best known one.

(ii) The model is infeasible (line 14). Therefore Diversification is trig-
gered to switch the last local branching constraint and look into a new
neighborhood in the search space.
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CPLEX-c0 LocBra

Lavg 2.08 3.03

tmaz 278.20 12.25
min - 0.00

davg - 0.35

Armax - 100.00
n 8836 6715

m - 8702
ny - 0

Table 1: LocBra vs. Exact solution on PAH instances

CPLEX-0< (4 threads) LocBra (1 thread) LocBra (4 threads)
S Emin__tavg Lmas 0 tmin__tavg  tmar  Qmin ooy Gwmar 01 07 1] _bmin_tavg tmar _ dmin__davg  Qwmae 0117 1)}
10 0.07 0.12 0.32 100 0.06 0.17 2.92 0.00  0.00 0.00 100 100 0 0.07 0.16 0.48 0.00 0.00 0.00 100 100 0O
20 0.15 0.95 19.74 100 0.13 1.12 3.63 0.00 0.00 0.00 100 100 O 0.14 1.00 21.80 0.00 0.00 0.00 100 100 O
30 0.31 101.53  2865.24 100 0.28 212.36 900.13 0.00 0.00 0.00 78 100 0 0.32 101.33 900.10 0.00 0.00 0.00 91 100 0
40 0.52  266.00 9243.72 99 0.45 364.86 900.12 0.00 0.06 3.90 63 98 0 0.49 179.45 900.13 0.00 0.00 0.00 84 100 0
50 0.83 682.71 421268 92 0.69 580.04 900.17 -1.79 0.04 414 37 97 1 0.73 435.16 900.32 -1.79 0.00 2.07 54 98 1
60 1.24 2419.33 1473235 71 0.95 753.48 900.27 -2.68 0.36 357 16 82 2 1.09 718.25 901.66 -3.31 -0.03 321 21 90 6
70 1.80 3740.34 24185.25 35 1.36 751.44 900.36 -2.67 0.78 885 17 52 14 148 741.52 901.35 -3.90 0.22 365 18 60 16

Mixed 0.09 1613.41 17084.43 91 0.14 332,92 90225 -2.67 0.03 343 64 8 5 0.09 324.17 900.27 -1.35 0.05 187 66 92 2

Table 2: LocBra vs. Exact solution on MUTA instances

(iii) A feasible solution is returned (line 15). This is very close to the first
case, except when a worse solution is found, i.e. f(Z) > UB. An ad-
ditional Intensification step is done but within a neighborhood limited
to k/2 variable changes from Z in order to try to improve it. However,
if the solver fails again, then a Diversification step is performed.

In addition, there is the condition (at line 10) that forces the diversifica-
tion step, in the case where /_max consecutive intensification iterations have
returned solutions with the same objective function value. This in turn
guarantees the exploration of many neighborhoods in different regions of the
solution space.

LocBra CPLEX-12.48 CPLEX_LocBra-3.5 BeamSearch-5 SBPBeam-5 IPFP-10 GNCCP-0.1

tmin 0.06 0.05 0.05 0.00 0.01 0.00 0.17
tavg 3.03 1.97 1.79 0.01 0.14 0.03 2.08
tmaz 12.25 12.48 6.41 0.03 0.37 0.08 6.02
dpin 0.00 0.00 0.00 0.00 0.00 0.00 0.00
davg 0.31 0.05 0.91 122.65 379.90 127.20 84.43
dmax 75.00 190.91 200.00 2400.00 4200.00 2400.00 1000.00
N1 8716 8830 8553 433 100 450 1042

Table 3: LocBra vs. literature heuristics on PAH instances

17



S 10 20 30 40 50 60 70 Mixed
LocBra T 0.06 0.13 0.28 0.45 0.69 0.95 1.36 0.14
by 0.17 1.12 212.36  364.86  580.04 75348 75144  332.32
tmae  2.92 3.63 900.13  900.12  900.17  900.27  900.36  902.25
din0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
dusy  0.00 0.00 0.00 0.06 0.02 0.17 0.59 0.04
dpaw 000 0.00 0.00 3.90 2.03 3.35 5.57 177
nr 100 100 100 9 99 93 79 95
CPLEX-900 T 0.06 0.14 0.28 0.49 0.77 .18 1.70 0.09
tag  0.13 1.02 141.07  247.80 45140  723.68 74591  305.72
tmae  0.49 3.52 900.20  900.42  900.46  900.71  900.92  900.70
dpin0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
duwy  0.00 0.00 0.00 0.00 0.30 0.55 1.05 0.12
dpaw 000 0.00 0.00 0.00 6.42 5.04 8.57 5.49
nr 100 100 100 100 90 81 63 95
CPLEX LocBra-180  tmm  0.00 0.22 0.41 0.73 1.03 145 1.98 0.14
tag 021 1.51 60.36 104.19 14143 16759  181.18  86.32
tmee 074 5.77 182.86  194.08 19543  217.38  263.60  223.53
dpin0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
dawy  0.00 0.00 0.00 0.16 1.16 1.41 4.24 0.36
dpas  0.00 0.00 0.00 3.90 7.19 6.70 27.20 6.86
n 100 100 100 94 72 57 41 82
BeamSearch-5 trin 0.00 0.00 0.01 0.01 0.02 0.04 0.06 0.01
tay  0.00 0.00 0.01 0.03 0.07 0.11 0.18 0.09
tmee  0.07 0.02 0.04 0.11 0.09 0.13 0.22 0.21
i 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
dang 1517 36.60 47.21 58.69 72.13 62.96 68.71 21.20
dpee 11000 12459  147.37  186.67  200.00  146.37  210.71  112.71
n 35 10 10 10 10 10 10 12
SBPBeam-5 tmm 0.01 0.08 0.31 111 2.60 4.87 9.02 0.05
tag  0.01 0.10 0.45 1.37 3.19 5.56 10.72 3.38
tmae  0.05 0.14 0.54 1.60 3.71 6.85 12.79 12.05
din . 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
dawg 2043 44.90 76.45 82.54 93.90 95.02 94.62 27.16
dpmas 90.00 127.87 20690 20471  314.29  198.50  280.36  135.91
m 15 10 10 10 10 10 10 10
IPFP-10 T 0.00 0.01 0.02 0.03 0.06 0.10 0.15 0.01
tay  0.01 0.06 0.20 0.30 0.39 0.66 1.05 0.46
tmee  0.08 0.20 0.35 0.59 0.56 1.01 1.49 1.39
dpin . 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
duwy 344 10.84 18.31 21.34 22.59 25.9 27.63 7.45
dmaw 30.00 80.77 90.41 93.33 66.67 66.67 99.08 49.72
0 69 P} 4 i1 10 10 10 19
GNCCP-0.1 T 0.02 0.12 0.38 0.89 1.68 2.88 1.59 0.15
tag  0.16 1.30 4.77 11.78 22.08 72.29 111.30  28.53
tmee  0.29 2.52 10.86 31.58 73.46 14553 255.88  218.99
dpmin 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
duvg  13.29 22.00 26.93 21.69 31.46 21.99 27.61 10.66
dmer 41143 400.00  188.79  119.12  205.36  205.77  101.79  125.16
nr 57 35 6 6 5 9 1 7

Table 4: LocBra vs. literature heuristics on MUTA instances
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S 10 20 30 10 50 60 70 Mixed
LocBra tom  0.06 0.13 0.28 0.45 0.69 0.95 1.36 0.14
twy 017  1.12 212.36  364.86  580.04 753.48 751.44 332.32
toaw 2.92 3.63 900.13  900.12  900.17 900.27  900.36 902.25
. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
dwy  0.00  0.00 0.00 0.02 0.02 0.13 0.54 0.04
dpae  0.00 0.00 0.00 1.69 2.03 2.94 5.57 177
m 100 100 100 99 99 94 80 97
CPLEX LocBra-800  tmm _ 0.08 0.21 0.38 0.67 1.01 1.40 1.4 0.20
oy 020 1.34 130.26  230.68  424.70 662.58 688.13  291.64
tmaw  0.71 3.90 802.16  806.16  821.39 839.69 869.65 849.58
A 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
duwy ~ 0.00  0.00 0.00 0.00 0.38 0.57 1.02 0.13
dee 0.00 0.00 0.00 0.00 6.42 5.04 11.27 5.49
n 100 100 100 100 89 31 71 95
BeamSearch-15000 Tin 0.0 0.00 0.03 0.10 0.55 0.24 2.28 0.03
tag 857 80.65 167.48  279.11  439.68 640.29 938.66 828.52
tmee 3152 11871  230.63  419.73  771.90 878.89 1385.11  1800.00
dpin 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -
duwy 135 26.66 47.45 52.29 63.98 62.51 63.71 .
dmee 3000 142.31 16552  180.00  150.00 157.63 226.79 -
m 88 2 10 10 10 10 10 -
SBPBeam-400 Tm  0.76 9.02 39.85 116.11  288.38 548.04 1019 1.08
tay 084 10.02 47.65 13075 322.43 590.86 1155 326.64
tmer  0.96 11.27 54.11 15234 360.47 657.26 1310 1225.92
dm 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
duvy 2043 44.90 76.45 82.45 98.90 94.94 94.54 26.95
dpee 9000 127.87  206.90 20471  314.29 198.50 280.36 135.91
m 15 10 10 10 10 10 10 10
IPFP-20000 Lo 0.00 0.01 0.02 03 0.11 0.10 0.18 0.01
oy 120 9.62 48.90 115.14  240.54 528.82 903 303.21
toaw 8.52 53.83 16544  456.93  771.64 1620 2839 1827
A 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
duwy 344 10.18 16.45 17.17 19.00 18.99 20.70 6.03
dmpee 3000 80.77 90.41 56.47 47.62 50.53 85.71 38.03
n 69 29 4 11 10 10 10 21
GNCCP-0.03 Twin 0.03 0.18 0.58 1.26 2.4 133 6.65 0.25
tag  0.55 6.41 29.80 81.24  195.89  396.37  946.25 185.55
toee 113 16.81 71.94 167.06  450.41 797.39 2330 1398.72
dpin . 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
duwy  3.23 6.67 17.20 15.74 18.38 16.12 18.17 5.13
dmpee 9000 3077  82.76 57.35 95.24 52.29 77.06 25.35
m 81 31 1 6 5 9 5 7

Table 5: LocBra vs. literature heuristics with extended running time on MUTA instances
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5. Computational Experiments

This section provides the computational experiment done to evaluate the
efficiency of the proposed LocBra heuristic, w.r.t. both exact and heuristic
methods from the literature.

5.1. Instances and experimentation settings

As stated when introducing the GEDF" problem, it has numerous appli-
cations in Pattern Recognition. This has led along the years to the creation of
relevant databases of instances related to particular applications. They also
serve as recognized basis for comparing matching algorithms. To conduct
the experiments, instances from MUTA ([22]) and PAH (]23]) databases are
selected. These two databases are chosen after reviewing the public datasets
([22, 23]), which are usually used to evaluate the GED methods. MUTA and
PAH databases contain graphs that represent chemical molecules. MUTA is
divided into 8 subsets, the first 7 subsets contain 10 graphs each of the same
size (same number of vertices) starting from 10 until 70 vertices. The last
subset has 10 graphs of mixed sizes. This database is interesting because
it has large graphs (sizes 50,60, 70), and they are known to be difficult for
matching algorithms. PAH database consists of 94 graphs of various and
small sizes (the largest graph has 28 vertices). Each pair of graphs is consid-
ered as an instance for the GEDF"* problem. Therefore, MUTA database
holds a total of 800 instances (100 per subset) and 8836 instances for PAH
database.

LocBra algorithm is implemented in C language. The solver CPLEX
12.6.0 is used to solve the MILP formulations. Experiments are ran on a
machine Intel Core i4 with 8 GB RAM. When solving a MILP formulation
within LocBra heuristic, CPLEX solver is parametrized to use a single thread
even if 4 cores are available. The aim of this in the experiments is to evaluate
the efficiency of the inner mechanism of LocBra. It can be then expected that
its efficiency is going to be improved by enabling the use of more threads. Two
experiments are conducted for each database. The first consists in evaluating
the quality of the solutions obtained by LocBra w.r.t. to optimal solutions.
The second consists in studying the efficiency of LocBra in comparison to
the literature heuristics.

5.2. Comparison of LocBra with the exact approach
In this experiment, LocBra is compared with an exact approach in or-
der to evaluate the quality of its solutions against the optimal ones. The
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exact approach consists in solving the MILP7* formulation using CPLEX
without time and resources limitations, in order to get the optimal solution.
Note that, here the default settings of the solver are used, this means the
solver uses 4 threads. However, even without imposing restrictions and lim-
itations on the resources of CPLEX, it can occur that CPLEX may not be
able, on the large instances of MUTA database, to compute the optimal solu-
tion after several hours. In this case and when CPLEX is stopped, the best
solution found is returned. The exact approach is referred to as CPLEX-
oo. The following metrics are computed for each database: t,,in, tavg, tmaz,
which are respectively the minimum, average and maximum CPU times in
seconds for all instances. Correspondingly, dyin, davg, dmez are the devia-
tions (in percentage) of the solutions obtained by LocBra, from the opti-

mal or best solutions found. Given an instance I, the deviation is equal to

solution —optimalOr Best . . .
L_F L x 100, with solution!! the solution value returned by
optimalOr Best )

LocBra and optimalOrBest; is the solution value obtained by CPLEX-co
for I. In addition, n; is the number of optimal solutions found, and 7} is the
number of solutions found by LocBra that are equal to the optimal or best
known ones. At last, 07 is the number of solutions computed by LocBra that
are better than the best known solutions, where CPLEX-co was not able to
prove their optimality.

PAH database: LocBra parameters are set to the following values:
k = 20, k_.dv = 30, total_time_limit = 12.25s, node_time_limit = 1.75s,
dv_max = 5, . maxr = 3, dv_cons_.max = 2. Table 1 shows the obtained
results. The optimal solutions are computed for all instances by CPLFEX-00
(nr = 8836). LocBra has found the optimal solutions for 8702 instances.
The average deviation of LocBra to the optimal solution is of 0.35%, which
is small. When looking at the 134 instances (out of 8836), for which LocBra
failed to find the optimal solution, the average deviation restricted to these in-
stances is about 23%. Nonetheless, it can be concluded that LocBra provides
very good solutions on PAH instances. For the running time, CPLEX-0c0 is
on the average faster than LocBra but in the worst case CPLEX becomes
computationally expensive (up to 278.20s), while the heuristic remains at
maximum below than 13s. This experiment clearly shows that PAH instances
are easy ones for the MILP7H formulation. However, they remain standard
instances for algorithms comparison in the Pattern Recognition community.

MUTA database: These instances are harder than PAH instances. To
this end, two versions of LocBra are included in this experiment: the first
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one is with one thread used by CPLEX to solve the MILP formulation,
and the second one with 4 threads. The aim is to evaluate the gain for
LocBra heuristic when increasing the calculation capacity of CPLEX solver.
LocBra parameters are set to the following values: k& = 20, k.dv = 30,
total _time_limit = 900s, node_time_limit = 180s, dv_max = 5, [.max = 3,
dv_cons_max = 2. The results on MUTA instances are reported in Table 2.
All optimal solutions are found by CPLEX-00 (4 threads) for easy instances
(subsets 10 to 40), except one, and both LocBra with 1 and 4 threads have
davg = 0% (except for 2 instances in subset 40). Clearly both versions have
returned the same optimal or best solutions. For hard instances (subsets
50 to 70), dawg is always less than 1% and even less than 0% (—0.03%) for
the version with 4 threads on subset 60. Note that, a negative deviation
implies that for some instances CPLEX-co was not able to find the optimal
solution and that LocBra provided a better solution. The values of n; reveal
that this case occurred. 77 for hard instances reveals that the heuristics
have outperformed CPLEX-oco and found improved solutions (better than
the best ones obtained) for 17 instances with 1 thread and 23 instances with
4 threads. Considering the running time, it drastically increases for CPLEX-
oo and reaches thousands (¢,,, = 3740s), while the proposed heuristic has
a maximum of ¢,,, = 75ls. It is the same conclusion for subset Mixed,
both LocBra versions are faster in terms of average CPU time, and also they
have very low average deviations. The first conclusion from the experiments
on MUTA instances is that the local branching mechanism as implemented
is very efficient in reaching optimal or near-optimal solutions. The second
conclusion relies on the number of threads used within LocBra heuristic: even
if, as expected, increasing the number of used threads in CPLEX leads to
an improvement of the heuristic, this one is reduced enough to render this
improvement marginal.

In the case of easy instances (small graphs) as in PAH database and
subsets 10 to 40 in MUTA database, CPLEX is very efficient in solving
MILP’H and obtaining the optimal solutions. On the other hand, LocBra
results prove also its efficiency in obtaining the near-optimal solutions. One
advantage for LocBra is that it is faster in the worst case because of the time
limit imposed. Regarding the hard instances of MUTA (subsets 50, 60, 70),
where CPLEX-00 is not able to compute all the optimal solutions, LocBra
performs better than CPLEX and yield better solutions for some instances
in the limited time of 900s.
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5.8. Comparison of LocBra with the literature heuristics

LocBra heuristic is tested against the following heuristics: i- CPLEX-t is
the solver CPLEX ran on M ILP”H with t seconds as time limit. ii- CPLEX-LocBra-t
refers to enabling local branching heuristic implemented in CPLEX solver.
Note, that in the default settings, this heuristic is disabled. So, CPLEX-LocBra-t
is the heuristic implemented under CPLEX with a time limit of ¢ seconds.
The time limit is imposed in order to compute an initial solution, which
will be given to CPLEX after to run local branching with that solution.
iii- BeamSearch-a ([15]), with « the beam size. iv- SBPBeam-a ([16]), with
« the beam size. v- IPFP-it ([17]), with it the maximum number of iter-
ations. vi- GNCCP-d ([17]), with d the quantity to be deducted from the
¢ variable at each iteration. ( is the variable that controls the concavity
and convexity of the objective function of the QAP model. All these meth-
ods are executed on PAH and MUTA instances and the following metrics
are computed: £pin, tavg, tmaez are the minimum, average and maximum CPU
times in seconds for all instances. Correspondingly, dpin; davg, dmas are the
deviation for the solutions obtained by one heuristic, from the best solutions

found. The deviations are expressed in percentage. Given an instance [

- T lutiont —bestSoluti .
and a heuristic H, the deviation is equal to XL 22O o 1()), with
’ bestSolution )

bestSolution; the smallest solution value found by all heuristics for /. Lastly,
7y is the number of instances for which a given heuristic has found the best
solutions.

PAH database: First the parameters values for each method are dis-
cussed. For LocBra, CPLEX-t and CPLEX-LocBra-t heuristics, the param-
eters are set following to preliminary experiments, not reported here. In this
experiment, the aim is to find the parameters leading to the most efficient
heuristic in terms of quality of the computed solution within a short CPU
time. For BeamSearch-a and SBPBeam-a, the heuristics values a are taken
from the paper that originally presented the methods ([15, 16]). The same
holds for IPFP-it and GNCCP-d heuristics, where the parameters values are
extracted from in [17].
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LocBra k =20, k_dv = 30, total_time_limit = 12.25s,
node_time_limit = 1.75s, dv_max = 5,
[_max = 3, dv_cons_max = 2
CPLEX-t t=12.48
CPLEX_LocBra-t | t = 3.5
BeamSearch-a a=2>5
SBPBeam-a a=2>5
IPFP-it it =10
GNCCP-d d=0.1

The results are shown in Table 3. CPLEX-12./8 has an average deviation
of 0.05% which is the smallest among all the heuristics. Next LocBra comes
with 0.31%. Consequently, CPLEX-12.48 has performed better than the pro-
posed heuristic. However, an important note is that d,,., for LocBra is 75%
against 190.91% for CPLEX-12.48, which means that the former provides
the closest solutions to the best ones in the worst case. CPLEX LocBra-3.5
comes at the third position, with an average deviation less than 1%. The
beam-search based heuristics, IPFP-10 and GNCCP-0.1 are strongly outper-
formed by the other MILP-based heuristics with a high average deviations.
In terms of CPU time, the beam-search based heuristics seems to be very
fast (t4yy < 1s), while the proposed heuristic is the slowest with ¢,,, = 3.03s.

MUTA database: The following are the values of the parameters set for
each method. Asin PAH experiment, the values are set for LocBra, CPLEX-t
and CPLEX-LocBra-t based on preliminary tests. CPLEX-LocBra-t is giv-
ing t seconds equal to the time given to CPLEX in an intensification step in
LocBra heuristic. The literature methods have the same values of parameters
as they were presented and set originally by the authors.

LocBra k =20, k_dv = 30, total_time_limit = 900s,
node_time_limit = 180s, dv_max =5,
l_max = 3, dv_cons_max = 2
CPLEX-t t =900
CPLEX _LocBra-t | t = 180
BeamSearch-a a=>5H
SBPBeam-a a=5
IPFP-it it =10
GNCCP-d d=0.1

Based on the results shown in Table 4, the heuristics LocBra, CPLEX-900,
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CPLEX LocBra-180, which are MILP-based, have the highest n; for all the
subsets, and they strongly outperform the two beam search-based heuristics,
IPFP-10 and GNCCP-0.1. On easy instances (graphs’ subsets between 10
and 40 vertices), the MILP-based heuristics have yielded the best solutions
for almost all instances (except 2 instances for subset 40). However, a ma-
jor difference starts to appear on hard instances (subsets 50,60, 70), where
LocBra scores the highest values, with 99 for subset 50, 93 for subset 60 and
79 for subset 70 of best solutions. CPLEX-900 comes in the second place,
followed by CPLEX_LocBra-180, regarding the number of best solutions ob-
tained. Considering the average deviations, LocBra, on hard instances, has
the smallest value (dgg less than 0.6%), and again CPLEX-900 scores the
second lowest deviations 0% < dgg < 1.05%. [PFP-10 and GNCCP-0.1
have a maximum deviation d,,, of 28%, which means they perform better
than the beam-search based heuristics, which are very poor in terms of so-
lutions quality with a very high dg,, (about at most 98.9%). With respect
to the solution quality, the results show that LocBra strongly outperforms
all the literature heuristics, in the case where the default parameters, as in
their original references, are used in when executing them. Besides, LocBra
also outperforms CPLEX-900 and CPLEX-LocBra-180. To this end, the
proposed local branching heuristic is more efficient than the solver and its
generic implementation of local branching. Looking at the solution time,
BeamSearch-5 is the fastest with a running time between 0 and 0.18 seconds.
Heuristics IPFP-10, SBPBeam-5 and GNCCP-0.1 come after BeamSearch-5
in terms of CPU time. Note that, for the instances of mixed sizes, the above
conclusions regarding the quality and time still hold. Since the CPU time
given to LocBra is high with respect to the literature heuristics with their
default parameters, a final experiment is applied. In this one, the parameters
of the heuristics are empirically set to as their CPU time is approximately
of the same order of 900s, given to LocBra heuristic.
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LocBra k = 20, k_dv = 30, total_time_limit = 900s,
node_time_limit = 180s, dv_max = 5,
[_max = 3, dv_cons_max = 2
CPLEX-t t =900
CPLEX_LocBra-t | t = 800
BeamSearch-a a = 15000
SBPBeam-a a = 400
IPFP-it 1t = 20000
GNCCP-d d=10.03

Table 5 shows the results of the heuristics with extended running time.
LocBra and CPLEX_LocBra-800 seem to have dg,, very close for small in-
stances. The difference starts to grow on hard and mixed instances where
LocBra scores the lowest values (less than 0.6%). The average deviation
davg Temains very high for beam-search based heuristics: increasing the beam
size did not actually improve the results obtained by BeamSearch and SBP-
Beam. BeamSearch-15000 did not return feasible solutions for the set of
mixed graphs, therefore the deviations and 7n; are not computed. [IPFP-
20000 and GNCCP-0.03 perform better and get smaller deviation compar-
ing to the original versions (Table 4). However, they remain far from LocBra
heuristic. Regarding the running time, LocBra is the fastest for subsets 10
and 20, then GNCCP-0.03 becomes the fastest method for the rest of the
subsets. Note that, GNCCP and IPFP are heuristics that have converging
conditions, which means that they stop if the condition is satisfied, regard-
less of the number of iterations left. For such reason, GNCCP is the fastest
because it does not reach always its maximum number of iterations.

Based on all the experiments reported in this section, the proposed lo-
cal branching heuristic significantly improves the literature heuristics and
provides near optimal solutions. This is due, to the analysis and the branch-
ing scheme combined with the efficiency reached by CPLEX when solving
MILP’H model. A second important element is the diversification proce-
dure which is problem dependent and really helps the algorithm to escape
local optima.

6. Conclusion

This work presents a local branching heuristic for the GEDF" problem
based on the MILP7# formulation of Justice and Hero ([9]). Starting from
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an initial solution, the heuristic mainly focuses on searching locally in a spe-
cific neighborhood for an improved solution. This is done by an intensive
use of mathematical programming. In addition, to avoid getting stuck in
local minima, it uses a specific diversification mechanism based on problem-
dependent information. Next, the heuristic is evaluated on two databases
called MUTA ([22]) and PAH ([23]). Two factors are considered: i- the
solution time and the solutions quality in comparison to other heuristics,
ii- the solutions closeness to the optimal or best known solutions. The
results on easy instances (PAH database) show that the proposed heuris-
tic is capable of finding very good solutions in a short period of time and
compete with the exact solution of the MILP7H formulation. The results
obtained on MUTA database confirm the large superiority of the proposed
local branching heuristic over the literature heuristics. It is important to
note that the proposed LocBra heuristic is a significant contribution to the
Pattern Recognition research field: this heuristic solves very efficiently some
classes of Graph Matching problems, by the way making it possible to im-
prove the solution of other application domains that use such problems like
graph classification and clustering, object detection in images or image reg-
istration. Remarkably, the local branching heuristic is general enough to be
tested on the GED problem at the cost of replacing MILP’H model by a
model valid for this problem. Tackling the general problem is planned as an
interesting short-term research direction.
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Appendix A. Extra materials

The details of the functions used in the algorithm of LocBra for the
GEDF" problem:

Algorithm 2: LocBra helper functions

1 Function InitLocBra()

2 status := MIP_SOLVER(t], UB, 7);

3 if status = “opt_sol_found” then opt := true; z* := T; exit;
4 if status = “infeasible” then opt := false; exit;

5 End

1 Function ImprovedSolution()

2 if mode_dv = false and T # unde fined then

3 | replace last added constraint A(z,z) < k by Az, z) > k +1;
4

5

6

7

8

1

2

end

z :=T; UB := f(Z); mode_dv := false; dv_cons := 0;

add new constraint A(z,z) < k;

if UB < bestUB then z* := Z; bestUB := f(2) ;

End

Function Diversification()

replace last constraint A(z,z) < k with
A(xz_important,z) > k_div;

UB := o00; dv := dv + 1; mode_dv := true; dv_cons := dv_cons + 1;

End

Function Intensification()

replace last added constraint A(z,z) < k by A(z, z) < &;

mode_dv := false; dv_cons := 0;

End
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