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Monadic Second-Order Logic

with Arbitrary Monadic Predicates⋆

Nathanaël Fijalkow1 and Charles Paperman2

1 University of Warwick, United Kingdom
2 Institut Mathématiques de Jussieu - Paris rive gauche

Abstract. We study Monadic Second-Order Logic (MSO) over finite
words, extended with (non-uniform arbitrary) monadic predicates. We
show that it defines a class of languages that has algebraic, automata-
theoretic and machine-independent characterizations. We consider the
regularity question: given a language in this class, when is it regular?
To answer this, we show a substitution property and the existence of a
syntactical predicate.
We give three applications. The first two are to give very simple proofs
that the Straubing Conjecture holds for all fragments of MSO with
monadic predicates, and that the Crane Beach Conjecture holds for
MSO with monadic predicates. The third is to show that it is decidable
whether a language defined by an MSO formula with morphic predicates
is regular.

1 Introduction

Monadic Second-Order Logic (MSO) over finite words equipped with the linear
ordering on positions is a well-studied and understood logic. It provides a math-
ematical framework for applications in many areas such as program verification,
database theory and linguistics. In 1962, Büchi [Büc62] proved the decidability
of the satisfiability problem for MSO formulae.

1.1 Uniform Monadic Predicates

In 1966, Elgot and Rabin [ER66] considered extensions of MSO with uniform
monadic predicates. For instance, the following formula

∀x, a(x) ⇐⇒ x is prime ,

describes the set of finite words such that the letter a appears exactly in prime
positions. The predicate “x is a prime number” is a uniform numerical monadic

⋆ A preliminary version of this work appeared in MFCS’2014 [FP14]. This work was
supported by the Alan Turing Institute under the EPSRC grant EP/N510129/1,
and by the French Agence Nationale de la Recherche, AGGREG project reference
ANR-14-CE25-0017-01.
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predicate. Being numerical means that its interpretation only depends on posi-
tions, i.e. P = (Pn)n∈N, uniform means that it can be seen as a relation over
integers, i.e. P ⊆ Nk, and monadic means that it has arity 1, i.e. k = 1. Elgot
and Rabin were interested in the following question: for a uniform numerical
monadic predicate P ⊆ N, is the satisfiability problem of MSO[≤,P] decidable?
A series of papers gave tighter conditions on P, culminating to two final answers:
in 1984, Semenov [Sem84] gave a characterization of the predicates P such that
MSO[≤,P] is decidable, and in 2006, Rabinovich and Thomas [Rab07,RT06]
proved this characterization to be equivalent to the predicate P being effectively
profinitely ultimately periodic. Further questions on uniform monadic predicates
have been investigated. For instance, Rabinovich [Rab12] gave a solution to the
Church synthesis problem for MSO[≤,P], for a large class of predicates P.

In this paper, we consider the so-called numerical monadic predicates and
not only the uniform ones: such a predicate P is given, for each length n ∈ N,
by a predicate over the first n positions Pn ⊆ {0, . . . , n − 1}. The set Arb1 of
these predicates contains the set Arbu1 of uniform monadic predicates. Note that
the subscript 1 in Arb1 and Arbu1 corresponds to the arity. A formal definition
can be found in Section 2.1.

1.2 Advice Regular Languages

We call languages definable in MSO[≤,Arb1] advice regular. Note that no com-
putability assumptions are made on the monadic predicates, so this class contains
undecidable languages. Our first contribution is to give equivalent presentations
of this class, which is a Boolean algebra extending the class of regular languages:

1. It has an equivalent automaton model: automata with advice.
2. It has an equivalent algebraic model: one-scan programs.
3. It has a machine-independent characterization, based on generalizations of

Myhill-Nerode equivalence relations.

This extends the equivalence between automata with advice and Myhill-Nerode
equivalence relations proved in [KRSZ12] for the special case of uniform monadic
predicates. We will rely on those characterizations to obtain several properties of
the advice regular languages. Our main goal is the following regularity question:

Given an advice regular language L, when is L regular?

To answer this question, we introduce two notions:

– The substitution property, which states that if a formula ϕ together with
the predicate P defines a regular language Lϕ,P, then there exists a regular
predicate Q such that Lϕ,Q = Lϕ,P.

– The syntactical predicate of a language L, which is the “simplest” predicate
PL such that L ∈ MSO[≤,PL].

Our second contribution is to show that the class of advice regular languages
has the substitution property, and that an advice regular language L is regular
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if, and only if, PL is regular. We apply these results to the case of morphic
predicates [CT02], and obtain the following decidability result: given a language
defined by an MSO formula with morphic predicates, one can decide whether
it is regular.

1.3 Motivations from Circuit Complexity

Extending logics with predicates also appears in the context of circuit complexity.
Indeed, a descriptive complexity theory initiated by Immermann [Imm87] relates
logics and circuits. For instance, a language is recognized by a Boolean circuit of
constant depth and unlimited fan-in if, and only if, it can be described by a first-
order formula with any numerical predicates of any arity, i.e. AC0 = FO[Arb].

This correspondence led to the study of two properties, which characterize the
regular languages (Straubing Conjecture) and the languages with a neutral let-
ter (Crane Beach Conjecture) in several fragments and extensions of FO[Arb].
The Straubing Conjecture would, if true, give a deep understanding of many
complexity classes inside NC1. For instance the Straubing Conjecture for first-
order logic with counting quantifiers is equivalent to the separation of ACC and
NC1. In the case of two-variable first-order logic, it implies tight bounds for
the addition function. Many cases of this conjecture are still open and are often
equivalent to proving circuit lower bounds. The Crane Beach Conjecture was
introduced as a model-theoretic approach to prove lower bounds, however this
conjecture has been disproved [BIL+05]. On the positive sides, both conjectures
hold in the special case of monadic predicates [BIL+05,Str94] for several frag-
ments. Our third contribution is to give simple proofs of both the Straubing and
the Crane Beach Conjectures for monadic predicates, relying on our previous
characterizations and extending them to abstract fragments. Recently, Gehrke
et al [GKP16] studied first-order logic with monadic predicates but restricted
to one variable, and were able to obtain equations characterizing the regular
languages in this class.

1.4 Outline

Section 2 gives characterizations of advice regular languages, in automata-theoretic,
algebraic and machine-independent terms. In Section 3, we study the regularity
question, and give two different answers: one through the substitution property,
and the other through the existence of a syntactical predicate. The last section,
Section 4, provides applications of our results: easy proofs that the Straubing
and the Crane Beach Conjectures hold for monadic predicates and decidability
of the regularity problem for morphic regular languages.

2 Advice Regular Languages

In this section, we introduce the class of advice regular languages and give several
characterizations.
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2.1 Predicates

A numerical predicate P of arity k is given by P = (Pn)n∈N, where Pn ⊆
{0, . . . , n − 1}k. Since we mostly deal with monadic numerical predicates, we
often drop the word “monadic numerical”. In this definition the predicates are
non-uniform: for each length the predicate is different. A predicate P if uniform
if it is a relation over the natural numbers. More formally, if there exists Q ⊆ Nk

such that for every n, Pn = Q ∩ {0, . . . , n− 1}k. In this case we identify P and
Q, and see uniform predicates as subsets of Nk.

Example 1. The predicate first = ({0})n∈N, which is true only on the first posi-
tion, is uniform; we denote it by {0}. Similarly, the predicate last = ({n−1})n∈N,
which is true only for the last position, is not uniform.

In this paper, we will often treat predicates as words, identifyingP = (Pn)n∈N

with Pn ⊆ {0, 1}n. In this case we can see P as a language over {0, 1}, which
contains exactly one word for each length. This simple idea is used through-
out the paper, where logical formulae and automata treat predicates as words,
allowing us to perform syntactical operations on them.

We often define predicates P = (Pn)n∈N with Pn ∈ An for some finite al-
phabet A. This is not formally a predicate, but this amounts to defining one
predicate for each letter in A, and this abuse of notation will prove very conve-
nient. Similarly, any infinite word w ∈ Aω can be seen as a uniform predicate.

Example 2. The predicate first can be seen as the infinite word 10ω, and the
predicate last as the language of finite words described by the regular expression
0∗1.

2.2 Monadic Second-Order Logic

The formulae we consider are monadic second-order (MSO) formulae, obtained
from the following grammar:

ϕ = a(x) | x ≤ y | P (x) | ϕ ∧ ϕ | ¬ϕ | ∃x, ϕ | ∃X, ϕ .

Here x, y, z, . . . are first-order variables, which will be interpreted by positions
in the word, and X,Y, Z, . . . are monadic second-order variables, which will in-
terpreted by sets of positions in the word. We say that a is a letter symbol, ≤
the ordering symbol and P,Q, . . . are the numerical monadic predicate symbols,
often refered to as predicate symbols. The notation

ϕ(P 1, . . . , P ℓ, x1, . . . , xp, X1, . . . , Xq)

means that in ϕ, the predicate symbols are among P 1, . . . , P ℓ, the free first-
order variables are among x1, . . . , xp and the free second-order variables are
among X1, . . . , Xq. A formula without free variables is called a sentence. We use
the notation P to abbreviate P 1, . . . , P ℓ, and similarly for all objects (variables,
predicate symbols, predicates).
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We now define the semantics. The letter symbols and the ordering symbol are
always interpreted in the same way, as expected. For the predicate symbols, the
predicate symbol P is interpreted by a predicate P. Note that P is a syntactic
object, while P is a predicate used as the interpretation of P . Consider a formula
ϕ(P , x,X), a finite word u of length n, predicates P interpreting the predicate
symbols from P , a valuation x of the free first-order variables and a valuation
X of the free second-order variables. We define u,P,x,X |= ϕ by induction as
usual, with

u,P,x,X |= P (y) if y ∈ Pn .

A sentence ϕ(P ) and a tuple of predicates P interpreting the predicate sym-
bols from P define a language

Lϕ,P = {u ∈ A∗ | u,P |= ϕ} .

Such a language is called advice regular, and the class of advice regular languages
is denoted by MSO[≤,Arb1].

2.3 Automata with Advice

We introduce automata with advice. Unlike classical automata, they have access
to two more pieces of information about the word being read: its length and the
current position. Both the transitions and the final states can depend on those
two pieces of information. For this reason, automata with advice are (much)
more expressive than classical automata, and recognize undecidable languages.
A non-deterministic automaton with advice is given by A = (Q, q0, δ, F ) where
Q is a finite set of states, q0 ∈ Q is the initial state, δ ⊆ N×N×Q×A×Q is the
transition relation and F ⊆ N×Q is the set of final states. In the deterministic
case, δ is a function from N× N×Q×A into Q.

A run of A over a finite word u = u0 · · ·un−1 ∈ A∗ is a finite word ρ =
q0 · · · qn ∈ Q∗ such that for all i ∈ {0, . . . , n− 1}, we have (i, n, qi, ui, qi+1) ∈ δ.
It is accepting if (n, qn) ∈ F . One obtains a uniform model by removing one
piece of information in the transition function: the length of the word. This
automaton model is strictly weaker, and is (easily proved to be) equivalent to
the one introduced in [KRSZ12], where the automata read at the same time
the input word and a fixed word called the advice. However, our definition will
be better suited for some technical aspects: for instance, the number of Myhill-
Nerode equivalence classes exactly corresponds to the number of states in a
minimal deterministic automaton.

Example 3. The language {anbncn | n is a prime number} is recognized by a
(deterministic) automaton with advice. The automaton is represented in Fig-
ure 1. It has five states, qa, qb, qc, qF and ⊥. The initial state is qa. The transition
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function is defined as follows:

δ(i, 3n, qa, a) = qa if i < n− 1
δ(n− 1, 3n, qa, a) = qb
δ(i, 3n, qb, b) = qb if n ≤ i < 2n− 1
δ(2n− 1, 3n, qb, c) = qc
δ(i, 3n, qc, c) = qc if 2n ≤ i < 3n− 1
δ(3n− 1, 3n, qc, c) = qF

All other transitions lead to ⊥, the sink rejecting state. The set of final states is
F = {(3n, qF ) | n is a prime number}.

qa qb qc qF

⊥

a

(n− 1, 3n)

c

(3n− 1, 3n)

b

(2n− 1, 3n)

3n

n prime

ca b

b, c

a, c a, b

a, b, c

a, b, c

Fig. 1. The automaton for Example 3.

We mention another example, that appeared in the context of automatic
structures. The paper [Nie07] shows that the structure (Q,+) is automatic with
advice, which amounts to showing that the language

{x̂ ♯ ŷ ♯ ẑ | z = x+ y} ,

where x̂ denotes the factorial representation of the rational x, is advice regular.
A very difficult proof shows that this is not possible without advice [Tsa11].

2.4 One-scan Programs

Programs over monoids were introduced in the context of circuit complexity [Bar89]:
Barrington showed that any language in NC1 can be computed by a program of
polynomial length over a non-solvable group. We present a simplification adapted
to monadic predicates, introduced in [Str92] and developed in [BS95]. We refer
to [Str94, Chapter IX.4] for a complete presentation. In these works, Barring-
ton and Straubing use Ramsey-theoretic methods to obtain non-expressibility
results. In the remainder of this paper, we will show a generalization of these
results, using a syntactic approach. In particular we avoid the use of Ramsey
type arguments.
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A one-scan program is given by P = (M, (fi,n : A → M)i,n∈N, S) where M
is a finite monoid and S ⊆M . The function fi,n is used to compute the effect of
the ith letter of an input word of length n. We say that the program P accepts
the word u = u0 · · ·un−1 if

f0,n(u0) · · · fn−1,n(un−1) ∈ S .

Note that this echoes the classical definition of recognition by monoids, where
a morphism f : A → M into a finite monoid M recognizes the word u =
u0 · · ·un−1 if f(u0) · · · f(un−1) ∈ S. Here, a one-scan program uses different
functions fi,n, depending on the position i and the length of the word n.

Example 4. Let U1 be the monoid over {0, 1} equipped with the classical mul-
tiplication. Consider the alphabet A = {a, b}. We define the one-scan program
(U1, (fi,n)i,n∈N, {1}) as follows. If n is not a prime number, then fi,n is constant
equal to 0. Otherwise, fi,n(a) = 0 and fi,n(b) = 1. Therefore, a word is ac-
cepted by this one-scan program if, and only if, its length is prime and all prime
positions are labelled by the letter b.

2.5 Myhill-Nerode Equivalence Relations

Let L ⊆ A∗ and p ∈ N, we define two equivalence relations:

– u ∼L v if for all w ∈ A∗, we have uw ∈ L⇐⇒ vw ∈ L,
– u ∼L,p v if for all w ∈ Ap, we have uw ∈ L⇐⇒ vw ∈ L.

The relation ∼L is called the (classical) Myhill-Nerode equivalence relation, and
the second is a coarser relation, which we call the p-Myhill-Nerode equivalence
relation. Recall that ∼L contains finitely many equivalence classes if, and only
if, L is regular, i.e. L ∈ MSO[≤].

2.6 Equivalence

We state several characterizations of advice regular languages.

Theorem 1 (Advice Regular Languages). Let L be a language of finite
words. The following properties are equivalent:

(1) L ∈ MSO[≤,Arb1],
(2) L is recognized by a non-deterministic automaton with advice,
(3) L is recognized by a deterministic automaton with advice,
(4) There exists K ∈ N such that for all i, p ∈ N, the restriction of ∼L,p to words

of length i contains at most K equivalence classes.
(5) L is recognized by a one-scan program,

In this case, we say that L is advice regular.

This extends the Myhill-Nerode theorem proposed in [KRSZ12], which proves
the equivalence between (3) and (5) for the special case of uniform predicates.
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∃X,





χ(X)

∧ ∀x, first(x) =⇒ x ∈ Xq0

∧ ∀x, ∀y, y = x+ 1 ∧
∧

(q,a)∈Q×A

∨
q′∈Q

T q,a,q
′

(x) ∧ x ∈ Xq ∧ a(x) ∧ y ∈ Xq′

∧ ∀x, last(x) =⇒
∨
q∈Q x ∈ Xq ∧ F

q(x) .

Fig. 2. Formula checking for the existence of an accepting run.

Proof. The implication 2 ⇒ 3 is proved by determinizing automata with advice,
extending the classical powerset construction. Let A = (Q, q0, δ, F ) be a non-
deterministic automaton with advice. We construct the deterministic automaton
with advice A′ = (Q′, {q0}, δ

′, F ′), where Q′ is the powerset of Q, the set of final
states is F ′ = {(n, S) | ∃q ∈ S, (n, q) ∈ F}, and the transition function δ′ is
defined by:

δ′(i, n, S, a) = {q′ ∈ Q | ∃q ∈ S, (i, n, q, a, q′) ∈ δ} .

It is easy to see that A and A′ are equivalent.
The implication 3 ⇒ 2 is immediate from the definitions. The implication

1 ⇒ 2 requires us to show closure properties of automata with advice under
union, projection and complementation. The first two closures are obtained in
the exact same way as in the classical case, we do not detail them here; for
the third case, we rely on the equivalence between 3 and 4, and complement
deterministic (complete) automata with advice by simply exchanging F and its
complement in N×Q.

The implication 2 ⇒ 1 amounts to writing a formula checking for the ex-
istence of a run. Let A = (Q, q0, δ, F ) be a non-deterministic automaton with
advice recognizing a language L.

Let X be a Q-tuple of monadic second-order variables. We first need to
express that X partitions the set of all positions of the word. This is easily
expressed by the following formula, denoted χ(X):

∀x,


∨

q∈Q

x ∈ Xq


 ∧

∨

q∈Q


x ∈ Xq →

∧

q′ 6=q∈Q

x /∈ Xq′


 .

For each q ∈ Q, we define the predicatesTq,a,q′ byTq,a,q′

n = {i ∈ N | δ(i, n, q, a) =
q′} and Fq by Fq = {n ∈ N | (n, q) ∈ F}.

The MSO formula ϕ in figure 2 checks for the existence of an accepting run,
and uses the predicate symbols T q,a,q

′

and F q. We have Lϕ,{Tq,a,q′ ,Fq} = L.
For the implication 3 ⇒ 4, let A be a deterministic automaton with advice.

Let n = i+p, and consider the mapping ti,n : Ai → Q defined for u = u0 · · ·ui−1

by
ti,n(u) = δ(i− 1, n, δ(i− 2, n, · · · δ(0, n, q0, u0) · · · , ui−2), ui−1) .
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In words, ti,n(u) is the state reached by A while reading u of length i assuming
that the total word will be of length n. We argue that ti,n(u) = ti,n(v) implies
u ∼L,p v: indeed, for w ∈ Ap, after reading u or v, the automaton A is in the
same state, so it will either accept both uw and vw or reject both. Note that
ti,n can have at most |Q| different values. Consequently, the restriction of ∼L,p
to words of length i contains at most |Q| equivalence classes.

We now prove the implication 4 ⇒ 3, by constructing a deterministic au-
tomaton with advice. Its set of states is Q = {0, . . . ,K − 1}. To each word u
and length n ≥ 0 we associate ⌊u⌋n ∈ Q such that if u and v both have length
i, then u ∼L,n−i v if, and only if, ⌊u⌋n = ⌊v⌋n. We set ⌊ε⌋n = 0 for all n; the
initial state is 0. The transition function is defined by δ(i, n, ⌊u⌋n, a) = ⌊ua⌋n,
for some u of length i. (This is well defined: if both u and v have length i and
⌊u⌋n = ⌊v⌋n, then u ∼L,n−i v, so ua ∼L,n−i−1 va, thus ⌊ua⌋n = ⌊va⌋n.) The set
of final states is

F = {(n, ⌊u⌋0) | u ∈ An ∩ L} .

We argue that this automaton recognizes L: whenever it reads u = u0 · · ·un−1,
the corresponding run is

ρ = ⌊ε⌋n⌊u0⌋n⌊u0u1⌋n · · · ⌊u0 · · ·un−1⌋n ,

which is accepting if, and only if, u ∈ L.
The implication 3 ⇒ 5 is syntactical. Consider a deterministic automaton

with advice A = (Q, q0, δ, F ) recognizing a language L. We define M to be the
monoid of functions from Q to Q, with composition as multiplication. Define

fi,n :

{
A→M

a 7→ (q 7→ δ(i, n, q, a)) ,

and S = {φ ∈ M | φ(q0) ∈ F}. The one-scan program (M, (fi,n)i,n∈N, S) recog-
nizes L.

The converse implication 5 ⇒ 3 is also syntactical.
Consider a one-scan program (M, (fi,n)i,n∈N, S) recognizing a language L.

Define the deterministic automaton with advice A = (M, 1, δ, F ) where 1 is
the neutral element of M , the transition function δ is defined by δ(i, n,m, a) =
m·fi,n(a), and F = {(n,m) | m ∈ S}. The automaton A recognizes the language
L.

3 The Regularity Question

In this section, we address the following question: given an advice regular lan-
guage, when is it regular? We answer this question in two different ways: first by
showing a substitution property, and second by proving the existence of a syn-
tactical predicate. Note that the regularity question is not a decision problem,
as advice regular languages are not finitely presentable, so we can only provide
non-effective characterizations of regular languages inside this class.
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In the next section, we will show applications of these two notions: first by
proving that the Straubing property holds in this case, and second by proving
the decidability of the regularity problem for morphic regular languages.

3.1 A Substitution Property

In this subsection, we prove a substitution property for MSO[≤,Arb1] and for
MSO[≤,Arbu1 ]. We start by defining the class of (monadic) regular predicates.

The predicates {c} and last − c = ({n − 1 − c})n∈N for a given c ∈ N are
called local predicates. The predicates {x | x ≡ r mod q} and last ≡ r mod q for
given q, r ∈ N are called modular predicates.

Theorem 2 ([Pél92,Str94]). Let P = (Pn)n∈N be a predicate. The following
properties are equivalent:

1. There exists a formula ϕ(x) ∈ MSO[≤] over the one-letter alphabet {a} such
that Pn = {x ∈ {0, n− 1} | an,x |= ϕ(x)}.

2. The predicate P is a boolean combination of local and modular predicates.
3. The language P ⊆ A∗ is regular.

In this case, we say that P is regular. We denote by Reg1 the class of regular
(monadic) predicates.

The following theorem states the substitution property for MSO[≤,Arb1].

Theorem 3. For all sentences ϕ(P ) in MSO[≤,Arb1] and predicates P ∈ Arb1
such that Lϕ,P is regular, there exist Q ∈ Reg1 such that Lϕ,Q = Lϕ,P.

The main idea of the proof is that among all predicates Q such that Lϕ,P =
Lϕ,Q, there is a minimal one with respect to a lexicographic ordering, which can
be defined by an MSO formula. The key technical point is given by the following
lemma, which can be understood as a regular choice function.

Lemma 1 (Regular Choice Lemma). Let M be a regular language such that
for all n ∈ N, there exists a word w ∈M of length n. Then there exists a regular
language M ′ ⊆M such that for all n ∈ N, there exists exactly one word w ∈M ′

of length n.

Proof. We equip the alphabet A with a total order, inducing the lexicographic
ordering � on A∗.

Let ψ be an MSO formula defining M . The objective is to define an MSO
formula Ψ such that w satisfies Ψ if, and only if, w is minimal among the words
of its length to satisfy ψ with respect to �. The language defined by this formula
satisfies the desired properties.

First, let X be a A-tuple of monadic second-order variables. We say that
X ∈ An represents the word v ∈ An if X partitions the set of all positions and
for all i ∈ {0, . . . , n − 1}, a ∈ A, we have vi = a if, and only if, i ∈ Xa. The
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formula expressing that X partitions the set of all positions is denoted by χ(X)
(see the proof of Theorem 1 for the definition of this formula).

We obtain a formula ϕ(X) from ψ by syntactically replacing in ψ each letter
predicate a(x) by x ∈ Xa. The following property holds: for all X ∈ A∗, if X
represents the word v, then X |= ϕ(X) is equivalent to v |= ψ.

Now, we define a formula θ(X) such that for all words w ∈ A∗ and X ∈ A∗,
if X represents a word v, then w,X |= θ(X) if, and only if, w � v. There are
two cases: either w = v, or w ≺ v, so the formula θ(X) is a disjunction of two
formulae, the first stating that X represents w:

∀x,
∧

a∈A

(x ∈ Xa ⇐⇒ a(x)) ,

and the second stating that w ≺ v, where v is represented by X:

∃x,

(
∨

a<b∈A

a(x) ∧ x ∈ Xb

)
∧

(
∀y, y < x→

(
∨

a∈A

a(y) ∧ y ∈ Xa

))
.

The MSO formula Ψ that selects the minimal word in M is given by:

ψ ∧ ∀X,
(
χ(X) ∧ ϕ(X)

)
→ θ(X) .

This concludes the proof.

We now prove Theorem 3 relying on Lemma 1.

Proof. Consider ϕ(P ) a sentence and P predicates such that Lϕ,P is regular. We
write L for Lϕ,P. Let θ be an MSO formula defining L.

Consider the language M = {X ∈ ({0, 1}ℓ)∗ | Lϕ,X = L}.
We first argue that M is regular.
As in the proof of Lemma 1, we introduce Y a A-tuple of monadic second-

order variables, used to represent words in A∗. We obtain a formula ψ(Y ) from θ
by syntactically replacing in θ each letter predicate a(x) by x ∈ Xa. The following
property holds: for all Y ∈ A∗, if Y represents the word v, then Y |= ψ(Y ) is
equivalent to v |= θ.

Consider the following formula in MSO[≤] over the alphabet {0, 1}ℓ:

∀Y , χ(Y ) =⇒
(
ϕ(X) ⇐⇒ ψ(Y )

)
,

it describes the language M : the word X ∈ ({0, 1}ℓ)n satisfies this formula if for
any word v ∈ An represented by Y, v is in L if, and only if, v,X |= ϕ(X).

Now, we note that for all n ∈ N, there exists a word inM of length n, namely
Pn. Thus Lemma 1 applies, so there exists M ′ ⊆ M a regular language so that
for all n ∈ N, there exists a unique word in M ′ of length n, which we denote by
Qn. Thanks to Theorem 2, this yields a tuple of regular predicates Q such that
Lϕ,Q = Lϕ,P.
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We proved the substitution property for MSO[≤,Arb1]. We now prove that
it also holds for MSO[≤,Arbu1 ]; note that this is not implied by the previous
case. We first prove it over infinite words, and then transfer the result to finite
words.

Theorem 4. For all sentences ϕ(P ) in MSO[≤,Arbu1 ] and predicates P ∈ Arbu1
such that Lϕ,P is ω-regular, there exist regular predicates Q ∈ Arbu1 such that
Lϕ,P = Lϕ,Q.

Proof. Consider ϕ(P ) a sentence in MSO[≤,Arbu1 ] and P predicates such that
Lϕ,P is ω-regular, denote it L.

Consider the following language:

M = {X ∈ ({0, 1}ℓ)ω | Lϕ,X = L} .

Relying on the same arguments as in the proof of Theorem 3, we show that M
is ω-regular. It is also non-empty since it contains P. It follows from Büchi’s
Theorem that it contains a ultimately periodic word Q. Seen as predicates, Q
are regular monadic uniform predicates, and Lϕ,P = Lϕ,Q, which concludes the
proof.

The following theorem states the substitution property for MSO[≤,Arbu1 ].

Theorem 5. For all sentences ϕ(P ) in MSO[≤,Arbu1 ] and predicates P ∈ Arbu1
such that Lϕ,P is regular, there exist regular predicates Q ∈ Arbu1 such that
Lϕ,P = Lϕ,Q.

Proof. We consider ϕ(P ) a sentence in MSO[≤,Arbu1 ] and predicates P such
that Lϕ,P is regular. Let ♭ be a fresh letter (not in A), we denote by A♭ the

alphabet A ∪ {♭}. We explain how to transform ϕ(P ) into a formula ϕ̂(P ) in
MSO[≤,Arbu1 ] over the alphabet A♭ satisfying: for all u in A∗ and predicates
Q, we have:

u,Q |= ϕ ⇐⇒ u · ♭ω ,Q |= ϕ̂ (1)

ϕ̂(P ) is obtained from ϕ(P ) by guarding every first-order quantifiers: the subfor-

mula ∃y, θ(y) is turned into the subformula ∃y,¬♭(y)∧ θ̂(y). The equivalence (1)
is easily proved by induction. Consider the formula ψ(P ) defined by

ϕ̂(P ) ∧ ∃y, (∀x ≥ y, ♭(x) ∧ ∀x < y, ¬♭(x))

and the predicates P, they define the language Lϕ,P · ♭ω thanks to the equiva-
lence (1), so it is ω-regular.

From Theorem 4, we get a tuple of regular predicates Q ∈ Arbu1 such that
Lψ,Q = Lϕ,P · ♭ω . It follows that Lϕ,P = Lϕ,Q, which concludes the proof.

We note that the substitution property does not hold over binary predicates.
In fact, one can show much worse: given M a deterministic Turing machine, one
can construct a universal formula ϕM (P ) (i.e. with only universal quantifiers)
with binary predicates such that LϕM ,P = a∗ if and only if P represents the run
ofM . In other words, even if the language of the formula is rather simple, it can
use its predicates to perform arbitrarily complicated computations.

12



3.2 The Syntactical Predicate

In this subsection, we define the notion of syntactical predicate for an advice
regular language. The word “syntactical” here should be understood in the fol-
lowing sense: the syntactical predicate PL of L is the most regular predicate
that describes the language L. In particular, we will prove that L is regular if,
and only if, PL is regular.

Let L be an advice regular language.We define the predicatePL = (PL,n)n∈N.
Thanks to Theorem 1, there exists K ∈ N such that for all i, p ∈ N, the restric-
tion of ∼L,p to words of length i contains at most K equivalence classes. Denote
Q = {0, . . . ,K − 1} and Σ = (Q×A→ Q) ⊎Q, where Q×A→ Q is the set of
functions from Q×A to Q. We define PL,n ∈ Σn.

Let i, n ∈ N. Among all words of length i, we denote by ui,n1 , ui,n2 , . . . the
lexicographically minimal representatives of the equivalence classes of ∼L,n−i,
enumerated in the lexicographic order:

ui,n1 <lex u
i,n
2 <lex u

i,n
3 <lex · · · (2)

In other words, ui,nq is minimal with respect to the lexicographic order <lex

among all words of length i in its equivalence class for ∼L,n−i. Thanks to The-
orem 1, there are at most K such words for each i, n ∈ N.

We define PL,n(i) (the i
th letter of PL,n) by:

PL,n(i)(q, a) = q′ if ui,nq · a ∼L,n−i−1 u
i+1,n
q′ , for i < n− 1 (3)

PL,n(n− 1)(q) if un,nq ∈ L . (4)

Intuitively, the predicate PL describes the transition function with respect
to the equivalence relations ∼L,p. We now give an example.

0 1 2 3

a

b

aa

ab

ba

a3

aba

bab

a4

(ab)2

a

b

b

a

a, b

a

b

a

b

a, b

a

b

a, b

Fig. 3. The predicate PL (here PL,4) for L = (ab)∗ + (ba)∗b.

Example 5. Consider the language L = (ab)∗ + (ba)∗b. We represent PL,4 in
figure 3. Each circle represents an equivalence class with respect to ∼L,4, inside
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words of a given length. For instance, there are three equivalence classes for
words of length 3: a3, aba and bab. Note that these three words are the mini-
mal representatives of their equivalence classes with respect to the lexicographic
order. For the last position (here 3), the equivalence class of (ab)2 (which is
actually reduced to (ab)2 itself) is darker since it belongs to the language L.

We state the main property of the predicate PL.

Theorem 6. Let L be an advice regular language. Then L is regular if, and only
if, PL is regular.

The proof is split in two lemmas, giving each direction. We start by the if
direction.

Lemma 2. Let L be an advice regular language. Then L ∈ MSO[≤,PL].

Proof. From the definition of PL, it is easy to see that the word u of length n
belongs to L if, and only if, there exists X : {0, . . . , n} → Q such that:

∀q ∈ Q, X(0) = q ⇐⇒ PL,n(0)(0, u0) = q
∧ ∀q, q′ ∈ Q, ∀i < n− 1, X(i+ 1) = q′ ⇐= X(i) = q ∧PL,n(i)(q, ui) = q′

∧ ∀q ∈ Q, X(n) = q =⇒ PL,n(n− 1)(q) .

This can be written down as an MSO formula with the predicate PL.

The if direction of Theorem 6 follows from Lemma 2, because if PL is regular,
then L ∈ MSO[≤,PL] = MSO[≤], so L is regular.

For the only if direction, we prove a stronger statement that will be useful
in Section 4.4. Informally, we prove that the syntactic predicate PL is the least
predicate required to define in MSO the language L.

Lemma 3. Let L be an advice regular language defined with the predicates P.
Then PL ∈ MSO[≤,P].

Proof. Assume that L is defined by an MSO formula θ with the predicates P.
Then the three equations (2), (3) and (4) defining PL can be written down as
an MSO formula with the predicates P.

To this end, we represent words as monadic second-order variables as in the
proof of Lemma 1. A A-tuple X of monadic second-order variables represents
the word v ∈ An if X partitions the set of all positions up to position n, and for
all i ∈ {0, . . . , n− 1}, we have vi = a if, and only if, i ∈ Xa.

Denote by χ(X, x) the MSO formula expressing that X partitions the set of
all positions up to position x. Similarly, denote by Ξ(X, x) the MSO formula
expressing that X partitions the set of all positions from the position x+ 1.

The formulae for (2) and (4) make use of the formulae χ(X, x) and θ. We
omit them as they are easy to write down, and focus on (3).

The first step is to construct a formula ϕ(X,Y ,w) such that if w has length n,
X represents u and Y represents v both of length i, then w,X,Y, i |= ϕ(X,Y , x)
if, and only if, u ∼L,n−i v. Define ϕ(X,Y , x) as:

∀Z, Ξ(Z, x) =⇒ (φ(X, x, Z) ⇐⇒ φ(Y , x, Z)) ,
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where the formula φ(X, x, Z) is obtained from θ by syntactically replacing in θ
each letter predicate a(y) by (y ≤ x ∧ y ∈ Xa) ∨ (y > x ∧ y ∈ Za).

The second step is to construct a finite number of formulae γℓ(X, x) for q ∈ Q
such that if w has length n andX represents u of length i, then w,X, i |= γℓ(X, x)
if, and only if, there are exactly q− 1 words of length i that are (i) pairwise not
equivalent with respect to ∼L,n−i, (ii) not equivalent to u with respect to ∼L,n−i,
and (iii) smaller than u with respect to the lexicographic order.

We can now put the pieces together and give a formula for (3):

∀x, ∀X, ∀Y ,
∧

a∈A, q,q′∈Q

x ∈ Xa ∧ χ(X, x) ∧ χ(Y , x) =⇒

PL,q,a,q′(z) ⇐⇒ (γq(X, x) ∧ γq′(Y , x)) .

It follows that PL is definable in MSO[≤,P].

4 Applications

In this section we show several consequences of Theorem 1 (characterization of
the advice regular languages), Theorem 3 (a substitution property for advice
regular languages) and Theorem 6 (a syntactical predicate for advice regular
predicates).

The first two applications are about two conjectures, the Straubing and the
Crane Beach Conjectures, introduced in the context of circuit complexity. We
first explain the motivations for these two conjectures, and show very simple
proofs of both of them in the special case of monadic predicates.

The third application shows that one can determine, given an MSO formula
with morphic predicates, whether it defines a regular language.

4.1 A Descriptive Complexity for Circuit Complexity Classes

We first quickly define some circuit complexity classes. The most important here
is AC0, the class of languages defined by boolean circuits of bounded depth and
polynomial size, and its subclass LAC0 where the circuits have linear size. From
AC0, adding the modular gates gives rise toACC. Finally, the class of languages
defined by boolean circuits of logarithmic depth, polynomial size and fan-in 2
is denoted by NC1. Separating ACC from NC1 remains a long-standing open
problem.

One approach to better understand these classes is through descriptive com-
plexity theory, giving a perfect correspondence between circuit complexity classes
and logical formalisms. Unlike what we did so far, the logical formalisms involved
in this descriptive complexity theory use predicates of any arity (we focused
on predicates of arity one). A k-ary predicate P is given by (Pn)n∈N, where
Pn ⊆ {0, . . . , n− 1}k. We denote by Arb the class of all predicates, and by Reg
the class of regular predicates as defined in [Str94].
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We recall the notations for some of the classical classes of formulae: FO (first-
order quantifiers), FO+MOD (first-order and modular quantifiers: ∃r,qx, ϕ(x)
reads “the number of x satisfying ϕ(x) is equal to r mod q”), FO2 (first-order
with at most two variables) and BΣk (at most k − 1 alternations of ∃ and ∀
quantifiers).

Theorem 7 ([Imm87,BCST92,GL84,KLPT06]).

(1) AC0 = FO[Arb],
(2) LAC0 = FO2[Arb],
(3) ACC = (FO+MOD)[Arb].

Two conjectures have been formulated on the logical side, which aim at clar-
ifying the relations between different circuit complexity classes. They have been
stated and studied in special cases, we extrapolate them here to all fragments. We
first need to give an abstract notion of (logical) fragment. Several such notions
can be found in the bibliography, with more or less strong syntactic restrictions
(see [KL12]). In this paper, we use a minimalist definition of fragment: we only
require to be allowed to substitute predicates within each formula. Remark that
this property is not restrictive and is satisfied by all classical fragments of MSO.
We fix the universal signature, containing infinitely many predicate symbols for
each arity. Let F be a class of formulae over this signature and P a class of
predicates, describing the fragment F[P ] by:

F[P ] = {Lϕ,P | ϕ ∈ F ∧P ∈ P} .

The first property, called the Straubing property, characterizes the regular
languages (denoted by REG) inside a larger fragment.

Definition 1 (Straubing Property). F[P ] has the Straubing property if: all
regular languages definable in F[P ] are also definable in F[P ∩Reg].

In symbols,
F[P ] ∩REG = F[P ∩Reg] .

This statement appears for the first time in [BCST92], where it is proved
that FO[Arb] has the Straubing property, relying on lower bounds for AC0

and an algebraic characterization of FO[Reg]. Following this result, Straubing
conjectures in [Str94] that (FO+MOD)[Arb] and BΣk[Arb] have the Straubing
property for k ≥ 1. Recently, this conjecture has been extended to FO2[Arb]
(see [KLPT06]). If true, it would imply the separation of ACC from NC1, and
for the FO2 case, tight lower bounds on the addition of two integers in binary.

We already mentioned that several several fragments have the Straubing
property, as for instance, Σ1[Arb], FO[≤,Arb1] and (FO+MOD)[≤,Arb1], as
proved by Straubing and Barrington [Str92,BS95] by using Ramsey arguments
for one scan programs and algebraic characterizations of these fragments. In this
paper, we give a simpler syntactical proof that all fragments F[≤,Arb1] have the
Straubing property. The second property, called the Crane Beach property, char-
acterizes the languages having a neutral letter, and is derived from a conjecture
proposed by Thérien for the special case of first-order logic and finally disproved
in the article [BIL+05].
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Definition 2 (Neutral letter). A language L has a neutral letter e ∈ A if for
all words u, v, we have uv ∈ L if, and only if, uev ∈ L.

Definition 3 (Crane Beach Property). F[P ] has the Crane Beach property
if: all languages having a neutral letter definable in F[P ] are definable in F[≤].

Unfortunately, as mentioned, the Crane Beach property does not hold in
general.

Theorem 8 ([BIL+05,Sch01]). There exists a non-regular language having a
neutral letter definable in FO[Arb].

A deeper understanding of the Crane Beach property specialized to first-order
logic can be found in [BIL+05]. In particular, it has been shown that FO[≤
,Arb1] has the Crane Beach property. In this paper, we give a simple proof that
MSO[≤,Arb1] has the Crane Beach Property.

4.2 The Straubing Conjecture for Advice Regular Languages

Theorem 9. All fragments F[≤,Arb1] have the Straubing property.

This is actually a straightforward corollary of Theorem 3.

Proof. Let ϕ ∈ F such that Lϕ,P withP ∈ Arb1 is regular. Thanks to Theorem 3,

there exist Q ∈ Reg1 such that Lϕ,Q = Lϕ,P. This concludes the proof.

We state a corollary of Theorem 9.

Corollary 1. For all k ≥ 1, BΣk[≤,Arb1] has the Straubing property.

We conclude this subsection by remarking that the substitution property
does not hold over infinite words, even for monadic predicates. This follows from
the simple observation that adding the “bit-predicate” to first-order logic allows
us to express all of monadic second-order logic. Formally, the bit-predicate B
is defined by B(x, y) holds if the yth bit of the binary representation of x is 1.
Roughly speaking, in the setting of infinite words the bit-predicate can make use
of the infinite number of positions to talk about any finite set, hence first-order
logic with the bit-predicate expresses all of weak monadic second-order logic,
which coincides with monadic second-order logic.

Now the Straubing Property over infinite words for first-order logic reads:

FO[Arb] ∩ ωREG = FO[Reg] .

This would imply MSO[≤] ⊆ FO[Reg], which does not hold: the parity lan-
guage, defined by L = {u · ♮ω | u ∈ {a, b}∗ has an even number of a} belongs to
MSO[≤], but not to FO[Reg] [STT95].
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4.3 The Crane Beach Conjecture for Advice Regular Languages

In this subsection, we show that the Crane Beach Conjecture holds for advice
regular languages.

Theorem 10. MSO[≤,Arb1] has the Crane Beach property.

The proof is a simple corollary of Theorem 1.

Proof. Recall that a language over finite words L has a neutral letter e ∈ A if
for all words u and v, we have uv ∈ L if, and only if, uev ∈ L. In other words,
u ∼L ue.

Let L be an advice regular language, thanks to Theorem 1, there existsK ∈ N

such that for all i, p ∈ N, the restriction of ∼L,p to words of length i contains at
most K equivalence classes.

We argue that ∼L contains at most K equivalence classes (without both
restrictions to words of a given length). Indeed, assume to the contrary that
there are K + 1 words that are pairwise non-equivalent with respect to ∼L. By
iterating the equivalence u ∼L ue, we obtain K + 1 words of the same length
(the maximal length of the K + 1 original words), which are still pairwise non-
equivalent with respect to ∼L. For two non-equivalent words u, v, there exist
a third word w witnessing the non-equivalence: uw ∈ L but vw /∈ L or the
other way around. Again by padding with the neutral letter e, we obtain non-
equivalence witnesses for each pair of the K + 1 words of the same length (the

maximal length of the (K+1)(K+2)
2 witnesses). Hence we have K + 1 words of

the same length which are not equivalent with respect to ∼L,p for the same p, a
contradiction. It follows that L is regular, i.e L ∈ MSO[≤].

4.4 Morphic Regular Languages

In this subsection, we apply Theorem 6 to the case of morphic predicates, and
obtain the following result: given an MSO formula with morphic predicates, it
is decidable whether it defines a regular language.

The class of morphic predicates was first introduced by Thue in the context
of combinatorics on words, giving rise to the HD0L systems. Formally, let A,B
be two finite alphabets, σ : A∗ → A∗ a morphism, a ∈ A a letter such that
σ(a) = a · u for some u ∈ A+ and ϕ : A∗ → B∗ a morphism. This defines
the sequence of words ϕ(a), ϕ(σ(a)), ϕ(σ2(a)), . . ., which converges to a finite or
infinite word. An infinite word obtained in this way is said to be morphic.

We see morphic words as predicates, and denote by HD0L the class of morphic
predicates. We call the languages definable in MSO[≤,HD0L] morphic regular.

Theorem 11. The following problem is decidable: given L a morphic regular
language, is L regular? Furthermore, if L is regular, then we can construct a
finite automaton for L.

The proof of this theorem goes in two steps:
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– first, we reduce the regularity problem for a morphic regular language L to
deciding the ultimate periodicity of PL,

– second, we show that PL is morphic.

Hence we rely on the following result: given a morphic word, it is decidable
whether it is ultimately periodic. The decidability of this problem was con-
jectured 30 years ago and proved recently and simultaneously by Durand and
Mitrofanov [Dur13,Iva12].

The first step is a direct application of Theorem 6. For the second step, ob-
serve that thanks to Lemma 3, we havePL ∈ MSO[≤,HD0L]. We conclude with
the following lemma, which follows from the characterization of morphic words
as being those automatically presentable with the lexicographic ordering [RM02].

Lemma 4. HD0L is closed under MSO-interpretations, i.e. if P is an infinite
word such that P ∈ MSO[≤,HD0L], then P ∈ HD0L.

Furthermore, all constructions in this proof are effective, and if PL is ulti-
mately periodic, then one can compute the threshold and the period, and derive
from them a finite automaton for L.

As a corollary, we also obtain from Theorem 11 the decidability of MSO[≤
,HD0L]. Indeed, from a language in MSO[≤,HD0L], we first determine whether
it is regular, and: if it is regular, then determine whether it is empty by looking
at the (effectively constructed) finite automaton recognizing it, and if it is not
regular, then it is non-empty (since the empty language is regular). We stress
however that this result can be obtained with a much more direct proof [CT02].
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Thérien. Circuit Lower Bounds via Ehrenfeucht-Fraissé Games. In IEEE
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