Claude Kondo 
  
Etienne Assi 
  
Christophe Gay 
  
Simon Chnafa 
  
Franck Mendez 
  
Juan F P J Nicoud 
  
Pierre Abascal 
  
François Lantelme 
  
Damien Tournoux 
  
Garcia 
  
Kondo Claude Assi 
  
Etienne Gay 
  
Christophe Chnafa 
  
Simon Mendez 
  
Franck Nicoud 
  
Juan F P J Abascal 
  
Pierre Lantelme 
  
François Tournoux 
  
Damien Garcia 
email: garcia.damien@gmail.com
  
  
Intraventricular vector low mapping-a Doppler-based regularized problem with automatic model selection

Keywords: ultrasound imaging, color Doppler, vector ow imaging, regularized least-squares, intracardiac ow imaging

  L'archive ouverte pluridisciplinaire

Introduction

During diastole, as blood ows from the left atrium to the left ventricle through the mitral aperture, a vortex ring is formed. This vortex, by rotating in the natural ow direction, redirects blood momentum toward the left ventricular out ow tract and facilitates ow transit to the aorta during ejection [START_REF] Bermejo | The clinical assessment of intraventricular ows[END_REF]. When the lling of the left ventricle is impaired (presence of diastolic dysfunction), a modi cation of the blood ow patterns can occur, with a signi cant impact on the vortices [START_REF] Abe | Contrast echocardiography for assessing left ventricular vortex strength in heart failure: a prospective cohort study[END_REF]. Concordantly, it has been reported that a strong physiological linkage exists between the volume of the vortex and that of the healthy heart, whereas this relationship is lost in patients with heart failure [START_REF] Arvidsson | Vortex ring behavior provides the epigenetic blueprint for the human heart[END_REF]. Vortices are thus known to be distinct local ow imprints. In particular, the clinical importance of intraventricular vortex formation has been underlined by [START_REF] Pedrizzetti | The vortex, an early predictor of cardiovascular outcome?[END_REF]. These clinically relevant ow patterns are accessible if the full velocity vector eld is available [START_REF] Sengupta | trends in CV ow visualization[END_REF][START_REF] Bermejo | The clinical assessment of intraventricular ows[END_REF]. Cardiac magnetic resonance (CMR) and contrast-enhanced ultrasound are the most commonly used medical imaging modalities for analysis of the left intraventricular blood ow dynamics [START_REF] Sengupta | trends in CV ow visualization[END_REF]. Velocity-encoding CMR requires multi-beat acquisition and retrospective temporal registration to retrieve the ow dynamics at a suf cient temporal resolution [START_REF] Elbaz | Vortex ow during early and late left ventricular lling in normal subjects: quantitative characterization using retrospectively-gated 4D ow cardiovascular magnetic resonance and threedimensional vortex core analysis[END_REF]. This approach cannot be used clinically because of its poor cost-effectiveness. By contrast, ultrasound vector ow imaging [START_REF] Jensen | Ultrasound vector ow imaging: I: sequential systems[END_REF] has the advantage of being portable and inexpensive. Vector ow imaging by contrast-enhanced echocardiography (often called echo-PIV, echographic particle image velocimetry) is based on the tracking of speckles generated by contrast agents, which are perfused to raise the blood signal [START_REF] Kim | Echo PIV for ow eld measurements in vivo[END_REF][START_REF] Abe | Contrast echocardiography for assessing left ventricular vortex strength in heart failure: a prospective cohort study[END_REF]. Contrast-enhanced echo-PIV has been used in clinical research to analyze the dynamics of the vortices that arise in the left ventricular cavity [START_REF] Abe | Contrast echocardiography for assessing left ventricular vortex strength in heart failure: a prospective cohort study[END_REF][START_REF] Agati | Quantitative analysis of intraventricular blood ow dynamics by echocardiographic particle image velocimetry in patients with acute myocardial infarction at different stages of left ventricular dysfunction Eur[END_REF]. The major clinical limitation of echo-PIV is the intravenous administration of gas-lled microbubbles, which makes this procedure time-and staff-consuming. A recent study, however, showed that intracardiac blood speckle velocimetry is feasible in neonates without contrast agent [START_REF] Fadnes | Shunt ow evaluation in congenital heart disease based on two-dimensional speckle tracking[END_REF]. Alternative ultrasound approaches based on color Doppler have also been reported to analyze the formation of the main vortex during early diastole [START_REF] Garcia | Two-dimensional intraventricular ow mapping by digital processing conventional color-Doppler echocardiography images[END_REF][START_REF] Mehregan | Doppler vortography: a color Doppler approach to quanti cation of intraventricular blood ow vortices[END_REF][START_REF] Faurie | Intracardiac vortex dynamics by high-frame-rate Doppler vortography-in vivo comparison with vector ow mapping and 4D ow MRI[END_REF].

Doppler ultrasound is presently the clinical imaging modality of choice for evaluating blood ow within the heart cavities. The Doppler velocities represent the orthogonal projections of the actual velocity vectors onto the ultrasound scanlines, thus leading to incomplete 1D ow information. For this reason, cardiac color Doppler is generally used as a mere visualization tool in the clinical context. During the last decade, there has been an interest in reconstructing the intracardiac velocity vector elds by postprocessing color-Doppler images. [START_REF] Arigovindan | Full motion and ow eld recovery from echo Doppler data[END_REF] restored 2D velocity vector elds by combining two Doppler images acquired from different transthoracic acoustic windows. [START_REF] Gomez | 4D Blood Flow Reconstruction over the entire ventricle from wall motion and blood velocity derived from ultrasound data[END_REF] generalized this technique and proposed a 3D reconstruction of the ow vector elds using several volumetric color Doppler images. When combining Doppler images or volumes, the echocardiographic views must be signi cantly different to make the reconstruction problem well-posed. This can be a major constraint in a clinical situation since the number of acoustic windows for high-quality color Doppler is limited. In addition, accurate temporal and spatial registrations are required to match the color Doppler series acquired during successive heart beats. The rst methods for a 2D vector reconstruction based on single-view color Doppler images were reported in [START_REF] Garcia | Two-dimensional intraventricular ow mapping by digital processing conventional color-Doppler echocardiography images[END_REF] and [START_REF] Uejima | A new echocardiographic method for identifying vortex ow in the left ventricle: numerical validation[END_REF]. The iVFM (intraventricular vector ow mapping) method proposed by [START_REF] Garcia | Two-dimensional intraventricular ow mapping by digital processing conventional color-Doppler echocardiography images[END_REF] works in the polar coordinate system associated with an apical three-chamber scan sector ( gure 1). It consists in computing the cross-beam (angular) velocity components from the Doppler (radial) velocities by integrating the 2D continuity equation across the scanlines. Garcia et al's iVFM technique is now implemented in Hitachi ultrasound scanners [START_REF] Tanaka | Intracardiac VFM technique using diagnostic ultrasound system[END_REF] and has been the routine tool in recent clinical studies to investigate the intraventricular ow patterns in cardiomyopathies [START_REF] Nogami | Abnormal early diastolic intraventricular ow 'kinetic energy index' assessed by vector ow mapping in patients with elevated lling pressure[END_REF][START_REF] Ro | Vector ow mapping in obstructive hypertrophic cardiomyopathy to assess the relationship of early systolic left ventricular ow and the mitral valve[END_REF]. This approach examines each angular line independently, which generates vector discontinuities along the radial direction. Incorrect apical alignments can also lead to signi cant inconsistencies. Furthermore, the current iVFM algorithm cannot be adapted for 3D color Doppler.

We therefore propose to generalize this Doppler-based algorithm using a regularized leastsquares method with automatic selection of the regularizing parameters. We introduce a general 2D approach with the future perspective of adapting iVFM for volumetric color Doppler. The velocity eld to be reconstructed was formulated as the minimizer of a cost function composed of a Doppler-based objective function and a regularizer containing physically motivated operators. A nite difference discretization of the continuous problem was adopted in a uniform polar grid, leading to an unconstrained quadratic optimization problem, which can be solved with efcient linear algebra algorithms. The performance of the improved iVFM technique was numerically evaluated using a patient-speci c computational uid dynamics (CFD) heart model. It was then clinically tested in several patients to disclose the vortex formation during lling.

Methods

The quadratic optimization problem for vector ow reconstruction

Figure 1 illustrates an annulus sector scan from 2D color Doppler echocardiography. We will work in a polar coordinate system {r, θ} whose pole is the center of the annulus sector. In transthoracic echocardiography, the successive ultrasound beams that form the image have a radial direction. Color Doppler provides the ow velocity projections parallel to the direction of the ultrasound beams. By convention, the Doppler velocities u D are positive when the blood ows towards the ultrasound probe. Let v D = -u D to ensure sign compatibility between v D and the radial components v r of the actual velocity eld v. Using this notation, color Doppler only provides the following information in a set of sampling points:

v D (r, θ) = v (r, θ) • e r + η (r, θ) ≡ v r (r, θ) + η (r, θ) , (1) 
where e r is the unit radial vector and η is the Doppler noise. From this incomplete and noisy information, we wish to estimate the radial and angular components {v r , v θ } of the actual blood velocity eld. Let Ω be the domain of interest, a closed region in the Doppler sector, with boundary ∂Ω, and let {x i = [r i , θ i ] , i = 1 . . . K} be the sampling points in Ω. The velocity eld reconstruction problem can be phrased as follows:

Given the Doppler measurements characterized by the set of triplets {(r i , θ i , v Di ) , i = 1 . . . K} Ω , compute the radial and angular components (v r , v θ ) i , i = 1 . . . K Ω of the unknown velocity vector eld v in the domain of interest.

In the global iVFM approach ( gure 2 gives an overview), the velocity eld estimation problem is rewritten as an unconstrained minimization problem:

argmin v J ( v)
, where the cost function J is written as:

J ( v) = J 0 ( v) + λ 1 J 1 ( v) + λ 2 J 2 ( v) + λ 3 J 3 ( v) = Ω (v r -v D ) 2 1) fit to the Doppler data + λ 1 Ω (r∂ r v r + v r + ∂ θ v θ ) 2 2) null-divergence constraint + λ 2 ∂Ω v • d wall 2 
3) boundary conditions

+ . . . λ 3 m∈{r,θ} Ω r 2 ∂ 2 r v m 2 + 2 r∂ 2 rθ v m 2 + ∂ 2 θ v m 2 4) smoothness constraint .
(2)

The regularization parameters λ l > 0, (l = 1, 2, 3) were selected automatically using an L-hypersurface, as explained in section 2.2.

(1) The rst term J 0 in J is the objective function related to the Doppler data.

(2) The second term J 1 is associated with the 2D null-divergence assumption [START_REF] Garcia | Two-dimensional intraventricular ow mapping by digital processing conventional color-Doppler echocardiography images[END_REF]; r div ( v) = r∂ r v r + v r + ∂ θ v θ = 0 is the expression of the mass conservation in polar coordinates assuming that the out-of-plane components are negligible. As shown in [START_REF] Garcia | Two-dimensional intraventricular ow mapping by digital processing conventional color-Doppler echocardiography images[END_REF], the 2D divergence-free assumption is acceptable on the plane corresponding to the three-chamber apical long-axis view.

(3) The third term J 2 is related to the boundary conditions on the endocardium (inner cardiac wall). The direction vector d wall is located on the wall boundary ∂Ω (the endocardium). As in [START_REF] Garcia | Two-dimensional intraventricular ow mapping by digital processing conventional color-Doppler echocardiography images[END_REF], we choose d wall = n wall , i.e. the wall direction vectors were equal to the unit normal vectors perpendicular to the boundary. In other words, it was assumed that the ow was parallel to the bounding surface in the immediate vicinity of the endocardial wall. Alternative boundary conditions could be imposed with this approach. Using d wall = t wall (unit tangential vector) would favor ow perpendicularity to the bounding surface. If the radial and angular components of the wall velocities are known, equaling d wall to [-v θ,wall , v r,wall ] can approximate a no-slip condition. (4) The last term J 3 is associated with some desirable smoothness properties of the velocity eld. The actual blood ow velocity, at a speci c location and instant in the cardiac cycle, uctuates around an expected value. In the physiological hemodynamic situations, leaving aside the ow uctuations [START_REF] Chnafa | Image-based simulations show important ow uctuations in a normal left ventricle: what could be the implications?[END_REF], the expected mean velocity eld varies smoothly in both time and space. To impose spatial smoothness in the expected velocity eld, we used second-order partial derivatives with cross terms.

An approximate solution of the minimization problem was computed over a polar grid with constant radial and angular steps (h r and h θ ). The differential operators in the cost function (2) were replaced by their discrete counterpart using three-point stencils. Using ℓ 2 -norms, the corresponding discretized scheme reduced to an unconstrained quadratic problem, as shown below. For the sake of a compact matrix formulation, we introduce the following matrices, all of size (M × N), where N is the number of scanlines and M the number of samples per scanline ( gure 2):

• V D contains the negative Doppler velocities. It is obtained by taking the negative of the Doppler image returned by the scanner before scan conversion. • V r and V θ contain the radial and angular velocities to be estimated.

• R contains the radial coordinates of the grid nodes. • N r and N θ contain the radial and angular components of the unit vector normal to the cardiac inner wall (endocardium), respectively. (N r ) k,l and (N θ ) k,l = 0 if the element (k, l) is not on the endocardium.

We work with the elements inside and on the edge of the region de ned by the left ventricular cavity. This region is de ned by the binary matrix ∆, with (∆) k,l = 1 if the element (k, l) is inside or on the edge of the region of interest (ROI), (∆) k,l = 0 otherwise.

We also de ne the following column vectors of size (MN × 1) obtained by vectorizing the above-mentioned matrices:

v D = vec (V D ) , v r = vec (V r ) , v θ = vec (V θ ) , r = vec (R) , n r = vec (N r ) , n θ = vec (N θ ) and δ = vec (∆) .
I q refers to the identity matrix of size (q × q), and I q to a column vector of ones of size (q × 1), where q is a general length. The Hadamard (entrywise) and Kronecker products are noted • and ⊗. The entrywise square is noted r •2 = r • r. The rst-and second-order derivative operator matrices of size (q × q) are based on a three-point stencil; they are noted Ḋq and Dq . We

nally note v = v T r v T θ
T the column vector of size (2MN × 1), solution of the minimization problem. The mathematical derivation of the linear system is extensively described in the supplemental content (stacks.iop.org/PMB/62/7131/mmedia). Using the above-mentioned notations, it follows that the discretized cost function can be written as:

J (v) = (Q 0 v -v D ) T (Q 0 v -v D ) + l=1...3 λ l v T Q T l Q l v, (3) 
where Q 0 , Q 1 , Q 2 are three sparse matrices of size (MN × 2MN), and Q 3 is a sparse matrix of size (6MN × 2MN). They are given by (see the supplemental content):

Q 0 = [1 0] ⊗ I MN ; Q 1 = 1 hr r I T MN • I N ⊗ ḊM + I MN , 1 h θ ḊN ⊗ I M ; Q 2 = diag (n r ) , diag (n θ ) ; Q 3 =     I 2 ⊗ 1 h 2 r r •2 I T MN • I N ⊗ DM I 2 ⊗ 2 hrh θ r I T MN • ḊN ⊗ ḊM I 2 ⊗ 1 h 2 θ DN ⊗ I M     .
(4)

The operator diag denotes the diagonal matrix. Minimizing the cost function J (v) (equations ( 3) and ( 4)) leads to the following linear system:

Av = b, with A = Q T 0 Q 0 + l=1...3 λ l Q T l Q l = 1 0 0 0 ⊗ I MN + l=1...3 λ l Q T l Q l . and b = Q T 0 v D = 1 0 ⊗ v D .
(5)

The matrix A is sparse symmetric and of size (2MN × 2MN), and b is a column vector of size (2MN × 1). From its expression, and because the scalars λ l are positive, A is also positive semi-de nite. The positive de niteness of A is guaranteed if Q 2 is de ned appropriately, i.e. if the chosen boundary conditions make A nonsingular. Furthermore, the λ l must be suf ciently large to ensure that the problem is well-conditioned. The sparse linear system (5) can be efciently solved using the Cholesky decomposition. In practice, because we are working only with the elements inside or on the edge of the ROI, Q 0 and b must be rewritten as:

Q 0 = [1 0] ⊗ diag (δ) and b = 1 0 ⊗ (diag (δ) v D ) . (6)

Automatic parameter selection

The proposed iVFM velocity vector eld reconstruction leads to a multi-parameter regularized problem. The approaches usually used for automatic parameter selection are the generalized cross-validation [START_REF] Craven | Smoothing noisy data with spline functions. Estimating the correct degree of smoothing by the method of generalized cross-validation[END_REF] and the L-curve [START_REF] Hansen | The use of the L-curve in the regularization of discrete ill-posed problems[END_REF], which are well suited for a single regularization parameter. Here we propose a method for selecting the regularization parameter triplet Λ = (λ 1 , λ 2 , λ 3 ) of the iVFM problem. The L-curve method [START_REF] Hansen | The use of the L-curve in the regularization of discrete ill-posed problems[END_REF] is one of the well-known approaches for the selection of a single regularization parameter. It allows one to nd an optimal trade-off between the amount of regularization and the quality of the tting to the given data. The L-curve (so-called due to its typical shape) consists in a log-log plot of the residual norm versus the regularization norm for a set of regularization parameter values. By de ning the corner to be the point on the L-curve where the curvature reaches a maximum, an appropriate regularization parameter Λ opt is chosen in such a way that the corresponding point lies on this corner [START_REF] Hansen | The L-curve and its use in the numerical treatment of inverse problems Computational Inverse Problems[END_REF].

The L-hypersurface approach has been introduced to extend the L-curve method to multiparameter regularization problems [START_REF] Belge | Ef cient determination of multiple regularization parameters in a generalized L-curve framework Inverse[END_REF]. Let us introduce the residual norm:

ζ (Λ) = v D -Q 0 v (Λ) 2 , (7) 
and the regularization norms:

χ l (Λ) = Q l v (Λ) 2 , l = 1, 2, 3. (8) 
where v (Λ) is the solution of the regularized problem (5) for a given Λ Λ ∈ R * 3 + . The matrices Q l (l = 1, 2, 3) are the regularization matrices de ned earlier (equation ( 4)). Then the L-hypersurface is the three-surface in the hyperspace of four dimensions associated with the map S (Λ) : R * 3 + → R 4 , such that [START_REF] Belge | Ef cient determination of multiple regularization parameters in a generalized L-curve framework Inverse[END_REF]:

S (Λ) = (log (χ 1 (Λ)) , log (χ 2 (Λ)) , log (χ 3 (Λ)) , log (ζ (Λ))) . (9) 
Similar to the L-curve, the L-hypersurface is a log-log plot of the residual norm ζ (Λ) against the regularization norms χ l (Λ), l = 1, 2, 3. To deal with the L-hypersurface-based parameter selection, one may consider the generalized corner point, where a balance between the regularization and residual errors is expected [START_REF] Belge | Ef cient determination of multiple regularization parameters in a generalized L-curve framework Inverse[END_REF]. To identify the corner point corresponding to the optimal solution v (Λ opt ), we proceeded by iterating as follows:

(1) Provide an initial Λ; i = 0.

(2) For the xed pair λ 1+[i(mod3)] , λ 1+[(i+1)(mod3)] , nd the corner point of the discrete L-curve with respect to λ l = λ 1+[(i+2)(mod3)] and associated with the map S l (λ l ) = (log (χ l (λ l )) , log (ζ (λ l ))). Note that mod stands for modulo. (3) Update Λ using the current estimate λ l . (4) Check convergence of Λ.

(5) If necessary, increment i and go to step #2, i.e. iterate periodically among two combinations of Λ.

This iterative method allowed automatic model selection. This is an essential aspect in the clinical context, since it avoids subjectivity in the choice of the parameters, and consequently notably reduces interobserver variability. Using a Λ step tolerance of 0.1 in a decimal logarithmic scale, around ten iterations were required with the patient data reported in section 3.3.

Analysis in a rigid-body vortex model

The iVFM algorithm was rst tested in a numerical rigid-body vortex model. The purpose of these simulations was to analyze the robustness of the algorithm to hypothesis failures, i.e. under conditions where (1) the actual ow is not divergence-free or (2) the imposed boundary conditions in J 2 are incorrect. The diameter of the vortex was 8 cm, and its center was located 6 cm from the ultrasound probe. Synthetic 90°-wide Doppler images were generated by extracting the radial velocity components. They contained 64 scanlines, with 100 samples per scanline. The Doppler velocities were corrupted by a zero-mean Gaussian white noise with a velocity-dependent local variance [START_REF] Jensen | Color ow mapping using phase shift estimation Estimation of Blood Velocities Using Ultrasound[END_REF]. Signal-to-noise ratios were within the range (20, 60) dB (see equations ( 10) and ( 11) in [START_REF] Muth | Unsupervised dealiasing and denoising of color-Doppler data[END_REF]). In a rst series of simulations, to test the algorithm in non-divergence-free ows, the rigid vortex (divergence-free, uniform curl) was mixed with a uniform sink ow (uniform divergence, curl-free) with an identical ow rate, according to the following weighted sum: (1 -p) vortex + p sink, p ∈ [0, 0.25] ( p = 0 indicates a true divergence-free hypothesis). To test the effect of incorrect boundary conditions, a second series of rigid-body vortices was examined while imposing different boundary conditions in J 2 . In this series, the direction wall vector was de ned by d wall = (1 -p) n wall + p t wall , p ∈ [0, 0.25] ( p = 0 indicates true boundary conditions). The reconstructed velocity elds were compared with the actual elds for the two series. The rootmean-square errors were normalized by the maximum speed: To test the new iVFM algorithm under physiological-like conditions, we used a patientspeci c heart ow CFD model developed by [START_REF] Chnafa | Image-based large-eddy simulation in a realistic left heart[END_REF][START_REF] Chnafa | Using image-based CFD to investigate the intracardiac turbulence Modeling the Heart and the Circulatory System[END_REF][START_REF] Chnafa | Image-based simulations show important ow uctuations in a normal left ventricle: what could be the implications?[END_REF]. In this CFD model, the cardiac cavities and the wall dynamics were extracted from 4D images acquired by computed tomography ( gure 3). An arbitrary Lagrangian-Eulerian (ALE) framework was adopted to handle the large-amplitude motion of the cardiac tissues (endocardium and valve lea ets). Several complete intracardiac ow cycles were simulated in the left heart (details in [START_REF] Chnafa | Image-based large-eddy simulation in a realistic left heart[END_REF][START_REF] Chnafa | Using image-based CFD to investigate the intracardiac turbulence Modeling the Heart and the Circulatory System[END_REF]). Color Doppler velocity data were simulated from the phaseaveraged intraventricular CFD ow velocities. An apical three-chamber view was reproduced ( gure 3) by locating the probe at the apex, with the Doppler sector enclosing the mitral inlet and the left ventricular out ow tract. The virtual Doppler images were obtained in an evenly spaced polar grid (64 scanlines, 100 samples/scanline) by extracting the radial velocity components. A 60 dB signal-to-noise ratio was simulated. No clutter was included. Tangentvelocity boundary conditions (i.e. d wall = n wall , equation ( 2)) were assumed in the iVFM computation. The iVFM-derived velocities were compared with the original CFD velocities along the apex-mitral scanline. The root-mean-square errors were normalized by the maximum speed (equation ( 10)). The peak vorticities were also compared during diastole. To quantify the dependence of the iVFM reconstruction accuracy upon the left ventricular wall geometry, additional numerical experiments were conducted with disturbed walls. The idea was to mimic variations in the boundary wall delineation that occur from one operator to another in the clinical context. For a given frame, several wall geometries were considered. The perturbation was quanti ed using the Hausdorff distance between the actual endocardium boundary and the disturbed wall.

Analysis in patients

The new iVFM technique was tested retrospectively in several patients (no valvular regurgitation, no arrhythmia) with good-quality B-mode/color Doppler, to highlight the intraventricular blood ow and the vortex formation. Echo-Doppler images of the left ventricular in ow were acquired in the apical long-axis three-chamber view using a Vivid e9 ultrasound scanner (GE Healthcare) and a 2.5 MHz phased array. Doppler data were extracted prior to scan conversion (i.e. in a polar grid) using EchoPAC (GE Healthcare). The Doppler velocities were dealiased using the segmentation-based technique described in [START_REF] Muth | Unsupervised dealiasing and denoising of color-Doppler data[END_REF], and the inner left ventricular boundary was segmented manually. The protocol was approved by the human ethics review committee of the CHUM (Centre Hospitalier de l'Université de Montréal).

Results

Rigid-body vortex model

The iVFM algorithm lost some accuracy when the ideal conditions (i.e. divergence-free ow and exactness of the boundary conditions) were not met ( gure 4). A normalized error higher than 10% was observed when the hypotheses failed at >20% (parameter p > 0.2). The Doppler noise had a relatively small impact in comparison with the effect of the hypothesis breaches.

Analysis in the patient-speci c CFD heart model

Figure 5 (top row) shows examples of iVFM-velocity elds compared with the CFD vector elds (bottom row). A qualitative inspection of the results shows that the reconstructed velocity eld was in good agreement with the actual vector eld. A quantitative error analysis is shown in gure 6. The normalized root-mean-square errors (on the long axis) reached maxima during left ventricular lling, when the velocities were the largest. Overall, the errors were less than 5% and 15% for the radial and angular velocities, respectively. The peak vorticities were also in good agreement, although the iVFM reconstruction induced some underestimation (maximum = 130 versus 160 s -1 ). Although a small increase in angular error can be noted ( gure 7), wall perturbation (in the range 0-12 mm) had no signi cant effect on velocity reconstruction, which illustrates the robustness of iVFM to potential errors in wall delineation.

Vector ow mapping in patients

The vector ow maps returned by the iVFM algorithm made the intraventricular ow patterns clearly discernible. The vortex formation, and its evolution over diastole, can be appreciated in gure 8. In this gure, the main vortex was detected and highlighted using the Okubo-Weiss criterion [START_REF] Weiss | The dynamics of enstrophy transfer in two-dimensional hydrodynamics[END_REF]. Figure 9 provides diastolic snapshots in three additional patients, revealing the large vortex that forms in the cardiac cavity.

Discussion

We have introduced a regularized approach to reconstruct the 2D intraventricular velocity vector eld from single-view color-Doppler echocardiography images. This method extends the one reported in [START_REF] Garcia | Two-dimensional intraventricular ow mapping by digital processing conventional color-Doppler echocardiography images[END_REF] and [START_REF] Hendabadi | Topology of blood transport in the human left ventricle by novel processing of Doppler echocardiography[END_REF]. Unlike the previous work that solved a series of 1D continuity equations independently, the present iVFM solves a linear system derived from the discretization of a 2D cost function de ned on the three-chamber intracavitary plane. This 2D numerical derivation will form the framework of an upcoming procedure for 3D vector ow mapping using single-window Doppler echocardiography, as discussed in section 4.5.

Quality of the reconstructed vector maps

The quality of the ow restoration appears to be related to the frame in the cardiac cycle. In some instants of the cardiac cycle, the intraventricular ow is mostly radial (parallel to the ultrasound beam direction), and as such is 'easily' reconstructible. In some other parts of the cardiac cycle, when a large vortex is formed (as in gure 9), the vector ow eld contains substantial cross-beam (angular) components. This explains why errors are higher at some point in time. In a planar imaging modality, divergence minimization alone cannot allow the full recovery of the actual vector eld since signi cant out-of-plane velocity components can exist. The observed errors (less than 15-20%), however, are acceptable in a clinical context. Whether the reconstruction errors remain satisfactory in patients must be con rmed by comparing iVFM against a true 2D imaging technique, such as echo-PIV by contrast echocardiography [START_REF] Abe | Contrast echocardiography for assessing left ventricular vortex strength in heart failure: a prospective cohort study[END_REF] or ow MRI [START_REF] Markl | Advanced ow MRI: emerging techniques and applications[END_REF]. Although the endocardium geometry is known to have an impact on the intraventricular ow, we showed clear evidence that small perturbations of the wall do not affect the reconstructed elds signicantly. According to these results, the iVFM algorithm is more sensitive to non-divergencefree ows and erroneous boundary conditions than to variations in wall geometry.

Expected reproducibility in clinical applications

Recovering ow vector elds in the left ventricle is a required step to fully characterize the principal vortex that forms during diastole. According to recent clinical studies, this vortex might provide valuable echocardiographic markers for the assessment of diastolic dysfunction [START_REF] Abe | Contrast echocardiography for assessing left ventricular vortex strength in heart failure: a prospective cohort study[END_REF][START_REF] Arvidsson | Vortex ring behavior provides the epigenetic blueprint for the human heart[END_REF]. If the clinical relevance of vortex properties for diastology is con rmed by further prospective studies, vortex imaging by iVFM must be fast and reproducible to become an accepted echocardiographic procedure. Fastness is ensured since iVFM only requires a single color Doppler cineloop; furthermore, solving the sparse linear system with automatic model selection was a less-than-1 s operation. To guarantee interobserver reproducibility, a necessary condition is the automatic selection of the three regularization parameters to avoid any subjectivity. The multi-view methods proposed in [START_REF] Arigovindan | Full motion and ow eld recovery from echo Doppler data[END_REF] and [START_REF] Gomez | 4D Blood Flow Reconstruction over the entire ventricle from wall motion and blood velocity derived from ultrasound data[END_REF], discussed in section 4.3, do not explicitly give details on the method used for optimal parameter selection. Methods for automatic parameter selection, such as the generalized cross-validation and the L-curve have been used for regularization problems, mainly with a single regularization parameter. The L-hypersurface was reintroduced by [START_REF] Belge | Ef cient determination of multiple regularization parameters in a generalized L-curve framework Inverse[END_REF] to handle multiple parameters. These authors rst proposed an approach based on the maximization of the Gaussian curvature of the L-hypersurface [START_REF] Belge | Simultaneous multiple regularization parameter selection by means of the L-hypersurface with applications to linear inverse problems posed in the wavelet transform domain[END_REF]. They subsequently minimized a distance function to locate the L-hypersurface corner [START_REF] Belge | Ef cient determination of multiple regularization parameters in a generalized L-curve framework Inverse[END_REF]. For these two cases, the whole hypersurface was considered. However, the complexity of the associated computations may justify considering other alternatives for dealing with the L-hypersurface (in our case, a 3D surface). In the present study, we considered the L-curve-like 1D slices iteratively, thus reducing the multi-parameter selection to a series of single-parameter determination. Convergence towards a unique solution is ensured if the L-hypersurface is strictly convex in the domain of interest. Although proving the convexity of the L-hypersurface is not within our expertise, convergence was always attained in our in silico and in vivo tests. The reproducibility of iVFM will be analyzed in a further clinical study.

Boundary conditions and well-posedness of the problem

The key constraint in the iVFM cost function (equation ( 2)) is the null-divergence constraint; it allows the estimation of the cross-beam velocity components under the assumption that uid mass is 'approximately' conserved in the plane of interest. This assumption is acceptable in the echocardiographic three-chamber apical long-axis view [START_REF] Garcia | Two-dimensional intraventricular ow mapping by digital processing conventional color-Doppler echocardiography images[END_REF]. It should be noted that this assumption is formulated in a least-squares sense. As a consequence, the vector eld reconstructed by iVFM is not necessarily divergence-free. The output also depends on the boundary conditions. Since the continuity equation is a partial differ ential equation, boundary conditions are required to uniquely de ne the problem. No-slip boundary conditions should be theoretically preferred, i.e. the same velocity for the uid and the wall should be prescribed at the interface, because blood is a viscous uid. However, as in the previous study [START_REF] Garcia | Two-dimensional intraventricular ow mapping by digital processing conventional color-Doppler echocardiography images[END_REF], we favored (in a least-squares sense) blood velocities tangent to the endocardium since the intraventricular ow is highly inertial. Flow-MRI and CFD studies con rm that this condition is legitimate during diastole. Adequate boundary conditions guarantee the well-posedness of the problem. Indeed, the matrix A of the linear system is positive semide nite; the quadratic function ( 3) is thus convex. If the Dirichlet boundary conditions on the endocardium are complete, the minimization problem is well-posed, thus ensuring strict convexity of the quadratic function (A is positive de nite) and in turn the presence of a single minimizer. Our in vitro and in vivo numerical evaluations also showed that the system was well-conditioned, and thus the solutions were only slight (or not) sensitive to round-off errors. 

Comparison with other color Doppler approaches

Several methods for intracardiac vector ow imaging using color Doppler echocardiography have been derived. The multiple-view approaches mentioned in the introduction require registration of several echocardiographic views acquired at signi cantly different beam angles, which hinders their clinical application. To make intraventricular vector ow imaging compatible with conventional color Doppler, reconstructions based on single-view images have been proposed. One advantage is that it can t the clinical acquisition protocol of an echocardiography laboratory; one drawback is the loss of ow information. Different This series illustrates that any attempt to recover the actual intraventricular vector velocity eld from a single 2D color Doppler view would be futile. Only an estimate can be retrieved because key information is missing. To obtain a 'good' estimate, the assumptions must have well-founded or reasonable physical meanings. Although our in vivo vector ow maps look physiologically consistent, a head-to-head comparison in patients with another vector imaging modality must still be carried out. Echo-PIV with contrast agents would be the method of choice since it would be uncomplicated to acquire similar echocardiographic elds of view.

3D iVFM

The iVFM algorithm described in this study can be translated to 3D echocardiography. To this end, the cost function (2) must be rewritten with the three velocity components in a spherical coordinate system. Even if two components are unknown (both the polar and azimuthal components), instead of one, the problem will remain well-posed since the ow is divergence-free, and boundary conditions can be imposed on the surface of a closed volume. This will ensure the strict convexity of the discretized cost function and thus the uniqueness of the minimizer. We expect volumetric iVFM to be more accurate than 2D iVFM since the divergence-free hypothesis is fully valid in 3D. Volumetric color Doppler, however, still suffers from low spatial and temporal resolutions. 3D iVFM will thus bene t from high-frame-rate color Doppler echocardiography [START_REF] Provost | 3D ultrafast ultrasound imaging in vivo[END_REF], Porée et al 2016, Posada et al 2016).

Conclusion

We have introduced an improved iVFM algorithm for iVFM using color Doppler echocardiography. This algorithm is based on a 2D minimization approach with physically consistent regularizers. It will form the framework for volumetric iVFM. This 2D iVFM method will be clinically relevant for assessing diastolic function in patients.
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Figure 1 .

 1 Figure 1. The iVFM algorithm was implemented in the polar coordinate system associated with the Doppler sector. iVFM allows one to recover the 2D velocity eld v (r, θ) from the Doppler components by minimizing the cost function described by equation (2). Ω represents the domain of interest and ∂Ω its boundary.

Figure 2 .

 2 Figure 2. The iVFM algorithm is based on an automatic ℓ 2 -norm minimization. It works in a polar coordinate system, before scan conversion. Ω represents the domain of interest and ∂Ω is its boundary.

Figure 3 .

 3 Figure 3. The iVFM algorithm was tested in a dynamic patient-speci c heart ow model (Chnafa et al 2014). Doppler velocity images were simulated from the radial velocity components. The vector elds recovered by iVFM were compared with the ground-truth CFD elds.

Figure 4 .

 4 Figure 4. Analysis in the synthetic rigid vortex: the iVFM cost function includes a 'divergence-free' regularizer. The left panel shows the effect of the divergencehypothesis breach on iVFM accuracy. The synthetic ow is divergence-free when p = 0. The right panel shows the impact of BC (boundary condition) imprecision. The boundary conditions are exact when p = 0. Doppler noise (signal-to-noise ratio = 20-60 dB) has relatively little effect on iVFM accuracy. The inset represents the rigid vortex.

Figure 5 .

 5 Figure 5. Analysis in the patient-speci c CFD heart model: comparison of the intraventricular velocity vector elds (iVFM-based vectors versus original CFD vectors). These snapshots correspond to frame numbers 50, 60, and 70 (see gure 6).

Figure 6 .

 6 Figure 6. Analysis in the patient-speci c CFD heart model. Left panel: comparison between the iVFM-based and CFD velocity vectors. The radial and angular components were compared on the apex-mitral axis (dotted line of the inset). Right panel: comparison of the peak vorticities.

Figure 7 .

 7 Figure 7. Analysis in the patient-speci c CFD heart model. Impact of wall perturbation on iVFM accuracy. The radial and angular components were compared on the region of interest.

Figure 8 .

 8 Figure 8. iVFM in a patient, from early lling to systole onset (see ECG). The vortices were detected by the Okubo-Weiss criterion. Only the main clockwise vortex is depicted.

Figure 9 .

 9 Figure 9. Diastolic intraventricular vortex in three patients, as depicted by iVFM. The red/blue colors represent the original Doppler velocities from which vector ow mapping was reconstructed.
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Intraventricular vector flow mapping (iVFM)a Doppler-based regularized problem with automatic model selection K.C. Assi, E. Gay, C. Chnafa, S. Mendez, F. Nicoud, J.F.P.J. Abascal, P. Lantelme, F. Tournoux, D. Garcia www.biomecardio.com; garcia.damien@gmail.com The objective is to recover the intraventricular velocity vector field from a single Doppler field. We work in a regular polar grid whose center corresponds to the origin of the Doppler sector. The radial and angular coordinates of the velocity vector field are noted { , }.

By convention, the Doppler velocities are positive when blood flows towards the ultrasound probe. We note = to ensure sign compatibility between and the radial components of the estimated velocity field.

The cost function to be minimized is the following (see details in the main text):

and = Hadamard and Kronecker products, respectively = matrix of size ( × ) contains the negative Doppler velocities. and = matrices of size ( × ) contain the radial and angular velocities = matrix of size ( × ) contains the radial coordinates and = matrices of size ( × ) contain the radial and angular components of the unit vector normal to the left ventricular inner wall. ( ) , and ( ) , = 0 if the element ( , ) is not on the edge of the left ventricular ROI (endocardium). We work with the elements inside and on edge of the region defined by the left ventricular cavity. This region is defined by the binary matrix , with ( ) , = 1 if the element ( , ) is inside or on edge of the ROI, ( ) , = 0 otherwise. and = radial and angular steps. They are constant since the polar grid is evenly-spaced.

The vectorized forms are:

= vec( ), = vec( ) and = vec( ) = vec( ), = vec( ) = vec( ) = vec( ) =

= identity matrix of size ( × )

= null matrix of size ( × )

= column vector of ones of size ( × 1)

= 1 st -order derivative operator matrix of size ( × ) = 0.5 0.5 0.5 0 0.5 0.5 0 0.5 0.5 0 0.5 0.5 0 0.5 0.5 0.5 = 2 nd -order derivative operator matrix of size ( × ) =

We note the column vector of size (2 × 1), solution of the minimization problem.

Matrix formulation of the cost function

vectorization: vec( ) = = [ , ]

We note = [ ] is of size ( × 2 )

2.

+ + + + vectorization:

1 vectorization: vec = idem for the terms including .

We note = is of size (6 × 2 )

The cost function to be minimized can be written in a matrix form as follows: