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Given two families of sets F and G, the F-separability problem for G asks whether for two given sets U, V ∈ G there exists a set S ∈ F, such that U is included in S and V is disjoint with S. We consider two families of sets F: modular sets S ⊆ N d , defined as unions of equivalence classes modulo some natural number n ∈ N, and unary sets, which extend modular sets by requiring equality below a threshold n, and equivalence modulo n above n. Our main result is decidability of modular and unary separability for the class G of reachability sets of Vector Addition Systems, Petri Nets, Vector Addition Systems with States, and for sections thereof.

Introduction

We investigate separability problems for sets of vectors from N d . We say that a set U is separated from a set V by a set S if U ⊆ S and V ∩ S = ∅. For two families of sets F and G, the F-separability problem for G asks for two given sets U, V ∈ G whether U is separated from V by some set from F. Concretely, we consider F to be modular sets or unary sets 1 , and G to be reachability sets of Vector Addition Systems or generalizations thereof.

Motivation. The separability problem is a classical problem in theoretical computer science. It was investigated most extensively in the area of formal languages, for G being the family of all regular word languages. Since regular languages are effectively closed under complement, the F-separability problem is a generalization of the F-characterization problem, which asks whether a given language belongs to F. Indeed, L ∈ F if and only if L is separated from its complement by some language from F. Separability problems for regular languages attracted recently a lot of attention, which resulted in establishing the decidability of F-separability for the family F of separators being the piecewise testable languages [START_REF] Czerwiński | Efficient separability of regular languages by subsequences and suffixes[END_REF][START_REF] Place | Separating regular languages by piecewise testable and unambiguous languages[END_REF] (recently generalized to finite ranked trees [START_REF] Goubault | Deciding piecewise testable separability for regular tree languages[END_REF]), the locally and locally threshold testable languages [START_REF] Place | Separating regular languages by locally testable and locally threshold testable languages[END_REF], the languages definable in first order logic [23], and the languages of certain higher levels of the first order hierarchy [22], among others.

Separability of nonregular languages attracted little attention till now. The reasons for this are twofold. First, for regular languages one can use standard algebraic tools, like syntactic monoids, and indeed most of the results have been obtained with the help of such techniques. Second, some strong intractability results have been known already since the 70's, when Szymanski and Williams proved that regular separability of context-free languages is undecidable [24]. Later Hunt [START_REF] Harry | On the decidability of grammar problems[END_REF] generalized this result: he showed that F-separability of context-free languages is undecidable for every class F which is closed under finite boolean combinations and contains all languages of the form wΣ * for w ∈ Σ * . This is a very weak condition, so it seemed that nothing nontrivial can be done outside regular languages with respect to separability problems. Furthermore, Kopczyński has recently shown that regular separability is undecidable even for languages of visibly pushdown automata [START_REF] Kopczyński | Invisible pushdown languages[END_REF], thus strengthening the result by Szymanski and Williams. On the positive side, piecewise testable separability has been shown decidable for context-free languages, languages of Vector Addition Systems (VAS languages), and some other classes of languages [START_REF] Czerwiński | A note on decidable separability by piecewise testable languages[END_REF]. This inspired us to start a quest for decidable cases beyond regular languages.

To the best of our knowledge, beside [START_REF] Czerwiński | A note on decidable separability by piecewise testable languages[END_REF], separability problems for VAS languages have not been investigated before.

Our contribution. In this paper, we get a step closer towards solving regular separability of VAS languages. Instead of VAS languages themselves (i.e., subsets of Σ * ), in this paper we investigate their commutative closures, or, alternatively, subsets of N d represented as reachability sets of VASes, VASes with states, or Petri nets. A VAS reachability set is just the set of configurations of a VAS which can be reached from a specified initial configuration. Towards a unified treatment, instead of considering separately VASes, VASes with states, and Petri nets, we consider sections of VAS reachability sets (abbreviated as VAS sections below), which turn out to be expressive enough to represent sections of VASes with states and Petri nets, and thus being a convenient subsuming formalism. A section of a set of vectors X ⊆ N d is the set obtained by first fixing a value for certain coordinates, and then projecting the result to the remaining coordinates. For example, if X is the set of pairs {(x, y) ∈ N2 | x divides y}, then the section of X obtained by fixing the first coordinate to 3 is the set {0, 3, 6, . . . }. It can be easily shown that VAS sections are strictly more general than VAS reachability sets themselves, and they are equiexpressive with sections of VASes with states and Petri nets.

We study the separability problem of VAS sections by simpler classes, namely, modular and unary sets. A set X ⊆ N d is modular if there exists a modulus n ∈ N s.t. X is closed under the congruence modulo n on every coordinate, and it is unary if there exists a threshold n ∈ N s.t. it is closed under the congruence modulo n above the threshold n on every coordinate. Clearly, VAS sections are more general than both unary and modular sets, and unary sets are more general than modular sets. Moreover, unary sets are tightly connected with commutative regular languages, in the sense that the Parikh image 2 of a commutative regular language is a unary set, and vice versa, the inverse Parikh image of a unary set is a commutative regular language. As our main result, we show that the modular and unary separability problems are decidable for VAS sections (and thus for sections of VASes with states and Petri nets). Both proofs use similar techniques, and invoke two semi-decision procedures: the first one (positive) enumerates witnesses of separability, and the second one (negative) enumerates witnesses of nonseparability. A separability witness is just a modular (or unary) set, and verifying that it is indeed a separator easily reduces to the VAS reachability problem. Thus, the hard part of the proof is to invent a finite and decidable witness of nonseparability, i.e., a finite object whose existence proves that none of infinitely many modular (resp. unary) sets is a separator. Our main technical observation is that two nonseparable VAS reachability sets always admit two linear subsets thereof that are already nonseparable.

From our result, thanks to the tight connection between unary sets and commutative regular languages mentioned above, we can immediately deduce decidability of regular separability for commutative closures of VAS languages, and commutative regular separability for VAS languages. This constitutes a first step towards determining the status of regular separability for languages of VASes. Full proofs can be found in the technical report [START_REF] Clemente | Separability of reachability sets of vector addition systems[END_REF].

Related research. Choffrut and Grigorieff have shown decidability of separability of rational relations by recognizable relations in Σ * × N d [START_REF] Choffrut | Separability of rational relations in A * × N m by recognizable relations is decidable[END_REF]. Rational subsets of N d are precisely the semilinear sets, and recognizable (by morphism into a monoid) subsets of N d are precisely the unary sets. Thus, by ignoring the Σ * component, one obtains a very special case of our result, namely decidability of the unary separability problem for semilinear sets. Moreover, since modular sets are subsets of N d which are recognizable by a morphism into a monoid which happens to be a group, we also obtain a new result, namely, decidability of separability of rational subsets of N d by subsets of N d recognized by a group.

From a quite different angle, our research seems to be closely related to the VAS reachability problem. Leroux [START_REF] Leroux | The general vector addition system reachability problem by Presburger inductive invariants[END_REF] has shown a highly nontrivial result: the reachability sets of two VASes are disjoint if, and only if, they can be separated by a semilinear set. In other words, semilinear separability for VAS reachability sets is equivalent to the VAS (non-)reachability problem. This connection suggests that modular and unary separability are interesting problems in themselves, enriching our understanding of VASes. Finally, we show that VAS reachability reduces to unary separability, thus the problem does not become easier by considering the simpler class of unary sets as opposed to semilinear sets. For modular separability we have a weaker complexity lower bound, i.e. ExpSpace-hardness, by a reduction from control state reachability for VASSes.

Preliminaries

Vectors. By N and Z we denote the set of natural and integer numbers, respectively. For a vector u = (u 1 , . . . , u d ) ∈ Z d and for a coordinate i ∈ {1, . . . , d}, we denote by u[i] its i-th component u i . The zero vector is denoted by 0. The order ≤ and the sum operation + naturally extend to vectors pointwise. Moreover, if n ∈ Z, then nu is the vector (nu 1 , . . . , nu d ).

These operations extend to sets element-wise in the natural way: For two sets of vectors

U, V ⊆ Z d we denote by U + V its Minkowski sum {u + v | u ∈ U, v ∈ V }.
For a (possibly infinite) set of vectors S ⊆ Z d , let Lin(S) and Lin ≥0 (S) be the set of linear combinations and non-negative linear combinations of vectors from S, respectively, i.e., ) for some base b ∈ N d and some periods p 1 , . . . , p k ∈ N d . A set is semilinear if it is a finite union of linear sets. Note that a modular set is also unary (since ∼ =n is finer than ≡ n ), and that unary set is in turn a semilinear set, which can be presented as a finite union of linear sets in which all the periods are parallel to the coordinate axes, i.e., they have exactly one non-zero entry.

Lin(S) = {a 1 v 1 + . . . + a k v k | v 1 , . . . , v k ∈ S, a 1 , . . . , a k ∈ Z}, and 
Lin ≥0 (S) = {a 1 v 1 + . . . + a k v k | v 1 , . . . , v k ∈ S,
Separability. For S, U, V ⊆ N d , we say that S separates U from V if U ⊆ S and V ∩ S = ∅.
The set S is also called a separator of U, V . For a family F of sets, we say that U is F separable from V if U is separated from V by a set S ∈ F. In this paper, the set of separators F will be the modular sets and the unary ones. Since both classes are closed under complement, the notion of F separability is symmetric:

U is F separable from V iff V is F separable from U .
Thus we use also a symmetric notation, in particular we say that U and V are F separable instead of saying that U is F separable from V . For two families of sets F and G, the F separability problem for G asks whether two given sets U, V ∈ G are F separable. In this paper we mainly consider two instances of F, namely modular sets and unary sets, and thus we speak of modular and unary separability problems, respectively.

Vector Addition Systems. A d-dimensional

Vector Addition System (VAS) is a pair V = (s, T ), where s ∈ N d is the source configuration and T ⊆ fin Z d is the set of finitely many transitions. A partial run ρ of a VAS V = (s, T ) is a sequence (v 0 , t 0 , v 1 ), . . . ,

(v n-1 , t n-1 , v n ) ∈ N d × T × N d such
that for all i ∈ {0, . . . , n -1} we have v i + t i = v i+1 . The source of this partial run is the configuration v 0 and the target of this partial run is the configuration v n , we write source(ρ) = v 0 , target(ρ) = v n . The labeling of ρ is the sequence t 0 . . . t n-1 ∈ T * , we write label(ρ) = t 0 . . . t n-1 . For a sequence α ∈ T * and a partial run ρ such that label(ρ) = α, source(ρ) = u and target(ρ) = v we write u α -→ v to denote this unique partial run. A partial run ρ of (s, T ) with source(ρ) = s is called a run. The set of all runs of a VAS V is denoted as Runs(V ). The reachability set Reach(V ) of a VAS V is the set of targets of all its runs; the sets Reach(V ) we call VAS reachability sets in the sequel. The family of all VAS reachability sets we denote as Reach(VAS).

Example 1. Consider a VAS V = (s, T ), for a source configuration s = (1, 0, 0) and a set of transitions T = {(-1, 2, 1), (2, -1, 1)}. One easily proves that

Reach(V ) = {(a, b, c) ∈ N 3 | a + b = c + 1 ∧ a -b ≡ 1 mod 3}.

Vector Addition Systems with states. A d-dimensional VAS with states (VASS) is a triple

V = (s, T, Q), where Q is a finite set of states, s ∈ Q × N d is the source configuration and T ⊆ fin Q × Z d × Q is a finite set of transitions. Similarly as in case of VASes, a run ρ of a VASS V = (s, T, Q) is a sequence (q 0 , v 0 , s 0 , q 1 , v 1 ), . . . , (q n-1 , v n-1 , s n-1 , q n , v n ) ∈ Q × N d × Z d × Q × N d such
that (q 0 , v 0 ) = s and for all i ∈ {0, . . . , n -1} we have (q i , s i , q i+1 ) ∈ T and v i + s i = v i+1 . We write target(ρ) = (q n , v n ). The reachability set of a VASS V in state q is Reach q (V ) = {v ∈ N d | (q, v) = target(ρ) for some run ρ}. The family of all such reachability sets of all VASSes we denote as Reach(VASS).

Example 2 (cf. [START_REF] Hopcroft | On the reachability problem for 5-dimensional vector addition systems[END_REF]). Let V be a 3-dimensional VASS with two states, p and p , the source configuration (p, (1, 0, 0)), and four transitions:

(p, (-1, 1, 0), p), (p, (0, 0, 0), p ), (p , (2, -1, 0), p ), (p , (0, 0, 1), p).

Then Reach p (V ) = {(a, b, c) ∈ N 3 | 1 ≤ a + b ≤ 2 c }.

Sections

VAS reachability sets are central for this paper. However, in order to make this family of sets more robust, we prefer to consider the slightly larger family of sections of VAS reachability sets. The intuition about a section is that we fix values on a subset of coordinates in vectors, and collect all the values that can occur on the other coordinates. For a vector u ∈ N d and a subset I ⊆ {1, . . . , d} of coordinates, by π I (u) ∈ N |I| we denote the I-projection of u, i.e., the vector obtained from u by removing coordinates not belonging to I. The projection extends element-wise to sets of vectors S ⊆ N d , denoted π I (S). For a set of vectors S ⊆ N d , a subset I ⊆ {1, . . . , d}, and a vector u ∈ N d-|I| , the section of S w.r.t. I and u is the set

sec I,u (S) := π I ({v ∈ S | π {1,...,d}\I (v) = u}) ⊆ N |I| .
We denote by SecReach(VAS) the family of all sections of VAS reachability sets, which we abbreviate as VAS sections below. Similarly, the family of all sections of VASS-reachability sets we denote by SecReach(VASS). Note that in a special case of I = {1, . . . , d}, when u is necessarily the empty vector, sec I,u (S) = S. Thus Reach(VAS) is a subfamily of SecReach(VAS), and likewise for VASSes. We argue that VAS sections are a more robust class than VAS reachability sets. Indeed, as shown below VAS sections are closed under positive boolean combinations, which is not the case for VAS reachability sets.

Reachability sets of VASes are a strict subfamily of reachability sets of VASes with states, which in turn are a strict subfamily of sections of reachability sets of VASes. However, when sections of reachability set are compared, there is no difference between VASes and VASes with states, which motivates considering sections in this paper. These observations are summarized in the following two propositions: Remark. In a similar vein one shows that reachability sets of Petri nets include Reach(VAS) and are included in Reach(VASS). Therefore, as long as sections are considered, there is no difference between VASes, Petri nets, and VASSes. In consequence, our results apply not only to VASes, but to all the three models.

We conclude this section by stating closure property of VAS sections. By positive boolean combination we mean sets obtained by taking only intersections and unions, but not complements.

Proposition 6. The family of VAS sections is closed under positive boolean combinations.
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Separability of Reachability Sets of Vector Addition Systems 4 Results

As our main technical contribution, we prove decidability of the modular and unary separability problems for the class of sections of VAS reachability sets.

Theorem 7. The modular separability problem for VAS sections is decidable.

Theorem 8. The unary separability problem for VAS sections is decidable.

The proofs are postponed to Sections 5-7. Furthermore, as a corollary of Theorem 8 we derive decidability of two commutative variants of the regular separability of VAS languages (formulated in Theorems 9 and 10 below).

To consider languages instead of reachability sets, we need to assume that transitions of a VAS are labeled by elements of an alphabet Σ, and thus every run is labeled by a word over Σ obtained by concatenating labels of consecutive transitions of a run. We allow for silent transitions labeled by ε, i.e., transitions that do not contribute to the labeling of a run. The language L(V ) of a VAS V contains labels of those runs of V that end in an accepting configuration. Our results work for several variants of acceptance; for instance, for a fixed configuration v 0 , we may consider a configuration v accepting if: v ≥ v 0 , this choice yields the so called coverability languages; or v = v 0 , this choice yields reachability languages.

The Parikh image of a word w ∈ Σ * , for a fixed total ordering a 1 < . . . < a d of Σ, is a vector in N d whose ith coordinate stores the number of occurrences of a i in w. We lift the operation element-wise to languages, thus the Parikh image of a language L, denoted Π(L), is a subset of N d . Two words w, v over Σ are commutatively equivalent if their Parikh images are equal. The commutative closure of a language L ⊆ Σ * , denoted cc(L), is the language containing all words w ∈ Σ * commutatively equivalent to some word v ∈ L. A language L is commutative if it is invariant under commutatively equivalence, i.e., L = cc(L). Note that a commutative language is uniquely determined by its Parikh image. The Parikh image of any commutative regular language is unary: A finite automaton recognizing a commutative language can only count modulo n above threshold n for each letter in the alphabet independently. Moreover, all unary set can be obtained as the Parikh image of a commutative regular language. Similarly, the inverse Parikh image of a unary set is a commutative regular language, and all commutative regular languages can be obtained in this way. In this sense, commutative regular languages and unary sets are in correspondence with each other.

As a corollary of Theorem 8 we deduce decidability of the following two commutative variants of the regular separability of VAS languages:

commutative regular separability of VAS languages: given two VASes V, V , decide whether there is a commutative regular language R that includes L(V ) and is disjoint from L(V ); regular separability for commutative closures of VAS languages: given two VASes V, V , decide whether there is a regular language R that includes cc(L(V )) and is disjoint from cc(L(V )).

Theorem 9. Commutative regular separability is decidable for VAS languages.

Indeed, given two VASes V, W one easy constructs another two VASes V , W s.t. Π(L(V )) is a section of Reach(V ), and similarly for W . By the tight correspondence between commutative regular languages and unary sets, we observe that L(V ) and L(W ) are separated by a commutative regular language if, and only if, their Parikh images Π(L(V )) and Π(L(W )) are separated by a unary set, which is is decidable by Theorem 8.

Theorem 10. Regular separability is decidable for commutative closures of VAS languages.

Similarly as above, we reduce to unary separability of VAS reachability sets (which is decidable once again by Theorem 8), which is immediate once one proves the following crucial observation.

Lemma 11. Two commutative languages L, K ⊆ Σ * are regular separable if, and only if, their Parikh images are unary separable.

Proof. For the "if" direction, let Π(K) and Π(L) be separable by some unary set U ⊆ N d . Let S = {w ∈ Σ * | Π(w) ∈ U }. It is easy to see that S is (commutative) regular since U is unary, and that S separates K and L. For the "only if" direction, let K and L be separable by a regular language S, say K ⊆ S and S ∩ L = ∅. Let M be the syntactic monoid of S and ω be its idempotent power, i.e., a number such that m ω = m 2ω for every m ∈ M . In particular, for every word u ∈ Σ * we have (P) uv ω w ∈ S ⇐⇒ uv 2ω w ∈ S; in other words, one can substitute v ω by v 2ω and vice versa in every context. Let Σ = {a 1 , . . . , a d }.

For u = (u 1 , . . . , u d ) ∈ N d define the word w u = a u1 1 • • • a u d d .
For every u, v ∈ N d such that u ∼ =ω v, by repetitive application of (P) we get w u ∈ S iff w v ∈ S. As K is commutative and K ⊆ S, we have w u ∈ S for all u ∈ Π(K); similarly, we have w v ∈ S for all v ∈ Π(L). Thus, for all u ∈ Π(K), v ∈ Π(L) we have u

∼ =ω v. Let U = {x ∈ N d | ∃ y∈Π(K)
x ∼ =ω y}. The set U separates Π(K) and Π(L) and, being a union of ∼ =ω equivalence classes, it is unary.

Modular separability of linear sets

The rest of the paper is devoted to the proofs of Theorems 7 and 8. In this section we prove two preliminary results that will be later used in Section 6, where the proof of Theorems 7 is completed. First, we prove a combinatorial result on linear combinations (cf. Lemma 12 below). Second, we prove that modular separability of linear sets is decidable (cf. Corollary 15). While this second result follows from [START_REF] Choffrut | Separability of rational relations in A * × N m by recognizable relations is decidable[END_REF] and is thus not a new result, we provide here another simple proof to make the paper self-contained.

Linear combinations modulo n. We start with some preliminary results from linear algebra.

For n ∈ N, let Lin ≥0 n (v 1 , . . . , v k ) be the closure of Lin ≥0 (v 1 , . . . , v k ) modulo n, i.e.,

Lin ≥0 n (v 1 , . . . , v k ) = {v ∈ N d | ∃ u∈Lin ≥0 (v1,...,v k ) v ≡ n u}.
Similarly one defines Lin n (v 1 , . . . , v k ) be the closure of Lin(v 1 , . . . , v k ) modulo n. Observe however that Lin

n (v 1 , . . . , v k ) = Lin ≥0 n (v 1 , . . . , v k ). Indeed, if v ≡ n l 1 v 1 + . . . + l k v k for l 1 , . . . , l k ∈ Z then v ≡ n (l 1 + N n)v 1 + . . . + (l k + N n)v k for any N ∈ N.
The following observation connects linear combinations to the modular closure of non-negative linear combinations.

Lemma 12. Lin

(v 1 , . . . , v k ) = n>0 Lin ≥0 n (v 1 , . . . , v k ).
Modular separability. In the rest of the paper, we heavily rely on the following straightforward characterization of modular separability.

Proposition 13. Two sets U, V ⊆ N d are modular separable if, and only if, there exists n ∈ N such that for all u ∈ U , v ∈ V we have u ≡ n v.

In the special case of linear sets, the characterization above boils down to the following property: S TA C S 2 0 1 7
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Separability of Reachability Sets of Vector Addition Systems Lemma 14. Two linear sets {b}+Lin ≥0 (P ) and {c}+Lin ≥0 (Q) are not modular separable if, and only if, b -c ∈ Lin(P ∪ Q).

Since the condition in the lemma above is effectively testable being an instance of solvability of systems of linear Diophantine equations, we get the following corollary: Corollary 15. Modular separability of linear sets is decidable.

Remark. Since linear Diophantine equations are solvable in polynomial time, we obtain the same complexity for modular separability of linear sets. This observation however will not be useful in the sequel.

Remark. The unary separability problem is decidable for linear sets, as shown in [START_REF] Choffrut | Separability of rational relations in A * × N m by recognizable relations is decidable[END_REF], but we will not need this fact in the sequel. Moreover, it follows from our stronger decidability result stated in Theorem 8, since linear sets are included in VAS sections.

Modular separability of VAS sections

In this section we prove Theorem 7, and thus provide an algorithm to decide modular separability for VAS reachability sets. Given two VAS sections U and V , the algorithm runs in parallel two semi-decision procedures: one (positive) which looks for a witness of separability, and another one (negative) which looks for a witness of nonseparability. Directly from the characterization of Proposition 13, the positive semi-decision procedure simply enumerates all moduli n ∈ N and checks whether u ≡ n v for all u ∈ U and v ∈ V . The latter condition can be decided by reduction to the VAS (non)reachability problem [START_REF] Mayr | An algorithm for the general Petri net reachability problem[END_REF][START_REF] Leroux | Demystifying reachability in vector addition systems[END_REF].

Lemma 16. For two VAS sections U and V and a modulus n ∈ N, it is decidable whether there exist u ∈ U and v ∈ V s.t. u ≡ n v.

It remains to design the negative semi-decision procedure, which is the nontrivial part. In Lemma 22, we show that if two VAS reachability sets are not modular separable, then in fact they already contain two linear subsets which are not modular separable. In order to construct such linear witnesses of nonseparablity, we use the theory of well quasi orders and some elementary results in algebra, which we present next.

The order on runs. In this section, we define a certain well quasi order on runs which will prove useful in the following; a weaker version of this order was defined in [START_REF] Jančar | Decidability of a temporal logic problem for Petri nets[END_REF].

A quasi order (X, ) is a well quasi order (wqo) if for every infinite sequence x 0 , x 1 , . . . ∈ X there exist indices i, j ∈ N, i < j, such that x i x j . It is folklore that if (X, ) is a wqo, then in every infinite sequence x 0 , x 1 , . . . ∈ X there even exists an infinite monotonically non-decreasing subsequence x i1 x i2 . . .. We will use Dickson's [START_REF] Dickson | Finiteness of the odd perfect and primitive abundant numbers with n distinct prime factors[END_REF] and Higman's [START_REF] Higman | Ordering by divisibility in abstract algebras[END_REF] Lemmas to define new wqo's on pairs and sequences. For two qos (X, ≤ X ) and (Y, ≤ Y ), let the product (X × Y, ≤ X×Y ) be ordered componentwise by (x, y) ≤ X×Y (x , y ) if x ≤ X x and y ≤ Y y . Lemma 17 (Dickson [5]). If (X, ≤ X ) and (Y, ≤ Y ) are wqos, then (X × Y, ≤ X×Y ) is a wqo.

As a corollary, if two qos (X, ≤ 1 ) and (X, ≤ 2 ) on the same domain are wqos, then also their intersection is a wqo. For a qo (X, ≤), let (X * , ≤ * ) be quasi ordered by the subsequence order ≤ * , defined as x 1 x 2 • • • x k ≤ * y 1 y 2 . . . y m if there exist 1 ≤ i 1 < . . . < i k ≤ m such that x j ≤ y ij for all j ∈ {1, . . . , k}.

Lemma 18 (Higman [8]). If (X, ≤) is a wqo then (X * , ≤ * ) is a wqo.

Example 3 .

 3 Consider the VAS V from Example 1. For I = {1, 2} and u = 7 ∈ N 1 we have sec I,u (Reach(V )) = {(0, 8),[START_REF] Czerwiński | Efficient separability of regular languages by subsequences and suffixes[END_REF][START_REF] Dickson | Finiteness of the odd perfect and primitive abundant numbers with n distinct prime factors[END_REF], (6, 2)}.

Proposition 4 .Proposition 5 .

 45 Reach(VAS) Reach(VASS) SecReach(VAS). SecReach(VAS) = SecReach(VASS).

  When the set S = {v 1 , . . . , v k } is finite, we alternatively write Lin(v 1 , . . . , v k ) instead of Lin({v 1 , . . . , v k }), and similarly for Lin ≥0 (v 1 , . . . , v k ). Unary sets S ⊆ N d are defined similarly w.r.t. n-unary equivalence classes.A set S ⊆ N d is linear if it is of the form S = {b} + Lin ≥0 (p 1 , . . . , p k

a 1 , . . . , a k ∈ N}. S TA C S 2 0 1 7 Modular, unary, linear, and semilinear sets. Two vectors x, y ∈ Z d are n-modular equivalent, written x ≡ n y, if, for all i ∈ {1, . . . , d}, we have x[i] ≡ y[i] mod n. Moreover, two non-negative vectors x, y ∈ N d are n-unary equivalent, written x ∼ =n y, if x ≡ n y and x[i] ≥ n ⇐⇒ y[i] ≥ n for all i ∈ {1, . . . , d}. A d-dimensional set S ⊆ N d is modular if there exists a number n ∈ N, s.t. S is a union of n-modular equivalence classes.

Since S separates U from V iff its complement separates V from U , and since F is closed under complement, we could equally well have defined a symmetric version of the separability problem by saying that S separates {U, V } iff U ⊆ S and V ∩ S = ∅.

The Parikh image of a language of words L ⊆ {a1, . . . , a k } is the subset of N k obtained by counting occurrences of letters in L.
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By considering the finite set of transitions T well quasi ordered by equality, we define the order ≤ 1 on triples N d × T × N d componentwise as (u, s, u ) ≤ 1 (v, t, v ) if u ≤ v, s = t, and u ≤ v , which is a wqo by Dickson's Lemma. We further extend ≤ 1 to an order on runs by defining, for two runs ρ and σ in (N d ×T ×N d ) * , ρ σ if ρ ≤ 1 * σ and target(ρ) ≤ target(σ); Here, ≤ 1 * is the extension of ≤ 1 to sequences, and thus a wqo by Higman's Lemma, which implies that is itself a wqo. Our order is very similar to the weaker order defined in [START_REF] Jančar | Decidability of a temporal logic problem for Petri nets[END_REF], which is the same as , except that it does not include target configurations.

Proposition 19.

is a well quasi order.

The following lemma is a quantitative version of monotonicity of VASes, and it says not only that larger runs can do more than smaller runs, but also that all nonnegative linear combinations of increments of larger runs can in fact be realized.

Lemma 20. Let ρ 0 , ρ 1 , . . . , ρ k be runs of a VAS s.t., for all i ∈ {1, . . . , k}, ρ 0 ρ i , and let δ i := target(ρ i )target(ρ 0 ) ≥ 0. For any δ ∈ Lin ≥0 (δ 1 , . . . , δ k ), there exists a run ρ s.t. ρ 0 ρ and δ = target(ρ)target(ρ 0 ).

We conclude this part by showing that any (possibly infinite) subset of Z d can be overapproximated by taking linear combinations of a finite subset thereof. This will be important below in order to construct linear sets as witnesses of nonseparability.

Lemma 21. For every (possibly infinite) set of vectors

Proof. Treat Z d as a freely finitely generated abelian group, and consider the subgroup Lin(S) of Z d generated by S, i.e., the subgroup containing all linear combinations of finitely many elements of S. We use the following result in algebra: every subgroup of a finitely generated abelian group is finitely generated (see for instance Corollary 1.7, p. 74, in [START_REF] Hungerford | Algebra[END_REF]). By this result applied to Lin(S) we get a finite set of generators F ⊆ Lin(S) s.t. Lin(F ) = Lin(S). Every element of F is a linear combination of finitely many elements of S. Thus let v 1 , . . . , v k be all the elements of S appearing as a linear combination of some element from F . Then clearly F ⊆ Lin(v 1 , . . . , v k ), and thus S ⊆ Lin(S) = Lin(F ) ⊆ Lin(Lin(v 1 , . . . , v k )) = Lin(v 1 , . . . , v k ), as required.

Remark. In fact one can show that the generating set F has at most d elements. However, no upper bound on k follows, and even for d = 1 the number of vectors k can be arbitrarily large. Indeed, let p 1 , . . . , p k be different prime numbers, let u i = (p 1 • . . . • p k )/p i and S = {u 1 , . . . , u k }. Then for every i ∈ {1, . . . , k}, the number u i is not a linear combination of numbers u j , j = i, as u i is not divisible by p i , while all the others are. Therefore we need all the elements of S in the set {v 1 , . . . , v k }.

Modular nonseparability witness.

We now concentrate on the negative semi-decision procedure. Let U, V ⊆ N d be two VAS sections: Observe that by padding coordinates we can assume w.l.o.g. that the two input VASes have the same dimension d = d U = d V . Furthermore, we can also assume w.l.o.g. that S TA C S 2 0 1 7
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Separability of Reachability Sets of Vector Addition Systems ū = v = 0. Indeed, one can add an additional coordinate, such that for performing any transition it is necessary that this coordinate is nonzero and a special, final transition, which causes the additional coordinate to be equal zero and subtracts ū (or v) from the other coordinates. The result of adding this gadget is that now we can assume ū = v = 0, but the section itself does not change.

Finally, by reordering coordinates we can guarantee that the coordinates that are projected away appear on the same positions in both VASes, i.e., I = J. With these assumptions, we observe that modular separability of sets U, V ⊆ N d is equivalent to modular separability of sets U , V ⊆ N d , defined as U, V but without projecting onto the subset I of coordinates:

We call the set U (resp. V ) the expansion of U (resp. V ).

We say that a linear set

Analogously one defines V -witnesses, but with respect to W V .

Lemma 22. For two VAS sections U, V ⊆ N d , the following conditions are equivalent: 1. U, V are not modular separable; 2. the expansions U , V of U, V are not modular separable; 3. there exist linear subsets L ⊆ U , M ⊆ V that are not modular separable; 4. there exist a U -witness L and a V -witness M that are not modular separable.

Proof. Equivalence of points 1 and 2 follows by the definition of expansion. Point 4 implies 3, as a U -witness is necessarily a subset of the expansion U by Lemma 20. Point 3 implies 2, since if two sets are separable, also subsets thereof are separable (moreover, the separator remains the same). It remains to show that 2 implies 4.

Let U , V ⊆ N d be the expansions of two VAS sections U, V ⊆ N d , as above, and assume that they are not modular separable. We construct two linear sets L, M ⊆ N d constituting a U -witness and a V -witness, respectively. By Proposition 13, there exists an infinite sequence of pairs of reachable configurations (u 0 , v 0 ), (u 1 , v 1 ), . . . ∈ U × V s.t. u n ≡ n v n for all n ∈ N. By taking an appropriate infinite subsequence we can ensure that even u n ≡ n! v n for all n ∈ N. Let us fix for every n ∈ N runs ρ n and σ n such that u n = target(ρ n ) and v n = target(σ n ). Since is a wqo by Proposition 19, we can extract a monotone non-decreasing subsequence, and thus we can ensure that even

Here we use the fact that u n ≡ n! v n in the original sequence, and thus u n ≡ i v n for every i ∈ {1, . . . , n}, consequently the new subsequence still has u n ≡ n v n for all n ∈ N. For all n ∈ N, let δ n := u n -u 0 and γ n := v n -v 0 , and consider the set of corresponding differences S inf := {δ n -γ n | n ∈ N}. By Lemma 21, there exists a finite subset thereof S := {δ i1 -γ i1 , . . . , δ i k -γ i k } such that S inf ⊆ Lin(S), and thus there exist two finite subsets

where the last inclusion follows from Lemma 12. Let L and M be defined as L := {u 0 } + Lin ≥0 (P ) and M := {v 0 } + Lin ≥0 (Q).

L. Clemente, W. Czerwiński, S. Lasota, and C. Paperman
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By construction, L is a U -witness and M a V -witness. It remains to show that L and M are not modular separable. For any n, by Eq. 2 we have δ n -γ n ≡ n δ n -γ n for some δ n ∈ Lin ≥0 (P ) and γ n ∈ Lin ≥0 (Q). Consider now the two new infinite sequences

and thus u n ≡ n v n . This, thanks to the characterization of Proposition 13, implies that L and M are not modular separable.

Remark. Note that a modular nonseparability witness exists even in the case when the two reachability sets U, V have nonempty intersection. In this case, it is enough to consider two runs ρ 0 and σ 0 ending up in the same configuration target(ρ 0 ) = target(σ 0 ), and considering the linear sets L := M := {target(ρ 0 )}.

Using the characterization of Lemma 22, the negative semi-decision procedure enumerates all pairs L, M , where L is a U -witness and M is a V -witness and checks whether L and M are modular separable, which is decidable due to Corollary 15. Enumerating U -witnesses (and V -witnesses) amounts of enumerating finite sets of runs {ρ, ρ 1 , . . . , ρ k } satisfying (1).

Remark.

It is also possible to design another negative semi-decision procedure using Lemma 22. This one enumerates all linear sets L and M (not necessarily only those in the special form of U -or V -witnesses) and checks whether they are modular separable and included in U and V , respectively. While this procedure is conceptually simpler than the one we presented, we now need the two extra inclusion checks L ⊆ U and M ⊆ V . Indeed, U -and V -witnesses were designed in such a way that the two inclusions above hold by construction and do not have to be checked. The problem whether a given linear set is included in a given VAS reachability set is decidable [START_REF] Leroux | Presburger vector addition systems[END_REF], however we chose to present the previous semi-decision procedure in order to be self contained.

Unary separability of VAS sections

The proof of Theorem 8 goes along the same lines as the proof of Theorem 7. It uses an immediate characterization of unary separability, which is the same as Proposition 13, with unary equivalence ∼ =n in place of modular equivalence ≡ n .

Proposition 23. Two sets U, V ⊆ N d are unary separable if, and only if, there exists n ∈ N such that, for all u ∈ U and v ∈ V , we have u ∼ =n v.

As before, basing on the characterization of Proposition 23, the positive semi-decision procedure enumerates all n ∈ N and checks whether the ∼ =n-closures of the two reachability sets are disjoint, which is effective thanks to the following fact: Lemma 24. For two VAS sections U and V and n ∈ N, it is decidable whether there exist u ∈ U and v ∈ V such that u ∼ =n v.

This can be proved in a way similar to Lemma 16, with the adjustment that we allow on every coordinate a decrement by n only if the value is above 2n. The negative semi-decision procedure enumerates nonseparability witnesses, and bases on the exact copy of Lemma 22, except that "modular" is replaced by "unary": S TA C S 2 0 1 7
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Separability of Reachability Sets of Vector Addition Systems Lemma 25. For two VAS sections U, V ⊆ N d , the following conditions are equivalent: 1. U, V are not unary separable; 2. the expansions U , V of U, V are not unary separable; 3. there exist linear subsets L ⊆ U , M ⊆ V that are not unary separable; 4. there exist a U -witness L and a V -witness M that are not unary separable.

Final remarks

We have shown decidability of modular and unary separability for sections of VAS reachability sets, which include (sections of) reachability sets of VASes with states and Petri nets. As a corollary, we have derived decidability of regular separability of commutative closures of VAS languages, and of commutative regular separability of VAS languages. The decidability status of regular separability for VAS languages remains an intriguing open problem.

Complexity. Most of the problems shown decidable in this paper are easily shown to be at least as hard as the VAS reachability problem. In particular, this applies to unary separability of VAS reachability sets, and to regular separability of commutative closures of VAS languages. Indeed, for unary separability, it suffices to notice that a configuration u cannot reach a configuration v if, and only if, the set reachable from u can be unary separated from the singleton set {v}, also a VAS reachability set. When the separator exists, it can be taken to be the complement of {v} itself, which is unary.

While the problem of modular separability is ExpSpace-hard, we do not know whether it is as hard as the VAS reachability problem. The hardness can be shown by reduction from the control state reachability problem in VASSes, which is ExpSpace-hard [START_REF] Lipton | The reachability problem requires exponential space[END_REF]. For a VASS V and a target control state q thereof, we construct two new VASSes V 0 and V 1 , which are copies of V with one additional coordinate, which at the beginning is zero for V 0 and one for V 1 . We also add one new transition from control state q, which allows V 1 to decrease the additional coordinate by one. One can easily verify that the two VASS reachability sets definable by V 0 and V 1 are modular separable if, and only if, the control state q is not reachable in V , which finishes the proof of ExpSpace-hardness.

The unarity and modularity characterization problems. Closely related problems to separability are the modularity and unarity characterization problems: is a given section of a VAS reachability set modular, resp., unary? We focus here on the unarity problem, but the other one can be dealt in the same way. Decidability of the unarity problem would follow immediately from Theorem 8, if sections of VAS reachability sets were (effectively) closed under complement. This is however not the case. Indeed, if the complement of a VAS reachability set is a section of another VAS reachability set, then both sets are necessarily a section of a Presburger invariant [START_REF] Leroux | The general vector addition system reachability problem by Presburger inductive invariants[END_REF], hence semilinear. But we know that VAS reachability sets can be non-semilinear, and thus they are not closed under complement. However, the unarity problem can be shown to be decidable directly, at least for VAS reachability sets, by using the following two facts: first, it is decidable if a given VAS reachability set U is semilinear (see the unpublished works [START_REF] Hauschildt | Semilinearity of the reachability set is decidable for Petri nets[END_REF][START_REF] Lambert | Vector addition systems and semi-linearity[END_REF]); second, when a VAS reachability set is semilinar, a concrete representation thereof as a semilinear set is effectively computable [START_REF] Leroux | Presburger vector addition systems[END_REF]. Indeed, if a given U is not semilinear, it is not unary either; otherwise, compute a semilinear representation, and check if it is unary. The latter can be checked directly, or can be reduced to unary separability of semilinear sets.