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Abstract
Given two families of sets F and G, the F-separability problem for G asks whether for two given
sets U, V ∈ G there exists a set S ∈ F , such that U is included in S and V is disjoint with S. We
consider two families of sets F : modular sets S ⊆ Nd, defined as unions of equivalence classes
modulo some natural number n ∈ N, and unary sets, which extend modular sets by requiring
equality below a threshold n, and equivalence modulo n above n. Our main result is decidability
of modular and unary separability for the class G of reachability sets of Vector Addition Systems,
Petri Nets, Vector Addition Systems with States, and for sections thereof.
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1 Introduction

We investigate separability problems for sets of vectors from Nd. We say that a set U is
separated from a set V by a set S if U ⊆ S and V ∩ S = ∅. For two families of sets F and G,
the F-separability problem for G asks for two given sets U, V ∈ G whether U is separated
from V by some set from F . Concretely, we consider F to be modular sets or unary sets1,
and G to be reachability sets of Vector Addition Systems or generalizations thereof.

Motivation. The separability problem is a classical problem in theoretical computer science.
It was investigated most extensively in the area of formal languages, for G being the family of
all regular word languages. Since regular languages are effectively closed under complement,
the F -separability problem is a generalization of the F -characterization problem, which asks
whether a given language belongs to F . Indeed, L ∈ F if and only if L is separated from its
complement by some language from F . Separability problems for regular languages attracted
recently a lot of attention, which resulted in establishing the decidability of F -separability for

∗ The first three authors have been partially supported by the NCN grant 2013/09/B/ST6/01575.
1 Since S separates U from V iff its complement separates V from U , and since F is closed under

complement, we could equally well have defined a symmetric version of the separability problem by
saying that S separates {U, V } iff U ⊆ S and V ∩ S = ∅.
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24:2 Separability of Reachability Sets of Vector Addition Systems

the family F of separators being the piecewise testable languages [3, 21] (recently generalized
to finite ranked trees [6]), the locally and locally threshold testable languages [20], the
languages definable in first order logic [23], and the languages of certain higher levels of the
first order hierarchy [22], among others.

Separability of nonregular languages attracted little attention till now. The reasons
for this are twofold. First, for regular languages one can use standard algebraic tools, like
syntactic monoids, and indeed most of the results have been obtained with the help of such
techniques. Second, some strong intractability results have been known already since the
70’s, when Szymanski and Williams proved that regular separability of context-free languages
is undecidable [24]. Later Hunt [11] generalized this result: he showed that F -separability of
context-free languages is undecidable for every class F which is closed under finite boolean
combinations and contains all languages of the form wΣ∗ for w ∈ Σ∗. This is a very
weak condition, so it seemed that nothing nontrivial can be done outside regular languages
with respect to separability problems. Furthermore, Kopczyński has recently shown that
regular separability is undecidable even for languages of visibly pushdown automata [13],
thus strengthening the result by Szymanski and Williams. On the positive side, piecewise
testable separability has been shown decidable for context-free languages, languages of Vector
Addition Systems (VAS languages), and some other classes of languages [4]. This inspired us
to start a quest for decidable cases beyond regular languages.

To the best of our knowledge, beside [4], separability problems for VAS languages have
not been investigated before.

Our contribution. In this paper, we get a step closer towards solving regular separability
of VAS languages. Instead of VAS languages themselves (i.e., subsets of Σ∗), in this paper
we investigate their commutative closures, or, alternatively, subsets of Nd represented as
reachability sets of VASes, VASes with states, or Petri nets. A VAS reachability set is just
the set of configurations of a VAS which can be reached from a specified initial configuration.
Towards a unified treatment, instead of considering separately VASes, VASes with states,
and Petri nets, we consider sections of VAS reachability sets (abbreviated as VAS sections
below), which turn out to be expressive enough to represent sections of VASes with states
and Petri nets, and thus being a convenient subsuming formalism. A section of a set of
vectors X ⊆ Nd is the set obtained by first fixing a value for certain coordinates, and then
projecting the result to the remaining coordinates. For example, if X is the set of pairs
{(x, y) ∈ N2 | x divides y}, then the section of X obtained by fixing the first coordinate to 3
is the set {0, 3, 6, . . . }. It can be easily shown that VAS sections are strictly more general
than VAS reachability sets themselves, and they are equiexpressive with sections of VASes
with states and Petri nets.

We study the separability problem of VAS sections by simpler classes, namely, modular
and unary sets. A set X ⊆ Nd is modular if there exists a modulus n ∈ N s.t. X is
closed under the congruence modulo n on every coordinate, and it is unary if there exists
a threshold n ∈ N s.t. it is closed under the congruence modulo n above the threshold n
on every coordinate. Clearly, VAS sections are more general than both unary and modular
sets, and unary sets are more general than modular sets. Moreover, unary sets are tightly
connected with commutative regular languages, in the sense that the Parikh image2 of a
commutative regular language is a unary set, and vice versa, the inverse Parikh image of a

2 The Parikh image of a language of words L ⊆ {a1, . . . , ak} is the subset of Nk obtained by counting
occurrences of letters in L.



L. Clemente, W. Czerwiński, S. Lasota, and C. Paperman 24:3

unary set is a commutative regular language. As our main result, we show that the modular
and unary separability problems are decidable for VAS sections (and thus for sections of
VASes with states and Petri nets). Both proofs use similar techniques, and invoke two
semi-decision procedures: the first one (positive) enumerates witnesses of separability, and
the second one (negative) enumerates witnesses of nonseparability. A separability witness
is just a modular (or unary) set, and verifying that it is indeed a separator easily reduces
to the VAS reachability problem. Thus, the hard part of the proof is to invent a finite and
decidable witness of nonseparability, i.e., a finite object whose existence proves that none of
infinitely many modular (resp. unary) sets is a separator. Our main technical observation is
that two nonseparable VAS reachability sets always admit two linear subsets thereof that
are already nonseparable.

From our result, thanks to the tight connection between unary sets and commutative
regular languages mentioned above, we can immediately deduce decidability of regular
separability for commutative closures of VAS languages, and commutative regular separability
for VAS languages. This constitutes a first step towards determining the status of regular
separability for languages of VASes. Full proofs can be found in the technical report [2].

Related research. Choffrut and Grigorieff have shown decidability of separability of rational
relations by recognizable relations in Σ∗ × Nd [1]. Rational subsets of Nd are precisely the
semilinear sets, and recognizable (by morphism into a monoid) subsets of Nd are precisely
the unary sets. Thus, by ignoring the Σ∗ component, one obtains a very special case of our
result, namely decidability of the unary separability problem for semilinear sets. Moreover,
since modular sets are subsets of Nd which are recognizable by a morphism into a monoid
which happens to be a group, we also obtain a new result, namely, decidability of separability
of rational subsets of Nd by subsets of Nd recognized by a group.

From a quite different angle, our research seems to be closely related to the VAS reachab-
ility problem. Leroux [16] has shown a highly nontrivial result: the reachability sets of two
VASes are disjoint if, and only if, they can be separated by a semilinear set. In other words,
semilinear separability for VAS reachability sets is equivalent to the VAS (non-)reachability
problem. This connection suggests that modular and unary separability are interesting
problems in themselves, enriching our understanding of VASes. Finally, we show that VAS
reachability reduces to unary separability, thus the problem does not become easier by consid-
ering the simpler class of unary sets as opposed to semilinear sets. For modular separability
we have a weaker complexity lower bound, i.e. ExpSpace-hardness, by a reduction from
control state reachability for VASSes.

2 Preliminaries

Vectors. By N and Z we denote the set of natural and integer numbers, respectively. For
a vector u = (u1, . . . , ud) ∈ Zd and for a coordinate i ∈ {1, . . . , d}, we denote by u[i] its
i-th component ui. The zero vector is denoted by 0. The order ≤ and the sum operation +
naturally extend to vectors pointwise. Moreover, if n ∈ Z, then nu is the vector (nu1, . . . , nud).
These operations extend to sets element-wise in the natural way: For two sets of vectors
U, V ⊆ Zd we denote by U + V its Minkowski sum {u+ v | u ∈ U, v ∈ V }. For a (possibly
infinite) set of vectors S ⊆ Zd, let Lin(S) and Lin≥0(S) be the set of linear combinations
and non-negative linear combinations of vectors from S, respectively, i.e.,

Lin(S) = {a1v1 + . . .+ akvk | v1, . . . , vk ∈ S, a1, . . . , ak ∈ Z}, and
Lin≥0(S) = {a1v1 + . . .+ akvk | v1, . . . , vk ∈ S, a1, . . . , ak ∈ N}.

STACS 2017
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When the set S = {v1, . . . , vk} is finite, we alternatively write Lin(v1, . . . , vk) instead of
Lin({v1, . . . , vk}), and similarly for Lin≥0(v1, . . . , vk).

Modular, unary, linear, and semilinear sets. Two vectors x, y ∈ Zd are n-modular equi-
valent, written x ≡n y, if, for all i ∈ {1, . . . , d}, we have x[i] ≡ y[i] mod n. Moreover,
two non-negative vectors x, y ∈ Nd are n-unary equivalent, written x ∼=n y, if x ≡n y and
x[i] ≥ n ⇐⇒ y[i] ≥ n for all i ∈ {1, . . . , d}. A d-dimensional set S ⊆ Nd is modular if there
exists a number n ∈ N, s.t. S is a union of n-modular equivalence classes. Unary sets S ⊆ Nd
are defined similarly w.r.t. n-unary equivalence classes.

A set S ⊆ Nd is linear if it is of the form S = {b} + Lin≥0(p1, . . . , pk) for some base
b ∈ Nd and some periods p1, . . . , pk ∈ Nd. A set is semilinear if it is a finite union of linear
sets. Note that a modular set is also unary (since ∼=n is finer than ≡n), and that unary set
is in turn a semilinear set, which can be presented as a finite union of linear sets in which all
the periods are parallel to the coordinate axes, i.e., they have exactly one non-zero entry.

Separability. For S,U, V ⊆ Nd, we say that S separates U from V if U ⊆ S and V ∩ S = ∅.
The set S is also called a separator of U, V . For a family F of sets, we say that U is
F separable from V if U is separated from V by a set S ∈ F . In this paper, the set of
separators F will be the modular sets and the unary ones. Since both classes are closed
under complement, the notion of F separability is symmetric: U is F separable from V iff V
is F separable from U . Thus we use also a symmetric notation, in particular we say that U
and V are F separable instead of saying that U is F separable from V . For two families of
sets F and G, the F separability problem for G asks whether two given sets U, V ∈ G are F
separable. In this paper we mainly consider two instances of F , namely modular sets and
unary sets, and thus we speak of modular and unary separability problems, respectively.

Vector Addition Systems. A d-dimensional Vector Addition System (VAS) is a pair V =
(s, T ), where s ∈ Nd is the source configuration and T ⊆fin Zd is the set of finitely many trans-
itions. A partial run ρ of a VAS V = (s, T ) is a sequence (v0, t0, v1), . . . , (vn−1, tn−1, vn) ∈
Nd × T × Nd such that for all i ∈ {0, . . . , n− 1} we have vi + ti = vi+1. The source of this
partial run is the configuration v0 and the target of this partial run is the configuration vn, we
write source(ρ) = v0, target(ρ) = vn. The labeling of ρ is the sequence t0 . . . tn−1 ∈ T ∗,
we write label(ρ) = t0 . . . tn−1. For a sequence α ∈ T ∗ and a partial run ρ such that
label(ρ) = α, source(ρ) = u and target(ρ) = v we write u α−→ v to denote this unique
partial run. A partial run ρ of (s, T ) with source(ρ) = s is called a run. The set of all runs
of a VAS V is denoted as Runs(V ). The reachability set Reach(V ) of a VAS V is the set of
targets of all its runs; the sets Reach(V ) we call VAS reachability sets in the sequel. The
family of all VAS reachability sets we denote as Reach(VAS).

I Example 1. Consider a VAS V = (s, T ), for a source configuration s = (1, 0, 0) and a set
of transitions T = {(−1, 2, 1), (2,−1, 1)}. One easily proves that

Reach(V ) = {(a, b, c) ∈ N3 | a+ b = c+ 1 ∧ a− b ≡ 1 mod 3}.

Vector Addition Systems with states. A d-dimensional VAS with states (VASS) is a triple
V = (s, T,Q), where Q is a finite set of states, s ∈ Q × Nd is the source configuration
and T ⊆fin Q × Zd × Q is a finite set of transitions. Similarly as in case of VASes, a run
ρ of a VASS V = (s, T,Q) is a sequence (q0, v0, s0, q1, v1), . . . , (qn−1, vn−1, sn−1, qn, vn) ∈
Q × Nd × Zd × Q × Nd such that (q0, v0) = s and for all i ∈ {0, . . . , n − 1} we have



L. Clemente, W. Czerwiński, S. Lasota, and C. Paperman 24:5

(qi, si, qi+1) ∈ T and vi + si = vi+1. We write target(ρ) = (qn, vn). The reachability set of
a VASS V in state q is Reachq(V ) = {v ∈ Nd | (q, v) = target(ρ) for some run ρ}. The
family of all such reachability sets of all VASSes we denote as Reach(VASS).

I Example 2 (cf. [9]). Let V be a 3-dimensional VASS with two states, p and p′, the source
configuration (p, (1, 0, 0)), and four transitions:

(p, (−1, 1, 0), p), (p, (0, 0, 0), p′), (p′, (2,−1, 0), p′), (p′, (0, 0, 1), p).

Then Reachp(V ) = {(a, b, c) ∈ N3 | 1 ≤ a+ b ≤ 2c}.

3 Sections

VAS reachability sets are central for this paper. However, in order to make this family of sets
more robust, we prefer to consider the slightly larger family of sections of VAS reachability
sets. The intuition about a section is that we fix values on a subset of coordinates in vectors,
and collect all the values that can occur on the other coordinates. For a vector u ∈ Nd and a
subset I ⊆ {1, . . . , d} of coordinates, by πI(u) ∈ N|I| we denote the I-projection of u, i.e., the
vector obtained from u by removing coordinates not belonging to I. The projection extends
element-wise to sets of vectors S ⊆ Nd, denoted πI(S). For a set of vectors S ⊆ Nd, a subset
I ⊆ {1, . . . , d}, and a vector u ∈ Nd−|I|, the section of S w.r.t. I and u is the set

secI,u(S) := πI({v ∈ S | π{1,...,d}\I(v) = u}) ⊆ N|I|.

We denote by SecReach(VAS) the family of all sections of VAS reachability sets, which we
abbreviate as VAS sections below. Similarly, the family of all sections of VASS-reachability
sets we denote by SecReach(VASS).

I Example 3. Consider the VAS V from Example 1. For I = {1, 2} and u = 7 ∈ N1 we
have secI,u(Reach(V )) = {(0, 8), (3, 5), (6, 2)}.

Note that in a special case of I = {1, . . . , d}, when u is necessarily the empty vector,
secI,u(S) = S. Thus Reach(VAS) is a subfamily of SecReach(VAS), and likewise for
VASSes. We argue that VAS sections are a more robust class than VAS reachability sets.
Indeed, as shown below VAS sections are closed under positive boolean combinations, which
is not the case for VAS reachability sets.

Reachability sets of VASes are a strict subfamily of reachability sets of VASes with states,
which in turn are a strict subfamily of sections of reachability sets of VASes. However,
when sections of reachability set are compared, there is no difference between VASes and
VASes with states, which motivates considering sections in this paper. These observations
are summarized in the following two propositions:

I Proposition 4. Reach(VAS) ( Reach(VASS) ( SecReach(VAS).

I Proposition 5. SecReach(VAS) = SecReach(VASS).

I Remark. In a similar vein one shows that reachability sets of Petri nets include Reach(VAS)
and are included in Reach(VASS). Therefore, as long as sections are considered, there is no
difference between VASes, Petri nets, and VASSes. In consequence, our results apply not
only to VASes, but to all the three models.

We conclude this section by stating closure property of VAS sections. By positive
boolean combination we mean sets obtained by taking only intersections and unions, but not
complements.

I Proposition 6. The family of VAS sections is closed under positive boolean combinations.

STACS 2017



24:6 Separability of Reachability Sets of Vector Addition Systems

4 Results

As our main technical contribution, we prove decidability of the modular and unary separab-
ility problems for the class of sections of VAS reachability sets.

I Theorem 7. The modular separability problem for VAS sections is decidable.

I Theorem 8. The unary separability problem for VAS sections is decidable.

The proofs are postponed to Sections 5–7. Furthermore, as a corollary of Theorem 8 we
derive decidability of two commutative variants of the regular separability of VAS languages
(formulated in Theorems 9 and 10 below).

To consider languages instead of reachability sets, we need to assume that transitions of
a VAS are labeled by elements of an alphabet Σ, and thus every run is labeled by a word
over Σ obtained by concatenating labels of consecutive transitions of a run. We allow for
silent transitions labeled by ε, i.e., transitions that do not contribute to the labeling of a run.
The language L(V ) of a VAS V contains labels of those runs of V that end in an accepting
configuration. Our results work for several variants of acceptance; for instance, for a fixed
configuration v0, we may consider a configuration v accepting if:

v ≥ v0, this choice yields the so called coverability languages; or
v = v0, this choice yields reachability languages.

The Parikh image of a word w ∈ Σ∗, for a fixed total ordering a1 < . . . < ad of Σ, is
a vector in Nd whose ith coordinate stores the number of occurrences of ai in w. We lift
the operation element-wise to languages, thus the Parikh image of a language L, denoted
Π(L), is a subset of Nd. Two words w, v over Σ are commutatively equivalent if their Parikh
images are equal. The commutative closure of a language L ⊆ Σ∗, denoted cc(L), is the
language containing all words w ∈ Σ∗ commutatively equivalent to some word v ∈ L. A
language L is commutative if it is invariant under commutatively equivalence, i.e., L = cc(L).
Note that a commutative language is uniquely determined by its Parikh image. The Parikh
image of any commutative regular language is unary: A finite automaton recognizing a
commutative language can only count modulo n above threshold n for each letter in the
alphabet independently. Moreover, all unary set can be obtained as the Parikh image of
a commutative regular language. Similarly, the inverse Parikh image of a unary set is a
commutative regular language, and all commutative regular languages can be obtained in
this way. In this sense, commutative regular languages and unary sets are in correspondence
with each other.

As a corollary of Theorem 8 we deduce decidability of the following two commutative
variants of the regular separability of VAS languages:

commutative regular separability of VAS languages: given two VASes V, V ′, decide whether
there is a commutative regular language R that includes L(V ) and is disjoint from L(V ′);
regular separability for commutative closures of VAS languages: given two VASes V, V ′,
decide whether there is a regular language R that includes cc(L(V )) and is disjoint from
cc(L(V ′)).

I Theorem 9. Commutative regular separability is decidable for VAS languages.

Indeed, given two VASes V,W one easy constructs another two VASes V ′,W ′ s.t. Π(L(V ))
is a section of Reach(V ′), and similarly for W ′. By the tight correspondence between
commutative regular languages and unary sets, we observe that L(V ) and L(W ) are separated
by a commutative regular language if, and only if, their Parikh images Π(L(V )) and Π(L(W ))
are separated by a unary set, which is is decidable by Theorem 8.
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I Theorem 10. Regular separability is decidable for commutative closures of VAS languages.

Similarly as above, we reduce to unary separability of VAS reachability sets (which is
decidable once again by Theorem 8), which is immediate once one proves the following crucial
observation.

I Lemma 11. Two commutative languages L,K ⊆ Σ∗ are regular separable if, and only if,
their Parikh images are unary separable.

Proof. For the “if” direction, let Π(K) and Π(L) be separable by some unary set U ⊆ Nd.
Let S = {w ∈ Σ∗ | Π(w) ∈ U}. It is easy to see that S is (commutative) regular since U is
unary, and that S separates K and L. For the “only if” direction, let K and L be separable
by a regular language S, say K ⊆ S and S ∩ L = ∅. Let M be the syntactic monoid of
S and ω be its idempotent power, i.e., a number such that mω = m2ω for every m ∈ M .
In particular, for every word u ∈ Σ∗ we have (P) uvωw ∈ S ⇐⇒ uv2ωw ∈ S; in other
words, one can substitute vω by v2ω and vice versa in every context. Let Σ = {a1, . . . , ad}.
For u = (u1, . . . , ud) ∈ Nd define the word wu = au1

1 · · · a
ud

d . For every u, v ∈ Nd such that
u ∼=ω v, by repetitive application of (P) we get wu ∈ S iff wv ∈ S. As K is commutative and
K ⊆ S, we have wu ∈ S for all u ∈ Π(K); similarly, we have wv 6∈ S for all v ∈ Π(L). Thus,
for all u ∈ Π(K), v ∈ Π(L) we have u 6∼=ω v. Let U = {x ∈ Nd | ∃y∈Π(K) x ∼=ω y}. The set U
separates Π(K) and Π(L) and, being a union of ∼=ω equivalence classes, it is unary. J

5 Modular separability of linear sets

The rest of the paper is devoted to the proofs of Theorems 7 and 8. In this section we
prove two preliminary results that will be later used in Section 6, where the proof of
Theorems 7 is completed. First, we prove a combinatorial result on linear combinations (cf.
Lemma 12 below). Second, we prove that modular separability of linear sets is decidable
(cf. Corollary 15). While this second result follows from [1] and is thus not a new result, we
provide here another simple proof to make the paper self-contained.

Linear combinations modulo n. We start with some preliminary results from linear algebra.
For n ∈ N, let Lin≥0

n (v1, . . . , vk) be the closure of Lin≥0(v1, . . . , vk) modulo n, i.e.,

Lin≥0
n (v1, . . . , vk) = {v ∈ Nd | ∃u∈Lin≥0(v1,...,vk) v ≡n u}.

Similarly one defines Linn(v1, . . . , vk) be the closure of Lin(v1, . . . , vk) modulo n. Observe
however that Linn(v1, . . . , vk) = Lin≥0

n (v1, . . . , vk). Indeed, if v ≡n l1v1 + . . . + lkvk for
l1, . . . , lk ∈ Z then v ≡n (l1 + Nn)v1 + . . . + (lk + Nn)vk for any N ∈ N. The following
observation connects linear combinations to the modular closure of non-negative linear
combinations.

I Lemma 12. Lin(v1, . . . , vk) =
⋂
n>0 Lin≥0

n (v1, . . . , vk).

Modular separability. In the rest of the paper, we heavily rely on the following straightfor-
ward characterization of modular separability.

I Proposition 13. Two sets U, V ⊆ Nd are modular separable if, and only if, there exists
n ∈ N such that for all u ∈ U , v ∈ V we have u 6≡n v.

In the special case of linear sets, the characterization above boils down to the following
property:

STACS 2017



24:8 Separability of Reachability Sets of Vector Addition Systems

I Lemma 14. Two linear sets {b}+Lin≥0(P ) and {c}+Lin≥0(Q) are not modular separable
if, and only if, b− c ∈ Lin(P ∪Q).

Since the condition in the lemma above is effectively testable being an instance of
solvability of systems of linear Diophantine equations, we get the following corollary:

I Corollary 15. Modular separability of linear sets is decidable.

I Remark. Since linear Diophantine equations are solvable in polynomial time, we obtain
the same complexity for modular separability of linear sets. This observation however will
not be useful in the sequel.
I Remark. The unary separability problem is decidable for linear sets, as shown in [1], but
we will not need this fact in the sequel. Moreover, it follows from our stronger decidability
result stated in Theorem 8, since linear sets are included in VAS sections.

6 Modular separability of VAS sections

In this section we prove Theorem 7, and thus provide an algorithm to decide modular
separability for VAS reachability sets. Given two VAS sections U and V , the algorithm
runs in parallel two semi-decision procedures: one (positive) which looks for a witness of
separability, and another one (negative) which looks for a witness of nonseparability. Directly
from the characterization of Proposition 13, the positive semi-decision procedure simply
enumerates all moduli n ∈ N and checks whether u 6≡n v for all u ∈ U and v ∈ V . The latter
condition can be decided by reduction to the VAS (non)reachability problem [19, 17].

I Lemma 16. For two VAS sections U and V and a modulus n ∈ N, it is decidable whether
there exist u ∈ U and v ∈ V s.t. u ≡n v.

It remains to design the negative semi-decision procedure, which is the nontrivial part. In
Lemma 22, we show that if two VAS reachability sets are not modular separable, then in
fact they already contain two linear subsets which are not modular separable. In order to
construct such linear witnesses of nonseparablity, we use the theory of well quasi orders and
some elementary results in algebra, which we present next.

The order on runs. In this section, we define a certain well quasi order on runs E which
will prove useful in the following; a weaker version of this order was defined in [12].

A quasi order (X,4) is a well quasi order (wqo) if for every infinite sequence x0, x1, . . . ∈ X
there exist indices i, j ∈ N, i < j, such that xi 4 xj . It is folklore that if (X,4) is a wqo,
then in every infinite sequence x0, x1, . . . ∈ X there even exists an infinite monotonically
non-decreasing subsequence xi1 4 xi2 4 . . .. We will use Dickson’s [5] and Higman’s [8]
Lemmas to define new wqo’s on pairs and sequences. For two qos (X,≤X) and (Y,≤Y ), let
the product (X × Y,≤X×Y ) be ordered componentwise by (x, y) ≤X×Y (x′, y′) if x ≤X x′

and y ≤Y y′.

I Lemma 17 (Dickson [5]). If (X,≤X) and (Y,≤Y ) are wqos, then (X ×Y,≤X×Y ) is a wqo.

As a corollary, if two qos (X,≤1) and (X,≤2) on the same domain are wqos, then also their
intersection is a wqo. For a qo (X,≤), let (X∗,≤∗) be quasi ordered by the subsequence
order ≤∗, defined as x1x2 · · ·xk ≤∗ y1y2 . . . ym if there exist 1 ≤ i1 < . . . < ik ≤ m such that
xj ≤ yij for all j ∈ {1, . . . , k}.

I Lemma 18 (Higman [8]). If (X,≤) is a wqo then (X∗,≤∗) is a wqo.
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By considering the finite set of transitions T well quasi ordered by equality, we define the
order ≤1 on triples Nd × T × Nd componentwise as (u, s, u′) ≤1 (v, t, v′) if u ≤ v, s = t, and
u′ ≤ v′, which is a wqo by Dickson’s Lemma. We further extend ≤1 to an order E on runs by
defining, for two runs ρ and σ in (Nd×T×Nd)∗, ρEσ if ρ ≤1

∗ σ and target(ρ) ≤ target(σ);
Here, ≤1

∗ is the extension of ≤1 to sequences, and thus a wqo by Higman’s Lemma, which
implies that E is itself a wqo. Our order E is very similar to the weaker order defined in
[12], which is the same as E, except that it does not include target configurations.

I Proposition 19. E is a well quasi order.

The following lemma is a quantitative version of monotonicity of VASes, and it says not
only that larger runs can do more than smaller runs, but also that all nonnegative linear
combinations of increments of larger runs can in fact be realized.

I Lemma 20. Let ρ0, ρ1, . . . , ρk be runs of a VAS s.t., for all i ∈ {1, . . . , k}, ρ0 E ρi, and
let δi := target(ρi)− target(ρ0) ≥ 0. For any δ ∈ Lin≥0(δ1, . . . , δk), there exists a run ρ
s.t. ρ0 E ρ and δ = target(ρ)− target(ρ0).

We conclude this part by showing that any (possibly infinite) subset of Zd can be
overapproximated by taking linear combinations of a finite subset thereof. This will be
important below in order to construct linear sets as witnesses of nonseparability.

I Lemma 21. For every (possibly infinite) set of vectors S ⊆ Zd, there exist finitely many
vectors v1, . . . , vk ∈ S s.t. S ⊆ Lin(v1, . . . , vk).

Proof. Treat Zd as a freely finitely generated abelian group, and consider the subgroup Lin(S)
of Zd generated by S, i.e., the subgroup containing all linear combinations of finitely many
elements of S. We use the following result in algebra: every subgroup of a finitely generated
abelian group is finitely generated (see for instance Corollary 1.7, p. 74, in [10]). By this
result applied to Lin(S) we get a finite set of generators F ⊆ Lin(S) s.t. Lin(F ) = Lin(S).
Every element of F is a linear combination of finitely many elements of S. Thus let v1, . . . , vk
be all the elements of S appearing as a linear combination of some element from F . Then
clearly F ⊆ Lin(v1, . . . , vk), and thus S ⊆ Lin(S) = Lin(F ) ⊆ Lin(Lin(v1, . . . , vk)) =
Lin(v1, . . . , vk), as required. J

I Remark. In fact one can show that the generating set F has at most d elements. However,
no upper bound on k follows, and even for d = 1 the number of vectors k can be arbitrarily
large. Indeed, let p1, . . . , pk be different prime numbers, let ui = (p1 · . . . · pk)/pi and
S = {u1, . . . , uk}. Then for every i ∈ {1, . . . , k}, the number ui is not a linear combination
of numbers uj , j 6= i, as ui is not divisible by pi, while all the others are. Therefore we need
all the elements of S in the set {v1, . . . , vk}.

Modular nonseparability witness. We now concentrate on the negative semi-decision pro-
cedure. Let U, V ⊆ Nd be two VAS sections:

U = secI,ū(RU ) ⊆ Nd and V = secJ,v̄(RV ) ⊆ Nd,

where RU ⊆ NdU and RV ⊆ NdV are the reachability sets of the two VASes WU and WV ,
and I ⊆ {1, . . . , dU} and J ⊆ {1, . . . , dV } with |I| = |J | = d are projecting coordinates, and
ū ∈ NdU−d, v̄ ∈ NdV −d are two sectioning vectors.

Observe that by padding coordinates we can assume w.l.o.g. that the two input VASes
have the same dimension d′ = dU = dV . Furthermore, we can also assume w.l.o.g. that
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ū = v̄ = 0. Indeed, one can add an additional coordinate, such that for performing any
transition it is necessary that this coordinate is nonzero and a special, final transition, which
causes the additional coordinate to be equal zero and subtracts ū (or v̄) from the other
coordinates. The result of adding this gadget is that now we can assume ū = v̄ = 0, but the
section itself does not change.

Finally, by reordering coordinates we can guarantee that the coordinates that are projected
away appear on the same positions in both VASes, i.e., I = J . With these assumptions, we
observe that modular separability of sets U, V ⊆ Nd is equivalent to modular separability of
sets U ′, V ′ ⊆ Nd′ , defined as U, V but without projecting onto the subset I of coordinates:

U ′ = {v ∈ RU | π{1,...,d′}\I(v) = 0} V ′ = {v ∈ RV | π{1,...,d′}\I(v) = 0}.

We call the set U ′ (resp. V ′) the expansion of U (resp. V ).
We say that a linear set L = {b}+ Lin≥0(p1, . . . , pk) ⊆ Nd′ is a U -witness if WU admits

runs ρ, ρ1, . . . , ρk s.t. ρE ρ1, . . . , ρE ρk, and

b = target(ρ) ∈ U ′

b+ pi = target(ρi) ∈ U ′ for i ∈ {1, . . . , k}
(1)

Analogously one defines V -witnesses, but with respect to WV .

I Lemma 22. For two VAS sections U, V ⊆ Nd, the following conditions are equivalent:
1. U, V are not modular separable;
2. the expansions U ′, V ′ of U, V are not modular separable;
3. there exist linear subsets L ⊆ U ′, M ⊆ V ′ that are not modular separable;
4. there exist a U -witness L and a V -witness M that are not modular separable.

Proof. Equivalence of points 1 and 2 follows by the definition of expansion. Point 4 implies
3, as a U -witness is necessarily a subset of the expansion U ′ by Lemma 20. Point 3 implies 2,
since if two sets are separable, also subsets thereof are separable (moreover, the separator
remains the same). It remains to show that 2 implies 4.

Let U ′, V ′ ⊆ Nd′ be the expansions of two VAS sections U, V ⊆ Nd, as above, and assume
that they are not modular separable. We construct two linear sets L,M ⊆ Nd′ constituting a
U -witness and a V -witness, respectively. By Proposition 13, there exists an infinite sequence
of pairs of reachable configurations (u0, v0), (u1, v1), . . . ∈ U ′ × V ′ s.t. un ≡n vn for all
n ∈ N. By taking an appropriate infinite subsequence we can ensure that even un ≡n! vn
for all n ∈ N. Let us fix for every n ∈ N runs ρn and σn such that un = target(ρn)
and vn = target(σn). Since E is a wqo by Proposition 19, we can extract a monotone
non-decreasing subsequence, and thus we can ensure that even ρ0Eρ1E · · · and σ0Eσ1E · · · .
Here we use the fact that un ≡n! vn in the original sequence, and thus un ≡i vn for every
i ∈ {1, . . . , n}, consequently the new subsequence still has un ≡n vn for all n ∈ N. For
all n ∈ N, let δn := un − u0 and γn := vn − v0, and consider the set of corresponding
differences Sinf := {δn − γn | n ∈ N}. By Lemma 21, there exists a finite subset thereof
S := {δi1 − γi1 , . . . , δik − γik} such that Sinf ⊆ Lin(S), and thus there exist two finite subsets
P := {δi1 , . . . , δik} and Q := {γi1 , . . . , γik} such that

Sinf ⊆ Lin(P −Q) ⊆ Lin(P )− Lin(Q) ⊆ Lin≥0
n (P )− Lin≥0

n (Q), (2)

where the last inclusion follows from Lemma 12. Let L and M be defined as

L := {u0}+ Lin≥0(P ) and M := {v0}+ Lin≥0(Q).
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By construction, L is a U -witness and M a V -witness. It remains to show that L and
M are not modular separable. For any n, by Eq. 2 we have δn − γn ≡n δ′n − γ′n for
some δ′n ∈ Lin≥0(P ) and γ′n ∈ Lin≥0(Q). Consider now the two new infinite sequences
u′1, u

′
2, · · · ∈ L and v′1, v′2, · · · ∈M defined as u′n := u0 + δ′n and v′n := v0 + γ′n. Then,

u′n − v′n = (u0 + δ′n)− (v0 + γ′n)
= (u0 − v0) + (δ′n − γ′n) (by def. of δ′n, γ′n)
≡n (u0 − v0) + (δn − γn)
= (u0 + δn)− (v0 + γn)
= un − vn ≡n 0 (by def. of un, vn) ,

and thus u′n ≡n v′n. This, thanks to the characterization of Proposition 13, implies that L
and M are not modular separable. J

I Remark. Note that a modular nonseparability witness exists even in the case when the
two reachability sets U, V have nonempty intersection. In this case, it is enough to consider
two runs ρ0 and σ0 ending up in the same configuration target(ρ0) = target(σ0), and
considering the linear sets L := M := {target(ρ0)}.

Using the characterization of Lemma 22, the negative semi-decision procedure enumerates
all pairs L,M , where L is a U -witness and M is a V -witness and checks whether L and M
are modular separable, which is decidable due to Corollary 15. Enumerating U -witnesses
(and V -witnesses) amounts of enumerating finite sets of runs {ρ, ρ1, . . . , ρk} satisfying (1).
I Remark. It is also possible to design another negative semi-decision procedure using
Lemma 22. This one enumerates all linear sets L and M (not necessarily only those in the
special form of U - or V - witnesses) and checks whether they are modular separable and
included in U and V , respectively. While this procedure is conceptually simpler than the one
we presented, we now need the two extra inclusion checks L ⊆ U andM ⊆ V . Indeed, U - and
V -witnesses were designed in such a way that the two inclusions above hold by construction
and do not have to be checked. The problem whether a given linear set is included in a given
VAS reachability set is decidable [15], however we chose to present the previous semi-decision
procedure in order to be self contained.

7 Unary separability of VAS sections

The proof of Theorem 8 goes along the same lines as the proof of Theorem 7. It uses an
immediate characterization of unary separability, which is the same as Proposition 13, with
unary equivalence ∼=n in place of modular equivalence ≡n.

I Proposition 23. Two sets U, V ⊆ Nd are unary separable if, and only if, there exists n ∈ N
such that, for all u ∈ U and v ∈ V , we have u 6∼=n v.

As before, basing on the characterization of Proposition 23, the positive semi-decision
procedure enumerates all n ∈ N and checks whether the ∼=n-closures of the two reachability
sets are disjoint, which is effective thanks to the following fact:

I Lemma 24. For two VAS sections U and V and n ∈ N, it is decidable whether there exist
u ∈ U and v ∈ V such that u ∼=n v.

This can be proved in a way similar to Lemma 16, with the adjustment that we allow on
every coordinate a decrement by n only if the value is above 2n. The negative semi-decision
procedure enumerates nonseparability witnesses, and bases on the exact copy of Lemma 22,
except that “modular” is replaced by “unary”:
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I Lemma 25. For two VAS sections U, V ⊆ Nd, the following conditions are equivalent:
1. U, V are not unary separable;
2. the expansions U ′, V ′ of U, V are not unary separable;
3. there exist linear subsets L ⊆ U ′, M ⊆ V ′ that are not unary separable;
4. there exist a U -witness L and a V -witness M that are not unary separable.

8 Final remarks

We have shown decidability of modular and unary separability for sections of VAS reachability
sets, which include (sections of) reachability sets of VASes with states and Petri nets. As
a corollary, we have derived decidability of regular separability of commutative closures of
VAS languages, and of commutative regular separability of VAS languages. The decidability
status of regular separability for VAS languages remains an intriguing open problem.

Complexity. Most of the problems shown decidable in this paper are easily shown to be
at least as hard as the VAS reachability problem. In particular, this applies to unary
separability of VAS reachability sets, and to regular separability of commutative closures of
VAS languages. Indeed, for unary separability, it suffices to notice that a configuration u
cannot reach a configuration v if, and only if, the set reachable from u can be unary separated
from the singleton set {v}, also a VAS reachability set. When the separator exists, it can be
taken to be the complement of {v} itself, which is unary.

While the problem of modular separability is ExpSpace-hard, we do not know whether
it is as hard as the VAS reachability problem. The hardness can be shown by reduction from
the control state reachability problem in VASSes, which is ExpSpace-hard [18]. For a VASS
V and a target control state q thereof, we construct two new VASSes V0 and V1, which are
copies of V with one additional coordinate, which at the beginning is zero for V0 and one
for V1. We also add one new transition from control state q, which allows V1 to decrease
the additional coordinate by one. One can easily verify that the two VASS reachability
sets definable by V0 and V1 are modular separable if, and only if, the control state q is not
reachable in V , which finishes the proof of ExpSpace-hardness.

The unarity and modularity characterization problems. Closely related problems to separ-
ability are the modularity and unarity characterization problems: is a given section of a
VAS reachability set modular, resp., unary? We focus here on the unarity problem, but
the other one can be dealt in the same way. Decidability of the unarity problem would
follow immediately from Theorem 8, if sections of VAS reachability sets were (effectively)
closed under complement. This is however not the case. Indeed, if the complement of a VAS
reachability set is a section of another VAS reachability set, then both sets are necessarily a
section of a Presburger invariant [16], hence semilinear. But we know that VAS reachability
sets can be non-semilinear, and thus they are not closed under complement. However, the
unarity problem can be shown to be decidable directly, at least for VAS reachability sets,
by using the following two facts: first, it is decidable if a given VAS reachability set U
is semilinear (see the unpublished works [7, 14]); second, when a VAS reachability set is
semilinar, a concrete representation thereof as a semilinear set is effectively computable [15].
Indeed, if a given U is not semilinear, it is not unary either; otherwise, compute a semilinear
representation, and check if it is unary. The latter can be checked directly, or can be reduced
to unary separability of semilinear sets.
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