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About disconnected topologies and synchronization of homogeneous
nonlinear agents over switching networks

Giacomo Casadei, Alberto Isidori and Lorenzo Marconi

Abstract

In this paper we study the problem of networks on nonlinear oscillators when communication topologies are
disconnected. In the first part we show that the high gain design procedure, proposed in [18], succeed in achieving
clustered consensus when disconnected topologies occur. In the second part of the paper, we study a network of
nonlinear oscillators when the topology is switching between a set of disconnected and connected topologies. By
a Lyapunov analysis we prove that, if disconnected topologies last a limited amount of time and the switching
law for connected topologies fulfill an average dwell time condition, synchronization is achieved.

I. INTRODUCTION

The problem of achieving consensus among a set of systems exchanging information through a network is
extensively studied in the control literature (see [15] for an extensive survey of results in the field). Information
network analysis, multi-agent systems, electrical power systems, animal collective behaviour, systems biology are
just a few application domains where consensus among networked agents plays a role. One of the distinguishing
elements of the framework where consensus problems are formulated is how the exchange of information between
the agents is modeled. Graph theory is typically used in order to model communication networks, [25].

Many contributions about consensus usually require the graph to be connected and time invariant. These
assumptions might be restrictive in many applications and thus motivated the analysis of disconnected topologies
and switching networks.

The problem of disconnected topologies has been studied in order to understand if undesired or unstable
behaviour might arise. Indeed, disconnected topologies typically lead to the so called clustering behaviour,
in which agents achieve different synchronisation patterns, depending on connected sub-graphs composing the
network. In [3], the clustering behaviour has been extensively studied and it is shown that this behaviour arises
naturally in animal packs. This phenomenon poses challenging questions in terms of analysis and modelling
of biological networks, especially when the number of agents interacting increases. A similar behaviour can be
noticed also in opinion dynamics networks, where confidence is a time varying parameter based on which agents
give trust only to a certain number of neighbors (see [4]).

Time varying topologies also attracted a lot of interests in the community and several results can be found.
Among others, in [11], the problem of switching network is addressed and consensus is achieved as long as the
graph is uniformly quasi-strongly connected and fulfills a dwell-time condition. For the special case of integrators
network, [13] and [12] give a consensus result based on the concept of average connectivity of the graph. In [10]
and [14], the problem of consensus of linear systems with switching topology is considered:results are provided
respectively by means of a hybrid control techniques and small gain/passivity arguments. In [7], fully nonlinear
agents are considered and sufficient conditions to achieve consensus are cast in terms of linear matrix inequalities
and frequency of switching, taking into account also the impact of communication delay.

A very general framework proposed in literature to frame problems of switching networks is the one based on
the notion of joint connectivity. In contrast with the definition of connected graphs, joint connectivity does not
require the graph to be instantaneously connected. Rather, the union on a certain time interval of all topologies
among which the network is switching is required to be connected. Within this general framework, in [5], [6]
different consensus results (such as target aggregation and state agreement) are proved under the assumption that
the graph is jointly strongly connected and that each topology persist for a time period fulfilling a dwell time
condition. The agents dynamics are linear in [6] while nonlinear dynamics for “informed agents”, fulfilling an
attractivity condition to the target set, are considered in [5].
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Recently, the analysis developed in [6] has been extended in [8] to the case of nonlinear agents. In this work
a general class of nonlinear systems assumed to be “non-expansive” is considered, and strong joint connectivity
of the graph is shown to be sufficient condition for consensus. In the same paper it is shown that if the nonlinear
dynamics just fulfill a globally Lipschitz condition then consensus is achieved under the assumption that graph
is uniformly strongly joint connected and the Lipschitz constant of the nonlinear dynamics is sufficiently small.
However, assuming that the graph is uniformly strongly connected implies that all agents are centroid of the
graph. Furthermore, to achieve state synchronization, the resulting average-graph is supposed to be fixed. These
two conditions limit enormously the family of possible topology and the switching law sequence.

Another perspective on the problem on switching networks of nonlinear agents was introduced in [9] where
the authors consider the switching law as a design parameter and, by means of switched systems tools, they show
that a design it is possible to achieve synchronization as long as the switching law fulfills conditions equivalent
to uniform joint connectivity.

In this work, by means of Lyapunov analysis, we describe how disconnected topologies affect the behaviour
of the agents and that, following the design procedure proposed in [18], a clustering behavior arises naturally
even in the nonlinear framework.

With respect to switching networks, we extend the results of [20], by considering the case in which the
communication graph switches within a set of topologies not all necessarily connected and with time intervals
in which connected topologies do not fulfill a dwell-time condition. More specifically, we show that consensus
can be achieved provided that the time intervals in which the communication topologies are connected fulfill an
average dwell-time condition ([22]). With respect to the works on the subject mentioned before, the emphasis
of the paper is to deal with the lack of a guaranteed dwell-time. Lyapunov arguments proposed in the field of
hybrid control systems (see [1], [23]) are used to prove the main result. This work frames as an addendum of
[18] in which heterogeneous systems networked with fixed connected topologies are considered. In particular,
the arguments presented here can be used to show that the control framework of [18] succeeds in achieving
consensus between networked heterogeneous nonlinear systems even in presence of switching topologies of the
kind considered in the following.

The paper is structured as follows. In Section II, we provide standard concepts about graph theory and define the
framework of the note. In Section III, we study a network of nonlinear oscillators when disconnected topologies
occur. In Section IV, starting from the results in previous section, we analyze the switching network scenario and
provide sufficient conditions for synchronization achievement.

II. BASIC FACTS AND FRAMEWORK
A. Graph Theory and Analysis
The paper deals with the problem of reaching a consensus among a set of NV, agents, described by homogeneous
nonlinear systems. Denoting by V = {v1,va, ..., vy, } the set of N, nodes of the network, a topology is described
by a directed communication graph given by the following objects:

e £ C V xVis aset of edges that models the interconnection between nodes, according to the following
convention: (vi,v;) belongs to £ if there is a flow of information from node j to node k. It is assumed that
there are no self-loops, i.e. that (v, vi) ¢ E.

o for each (vy,v;) € £ the flow of information from node j to node k in the i-th topology is weighted by the
(k, j)-th entry ay; > 0 of the so-called adjacency matrix A € RNo*Na,

The Laplacian matrix L associated to the graph can be also immediately computed from the adjacency matrix
A in the usual way. In particular, L is the N, x N, real matrix whose (k, j)-th entry ¢; is defined as

fkj(t) = —akj for k 75]
N,

lyi(t) = Z apm for k= 7.
m=1

By definition, the diagonal entries of L are non-negative, the off-diagonal entries are non-positive and, for each
row, the sum of all entries on this row is zero (namely L is a Metzler matrix).



Theorem 1 A time-invariant graph, whose Laplacian matrix L is Metzler, is connected if and only if L has only
one trivial eigenvalue \1 = 0 and all other eigenvalues A2(L), ..., \n(L) have positive real parts.

To analyze the behvior of the network when disconnected topologies occur, we recall some useful concepts (see
[15] and [19]). We start by recalling the definition of an independent connected component (ICC) of a di-graph
G={V,¢& A}

Definition 1 An independent connected component of a di-graph G = {V,E, A} is the maximal subgraph G =
{V, &, A} that is connected and such that there is no edge in € with a tail outside V and the head in V.

Let ¢ > 1 be the number of /CCs of the di-graph. We can partition the whole graph in ¢ 4 1 sub-graphs: the
first ¢ sub-graphs represent the /CCs inside the graph. The additional one is a “residual graph” (possibly empty)
composed by “residual vertexes” that might have incoming edges from the independent connected components
but without outgoing arcs toward independent connected components.

By relabeling the vertexes of the whole graph, so that the vertexes of each independent connected components
are consecutive and the residual sub-graph vertexes are confined at the end, it turns out that the Laplacian matrix
takes the form

Ly 0 -+ 0 0
0 Lo -+ 0 0
0 0O - L. O
F LT‘GS
where I' denotes the matrix of incoming edges to the residual component.
We observe that the eigenvalues of the Laplacians Ly, ..., L. are one zero and the rest are positive. It turns
out that the eigenvalues of L,.s are all positive and thus L,.s is always invertible !. This fact is a necessary
condition for the next proposition (whose proof can be found in [19]), in which Ny, ..., N, and N,s denote

the number of vertexes in each of the ¢ independent connected components.

Lemma 1 Let V € RV*¢ be the matrix defined as

Iyyr 0 .. 0

0  Ingwxi ... O

V=

0 0 .. 1y

N e e

with [y1,72, - - ., 7| defined as

lyya 0 ... 0
_ 0 1 0
e
0 0 ... 1y

where ( ' Lyes ) denotes the matrix obtained by extracting the last N,¢s rows of L. Then the following holds:
o dim(Ker(L)) =c¢;
o the columns of V form a basis of Ker(L).

With the previous result in hand, reminding that N; is the dimension of the ¢-th /CC, we define the matrix

O1xn,—1
A = ‘
A

'For the proof, see [15] Appendix A.3.2, proof of theorem 2.13.



and consequently the transformation 7'

-1N1><1 A1 0 ce 0 0
0 0 . .
T= : : . 0 0 (1
O O ].NC><1 AC 0
. T o ... Ye 0 Ires|

where all the 0’s blocks are defined according to the dimension of each ICC.
By applying such a transformation to L we obtain L = T~' LT which, by reordering opportunely its columns,
has the following structure

B 0c><c L12 Oc><N,.es
L= |0N-c-N,.ox1 L22 ON—c—N,.,xN,.,
0N,,.es Xc r Lres

for some appropriately defined Lis, Loo, f, IN/TGS, with all the eigenvalues of Loy and f/res that are positive.
By opportunely relabeling the vertexes, it turns out that Lo = blkdiag(Lio,, ..., Li2,) and Loo = blkdiag(Leo, , . .., L22,).

Remark 1 It is worth noting that, under the condition that the spectrum of L,es and Loo are disjoint, namely
O‘(LQQ) N U(Lres) =9

it is possible to define the transformation T in (1) in such a way that I = 0 (see [32] for more details). If this
is the case, the matrix L would turn out to be

B chc L12 OCXNTes
L= |0N—c-N,.x1 Lo ON—c—N,eoXNye.
ONMSXC ON,,SSXN—C—NME Lres

The hypothesis that the spectrum of Lyes and Lo are disjoint is often too restrictive. Hence, for the sake of
generality, in the rest of the paper we will consider the case in which T" # 0.

B. Framework and main assumptions
Each of the NV, agents is described by the nonlinear dynamics

i = flzp)+up xR @)
L — h(l‘k)
in which, for each k =1,..., N,, ug € R? is the control input, ¢, € R is the available measurement. Note that

we deal with homogeneous nonlinear agents, namely f(-) and h(-) do not depend on k.
We look for a decentralized control structure in which the agents exchange only output information and the
control law of each agent is taken as

N,
up = K(xp)ve,  vi= Y lih(z;) 3)
=1

with KC(xy) to be designed in such a way that output consensus is reached among the agents. Namely, for each
initial condition x4(0) € R, there is a function /* : R — R such that

| o
Jim [(t) — (1) = 0.

uniformly in the initial conditions, for all £ = 1,..., N,. It is worth noting that, in the proposed framework, no
leader is considered, and only the neighbor’s information is available according to the underlying communication
topology. Furthermore, local output of single agents rather than a full state information is assumed to be spread
over the network.



The main results are proved under a certain number of assumptions regarding the agents that are here presented.
Since the goal is to achieve consensus by only processing the output ¢, of each agent, the first assumption asks
that systems (2) are uniformly observable (see [31]) as detailed next.

Assumption 1 The map ¥ : R¢ — R¢ defined as

h(xk)
Lyh(zy,)

L;lc_lh(ka)
is a global diffeomorphism.

The requirement of the existence of a global diffeomorphism W(-) is motivated by the fact that, in the following,
we look for consensus results that hold globally, namely without restrictions on the initial state of the agents.
The previous assumption could be weakened by just asking that the map W(-) is a local diffeomorphism on some
given set at the price of obtaining just semiglobal consensus results, namely by restricting the initial state of the
agents to some prescribed compact set. Details in this direction are omitted since they can be obtained by using
tools that are customary in the literature of stabilization of nonlinear systems.

The existence of such a diffeomorphism allows us to define a change of coordinate wy = W(xy), which maps
system (2) to

Wy, = Swy, + Bo(wg) + v, yp = Cw (5)
ith
" AW ()
v = U,
dzy,

and with the triplet of matrices (S, B, C) that is in prime form, that is S is a shift matrix (all 1’s on the upper
diagonal and all 0’s elsewhere), BT = (0---0 1) and C = (1 0---0). In the following we assume that the
function

d(wi) = LER(@k) | oy —0-1 ()

is globally Lipschitz, namely there exists a positive constant ¢ such that ||¢(w)|| < ¢|jw|| for all w € RY. Such a
globally Lipschitz condition is motivated by the fact of looking for “global” consensus results. The assumption
in question could be weakened by just asking the previous function to be only locally Lipschitz if just semiglobal
consensus results are of interest.

By bearing in mind the definition of (5), we design K(xy) in (3) as

AW (zy,) !
= K 6
K(xr) Qo (6)
and thus obtain N
vp=-KY ;jCw;  k=1,...,N,. (7)
j=1

We also assume that agents (5) have a robust compact attractor W C R?, where robustness is character-
ized in terms of Input-to-State Stability. This assumptions indeed guarantees that the network of (5) achieves
synchronization on non-trivial trajectories.

Assumption 2 There exists a compact set W C R® invariant for (2) with u = 0 such that the system

w = Sw+ Bo(w) + u



is input-to-state stable with respect to u relative to W, namely there exist a class-KL function 5(-,-) and a
class-KC function ~(-) such that®

[w(t, @)lw < max{B([[@]w, ), 7( sup [lu(r)[])}-
T€[0,t)

A relevant application scenario in which agents are described by nonlinear dynamics of the form of (5) is the
one of power networks (see [27],[30]), where nonlinear oscillators are used to model nonlinear components of
the electrical networks. A further motivation for considering agents described by (5) comes from the theory of
output regulation for networked systems ( see [18], for details on synchronization for heterogeneous nonlinear
networks), in which nonlinear oscillators of the kind of (5) have to be synchronized.

Finally, we fix a restriction on the communication topologies asking that the real part of the nontrivial
eigenvalues of the Laplacian are uniformly bounded from below by a known constant .

Assumption 3 There exists a 1 > 0 such that, for all m =1, ..., N, such that \,,(L) # 0, the following holds
ReA\, (L) >

ITI. ANALYSIS IN CASE OF DISCONNECTED TOPOLOGY
In this section, we show that the control structure proposed in [18] does not affect the stability of the networked
system, even if the communication topology is disconnected. In particular we will show that agents belonging to
one of the independent connected components achieve consensus and the residual agents have bounded trajectories.
Following the design procedure in [18], we choose the vector K in (7) as

K = D,Kq 8)
where D, = diag(g, g%, ... ,gd) with g a high-gain parameter, and Ky chosen as
Ky = PCT 9
with P solution of the algebraic Riccati equation
SP+ PST —2uPCTCP +al =0 (10

with ¢ > 0, S and C as in (5) and p as in Assumption 3.

Proposition 1 For all ;,(0) € R% k = 1,..., N,, the trajectories of the agents are bounded. Furthermore, agents
belonging to a independent connected component achieve consensus, namely there is a function v; : R = R, for
it =1,...,¢ such that

1‘ — * =

Jim feg (8) =45 ()] = 0,

for every k such that the k-th agent belongs to the i-th independent connected component.

Proof: The proof is divided in two parts. In the analysis of disconnected topologies, we will first focus on
the independent connected components and show that inside each one of them consensus is achieved. Second, we
will show that agents belonging to the residual component do not achieve consensus have bounded trajectories.

*Here and in the following we denote by ||w||w = mingew ||w — || the distance of w from W. Furthermore, w(t, @) denotes the
solution of (2) at time ¢ with initial condition w at time ¢ = 0.



A. Consensus inside independent connected components
By grouping all the agents according to w = col(wy, ..., wy) and considering a fixed disconnected topology,

we change coordinate according to z = (T~! ® I;)w, where T is defined in (1) relatively to a generic topology.
By relabeling the agents so that the agents within the same independent connected component are consecutive
and the residual agents are confined at the end, z turns out to be
z = col (col(z11,212), - .., c0l(Zc1, Zc2) s Zres) (11)
with z;; € R? and z;0 € RN for = 1,...,c and z,es € RNres,
The agents belonging to the ¢ connected components are described by
4, = Sz, + Bo(z,) — (L2, ® KC)z,
zj, = ([In,-1® 8] —[Laz, ® KC) zj, + A®j(2;,,2;,)
forj=1,...,c, 2, € R? and z;, € RANi=Y with A®D,(z,,2j,)
¢(Zj1 + ZjQ) - ¢(Z]1)
A®;(z),,2j,) = (In,—1 ® B) E
¢(Z]'1 + ZjN,i) - ¢(ZJ1))
which is globally Lipschitz in z;, uniformly in z;, and A®;(z;,,0) = 0. As proposed in [18], we now rescale

the variable z;, in the following way
Xj = (In,-1® Dy ")z,

and obtain
4 = Sz, +Bo(z),) — (L2, ® DgKoC)(In, -1 @ Dg)x
. 1
Xj = gHpxg+ g A%, (N1 ® Dg)x;)
where H; = [(In,—1 ® S) — (L2, ® KoC)]. To show that the origin of the system with state x; is locally

asymptotically stable, we consider the change of variable (; = J;x; with J; such that H; = JjHij_l is in
Jordan form. We obtain a new system that is the cascade of system

. _ 1 _
(= gH;¢j + g—dAé(zjl, (In,—1 ® Dg)J; ' ¢5) (12)
with system
4y = Szj+ Bo(z,) — (Linz @ DgKoC)(In,—1 @ Do) J7 G (13)
To prove that consensus is achieved inside each of the ¢ independent connected components (i.e. j = 1,...,¢),

we now use Lypunov arguments. For the sake of simplicity in the notation, we drop the dependence on j. Consider
the candidate Lyapunov function

V() =¢T(D() @ P~ (14)

where P is the solution of (10) and D(¢) = diag(1, ¢, 22, .., ¢N==2) with ¢ a positive design parameter yet to
be fixed. Note that there exist positive constants A < ), both dependent on /¢, such that A(T¢ <V < X(T¢.
The derivative of V' along the solutions of (20) can be bounded as

V= 20T(D(t) ® P7Y[gHC + = AD(21, (In,—1 @ Dy)J; ()]
2¢T(D(0) @ P~1)gHC + 5®|D(0) @ P~ |(In,—1 @ D) |17 MlI¢™¢
27 (D(0) ® P~H)gH( + ("¢

IN

IN

where a4 is a positive constant not dependent on g (provided that the latter is taken g > 1).
From Theorem 1, we know that that if the graph is connected one eigenvalues of a Laplacian matrix is zero
and the rest are all positive. We recall this crucial result (see [18]).



Lemma 2 Let Assumption 2 hold. Then, for each of the c independent connected component inside the graph,
there exist a positive constants al, and ¢* such that for all { > ¢*

207 (D(0) ® PTHH ¢ < —ac ("¢
Using the previous lemma and taking g* = (aq + ac\)/al, with a. an arbitrary positive constant (g* > 1
without loss of generality), it is immediately seen that for all £ > £* and g > g* we have

g

, JR—
V < —(gal, —ag)¢T¢ < —%V < —aV. (15)

By this we conclude that consensus is achieved within each cluster. It is worth noting that if the graph underlying
the communication is connected, i.e. ¢ = 1, the previous analysis shows that synchronization of the whole network
is achieved.

B. Behavior of the residual agents
The residual subsystem, instead, reads as

Zres = ([INTCS & S] - [f/res ® KC]) Zres + A(I)Tes(zll’ ) chazres) + (f\ ® KO)zQ
with zg = col(z1,,...,2.,) and where AD,c(21,,. .., 2¢,, Zres) 1S
7/1/}11 ¢(211) T T 'l/)cl ¢(ZC1) + ¢resl
(IN,.. ® B) :
711)1]\]7‘65 ¢(le) T T chres ¢(ch) + (ZST‘BSNTGS
where Pres,, - . ., Pres, are defined as

qbresl = ¢(¢11211 +.o 4+ TzZ)CrZCl + zT681)

Qbresc = ¢(¢1Nms 2, +...+ Q/)CNTES Ze, T 2resn, o )

Note that, in general, A®,5(21,,. .., 2¢,,0) # 0.
We now change coordinate according to (res = (In,.. ® Dg_l)z,«es and obtain

éres = g ([INTES ® S] - [[Nfres ® KOCD Cres + g%A@res(lea <2y (INTCS ® Dg)(res) + (f ® KOC)iQ

The fact that L,.s has positive eigenvalues leads to conclude that the matrix

[INms ® S] - [Lres & KO] = Hres

is Hurwitz. Furthermore, by adding and subtracting the term A®,..¢(z1,,...,2,0), we obtain

é?"es = gHresCres + gidA(I)res(lev <oy Rcyy (IN,.es & Dg)(res) + (f ® KOC)iZ + Q%A(I)res(zlla ey ZCI,O)
= gHresCres + gidA(I)res(zlla R Z017O) + (f @ KOC)Z2 + #A(i)res(zlla <y Rery (INTES & Dg)Cres)

where .
Aq)() = A(I)res(zllv <oy ey (INTCS X Dg)Cres) - Aq)res(zlla ) chao)

It is is easy to see that, (s = 0 implies Afi)(zh, ..+, Ze;,0) = 0. From this and the fact that both A®,..s(21,,. .., 2, 0)
and (f‘@KOC)iQ are bounded since 21,,Z1,, . .., 2, , Zc, are all bounded (as shown in the first part of the proof),

we can conclude that, for a sufficiently large g, (.5 is bounded and thus z,.s is bounded too, independently from

the particular topology.

Following the definition of (1), the fact that z,.s is bounded and that all the agents belonging to an independent
connected components achieve consensus, leads to conclude that w is bounded too, despite the particular
disconnected topology.

|



IV. ANALYSIS OF SWITCHING NETWORKS
In this section, we present conditions under which consensus is achieved if the topology switches between a
set of connected and disconnected topologies. First we will define the switching topology conditions and then,
give the main result of this section.

A. Switching topology framework

We denote by 7 = {T1,...,7n,} the set of Ny possible communication topologies. This set of topologies T
is also characterized by topologies that are not necessarily connected®. For this reason we split the set 7 in two
disjoint sets 7. and Ty, which fulfill 7 = 7. U Ty and T. N Ty = 0, collecting topologies that are, respectively,
connected and disconnected.

For all i = 1,..., Ny, let A; = {\(L%),...,An,(L%)} be the eigenvalues of L (the Laplacian of the i-th
topology), ordered with increasing real part. As a consequence of Theorem 1 and Lemma 1, the following holds
(see [15] and [26] for further details):

e if 7; € 7. then A\1(L%) = 0 and Re\,,,(LY) > 0 for m = 2,... N,;

o if T; € Ty then there exists a ¢; € [1, N,] such that A\, (L*) = 0 for m =1 ...,¢; and Re),,,(L?) > 0 for

m=c;+1...N,.

The different communication topologies alternates in time by forming an ordered sequence {7;}5°,, with each
7; taken in the set 7. We denote by AT; > 0, i = 1,...,00 the length of the time interval in which the i-th
communication topology is active. Note that time intervals of zero length are allowed in the proposed framework.
By this fact, without loss of generality, we can assume that the topologies alternates in time according to the
rule that 7; € 7. if 7 is even and 7; € Ty is 4 is odd. As a matter of fact, if two connected (disconnected)
communication topologies occur in a row we can always “separate” them with a disconnected (connected) topology
of zero length without practically changing the networked system dynamics. Note also that we do not assume
that connected communication topologies persist for a guaranteed dwell time, namely connected topologies can
last for arbitrarily small (indeed also of length zero) time interval. The kind of result we will prove (see next
Proposition 1) is that consensus is reached if the intervals of time in which connected topologies governing the
communication between the agents have a sufficiently long (in the average) duration and if the disconnected
topologies duration is bounded.

We rewrite Assumption 3 in the switching topology framework in the following way.

Assumption 4 There exist a v > 0 such that, for all © = 1,..., Ny and for all m = 1,..., N, such that
Am(LY) # 0, the following holds .
ReA, (L") > 1

We formulate now the assumption about the length of the time intervals in which disconnected topologies are
active.

Assumption 5 There exists a Ty > 0 such that for all i =1, ..., Ny such that T; € Ty the following holds
AT; <Ty.

Remark 2 [t is worth noticing that due to the results of Section IlI, since all the agents are bounded despite the
particular disconnected topology, the parameter Ty can be chosen arbitrarily big.

The additional condition under which the main result will be proved asks that the time intervals in which
the network is connected last, in the average, sufficiently long. More precisely, we asks that there exist positive
7 € R>p and ng € N such that, for all possible n,7y € N with ¢y even, we have

10+2n
> AT, >7(n—no) (16)
i=ig, i=i+2

*We recall that a communication topology is said to be connected if there is a node v from which any other node vy, € V' \ {v} can be

reached, or equivalently if there is a path from v to all vx. In the previous definition a path from node v; to node vy in the i-th topology
is a sequence of r distinct nodes {ve,, ..., v, } With v, = v; and ve, = vg such that (vit1,v;) € &



The previous condition can be regarded as a average dwell-time condition (see [22]), with the time 7, in
particular, that can be seen as an average length of the intervals in which the network is connected, and ng
representing the number of “connected” intervals of zero duration that can occur in a row. The result formulated
in the next proposition, in fact, claims that consensus is achieved if (16) is fulfilled for some ng and 7 with the
latter sufficiently large.

We conclude the section by remarking how the framework proposed in this paper to model switching graphs
is, from one hand, more restrictive than the one based on the property of joint connectivity used, for instance, in
[S], [6]. As a matter of fact, joint connectivity does not imply the existence of time intervals in which the graph
is connected (as assumed in our framework) since it is the union of all possible network configurations that is
required to have connectivity properties. On the other hand, all consensus results presented in literature that rely
on a uniform joint connectivity condition ask that the different topologies persist a guaranteed dwell-time. In this
respect the condition above, asking just a dwell-time in the average, is milder and much more general.

Furthermore, it is important to stress that in [5], [6] the graph is supposed to be uniformly strongly connected,
which implies that all agents are centroid of the graph, while in our case we simply ask the topolgies to be
connected. In addition, to achieve state synchronization, in [6], the graph is not only asked to be uniformly
strongly connected but also to be fixed, a fact that imposes severe restrictions on the topology switching sequence.

B. Main Result
We now introduce the second result of the paper. We give the conditions under which the network of nonlinear
agents achieve synchronization if the conditions detailed in previous sections are fulfilled.

Proposition 2 Consider the networked control system (5) controlled by (7) with K as in (8) under the assumptions
specified before and with the length of the time interval of connected topology fulfilling the average dwell-time
condition (16) for some ng > 1 and 1. Then, there exist a 7" and g* such that for all 7 > 7 and g > g* the
compact invariant set

W = {(wl,w2,...,wNa) EWXWx---xW : w1 :U}Q:“':U}Na} (17)
is globally asymptotically stable for the closed-loop networked system. <

Proof: The proof of Proposition 2 is divided in three sections:

« in the first part we consider the behavior of the network for a fixed connected topology and, by using the
argument in the proof of Proposition 1, we introduce a common Lyapunov function proving consensus;

« in the second part we study the behavior of the network for a fixed disconnected topology by means of
Lyapunov arguments;

« in the third and final part of the proof, we consider the network under switching topologies and, by means of
hybrid Lyapunov tools, we prove that, under an average dwell time condition, the agents achieve consensus
despite arbitrary long time intervals in which the network is not connected.

Connected topologies
This part of the proof follows arguments that are similar too the ones used in the proof of Proposition 1.
Consider a generic fixed topology 7; € 7 and the change of coordinate

I Oixva-n
M = 2 .
( In-1  In—1

Defining w = col(wy, ..., wy,) and by bearing in mind the choice of K, the networked system can be compactly
rewritten as

where ®(w) = col(¢(w1),...,d(wn,)).
Elementary computations show that

L'=M"'L'M = < 0 2 > (19)
Onv,—1)x1 Lao
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where L}, = LZ['LQ: N and L, = sz N 2N, In.—1 Lf1,2: N We consider now the change of variables
W= ( le ) = (Mo )w,
with o; € R% and p € RW=~14 Note that p; = w; and
T
0 = < w2 —w; w3—wpr ... WN, —W1 ) .
By using (19), an easy calculation shows that system (18) in the new coordinates reads as
o1 = Soi1+ B¢(01) — (Liy ® DygKoO)e

0 = [(Un-1®8)— (L) @ DyKoC)] o+ AP (o1, 0)

where

P(02 + 01) — ¢(01)
A®(ol,0) = (IN-1 ® B) :
d(on, + 01) — ¢(01)

where @ = col(ps,...,0n,), with o; € R?%, i = 2,... N,. Note that A®(p1, ) is globally Lipschitz in o
uniformly in o1 and A®(g;,0) = 0 for all oy € RY. Namely, there exists a positive ® such that |A® (g1, )| <
d||o|| for all o; € R? and g € RN~
We now rescale the variable g in the following way
X=Un1® DQ_I)Q

and obtain ) .
01 = So1+ Bo(er) — (Liy ® DgKoC)(In,—1 ® Dyg)x

. 1
X = gHix+ g7A¢(Z1, (In,—1 ® Dg)x)
where H; = [(In_. ® S) — (Lby ® KoC)]. To show that the origin of the system with state y is locally

asymptotically stable, we consider the change of variable ¢ = J;x with J; such that H; = JZ-H»L-JZ-_1 is in Jordan
form. We obtain a new system that is the cascade of system

(=gH+ gldA@(zl, (In,—1 ® Dg)J; () (20)
with system
21 = Sz1+ Bé(21) — (Li12 ® DyKoCO)(In,—1 ® Dy)J; ¢ (21)
We consider the candidate Lyapunov function
V(¢) =¢"(D(0) ® P)¢ (22)

where P is the solution of (10) and D(¢) = diag(1,¢,¢?,...,¢N==2) with ¢ a positive design parameter yet to
be fixed. Note that there exist positive constants A < A, both dependent on ¢, such that ACTC <V< S\CT( .

Using the results of Lemma 2 and taking ¢* = (ag + acA)/al, with a. an arbitrary positive constant (g* > 1
without loss of generality), it is immediately seen that for all ¢ > ¢* and g > g* we have

/ J—
V < —(gap —ag)(T¢ < —@V < —a'V. (23)

Hence, (23) shows that when connected topologies occur, the Lyapunov function (22) is strictly decreasing along
solution of (20). The local asymptotic stability of ( and the ISS properties of z; (claimed in Assumption 2)
guarantee that all the agents outputs yj, move fowards consensus on a common trajectory y*.
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Disconnected topologies

We consider now time intervals in which 7; € T, (i odd) and study the behavior of the common Lyapunov
function (22). For all i such that 7; € T, it comes straightforward that the matrix H; in (20) is not Hurwitz.
Hence the result in Lemma 2 cannot be claimed.

The derivative of (22) during time intervals in which the topology is not connected is

Vo= 27(D(t) & PY)gHi¢ + g{imb(zl, (Iy,—1 ® Dy)C)]
9 _
< ga) CT¢+ Fb\\D(f) @ PH||(In,—1 ® Dy)|I¢"¢ (24)
< (g a’ilC + a(ﬁ)CTC = anV

where al,. := 2||(D(¢) ® P1)H;||, ay is the positive constant introduced above, and anc = (ga, + ap)/A.
Equation (24) means that, in general, V() is increasing when disconnected topologies occurs.

Hybrid analysis

We now proceed towards the proof of Proposition 2 by considering the network of agents under switching
topologies. We will consider the Lyapunov function (22) and analyze the behavior of the agents during connected
flows, disconnected flows and jumps of topology.

First we estimate the jump in the value of V(¢) when a change in the topology occurs, namely when 7,
replaces 7;. Denoting by ¢+ and x* the “next value” of the state variables ¢ and x when a jump in the topology
occurs, we note that ™ = y and

CF=Jfxt = Jipx=Ji J; ¢ (25)
Hence, by letting
U= max |J; JZ-_1H
7’7]6[17Nt]

we can easily bound the jump of the Lyapunov function when the topology switches as

Vo= (D) @ PTHCT < AICHIP
(26)

< ANACP L S0PV =gV

> >

We will continue the analysis by considering the closed-loop networked system as an hybrid system flowing
during the time intervals in which the communication topology is connected (¢ even), and “instantaneously”
jumping in the intervals in which the topology is disconnected. To this end, let ¢ be even and let ¢;, t; 11 be,
respectively, the times at which the topology switches from 7; € 7T to Tiy1 € Tne, and from 7; 41 to Tiio € Te.
By bearing in mind (24) and (26), we have that the jump undergone by the Lyapunov function between two
connected topologies can be estimated as

V(thy) < aV(C(tiy)) < e V()
< gt V() = ePV(C(E))

with o := anTp + 21In(a;).

We are thus left to study an hybrid system governed by (23) during flows and instantaneously jumping as
VT < €%V, with the length of the flow intervals governed by an average dwell time of the form (16).

The fact that the time intervals satisfy an average dwell-time condition given by (16) allows one to say (see
[2]) that flow and jump times of the hybrid system can be thought of as governed by a clock variable ¢ flowing
according to the differential inclusion < € [0,1/7] when ¢ € [0, no] and jumping as ¢+ = ¢ — 1 when ¢ € [1, ng).
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We thus endow the networked system with the clock variable and study the resulting hybrid system whose
Lyapunov function flows and jumps according to the following rules

¢ € [0,1/7
V < [_ac‘//] } (§, V) S [O,TL()] xR
¢t = ¢—1
Vv o< ooV (c,V)€e[l,ng] xR

Specifically, following [2], let
W(s.¢) = "V (¢)

with L € (oj,Tac/2). During flows, by compactly writing (20) as ¢ = F(C,z), we have that for all v €
col ([0¢ 1/7-] ’F(Ca Zl))

(YW, O o) = Leb V() +eX(VV(C), F(C )
< LM IV(Q) — eV (Q)
< —(a— DW(s0)
< —%W(c,C)

for all (s, ¢, 21) € [0,ng] x RW==Dd 5 RY On the other hand, during jumps, we have that

Wt = BTV < eHDeniv(()
_ efLJrajeLcV(C) — e*LJrij(g, ¢)
eW(s, ()

with e = e~ £+ € (0, 1). The Lyapunov function W(-, -) is thus decreasing both during flows and during jumps.
This and the fact that WV is positive definite with respect to the set [0, ng] x {0} lead to the conclusion that the
set [0,mp] x {0} is globally asymptotically stable. This, by taking advantage from Assumption 2 and from the
cascade structure of system (20)-(21), proves the result.

|

V. SIMULATION RESULTS

To verify the result provided in Section III and in Section IV, two numerical frameworks are presented. In the
first scenario five Lorentz oscillators are taken into account and a fixed disconnected topology is considered. In
the second, the same set of agents is considered under switching topology.

A. Lorentz Oscillators Clustering
The Lorentz oscillators are described by

'ik‘l = O'(.I'k2 - mkl)
:tkz = Tk (IO - ka) — Tk, Yk = Tk, - (27)
Tk, = Tk, T, — BTk,

for k = 1,...,5. The values of parameters (o, p,3) are o = 10, p = 28 and 5 = 8/3. System (27) can be
embedded into the fourth order system (see [17] for further details)

W, = Wk,

Why = Wk (28)
W, = Wi,

W, = P(Wp,, Wy, Wiy, W, )

fitting into the structure of (5) and fulfilling the assumption listed in Section II-B.
In new coordinates, the agents’ initial conditions are w; = (1.5;1;0;0), wa = (1;5;5;5), ws = (2;10; 10; 10),
wy = (0.5;7;7;7) and ws = (0; 15;15;15). K is chosen as in (8) with the gain parameter g = 50.
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Fig. 1. Lorentz oscillators with disconnected topology: the agents belonging to the two IC'C's achieve consensus while the residual agent
(red dotted signal) is simply bounded.

The fixed disconnected topology considered in this example is given by the Laplacian matrix

0 0 0 0 O
-1 1 0 0 0
L=]10 0 0 0 O
0 0 -1 1 O

-1 -1 -1 -1 4

It is trivially seen that this topology is composed by two ICC'" the first one is ICCy = {wy, w2}, while the
second is ICCy = {ws,w4}. Agent ws is the residual component of the graph and receives information from all

the other clusters.
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Figure 1 shows the behavior of the system in the original coordinates (27). As expected from the analysis
developed in Section III, the agents belonging to the two IC'C achieve clustered consensus (the black line and
the green line in the plot), while the residual agent (the red dotted line) is simply bounded.

B. Lorentz Oscillators Synchronization

Laplacian Matrix Switching Law
10 T T T T T

N oW s 0 N © ©
T

o

0.5 1 1.5 2 25 3 3.5 4

Fig. 2. Switching topology for Lorentz oscillator: 4 sec of switching law are shown, fulfilling the requested limitation in terms of Tp,
NQ and 6.

In order to show simulation results in case of switching topology, we selected ten random topologies (odd
disconnected, even connected), with Ty = 0.3 sec, Ng = 3 and § = 2 (see Figure 2 for a sample of 4 sec). The
control parameter K is chosen as in (8) with the gain parameter g = 50.

Figure 3 shows the three components of the five Lorentz oscillators in the original coordinates (27) achieving
synchronization. In the top right corner, the zoom shows the initial transient towards synchronization.

VI. CONCLUSIONS

In this paper we considered the problem of homogeneous network of agents and disconnected topologies. In
particular we showed that, in presence of disconnected topologies, the diffusive coupling design proposed in [18]
(namely high gain design) does not impact on the stability of the agents. Furthermore, we showed that agents
belonging to independent connected components achieve consensus, giving rise to a clusterization of the agents.
The residual agents, not belonging to any of the independent connected components, are instead bounded.

In the second part of the paper, we addressed the problem of achieving consensus within a network of
homogeneous nonlinear agents with switching communication (connected and disconnected) topologies. We have
proved that if the switching rule of connected topologies fulfills an average dwell-time condition consensus is
achieved. The proposed result considers a network of homogeneous agents. Following the arguments in [18],
however, robust consensus among heterogeneous nonlinear systems exchanging information within a switching
network of the kind considered in this paper can be obtained.

The idea and the Lyapunov tool used in the paper to prove the main result are, in principle, useful in other
networked control contexts that can be subject of investigation. For instance, a possible improvement is to weaken
the graph connectivity assumption considered here by just asking joint connectivity with the different topologies
required to fulfill a certain dwell-time only in the average. Furthermore, a possible extension is to adapt the
analysis we developed to a fully hybrid scenario, where each agent and local controller are hybrid, rather than
continuous-time systems.
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