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Introduction

Cet article s'inscrit dans le thème de l'estimation de canal pour les communications radio-mobiles. Le problème traité est celui de l'estimation d'un canal qui évolue selon un modèle aléatoire de Rayleigh à spectre Doppler de Jakes (modèle le plus courant du domaine, dû à R.H. Clarke en 1968). Classiquement, l'estimation du canal est réalisée avec un filtre de Kalman (KF), ce qui nécessite de choisir un modèle d'état pour approcher les variations du canal. Le modèle d'état le plus couramment utilisé dans la littérature est le modèle Auto-Régressif d'ordre p (AR(p)), dont les paramètres sont ajustés selon un critère de coïncidence de corrélation (noté CM pour "Correlation Matching" dans la suite) [START_REF] Baddour | Autoregressive models for fading channel simulation[END_REF]. Cependant les performances en terme de distance avec la borne de Cramer-Rao Bayésienne (BCRB) sont décevantes en cas de variation lente à modérée du canal. Il a notamment été montré dans [START_REF] Ghandour-Haidar | On the use of first-order autoregressive modeling for Rayleigh flat fading channel estimation with Kalman filter[END_REF] que même en aug-mentant l'ordre du modèle AR d'un ordre p = 1 à p = 2, les performances de l'estimation stagnaient (Voir [START_REF] Ghandour-Haidar | On the use of first-order autoregressive modeling for Rayleigh flat fading channel estimation with Kalman filter[END_REF]-Fig B .2). Les auteurs de [START_REF] Baddour | Autoregressive models for fading channel simulation[END_REF] ont proposé de corriger le critère CM en ajoutant un paramètre très faible ε sur la diagonale de la matrice de corrélation à inverser pour améliorer son conditionnement, ce qui permet d'améliorer sensiblement les performances. Cependant, le paramètre ε est réglé uniquement par simulation et la courbe d'erreur quadratique moyenne (EQM) est encore loin de la BCRB. Des travaux récents se sont alors focalisés sur un autre modèle d'état, le modèle à marche aléatoire (RW pour "Random walk") avec un critère de minimisation de variance asymptotique (MAV) [START_REF] Ros | Second-order modeling for Rayleigh flat fading channel estimation with Kalman Filter[END_REF][START_REF] Shu | Simplified Random-Walk-Model-Based Kalman Filter for Slow to Moderate Fading Channel Estimation in OFDM Systems[END_REF][START_REF] Shu | Third-Order Kalman Filter : Tuning and Steady-State Performance[END_REF]. Ces études ont montré que le passage de l'ordre 1 à un ordre plus élevé permettait cette fois d'obtenir un gain significatif en performance. De plus, à ordre équivalent, le KF avec RW avait une EQM plus faible que le KF avec AR réglé par CM. Par ailleurs, ces études avaient l'avantage de fournir les formules analytiques pour le réglage optimal des paramètres du modèle. Bien que les modèles RW et AR aient des différences notables (le modèle RW est non stationnaire contrairement au modèle AR, et fait surtout référence pour modéliser l'évolution de phase qui est modulo 2π), on peut penser que l'utilisation d'un modèle AR(2) bien réglé doive aussi permettre une amélioration significative par rapport au modèle AR [START_REF] Baddour | Autoregressive models for fading channel simulation[END_REF]. Cependant, alors que le modèle AR est le plus utilisé dans la littérature pour modéliser et estimer le canal, il n'existe pas à notre connaissance de travaux analytiques sur le réglage optimal (selon le critère MAV au lieu de CM) du modèle AR(2) pour l'estimation du canal de Rayleigh-Jakes. De tels travaux ont eu lieu récemment avec des résultats prometteurs, mais seulement avec le modèle AR(1) [START_REF] Ghandour-Haidar | On the use of first-order autoregressive modeling for Rayleigh flat fading channel estimation with Kalman filter[END_REF]. Nous proposons ici d'étendre ces travaux à l'ordre 2. Ainsi, des formules analytiques de réglage des paramètres sont établies, et il est montré que le passage d'un ordre 1 à un ordre 2 ainsi réglé permet effectivement une nette augmentation des performances de l'estimation. Organisation : la section 2 présente le modèle analytique. Les résulats de simulation sont présentés dans la section 3, et enfin la conclusion dans la section 4.

2 Modèle et filtre de Kalman

Modèle et objectif d'estimation

Nous considérons l'estimation d'un canal de Rayleigh à évanouissements plats. L'observation à temps discret est :

y (k) = α (k) + w (k) (1) 
où k est l'indice temporel (symbole), w (k) est un bruit blanc additif centré complexe circulaire Gaussien de variance σ 2 w , et α (k) est le gain complexe (GC) du canal centré complexe circulaire Gaussien de variance σ 2 α = 1. Bien que très simple, ce modèle est considéré dans des systèmes plus complexes, comme l'OFDM où α représenterait la fonction de transfert du canal évaluée sur une sous-porteuse [START_REF] Shu | Simplified Random-Walk-Model-Based Kalman Filter for Slow to Moderate Fading Channel Estimation in OFDM Systems[END_REF]. La fréquence Doppler normalisée est f d T , où T est la période symbole. On suppose pour notre étude que f d T 1, ce qui est le cas courant en mobilité (voiture, train). On suppose un spectre Doppler de Jakes :

Γ α ( f ) =    σ 2 α π f d 1-f f d 2 si | f | < f d 0 si | f | > f d (2) 
La fonction de corrélation du gain complexe est alors :

R α [n] def = E α (k) α * (k-n) = σ 2 α J 0 (2π f d T n), n ∈ Z (3)
où J 0 est la fonction de Bessel d'ordre 0 de 1 ère espèce. Le gain complexe est approché par le modèle autorégressif d'ordre 2 AR(2) :

α(k) = a 1 α(k-1) + a 2 α(k-2) + u (k) (4) 
où le bruit d'état u (k) est un bruit blanc Gaussien complexe circulaire de variance

σ 2 u = R α [0] -a 1 R α [1] -a 2 R α [2]
. Cette expression est calculée par les équations de Yule-Walker [START_REF] Eshel | The yule walker equations for the AR coefficients[END_REF].

Ces équations donnent également R α [1] = a 1 R α [0] 1 -a 2 et R α [2] = a 1 R α [1] + a 2 R α [0]. En utilisant ces expressions (avec R α [0] = R α [0] = σ 2 α ), on obtient σ 2
u uniquement en fonction de a 1 et a 2 , ce qui sera utile pour la suite :

σ 2 u = σ 2 α (1 + a 2 )(1 -a 1 -a 2 )(1 + a 1 -a 2 ) (1 -a 2 ) (5) 
En passant par la transformée en z de l'équation (4), la fonction de transfert du modèle AR(2) est :

H(z) = 1 1 -a 1 z -1 -a 2 z -2 (6) 
Dans notre cas le modèle de Jakes est approché par le modèle AR [START_REF] Ghandour-Haidar | On the use of first-order autoregressive modeling for Rayleigh flat fading channel estimation with Kalman filter[END_REF]. Pour concevoir un filtre passe bande à partir du filtre cidessus et pour avoir le pic autour de f d T , il suffit de placer deux pôles conjugués complexes dans le plan z en

z 1 = r •e -j2π f AR(2) T et z 2 = r • e + j2π f AR(2) T (z 1 et z 2 pôles de H(z)) [7]
, [START_REF] Wu | On the performance of coherent and noncoherent multiuser detectors for mobile radio CDMA channels[END_REF] :

H(z) = 1 (1-z 1 z -1 )(1-z 2 z -1 ) = 1 1-2r•cos(2π f AR(2) T )z -1 +r 2 z -2 (7) et de choisir f AR(2)
T autour de f d T , et r proche de 1 pour placer les pôles près du cercle unité. Ainsi, [START_REF] Lindbom | Simplified Kalman estimation of fading mobile radio channels : high performance at LMS computational load[END_REF] 

choisit f AR(2) T = f d T alors que [8] choisit f AR(2) T = 1 √ 2 f d T .
Cependant aucune formule n'est donnée pour le choix de r. En comparant ( 6) et [START_REF] Lindbom | Simplified Kalman estimation of fading mobile radio channels : high performance at LMS computational load[END_REF] on trouve

a 1 = 2r cos(2π f AR(2) T ) et a 2 = -r 2 . Avec f AR(2) T proche de f d T
1 et r proche de 1, on obtient a 1 proche de 2 et a 2 proche de -1, avec |a 1 | < 2 et |a 2 | < 1 pour assurer la stationnarité [START_REF] Lindbom | Simplified Kalman estimation of fading mobile radio channels : high performance at LMS computational load[END_REF]. Ces ordres de grandeur seront utilisés pour obtenir des formules analytiques simplifiées. La minimisation de l'EQM du filtre de Kalman en régime asymtotique,

σ 2 ε = E |α (k) -α(k|k) | 2
, où α(k|k) est l'estimée de α (k) , est le critère optimal que nous allons chercher à approcher pour calculer les paramètres du modèle autorégressif AR(2).

Equations du filtre de Kalman

Le modèle autorégressif du second ordre peut être reformulé dans un modèle d'état. Le vecteur d'état à considérer inclut le gain de canal à 

k et k -1, α (k) = [α (k) , α (k-1) ] T et α(k) = [ α(k) , α(k-1) ] T .
α(k) = M α(k-1) + u (k) (8) 
y (k) = s T α (k) + w (k) (9) 
En regardant la formulation du modèle d'état (8) et [START_REF] Ekstrand | Analytical Steady State Solution for a Kalman Tracking Filter[END_REF], les deux étapes du filtre sont données par : Equations de Prédiction :

α(k|k-1) = M α(k-1|k-1) (10) 
P (k|k-1) = MP (k-1|k-1) M H + U (11)
Equations de mise à jour :

K (k) = P (k|k-1) s s T P (k|k-1) s + σ 2 w (12) α(k|k) = α(k|k-1) + K (k) (y (k) -s T α(k|k-1) ) (13) 
P (k|k) = (I 2 -K (k) s T )P (k|k-1) (14) 
Avec sont respectivement les matrices de covariance de taille 2 × 2 a posteriori et prédites.

K (k) = [K 1(k) , K 2(k) ] T le

Filtre de Kalman en régime permanent

Comme le système linéaire est observable et contrôlable, un régime asymptotique est rapidement atteint pour lequel les covariances et gain du filtre deviennent constants :

K (k) = K (k+1) = K ∞ = K 1 K 2 , P (k|k) = P (k+1|k+1) = P ∞ =
P 11 P 12 P 21 P 22 et P (k|k-1) = P (k+1|k) = P ∞ = P 11 P 12 P 21 P 22 L'objectif de cette section est de calculer K 1 en fonction de σ u (lui même fonction de a 1 et a 2 ) pour pouvoir faire ensuite l'optimisation dans la section suivante. Pour cela, il est nécessaire de résoudre l'équation de Ricatti en P 11 obtenue en manipulant les équations précédentes. [START_REF] Ekstrand | Analytical Steady State Solution for a Kalman Tracking Filter[END_REF] donne une solution analytique de P 11 , d'où K 1 :

K 1 2σ u σ w (15)
Cette formule simple a été obtenue avec les hypothèses sui-

vantes : a 1 2, a 2 -1, σ 4 u σ 4 w σ 2 u σ 2 w σ u σ w
σ u σ w Les hypothèses sur a 1 , a 2 ont été justifiées dans la Section 2.1. De plus, en pratique on a toujours σ u σ w et σ u 1, ce qui justifie les autres hypothèses.

Variance de l'EQM en régime permanent et optimisation

L(z) est la fonction de transfert du filtre qui donne α(k|k) avec l'observation y (k) en entrée. En régime permanent, la solution est donnée d'après (10) et (13) du système d'équations du filtre de Kalman en domaine de z par :

L(z) = K 1 + a 2 K 2 z -1 1 + z -1 (a 2 K 2 -a 1 (1 -K 1 )) -a 2 (1 -K 1 )z -2 (16) On a donc α(z) = L(z)(α(z) + w(z)) et l'erreur d'estimation s'écrit : ε(z) = α(z) -α(z) = (1 -L(z))α(z) -L(z)w(z) (17) 
On déduit la puissance de l'erreur à partir de ε(z) (17) :

σ 2 ε = + f d -f d |1 -L(e 2iπ f T )| 2 Γ α ( f )d f + σ 2 w T 1 2T -1 2T |L(e 2iπ f T )| 2 d f
(18) La première intégrale correspond à l'erreur dynamique de poursuite, et la deuxième à l'erreur statique due au bruit. Pour le spectre de Jakes (2), on obtient l'expression simplifiée suivante :

σ 2 ε σ 2 α 6π 4 ( f d T ) 4 K 4 1 + σ 2 w 3K 1 4 (19) 
Les hypothèses suivantes ont été utilisées pour obtenir les simplifications :

a 1 2, a 2 -1, K 4 1 K 3 1 K 2 1 K 1 1, f d T 4 f d T 3 f d T 2 f d T 1 et z = e 2iπ f T 1 + i2π f T . On utilise (15) dans (19), puis on cherche σ 2 u qui minimise σ 2
ε . On obtient :

σ 2 u (MAV) = 4π 16 5 (σ 2 α ( f d T ) 4 √ σ w ) 4 5 (20) 
or d'après (5), σ 2 u peut s'exprimer en fonction de a 1 , a 2 :

σ 2 u 2σ 2 α (1 + a 2 )(1 -a 1 -a 2 ) (21) en supposant que 1 -a 2 2, 1 + a 1 -a 2 4, 1 + a 2 1 et 1 -a 1 -a 2 1.
On en déduit la relation suivante entre a 1 et a 2 :

a 1 = - a 2 2 + 2π 16 5 (( f d T ) 4 √ σ w ) 4 5 (σ 2 α ) -1 5 -1 a 2 + 1 (22) 
L'équation (22) permet de régler a 1 en fonction de a 2 et simplifie ainsi la recherche (à 1 dimension au lieu de 2) des paramètres optimaux : l'EQM asymptotique est mesurée par simulation "Monte-Carlo" pour une grille de valeurs de a 2 , et on relève la valeur de a 2 correspondant à l'EQM minimale. La figure (a) montre les résulats de simulations de a 2 en fonction de f d T pour différents RSB. Sur les courbes, on voit qu'il y a approximativement des relations affines du type a 2 = -1 + γ f d T , qui dépendent du RSB. La figure (b) montre que γ = 2/3 (optimal pour RSB = 20 dB) est un bon compromis. On imposera donc :

a 2 = -1 + 2 3 f d T (23) 
puis en injectant cette valeur dans (22), on obtient les paramètres qui permettent d'approcher l'EQM minimale.

Résultats de simulation et discussion

La figure (c) présente les performances en terme d'EQM du KF avec l'AR(2) réglé par (22) et (23) en fonction du RSB. Nous avons rajouté les performances des algorithmes de la littérature comme base de comparaison, soit le KF avec l'AR(1) réglé par MAV [START_REF] Ghandour-Haidar | On the use of first-order autoregressive modeling for Rayleigh flat fading channel estimation with Kalman filter[END_REF], ainsi que le KF avec l'AR(2) réglé par CM avec et sans le ε de correction [START_REF] Baddour | Autoregressive models for fading channel simulation[END_REF]. Les résultats montrent la supériorité du critère MAV approché sur le critère CM, même optimisé avec le paramètre de correction ε calculé selon [START_REF] Baddour | Autoregressive models for fading channel simulation[END_REF]. De plus, nos résultats montrent que le passage de l'ordre 1 à l'ordre 2 pour l'AR avec le critère MAV améliore les performances de manière significative en les rapprochant de la borne BCRB, ce qui n'était pas le cas avec le critère CM selon la litérature.

Conclusion

L'étude portait sur la poursuite d'un canal de Rayleigh à évanouissement plat par un filtre de Kalman avec un modèle autorégressif d'ordre 2 réglé par un critère de minimisation de variance d'erreur asymptotique. Nous avons dérivé une solution approchée en imposant une contrainte de relation linéaire entre le paramètre a 2 du modèle et la fréquence Doppler. Cette solution sous-optimale présente une EQM plus faible que les algorithmes de la littérature. 

  La matrice de transition d'état est M = a 1 a 2 1 0 et le vecteur du bruit d'état est : u (k) = [u (k) , 0] T . Le vecteur de transition de taille 1 × 2 est s T = [1, 0]. L'évolution d'état de (4) et de l'observation (1) devient :

  gain du filtre de Kalman, identité de taille 2 × 2 et P (k|k) et P (k|k-1)

2 a2

 2 optimal -RSB = 0 dB a2 = -1 + 1.7fdT a2 optimal -RSB = 20 dB a2 = -1 +2 3 fdT a2 optimal -RSB = 40 dB a2 = -1 + 1 3 fdT (a) Valeurs expérimentales et approximation linéaire de a 2 en fonction de f d T pour RSB=0, 20, et 40 dB. AR(2)-MAV(a2 = -1 + 1.7fdT ) AR(2)-MAV(a2 = -1 + 2 3 fdT ) AR(2)-MAV(a2 = -1 + 1 3 fdT ) (b) Variations de l'EQM en fonction du RSB pour différentes contraintes imposées sur a 2 (de type a 2 = -1 + γ f d T ) pour f d T = 10 -3 . (c) EQM du filtre de Kalman proposé AR(2)-MAV(-1 + 2 3 f d T ) en fonction du RSB pour f d T = 10 -3 et comparaison avec la litterature.
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