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Water nanoelectrolysis: A simple model

Juan Olives,a) Zoubida Hammadi, Roger Morin, and Laurent Lapena
CINaM-CNRS Aix-Marseille Univ., Campus de Luminy, case 913, 13288 Marseille Cedex 9, France

(Received 14 September 2017; accepted 5 December 2017; published online 27 December 2017)

A simple model of water nanoelectrolysis—defined as the nanolocalization at a single point of any

electrolysis phenomenon—is presented. It is based on the electron tunneling assisted by the electric

field through the thin film of water molecules (�0.3 nm thick) at the surface of a tip-shaped nanoe-

lectrode (micrometric to nanometric curvature radius at the apex). By applying, e.g., an electric

potential V1 during a finite time t1, and then the potential �V1 during the same time t1, we show

that there are three distinct regions in the plane (t1, V1): one for the nanolocalization (at the apex of

the nanoelectrode) of the electrolysis oxidation reaction, the second one for the nanolocalization of

the reduction reaction, and the third one for the nanolocalization of the production of bubbles.

These parameters t1 and V1 completely control the time at which the electrolysis reaction (of oxida-

tion or reduction) begins, the duration of this reaction, the electrolysis current intensity (i.e., the

tunneling current), the number of produced O2 or H2 molecules, and the radius of the nanolocalized

bubbles. The model is in good agreement with our experiments. Published by AIP Publishing.
https://doi.org/10.1063/1.5004637

I. INTRODUCTION

Water electrolysis is used for hydrogen production1–3 and

more generally for the production of bubbles and the study of

their formation, dissolution, stability, acoustic properties,

etc.,4–6 owing to the numerous applications, e.g., in medi-

cine.7–9 Microbubbles produced by electrolysis are also used

to manipulate a microobject.10 Very small electrodes, with

diameter <1 lm, were used for the study of microbubble/sub-

strate forces or the formation of nanobubbles.5,11,12 An effec-

tive control of the micro/nanobubbles, e.g., concerning their

localization and size, is crucial for all these studies and appli-

cations. Nevertheless, if the electrode is not of micro/nano-

metric size, microbubbles will generally appear everywhere

on the electrode surface. With our new method, called nanoe-

lectrolysis, the production of microbubbles can be controlled

and nanolocalized at a single point, namely, the apex of a tip-

shaped electrode (with micrometric to nanometric curvature

radius at the apex).13 By means of nanoelectrolysis, a strong

control of the microbubbles is obtained: a single bubble can

be immobilized (or moved to any point) in the liquid, at some

distance from the apex of the electrode.14

In addition to the known electrocatalytic effect of a high

surface area on the electrode,15–17 our approach shows the

importance of the nanostructure/nanogeometry of the elec-

trode surface: by applying a low electric potential during a

finite time (e.g., using an alternating potential), the produc-

tion of bubbles can be nanolocalized at a single reaction site

with a nanometric/micrometric curvature radius on the elec-

trode.13 In the same way, nanometric heterogeneities (opti-

cally invisible) are potential reaction sites for bubble

production (see Fig. 1 and Note 16 in Ref. 13), and the activ-

ity of macroscopic electrodes is probably due to the presence

of many such uncontrolled heterogeneities. According to our

approach, nanostructured electrode surfaces—with arrays of

nanotips or nanopillars, i.e., sites with nanometric curvature

radii—could probably improve the electrode activity.

However, the main interest of nanoelectrolysis is to pro-

duce calibrated microbubbles at a single site, in a controlled

way. Calibrated microbubbles are needed in various medical

applications, e.g., as ultrasound contrast agents for capillary

imaging, drug delivery, or blood clot lysis.7,9,18,19 They are

used to study ultrasound–microbubble interactions with

applications to the detection and sizing of bubbles, e.g., for

the prevention of decompression sickness (scuba diving and

extra-vehicular astronaut activity) or the monitoring of liquid

sodium coolant in nuclear reactors.6,20–22 The advantage of

nanoelectrolysis over the microfluidics technique of produc-

tion of bubbles23 is that no surfactant (biologically harmful)

is used and that arbitrary bubble production frequency (even

a single bubble production14) can be obtained. Calibrated

microbubbles were recently produced from nanoelectrolysis

combined with ultrasounds using tap water (non-chemically

controlled) solution.24 In this paper, we show that calibrated

microbubbles of any size can be obtained at a single site by

nanoelectrolysis with a chemically controlled solution, by

applying a suitable electric potential during a finite time.

Although electrolysis is classically described using the

electric potential (which is constant on the whole surface of

each electrode), nanoelectrolysis reveals the fundamental

role of the electric field, which is higher at the apex of the

electrode (where the curvature radius is very small).

Nanoelectrolysis is caused by the electron tunneling through

the thin film of water layers at the electrode/solution inter-

face, assisted by this high electric field.13 In this paper, we

present a general and simple model based on this tunneling

and field effect, which is in agreement with the experiments

and explains the various aspects of nanoelectrolysis, i.e., the

nanolocalization of each electrolysis reaction (oxidation and

reduction) and of the production of bubbles. It leads to aa)Electronic mail: olives@cinam.univ-mrs.fr
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complete control of these reactions and the bubble produc-

tion, at a single point, by means of the applied electric poten-

tial. The model applies to any type of electrolysis in aqueous

solutions involving gas production (provided the electrode

surface is not altered by solid deposition).

II. THE MODEL

In our experiments, one of the two electrodes—called

the nanoelectrode—is tip-shaped (and made of Pt), with a

curvature radius, at the apex of the electrode, ranging from

5 lm to 1 nm.13,14 An aqueous solution of H2SO4 (10–4 to

10–3 mol/L) is generally used. The presence of a few water

layers at the surface of the nanoelectrode25–28 will be mod-

eled as a dielectric film of constant thickness d (d� 0.3 nm).

Let us denote V1 as the region occupied by the dielectric

film, V2 as that occupied by the solution, S1 the surface of

the nanoelectrode, S2 that of the counter electrode, S12 the

interface between V1 and V2, and n the unit vector normal to

S12, oriented from V1 to V2 (Fig. 1). Maxwell’s equations

give the discontinuities of the normal components of the

electric field E and the electric current j at the interface S12

eðE2n � E1nÞ ¼ qs; j2n � j1n ¼ �
@qs

@t
(1)

(assuming the same permittivity e in V1 and V2; qs is the sur-

face charge density on S12); hence

c E2n ¼ �e
@

@t
ðE2n � E1nÞ þ j1n; (2)

with the help of Ohm’s law j2 ¼ c E2 (c being the conductiv-

ity of the solution). The term �e @
@t ðE2n � E1nÞ represents a

“charging current”—more precisely, the current due to the

discharge of the interface S12, according to Eq. (1)—and will

be denoted jC. Owing to the low thickness of the dielectric

film, electrons can cross this film by quantum tunneling if

the electric field in the film is high enough, producing the

electric current j1n responsible for the electrolysis reactions.

This tunneling current j1n will thus be called the electrolysis

current and denoted jE. Its non-linear dependence on the

electric field E ¼ E1n in the dielectric film—and then on the

electric potential v ¼ E d applied to the dielectric film, v
being the potential on a point of S1 minus that on the neigh-

bouring point of S12—will be simply modeled using a thresh-

old value E0 ¼ v0=d and a high slope c0 for E > E0

(c0 � c). For the sake of simplicity in the notations, we will

use the same threshold value and slope in the region E< 0,

i.e.,

jE ¼ 0 if � E0 < E < E0;

jE ¼ c0ðE� E0Þ if E > E0;

jE ¼ c0ðEþ E0Þ if E < �E0

(3)

(Fig. 2).29 Denoting j ¼ j2n ¼ c E2n, the current in the solu-

tion (at S12), Eq. (2) may thus be written as

j ¼ jC þ jE: (4)

At a given time t, all the points of S1 (of S2, respec-

tively) have practically the same potential—because the

electrodes are made of metal—and we denote V(t) the poten-

tial on S1 minus that on S2. On the contrary, the surface S12

is not equipotential because the thickness d of the dielectric

film is constant but the electric field (in this film) varies,

being higher at the apex of the nanoelectrode (where the cur-

vature radius of S1 is very small). Then, at a given time t, the

potential value v varies with the position on S1 (or on S12).

In the following, the nanoelectrode surface S1 will be simply

modeled as (i) a hemisphere of radius r1 at the apex, denoted

zone a, and (ii) a cylinder (of the same radius) of length l1,

denoted zone b (Fig. 3). As a first approximation, we assume

that the electric potential field in zone a (except near the

junction with the cylinder of zone b) is that produced by a

spherical electrode and that in zone b (except near the two

FIG. 2. Modeled dependence of the tunneling or electrolysis current jE on

the electric field E in the dielectric film.

FIG. 3. Geometrical model of the nanoelectrode surface S1: a hemisphere

(zone a) and a cylinder (zone b).

FIG. 1. The nanoelectrode, the dielectric film, the solution, and the counter

electrode: general notations.
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ends of the cylinder) is that produced by a (infinite) cylindri-

cal electrode. With the help of Maxwell’s equations, we then

obtain the values of E1n and E2n in zones a and b

E1n ¼ b1v;

E2n ¼ b2ðV � vÞ; (5)

the values of b1, b2, and v being different in zones a and b,

and distinguished with the respective subscripts a and b, i.e.,

b1a ¼
r1

ðr1 þ dÞd �
1

d
;

b2a ¼
r1 þ d þ l

ðr1 þ dÞl �
1

r1

; (6)

in zone a, and

b1b ¼
1

ðr1 þ dÞ log
r1 þ d

r1

� 1

d
;

b2b ¼
1

ðr1 þ dÞ log
r1 þ d þ l

r1 þ d

� 1

r1 log
l

r1

;

(7)

in zone b (see Appendix A; log refers to the natural loga-

rithm; the approximations hold if d � r1 � l).
Equation (2) may then be written as

cb2ðV � vÞ ¼ �e
d

dt
ðb2ðV � vÞ � b1vÞ þ jE;

i.e.,

V � v ¼ s
dv

dt
� 1

a
dV

dt

� �
þ jE

cb2

; (8)

where s ¼ e
c a and a ¼ 1þ b1

b2
, which, according to Eq. (3)

(with E ¼ v=d and E0 ¼ v0=d), leads to

vþ s
dv

dt
¼ V þ s

a
dV

dt
if � v0 < v < v0; (9)

vþ s0
dv

dt
¼ Vþ þ

s
a

dVþ
dt

if v > v0; (10)

vþ s0
dv

dt
¼ V� þ

s
a

dV�
dt

if v < �v0; (11)

where s0 ¼ s
1þ~ca0 ; ~c ¼ c0

c ; a0 ¼ 1
b2d ¼ a�1

b1d ; Vþ ¼ Vþ~ca0v0

1þ~ca0 , and

V� ¼ V�~ca0v0

1þ~ca0 . Note that a, a0, s, and s0 have different values

in zones a and b, which will be distinguished with the respec-

tive subscripts a and b. For a given applied potential

t! VðtÞ, Eq. (8) or Eqs. (9)–(11) determine v as a function

of time [i.e., vaðtÞ using aa; a0a; sa, and s0a, and vbðtÞ using

ab; a0b, sb, and s0b].

Since j ¼ c E2n ¼ cb2ðV � vÞ, the current intensity (in

the solution, in zone a or in zone b) is

I ¼ cb2aðV � vÞ ¼ ca

a0d
ðV � vÞ; (12)

a being the corresponding area of S12, i.e., aa

¼ 2pðr1 þ dÞ2 � 2pr2
1 for zone a and ab ¼ 2pðr1 þ dÞl1

� 2pr1l1 for zone b. In fact, the total intensity in the electric

circuit is the sum of the contributions of zone a and zone b

I ¼ Ia þ Ib: (13)

Similarly, the electrolysis current intensity and the charging

current intensity (in zone a or in zone b) are, respectively,

IE ¼ jE a and IC ¼ jC a; thus

IE ¼ 0 if � v0 < v < v0

IE ¼
ca

a0d
~ca0ðv� v0Þ if v > v0

IE ¼
ca

a0d
~ca0ðvþ v0Þ if v < �v0 ; (14)

and

I ¼ IC þ IE (15)

(in zone a or in zone b).

III. A SIMPLE EXAMPLE: POTENTIAL
OF RECTANGULAR SHAPE

Let us show the consequences of the preceding model

with a simple example. The simplest case is the application

of a constant electric potential V1 (between the two electro-

des) during a finite time t1 and is treated below as phase I

(Sec. III A). The nanoelectrode is thus anode (cathode,

respectively) during the time t1 if V1> 0 (V1< 0, respec-

tively). In order to treat both cases (anode and cathode) and

to study the possible occurrence of both oxidation and reduc-

tion reactions (in zone a and in zone b), we will consider the

simple case of a potential of rectangular shape in which the

preceding phase I is followed by a second phase (phase II)

with a constant opposite potential �V1 during the same time

t1, after which no potential is applied (phase III) (Fig. 4)

VðtÞ ¼ 0 if t < 0

VðtÞ ¼ V1 if 0 < t < t1 ðphase IÞ
VðtÞ ¼ �V1 if t1 < t < 2t1 ðphase IIÞ
VðtÞ ¼ 0 if t > 2t1 ðphase IIIÞ:

We here consider V1> 0, but the case V1< 0 is exactly

similar. In Sec. III A, we will see that the oxidation reaction

may occur or not during phase I, in zone a and in zone b,

depending on the values of V1 and t1. This will explain the

nanolocalization of the oxidation reaction (when this

FIG. 4. Applied potential t! VðtÞ of rectangular shape.
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reaction only occurs at the apex of the nanoelectrode, i.e., in

zone a but not in zone b). Similarly, Sec. III B concerns the

possible occurrence of the reduction reaction during phase II

and its nanolocalization at the apex of the electrode.

A. Phase I

1. Before the electrolysis reaction

During phase I, let us consider the solution v of Eq. (8)

or (9) (in zone a or in zone b), assuming that v(t) remains

lower than v0. At t¼ 0, the discontinuity jump Vð0þÞ
�Vð0�Þ ¼ V1 produces the term V1d0ðtÞ in dV

dt (d0 being the

Dirac measure at 0), then, according to Eq. (8), the term
V1

a d0ðtÞ in dv
dt, and then the discontinuity jump vð0þÞ

�vð0�Þ ¼ V1

a for v at 0. If V1 < a v0 (which corresponds to

our usual experimental conditions30), the solution is then

vðtÞ ¼ 0 if t < 0

vðtÞ ¼ V1 � V1 �
V1

a

� �
e�t=s if t > 0 (16)

represented in Fig. 5, with the corresponding current inten-

sity given by Eq. (12).

Clearly, v(t) is always lower than V1 and, if V1 < v0, v(t)
will always remain lower than v0. In the following, we sup-

pose v0 < V1 < a v0, so that v(t) will reach the value v0 at the

time

t0 ¼ s log

1� 1

a

� �
V1

V1 � v0

(17)

(if the duration of phase I is large enough; Fig. 6). Note that

if V1 > a v0, then vð0þÞ ¼ V1

a > v0, so that in this case t0 ¼ 0

[and the solution of Eq. (10) shows that vðtÞ > v0 for

0 < t < t1].

Consider now the relative position of t1 and t0. If t0 > t1,

v(t) will not reach the value v0 during phase I (i.e., for

0 < t < t1), and if t0 < t1, v(t) will reach the value v0 during

phase I, at the time t0. In this last case, according to Eq. (3),

there will be an electrolysis current jE > 0, i.e., the oxidation

reaction of electrolysis will occur, for t0 < t < t1. Let us repre-

sent, in the plane (t1, V1), the two “oxidation” curves t1

¼ t0aðV1Þ in zone a (given by Eq. (17) with sa and aa) and t1

¼ t0bðV1Þ in zone b [Eq. (17) with sb and ab] (Fig. 7). In the

region t1 < t0aðV1Þ, there is no oxidation reaction (neither in

zone a nor in zone b). In the region t1 > t0bðV1Þ, the oxidation

reaction occurs everywhere on the nanoelectrode (in zone a, after

t0a, and in zone b, after t0b). In the region t0aðV1Þ < t1 < t0bðV1Þ,
the oxidation reaction is nanolocalized at the apex of the nanoe-
lectrode (it occurs in zone a, after t0a, but not in zone b).

2. During the electrolysis reaction

If t0 < t1 (in zone a or in zone b), v(t) reaches the value

v0 at t0 and, for t > t0, v is the solution of the new Eq. (10),

i.e.,

vðtÞ ¼ V1þ � ðV1þ � v0Þ e�ðt�t0Þ=s0 if t > t0; (18)

where V1þ ¼ V1þ~ca0v0

1þ~ca0 , represented in Fig. 8. Note that, for

any finite value of ~c, dv/dt is continuous at t0 and
dv
dt ðt0Þ ¼ ðV1 � v0Þ=s. Since c0 � c, we may consider that ~c
tends to þ1 and the corresponding limit value of any quan-

tity X will be denoted �X. Thus, v(t) tends to �vðtÞ ¼ v0 for

t0 < t < t1 (since V1þ tends to v0; see Fig. 8). According to

FIG. 5. Solution v of Eq. (9) during phase I (left) and corresponding current

intensity I (right).

FIG. 6. Solution v of Eq. (9) during phase I. At the time t0, v(t) reaches the

value v0 (if the duration of phase I is large enough).

FIG. 7. During phase I, in the plane (t1, V1), the two oxidation curves

t1 ¼ t0aðV1Þ in zone a and t1 ¼ t0bðV1Þ in zone b delimit the three regions: “no

oxidation” (lower region), “nanolocalized oxidation” (between the two

curves), and “everywhere oxidation” (upper region).

FIG. 8. Solution v during phase I (i.e., Eq. (16) for t < t0 and Eq. (18) for

t0 < t < t1) for a finite value of ~c (left) and for ~c ¼ þ1 (right). Case t0 < t1.
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Eq. (12), the current intensity I and its limit value �I are then

represented in Fig. 9. Similarly, Eq. (14) gives the electroly-

sis current intensity IE and its limit value �IE (Fig. 10).

Note that I and IE have the same asymptotic value ca
a0d ðV1

�V1þÞ ¼ ca
a0d ~ca0ðV1þ � v0Þ ¼ ca

a0d
~ca0

1þ~ca0 ðV1 � v0Þ and that �I

¼ �IE ¼ ca
a0d ðV1 � v0Þ for t0 < t < t1. Thus, while before the

electrolysis reaction (0 < t < t0), the current intensity is

equal to the charging current intensity (I ¼ IC; IE ¼ 0), dur-
ing the electrolysis reaction (t0 < t < t1), owing to c0 � c,
the (limit) current intensity is equal to the (limit) electrolysis

current intensity (�I ¼ �IE; �IC ¼ 0). This is a consequence

of �v ¼ v0 ¼ constant for t0 < t < t1, which implies

that E1n and E2n are constant [from Eq. (5)], and then
�jC ¼ �e @

@t ðE2n � E1nÞ ¼ 0.

From Eqs. (14) and (18), we then obtain the electric

charge given by the nanoelectrode to the solution for the

electrolysis reaction (in zone a or zone b)

Q0 ¼
ðt1

t0
IEðtÞdt

¼ ca

a0d

~ca0

1þ ~ca0
ðV1 � v0ÞðT0 � s0ð1� e�T0=s0 ÞÞ; (19)

where T0 ¼ t1 � t0 is the electrolysis duration, and its limit

value (for ~c ¼ þ1)

�Q
0 ¼ ca

a0d
ðV1 � v0Þ T0: (20)

Note that this charge is due to the electrons—tunneling

through the dielectric film, from the solution to the nanoelec-

trode—produced by the electrolysis oxidation reaction

2 H2O! O2 þ 4 Hþ þ 4 e�;

which gives the number of produced O2 molecules

nO2
¼ Q0

4 qe

(21)

(qe the elementary charge).

B. Phase II

1. Before the electrolysis reaction

First note that the following results are based on the sim-

ple assumption of a unique threshold value v0 (and slope

c0).29 As previously mentioned, the following study relates

to either zone a or zone b. Because of Eq. (8), the discontinu-

ity jump Vðtþ1 Þ � Vðt�1 Þ ¼ �2V1 produces the discontinuity

jump vðtþ1 Þ � vðt�1 Þ ¼ �2 V1

a (as it occurred at t¼ 0). Since

�v0 < vðtþ1 Þ < v0 (vðtþ1 Þ > �v0 because vðt�1 Þ > V1

a ; vðtþ1 Þ
< v0 because vðt�1 Þ is either <v0 or <V1þ � v0 owing to the

high value of ~c), the solution of Eq. (9) gives

vðtÞ ¼ �V1 þ ðV1 þ vðtþ1 ÞÞ e�ðt�t1Þ=s if t > t1 (22)

(as long as vðtÞ > �v0). In the case t1 < t0, we know that,

during phase I, vð0þÞ ¼ V1

a and v(t) increases but does not

reach the value v0 for 0 < t < t1. If vðtþ1 Þ were equal to � V1

a ,

we would have the same situation (with the opposite sign for

v) during phase II, so that v(t) (now decreasing) would not

reach the value �v0 for t1 < t < 2t1. Since vðtþ1 Þ > � V1

a
(because vðt�1 Þ > V1

a ), this implies that v(t) will not reach the

value �v0 during phase II. In other words, if there is no elec-
trolysis reaction (oxidation) during phase I, there will be no
electrolysis reaction (reduction) during phase II.

We then consider the case t0 < t1. If the duration of

phase II is large enough, v(t) will reach the value �v0 at the

time t1 þ t00, with [from Eq. (22)]

t00 ¼ s log
V1 þ vðtþ1 Þ

V1 � v0

¼ s log

1� 2

a

� �
V1 þ v0 þ

V1 � v0

1þ ~ca0
ð1� e�ðt1�t0Þ=s0 Þ

V1 � v0

(23)

FIG. 9. Current intensity I during phase I for ~c < þ1 (left) and for ~c ¼ þ1
(right). Case t0 < t1.

FIG. 10. Electrolysis current intensity IE during phase I for ~c < þ1 (left)

and for ~c ¼ þ1 (right). Case t0 < t1.

FIG. 11. In the plane (t1, V1), the four curves t1 ¼ t0a (oxidation in zone a), t1
¼ t0 0a (reduction in zone a), t1 ¼ t0b (oxidation in zone b), and t1 ¼ t0 0b (reduction

in zone b) delimit the five regions: “no oxidation, no reduction” (below t1 ¼ t0a),

“nanolocalized oxidation, no reduction” (between t1 ¼ t0a and t1 ¼ t0 0a),

“nanolocalized oxidation, nanolocalized reduction” (between t1 ¼ t0 0a and

t1 ¼ t0b), “everywhere oxidation, nanolocalized reduction” (between t1 ¼ t0b and

t1 ¼ t0 0b), and “everywhere oxidation, everywhere reduction” (above t1 ¼ t0 0b).
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[using vðt�1 Þ given by Eq. (18)] and its limit value (for

~c ¼ þ1)

�t00 ¼ s log

1� 2

a

� �
V1 þ v0

V1 � v0

: (24)

Clearly, t00 > t0 because vðtþ1 Þ > � V1

a . Thus, if t00 < t1,

the electrolysis duration (reduction) T00 ¼ t1 � t00 during
phase II is lower than the electrolysis duration (oxidation)
T0 ¼ t1 � t0 during phase I.

Strictly speaking, t00 is a function of (t1, V1) [Eq. (23) with

t0 given by Eq. (17)], but its dependence on t1 is very low and,

for large values of ~c; t00 � �t00 which only depends on V1. Let

us represent, in the plane (t1, V1), the two “reduction” curves

t1 ¼ t00aðt1;V1Þ in zone a [given by Eq. (23) with

sa; aa; s0a; a0a, and t0aðV1Þ] and t1 ¼ t00bðt1;V1Þ in zone b [Eq.

(23) with sb, ab; s0b; a0b, and t0bðV1Þ]. Thus, in the region

t1 < t00aðt1;V1Þ, there is no reduction reaction of electrolysis

during phase II (neither in zone a nor in zone b). In the region

t1 > t00bðt1;V1Þ, the reduction reaction occurs everywhere on

the nanoelectrode (in zone a, after t1 þ t00a, and in zone b, after

t1 þ t00b). In the region t00aðt1;V1Þ < t1 < t00bðt1;V1Þ, the reduc-
tion reaction is nanolocalized at the apex of the nanoelectrode
(it occurs in zone a, after t1 þ t00a, but not in zone b).

It may be shown that t00a < t0b in general (e.g., if

ab > 2aa; aa � 1, and ~c > 1) for any (t1, V1) such that v0

< V1 < aav0 and t1 > t0a. We thus have five regions in the

plane (t1, V1) (see Fig. 11). Below the curve t1 ¼ t0a, there is

no oxidation reaction and no reduction reaction (neither in

zone a nor in zone b). Between the two curves t1 ¼ t0a and
t1 ¼ t00a, the oxidation reaction is nanolocalized at the apex
of the nanoelectrode (it occurs in zone a but not in zone b)

and there is no reduction reaction (neither in zone a nor in

zone b). Between the two curves t1 ¼ t00a and t1 ¼ t0b, the oxi-
dation reaction and the reduction reaction are nanolocalized
at the apex of the nanoelectrode (they occur in zone a but

not in zone b). Between the two curves t1 ¼ t0b and t1 ¼ t00b,
the oxidation reaction occurs everywhere on the nanoelec-
trode (in zone a and in zone b) and the reduction reaction is
nanolocalized at the apex of the nanoelectrode (it occurs in

zone a but not in zone b). Above the curve t1 ¼ t00b, the oxi-

dation reaction and the reduction reaction occur everywhere

on the nanoelectrode (in zone a and in zone b).

2. During the electrolysis reaction

If t00 < t1 (in zone a or in zone b), v(t) reaches the value

�v0 at t1 þ t00 and, for t > t1 þ t00, v is the solution of the new

Eq. (11), i.e.,

vðtÞ ¼ �V1þ þ ðV1þ � v0Þ e�ðt�t1�t00Þ=s0

if t > t1 þ t00; (25)

v and �v being represented in Fig. 12. Note that, for ~c < þ1,

dv/dt is continuous at t1 þ t00 and dv
dt ðt1 þ t00Þ ¼ � dv

dt ðt0Þ
¼ �ðV1 � v0Þ=s. According to Eq. (12), the current intensity

I and its limit value �I are then represented in Fig. 13.

Similarly, Eq. (14) gives the electrolysis current intensity IE

and its limit value �IE (Fig. 14). Note that I and IE have the

same asymptotic value ca
a0d ð�V1 þ V1þÞ ¼ ca

a0d ~ca0ð�V1þ

FIG. 12. Solution v during phase II (i.e., Eq. (22) for t1 < t < t1 þ t00 and

Eq. (25) for t1 þ t00 < t < 2t1) for ~c < þ1 (top) and for ~c ¼ þ1 (bottom).

Case t00 < t1. Phase I and phase III are also represented.

FIG. 13. Current intensity I during phase II for ~c < þ1 (top) and for ~c
¼ þ1 (bottom). Case t00 < t1. Phase I and phase III are also represented.
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þv0Þ ¼ � ca
a0d

~ca0

1þ~ca0 ðV1 � v0Þ and that �I ¼ �IE ¼ ca
a0d ð�V1 þ v0Þ

for t1 þ t00 < t < 2t1 (these are the opposite values compared

to those of phase I). Just as in phase I, while before the elec-

trolysis reaction (t1 < t < t1 þ t00), the current intensity is

equal to the charging current intensity (I ¼ IC; IE ¼ 0), dur-
ing the electrolysis reaction (t1 þ t00 < t < 2t1), owing to
c0 � c, the (limit) current intensity is equal to the (limit)
electrolysis current intensity (�I ¼ �IE; �IC ¼ 0).

From Eqs. (14) and (25), we then obtain the electric

charge given by the nanoelectrode to the solution for the

electrolysis reaction (in zone a or in zone b)

Q00 ¼
ð2t1

t1þt00
IEðtÞdt

¼ � ca

a0d

~ca0

1þ ~ca0
ðV1 � v0ÞðT00 � s0ð1� e�T00=s0 ÞÞ; (26)

where T00 ¼ t1 � t00 is the electrolysis duration, and its limit

value (for ~c ¼ þ1)

�Q
00 ¼ � ca

a0d
ðV1 � v0Þ �T

00
(27)

( �T
00 ¼ t1 � �t00). Note that this charge is due to the electrons

tunneling through the dielectric film, from the nanoelectrode

to the solution, and producing the electrolysis reduction

reaction

2 Hþ þ 2 e� ! H2

which gives the number of produced H2 molecules

nH2
¼ jQ

00j
2 qe

: (28)

As noted earlier, T00 < T0, which, according to Eqs. (19) and

(26), implies that jQ00j < Q0: the absolute value of the elec-
tric charge used for the electrolysis reaction during phase II
(in our case, reduction) is lower than that used for the elec-
trolysis reaction during phase I (in our case, oxidation).
In our case, this means that the number of produced H2

molecules is lower than twice the number of produced O2

molecules.

C. Phase III

Because of Eq. (8), the discontinuity jump Vð2tþ1 Þ
�Vð2t�1 Þ ¼ V1 produces the discontinuity jump vð2tþ1 Þ
�vð2t�1 Þ ¼ V1

a . Since �v0 < vð2tþ1 Þ < 0 (vð2tþ1 Þ > �v0

because vð2t�1 Þ is either >� v0 or >� V1þ � �v0 owing to

the high value of ~c; vð2tþ1 Þ < 0 is proved in Appendix B),

the solution of Eq. (9) gives

vðtÞ ¼ vð2tþ1 Þ e�ðt�2t1Þ=s if t > 2t1; (29)

which has the form represented in phase III of Fig. 12. Thus,

there is no electrolysis reaction during phase III.

IV. BUBBLE PRODUCTION

If t1 > t0 (in zone a or in zone b), the electrolysis oxida-

tion reaction (during phase I, between t0 and t1) produces O2

molecules which diffuse in the solution. If the volume mole

density q of these molecules in the solution exceeds the satu-

ration value Hpa (H the Henry’s constant for O2 in water, pa

the atmospheric pressure) in some region of the solution, at

some time, a bubble of O2 will be produced. In the simple

case ~c ¼ þ1, the flux of O2 moles produced at the surface

of the nanoelectrode (more precisely, at the interface S12), in

zone a or in zone b, is

jm ¼
�jE

4NAqe

¼ c
4NAqe a0d

ðV1 � v0Þ (30)

constant between t0 and t1 (see Sec. III A 2 and bottom of

Fig. 14; NA is the Avogadro constant). Close to the surface

S12 (corresponding to the high values of q), this surface may

be assimilated to its tangent plane, and an approximate solu-

tion of the diffusion equation is

qðx; tÞ ¼ jm

ðpDÞ1=2

ðt�t0

0

e�x2=ð4DuÞ

u1=2
du if t0 < t < t1;

qðx; tÞ ¼ jm

ðpDÞ1=2

ðt�t0

t�t1

e�x2=ð4DuÞ

u1=2
du if t1 < t

(31)

(see Appendix C; x is the distance to S12, here assumed small

with respect to r1, and D the diffusion coefficient for O2 in

water). Note that we have to add to the preceding value the

initial constant density qa ¼ cHpa of O2 in the solution due

to the equilibrium with the atmospheric O2 (c pa being the

partial pressure of O2 in the atmosphere).

FIG. 14. Electrolysis current intensity IE during phase II for ~c < þ1 (top)

and for ~c ¼ þ1 (bottom). Case t00 < t1. Phase I and phase III are also

represented.
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Clearly, at fixed t, q is a decreasing function of x, with a

maximum value at x¼ 0

qð0; tÞ ¼ jm

ðpDÞ1=2

ðt�t0

0

du

u1=2

¼ 2jm

ðpDÞ1=2
ðt� t0Þ1=2

if t0 < t < t1;

qð0; tÞ ¼ jm

ðpDÞ1=2

ðt�t0

t�t1

du

u1=2

¼ 2jm

ðpDÞ1=2
ððt� t0Þ1=2 � ðt� t1Þ1=2Þ

¼ 2jm

ðpDÞ1=2

t1 � t0

ðt� t0Þ1=2 þ ðt� t1Þ1=2
if t1 < t: (32)

This explains why bubbles are produced practically at the con-

tact with the nanoelectrode. Moreover, these equations show

that qð0; tÞ is an increasing function of t for t0 < t < t1 and a

decreasing one for t > t1, with a maximum value at t¼ t1

qð0; t1Þ ¼
2jm

ðpDÞ1=2
ðt1 � t0Þ1=2: (33)

Our simple model is based on this maximum density

value: we consider that a bubble will be produced if the max-

imum value of the density in the solution reaches some

supersaturation value sHpa

qð0; t1Þ þ qa ¼ sHpa; (34)

i.e.,

ðV1 � v0Þðt1 � t0Þ1=2 ¼ 2ðs� cÞHpaðpDÞ1=2NAqe

a0d
c

(35)

[with the help of Eqs. (30) and (33)], in which t0 is the func-

tion of V1 expressed by Eq. (17) (with v0 < V1 < a v0). In

the plane (t1, V1), this “bubble” curve [expressed by Eq.

(35)] is situated above the oxidation curve t1 ¼ t0 but gener-

ally intersects (if the coefficient s is not too high) the reduc-

tion curve t1 ¼ �t00 at two points, so that there is a large part

of the bubble curve situated below the reduction curve (see

Fig. 15). An equation similar to Eq. (35) may be obtained for

H2 molecules but the corresponding “H2 bubble” curve

would be situated above the reduction curve t1 ¼ �t00, and

then above a large part of the bubble curve Eq. (35): thus, at

least in this large part, an O2 bubble will appear but no H2

bubble is produced. In Sec. V, we will see that the whole

bubble curve Eq. (35) well represents the experimental bub-

ble curve. In our experiments, with small values of t1
(0:5 ms < t1 < 0:5 s), we generally observe only one bubble,

which probably contains both O2 and H2 molecules (in the

case t1 > �t00). This means that after an O2 bubble is created,

the H2 molecules produced during the reduction period ½t1

þ�t00; 2t1� will enter this bubble (without creating a new

bubble).

Clearly, the preceding bubble curve [Eq. (35)] delimits

two regions: an upper one where bubble production occurs

and a lower one with no bubble production. This bubble

curve—together with the oxidation and reduction ones—is

represented in Fig. 16, for the zones a and b. Thus, below the

bubble curve of zone a, there is no bubble production (neither

in zone a nor in zone b). Above the bubble curve of zone b,

the bubble production occurs everywhere on the nanoelec-

trode (in zone a and in zone b). Between the bubble curve of
zone a and that of zone b, the bubble production is nanolocal-
ized at the apex of the nanoelectrode (it occurs in zone a but

not in zone b). A numerical example will be given in Sec. V.

Let us consider the case of a bubble produced in zone a

(i.e., at the apex of the nanoelectrode) and simply assume

that when it is formed it contains all the O2 and H2 molecules

generated by the electrolysis reactions in zone a. The radius

R of the bubble is determined by the number n of these

molecules

FIG. 15. In the plane (t1, V1), position of the bubble curve Eq. (35) (continu-

ous green curve) with respect to the oxidation curve t1 ¼ t0 (continuous red

curve) and the reduction curve t1 ¼ �t 00 (dashed blue curve) (in zone a or in

zone b). The bubble curve intersects the reduction curve at two points (black

arrows).

FIG. 16. In the plane (t1, V1), the bubble curve of zone a and that of zone b

(thick continuous green curves) delimit the three regions: “no bubble”

(lower region), “nanolocalized bubble” (between the two curves), and

“everywhere bubble” (upper region).
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pa þ
2r
R

� �
4

3
pR3 ¼ nkT (36)

(pa the atmospheric pressure, r the surface tension, k the

Boltzmann constant, and T the temperature), which leads to

ðV1 � v0Þðt1 � t0aÞ ¼
8qe

3kTcr1

pa þ
2r
R

� �
R3

if t0a < t1 < �t00a

(37)

(with n ¼ nO2
given by Eqs. (21) and (20), with a0a and aa; t0a

and �t00a given by the respective Eqs. (17) and (24), with sa

and aa; v0 < V1 < aa v0) and to

ðV1 � v0Þð3t1 � t0a � 2�t00aÞ ¼
8qe

3kTcr1

pa þ
2r
R

� �
R3

if t1 > �t00a (38)

(with n ¼ nO2
þ nH2

; nO2
as above, nH2

given by Eqs. (28)

and (27), with a0a and aa). In the plane (t1, V1), such “radius”

curves (expressed, for each value of R, by Eq. (37) below the

reduction curve and by Eq. (38) above the reduction curve)

are represented in Fig. 17 for three increasing values of R,

i.e., R1, R2, and R3 with R1 < R2 < R3 (respectively, denoted

“radius 1”, “radius 2”, and “radius 3” curves). They either

intersect the reduction curve (of zone a) at two points (indi-

cated by empty arrows for the radius 2 curve in Fig. 17) or

are completely situated above the reduction curve (see the

radius 3 curve in Fig. 17). Moreover, they intersect the above

defined bubble curve (of zone a) at one point (if we ignore

the very small values of t1 where the bubble curve is above

the reduction curve), the corresponding value of R increasing

with t1 (see Fig. 17). Thus, ignoring the very small values of

t1 and following the bubble curve of zone a, i.e., at the limit
between the no bubble and the nanolocalized bubble regions,
the radius of the bubble (produced at the apex of the nanoe-
lectrode) decreases when t1 decreases. This corresponds to

the intuitive idea that a lower electric charge involved in the

electrolysis reactions (then, a lower bubble radius), if

released in a shorter time (t1 � t0 decreases if t1 decreases,

along the bubble curve), will give the same maximal concen-

tration qð0; t1Þ in the solution because of diffusion. The

above radius curves give the radius of the nanolocalized bub-

ble for each point (t1, V1) situated above the bubble curve of

zone a (and V1 < aa v0). A numerical example is given in

Sec. V.

V. DISCUSSION

In fact, the nanoelectrode geometry shown in Fig. 3 rep-

resents the tip of the nanoelectrode. The whole geometry of

the nanoelectrode surface S1 may be modelled as (i) the pre-

ceding zones a and b, at the tip, (ii) a transition zone c (of

100–300 lm length), and (iii) a long cylinder of length l01
(�1 cm) and radius r01 (�50 lm), denoted zone b0 (Fig. 18).

As above, we assume that the electric potential field in zone

b0 (except near the two ends of the cylinder) is that produced

by a (infinite) cylindrical electrode of radius r01 and that in

zone c is transitional between the values in zones b and b0.
Clearly, the preceding model for zone b may be applied to

zone b0, using r01 and l01 instead of r1 and l1.

An experimental curve of the current intensity I(t) is

shown in Fig. 19 (see Refs. 13 and 14 for the experimental

procedure; potential of rectangular shape as in Fig. 4). This

FIG. 17. In the plane (t1, V1), the represented radius 1, radius 2, and radius 3

curves (brown color), respectively, correspond to three increasing radius val-

ues, R1 < R2 < R3. The two empty arrows indicate the intersections of the

radius 2 curve with the reduction curve (dashed blue curve). The black

arrows 1, 2, and 3, respectively, indicate the intersections of the bubble

curve (green) with the radius 1, radius 2, and radius 3 curves (excepting the

region of very small values of t1). As R increases from R1 to R3, we can see

that the value of t1 corresponding to these intersection points increases. The

oxidation curve (see Fig. 15), situated below all these curves, is not repre-

sented for the sake of clarity.

FIG. 18. Geometry of the whole nanoelectrode surface S1: the zones a and b

of Fig. 3, at the tip, a transition zone c, and a long cylinder in zone b0.

FIG. 19. Measured current intensity I as a function of time (thick black

curve). Potential of rectangular shape with V1¼ 35.6 V and t1¼ 20 ms, solu-

tion with 10�3 mol/L of H2SO4 (experiment with nanolocalization of bubble

production). The white dots represent the model presented in the paper.
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intensity represents the total intensity originated from the

various zones of the nanoelectrode surface. Nevertheless,

according to Eq. (12) and owing to the low value of b2a for

zones a and b compared to that of zone b0 (e.g., with

r1¼ 1 lm, l1¼ 10 lm, l¼ 1 cm, r01¼ 50 lm, and l01¼ 1 cm:

b2aaa¼ 6.3 lm, b2bab¼ 6.8 lm, and b2b0ab0 ¼ 1:2� 104

lm), we may consider that I is mainly originated from zone

b0 (with some possible contribution of zone c). In this experi-

ment, one bubble is produced and nanolocalized at the apex

of the nanoelectrode. Assuming no electrolysis reaction in

zone b0, the above model applied to zone b0 gives the current

intensity I(t)—with the help of Eqs. (12), (16), (22), and

(29), and the discontinuity jumps of v at t1 and 2t1—repre-

sented by white dots in Fig. 19, using the values
ca
a0d 1� 1

a

� �
V1¼ 5 mA and e�t1=s¼ 0.4. Since ca

a0d 1� 1
a

� �
V1

� ca
ad V1 (owing to a�1

a0 ¼ b1d � 1), this gives a
a � 0.54 lm2

(with d¼ 0.3 nm and c ¼ 7:8� 10�2 S/m) and s � 22 ms,

i.e., a ¼ c
e s � 2:4� 106 (with e ¼ 80 e0) and a � 1:3� 106

lm2. These values are of the same magnitude as those corre-

sponding to a cylinder b0 of radius r01 � 50 lm and length

l01 � 1 cm, i.e., a � 1þ r0
1

d log l
r0

1

� 0:9� 106 (with l � 1 cm)

and a � 2pr01l01 � 3� 106 lm2, which shows that the model

is in acceptable agreement with the experimental current

intensity data.

In a series of experiments at constant t1 and successive

increasing values of V1, we note first the experimental value

of V1 which corresponds to the first visible occurrence of a

bubble in zone a (apex of the electrode, here of micrometric

curvature radius) and then the (higher) value of V1 which

corresponds to the first visible occurrence of a bubble in

zone b (i.e., not at the apex of the electrode). These experi-

mental values are, respectively, plotted as the black and

white points in Fig. 20. Since the ordinates of the bubble

curves (of zone a and of zone b) of the above model tend to

v0 when t1 ! þ1, we obtain v0 � 14 V from the experi-

mental points with high values of t1. Such a value of v0

applied to the 0.3 nm thick dielectric film corresponds to a

typical ionization field observed in field ion microscopy31

and supports the model of electron transfer from water to

platinum controlled by field. Moreover, we observed that the

radius of the produced unique bubble (in zone a or in zone b,

respectively) decreases when t1 decreases (respectively, fol-

lowing the black points or the white ones in Fig. 20). In the

experiments with low values of t1, the observed bubble

radius is extremely small, which probably means that these

points are close to the oxidation curve (of zone a or of zone

b; the oxidation curve corresponding to the first occurrence

of an electrolysis reaction, when V1 is increased at constant

t1). In Fig. 20, we thus obtain the oxidation curve of zone a

(close to the experimental black points for the small values

of t1) for a value r1 � 14 lm [with v0¼ 14 V, d¼ 0.3 nm,

e ¼ 80 e0, and c ¼ 7:8� 10�3 S/m; the oxidation curve

being represented by t1 ¼ t0 and t0 given by Eq. (17) with aa

and sa]. It is known that the electric field at the apex of a tip

of potential V and curvature radius r1 at its apex (situated at

large distance from a counter electrode) is �V=ð5 r1Þ,32,33

i.e., the same as the electric field at the surface of a sphere of

potential V and radius ~r1 � 5 r1. The potential v being

directly related to this electric field [E1n � v=d, Eqs. (5) and

(6)], our simple model of a sphere for zone a should be

applied with a sphere radius ~r1 � 5 r1 (r1 being the curvature

radius at the apex of the electrode). The above obtained

value ~r1 � 14 lm thus corresponds to a curvature radius

r1 � ~r1=5 � 2.8 lm at the apex, in qualitative agreement

with the micrometric curvature radius at the apex of our elec-

trode. Moreover, this value r1 ¼ 2.8 lm (with l ¼ 1 cm)

leads to the oxidation curve of zone b represented in Fig. 20

[i.e., t1 ¼ t0 and t0 given by Eq. (17) with ab and sb] which,

as expected and noted earlier, is close to the experimental

white points for the small values of t1. The reduction curves

of zones a and b [i.e., t1 ¼ �t00 and �t00 given by Eq. (24), using

~r1 for zone a and r1 for zone b] are also represented in Fig.

20. Note that, because of this value ~r1 used in zone a (higher

than the value r1 of zone b), the reduction curve of zone a is

close to the oxidation curve of zone b, for the values of t1
represented in Fig. 20.

The bubble curves of zones a and b represented in Fig.

20 [i.e., Eq. (35), using ~r1 for zone a and r1 for zone b;

c¼ 0.21, H¼ 1.3 mol/(m3 atm) and D¼ 2.5� 10–9 m2/s at

FIG. 20. Experimental first occurrence of a bubble in zone a (black points)

and in zone b (white points), while increasing V1 at constant t1. Solution

with 10�4 mol/L of H2SO4. These experimental points are, respectively,

compared with the bubble curve of zone a [Bubble (a)] and that of zone b

[Bubble (b)] of the model (defined by Eq. (35), see Sec. IV; green curves).

The oxidation curves (red) and the reduction curves (dashed blue) of the

model are also represented (for the zones a and b). Logarithmic scale on

both axes.

FIG. 21. Measured radii of nanolocalized bubbles (experimental green

points; for each experiment, the number indicates the measured radius in

lm). Solution with 10�4 mol/L of H2SO4. These values may be compared

with the radius curves of the model presented in the paper (brown curves;

above each curve, the number indicates the radius value in lm). The oxida-

tion (red), reduction (dashed blue), and bubble (green) curves of the model

are also represented (for zone a). Logarithmic scale on both axes.
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25 	C], with a coefficient s¼ 20 for zone a and s¼ 30 for

zone b, show a rather good agreement with the experimental

points (i.e., the black points for the bubble curve of zone a

and the white points for the bubble curve of zone b). Note

that the production of a visible bubble is based on its nucle-

ation and growth up to a micrometric size, which requires

that a sufficient domain (in space and time) of the solution

becomes supersaturated. This probably explains the obtained

high values s¼ 20–30 which, according to Eq. (34), corre-

spond to the maximum supersaturation of the solution at

only the single point ðx; tÞ ¼ ð0; t1Þ.
In some experiments with similar conditions (same type

of electrode, solution with 10–4 mol/L of H2SO4), the initial

radius of the nanolocalized bubble (i.e., the unique bubble

produced at the apex of the electrode; this radius then tends to

decrease because the solution becomes undersaturated and the

bubble dissolves in the solution) was measured (green points

in Fig. 21). These measurements are in qualitative agreement

with the radius curves of the present model represented in Fig.

21 [i.e., for each radius value R, Eq. (37) below the reduction

curve of zone a and Eq. (38) above this reduction curve, using

the above values of v0, d, e, c, ~r1, and r ¼ 7:2� 10�2 N/m at

25 	C]. This confirms that the nanolocalized bubble is approx-

imately only formed by the O2 and H2 molecules produced in

zone a (and not those produced in zone b, the experimental

points of Fig. 21 being situated above the oxidation and reduc-

tion curves of zone b shown in Fig. 20). Also in agreement

with the observations, and as mentioned at the end of Sec. IV,

the model shows that, following the bubble curve of zone a, in

Fig. 21, the bubble radius decreases when t1 decreases.

VI. CONCLUSION

We define nanoelectrolysis as the nanolocalization (at a

single point) of electrolysis phenomena such as the electroly-

sis reactions or the production of bubbles. This paper

presents a simple model of water nanoelectrolysis based on

(i) the higher value of the electric field at the apex of a tip-

shaped electrode (called the nanoelectrode; 5 lm to 1 nm of

curvature radius at the apex) and (ii) the electron tunneling

assisted by the electric field through the thin film of water

molecules (�0.3 nm thick) at the surface of the electrode.

Using a finite time t1 (related to the amplitude of the poten-

tial and to the geometry of the nanoelectrode) during which

a positive (respectively, a negative) electric potential V1 is

applied between the electrodes, we show that the electrolysis

oxidation reaction which produces O2 molecules (respec-

tively, the reduction reaction which produces H2 molecules)

can be nanolocalized at the apex of the nanoelectrode. These

two parameters t1 and V1 determine the time at which the

electrolysis reaction begins, the electrolysis current intensity

(i.e., the tunneling current intensity), the electric charge

delivered by this current, and then the number of produced

O2 or H2 molecules (O2 if V1 > 0; H2 if V1 < 0). It is also

shown that, during the electrolysis reaction (oxidation or

reduction), the current intensity is equal to the electrolysis

current intensity (assuming a high “tunneling conductivity”

c0 ¼ dj=dE above a threshold value E0 of the electric field).

The model then determines the concentration of O2 or H2

molecules in the solution close to the surface of the nanoe-

lectrode (as a consequence of the electrolysis current and the

diffusion of these molecules in the solution). A bubble is

then produced if the maximum of this concentration reaches

some supersaturation value.

This general model is applied to the simple case of a

potential (between the electrodes) of rectangular shape:

V(t)¼V1 for 0< t< t1, V (t)¼ –V1 for t1< t< 2t1, and V(t)¼ 0

for t< 0 and t> 2t1. If, e.g., V1> 0, it is shown that the duration

of the electrolysis reduction reaction is lower than that of the

oxidation reaction (when these two reactions occur) and the

number of produced H2 molecules is lower than twice the num-

ber of produced O2 molecules (if a unique threshold value E0

of the electric field is used29). Moreover, in the plane (t1, V1),

the region for the nanolocalization of the reduction reaction is

shifted toward higher values of t1 or V1, with respect to that for

the nanolocalization of the oxidation reaction. In the same

plane, we show that there is a third distinct region, that for the

nanolocalization of the production of bubbles (also shifted

toward higher values of t1 or V1, with respect to that for the

nanolocalization of the oxidation reaction). From the number of

produced O2 and H2 molecules, the model also determines the

radius of the produced (unique) nanolocalized bubble, as a

function of (t1, V1). In the plane (t1, V1), following the “bubble

curve of the apex zone,” i.e., at the limit between the no bubble

and the nanolocalized bubble regions, the radius of the nanolo-

calized bubble decreases when t1 decreases.

In addition to the nanolocalization of the production of bub-

bles (first observed in Ref. 13), the model also explains why

there may be nanolocalization of an electrolysis reaction (oxida-

tion or reduction) whereas no bubble is produced (as was

assumed in our previous paper about the immobilization of a

bubble14). Moreover, the above results of the model are in rather

good agreement with our recent experiments with a potential of

rectangular shape, concerning the current intensity, the region

for the nanolocalization of the production of bubbles [in the

plane (t1, V1)], and the radii of the nanolocalized bubbles. We

also currently try to measure the current intensity originated

only from the apex of the nanoelectrode, which, according to

the present model, is equal to the electrolysis current intensity

(i.e., the tunneling current; during the electrolysis reaction). In

conclusion, the model shows that, by means of the two parame-

ters t1 and V1, we can control (i) the nanolocalization of the oxi-

dation reaction, (ii) the nanolocalization of the reduction

reaction, or (iii) the nanolocalization of the production of bub-

bles, but also the time at which the electrolysis reaction (of oxi-

dation or reduction) begins, the duration of this reaction, the

electrolysis current intensity, the number of produced O2 or H2

molecules, and the radius of the nanolocalized bubble.

APPENDIX A: SPHERICAL AND CYLINDRICAL
ELECTRODES

1. Spherical electrodes

In this case, S1, S12, and S2 are concentric spheres, of

respective radii r1, r1 þ d, and r1 þ d þ l (in fact, if

l� r1 þ d, the form of S2 has no significant effect on the
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potential field in the neighbourhood of S1 and S12). We may

consider that the potential is zero on S2. According to

Maxwell’s equations, at a given time t, the potential u
satisfies

Du ¼ d2u
dr2
þ 2

r

du
dr
¼ 1

r

d2ðruÞ
dr2

¼ 0

(r being the distance to the centre of the spheres), hence

dðruÞ
dr
¼ uþ r

du
dr
¼ a

(a constant; thus, ru ¼ ar þ b, with b constant, i.e.,

u ¼ aþ b
r). The preceding equation applied in region V1

between S1 and S12

uþ r
du
dr

� �
1

¼ dðruÞ
dr

(the subscript 1 indicates the value on the V1 side of S12, and

d the value on S12 minus that on S1), i.e.,

u12 þ ðr1 þ dÞ du
dr

� �
1

¼ ðr1 þ dÞu12 � r1u1

d

(u1 ¼ V and u12 ¼ V � v, respectively, being the potentials

on S1 and S12), leads to

E1n ¼ �
du
dr

� �
1

¼ r1ðu1 � u12Þ
ðr1 þ dÞd ¼ r1

ðr1 þ dÞd v:

Similarly, the same equation applied in region V2

between S12 and S2

uþ r
du
dr

� �
2

¼ dðruÞ
dr

(the subscript 2 indicates the value on the V2 side of S12, and

d the value on S2 minus that on S12), i.e.,

u12 þ ðr1 þ dÞ du
dr

� �
2

¼ �ðr1 þ dÞu12

l

leads to

E2n ¼ �
du
dr

� �
2

¼ ðr1 þ d þ lÞu12

ðr1 þ dÞl ¼ r1 þ d þ l

ðr1 þ dÞl ðV � vÞ:

2. Cylindrical electrodes

Here, S1, S12, and S2 are coaxial (infinite) cylinders, of

respective radii r1, r1 þ d, and r1 þ d þ l (here also, if

l� r1 þ d, the form of S2 has no significant effect on the

potential field in the neighbourhood of S1 and S12). We may

consider that the potential is zero on S2. According to

Maxwell’s equations, at a given time t, the potential u
satisfies

Du ¼ d2u
dr2
þ 1

r

du
dr
¼ 1

r

d

dr
r

du
dr

� �
¼ 0

(r being the distance to the axis of the cylinders), hence

r
du
dr
¼ du

d log r
¼ a

(a constant; thus, u ¼ a log r þ b, with b constant). The

preceding equation applied in region V1 between S1

and S12

r
du
dr

� �
1

¼ du
d log r

(same notations as above, for spherical electrodes), i.e.,

ðr1 þ dÞ du
dr

� �
1

¼ u12 � u1

log
r1 þ d

r1

leads to

E1n ¼ �
du
dr

� �
1

¼ v

ðr1 þ dÞ log
r1 þ d

r1

:

Similarly, the same equation applied in region V2

between S12 and S2

r
du
dr

� �
2

¼ du
d log r

(same notations as for spherical electrodes), i.e.,

ðr1 þ dÞ du
dr

� �
2

¼ �u12

log
r1 þ d þ l

r1 þ d

leads to

E2n ¼ �
du
dr

� �
2

¼ V � v

ðr1 þ dÞ log
r1 þ d þ l

r1 þ d

:

APPENDIX B: PROOF OF vð2t1
1 Þ< 0

1. Case t1<t 0

According to Eqs. (16) and (22), and the discontinuity

jumps at t1 and 2t1, we obtain

vð2tþ1 Þ ¼ � V1 �
V1

a

� �
ð1� e�t1=sÞ2 < 0:

2. Case t 0<t1<t 00

According to Eqs. (18) and (22), and the discontinuity

jumps at t1 and 2t1, we obtain

vð2tþ1 Þ ¼ �V1 þ
V1

a

þ V1 þ V1þ � 2
V1

a
� ðV1þ � v0Þe�ðt1�t0Þ=s0

� �
e�t1=s;
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which is a function of t1 (at V1 constant). Then

dðvð2tþ1 ÞÞ
dt1

¼ e�t1=s

s
�
�
ðV1� v0þV1þ � v0Þe�ðt1�t0Þ=s0

�V1�V1þ þ 2
V1

a

�
<�e�t1=s

s
2 v0�

V1

a

� �
< 0

(using e�ðt1�t0Þ=s0 < 1), which shows that vð2tþ1 Þ is a decreas-

ing function of t1. Thus, vð2tþ1 Þ (at t1) is lower than its value

at t1 ¼ t0 (since t1 > t0)

vð2tþ1 Þ < � 1� 1

a

� �
V1 þ ð 1� 2

a

� �
V1 þ v0Þe�t0=s

¼ �
v0 �

V1

a

� �2

1� 1

a

� �
V1

< 0

[using the value of t0 given by Eq. (17)].

3. Case t 00<t1

In this case, vð2t�1 Þ < �v0, then vð2tþ1 Þ < �v0 þ V1

a < 0.

APPENDIX C: SOLUTION OF THE DIFFUSION
EQUATION

The one-dimensional diffusion equation

@q
@t
ðx; tÞ � D

@2q
@x2
ðx; tÞ ¼ d0ðxÞdt0ðtÞ

(du denotes the Dirac measure at u) has the known elemen-

tary solution in R��t0;þ1½

qðx; tÞ ¼ e�x2=ð4Dðt�t0ÞÞ

ð4pDðt� t0ÞÞ1=2
:

In our case, the surface S12 being assimilated to the plane

x¼ 0 and the aqueous solution occupying the region x > 0, q
does not depend on the other coordinates y and z, and the ele-

mentary problem of diffusion

@q
@t
ðx; tÞ � D

@2q
@x2
ðx; tÞ ¼ jm dt0 d0ðxÞdt0ðtÞ

has the similar solution in R
þ��t0;þ1½

qðx; tÞ ¼ 2jm dt0

e�x2=ð4Dðt�t0ÞÞ

ð4pDðt� t0ÞÞ1=2
;

with the coefficient 2 because the produced molecules dif-

fuse in the half space x> 0. The integration on t0 2 ½t0; t1�

then leads to Eq. (31) for t1 � t. The case t0 < t < t1 is sim-

ply obtained by applying this equation at t¼ t1 and then

replacing t1 with t.
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