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ABSTRACT

General self-consistent expressions for the coefficients of diffusion and dynamical friction

in a stable, bound, multicomponent self-gravitating and inhomogeneous system are derived.

They account for the detailed dynamics of the colliding particles and their self-consistent

dressing by collective gravitational interactions. The associated Fokker-Planck equation is

shown to be fully consistent with the corresponding inhomogeneous Balescu-Lenard equa-

tion and, in the weak self-gravitating limit, to the inhomogeneous Landau equation. Hence

it provides an alternative derivation to both and demonstrates their equivalence. The corre-

sponding stochastic Langevin equations are presented: they can be a practical alternative to

numerically solving the inhomogeneous Fokker-Planck and Balescu-Lenard equations. The

present formalism allows for a self-consistent description of the secular evolution of different

populations covering a spectrum of masses, with a proper accounting of the induced secular

mass segregation, which should be of interest to various astrophysical contexts, from galactic

centers to protostellar discs.

Key words: Galaxies: kinematics and dynamics - Galaxies: nuclei - Diffusion - Gravitation

1 INTRODUCTION AND MOTIVATION

The kinetic theory of stellar systems was initiated by Chandrasekhar (1942). He first described the motion of a star in a stellar system

semi-heuristically by using an analogy with Brownian motion (Chandrasekhar 1943a). He argued that the force acting on a star has two

components: a mean field component due to the smooth distribution of the system and a fluctuating component arising from discreteness

effects. Discreteness effects (also called finite−N effects, granularities, graininess...) account for gravitational encounters. For a spatially

homogeneous system, the mean field force vanishes so that only gravitational encounters (“collisions”) can produce an evolution. The

fluctuating force acting on a star gives rise to diffusive motion in velocity space. However, a purely diffusive motion would lead to a

divergence of the kinetic energy of the star and would not establish a statistical equilibrium state at late time. As a result, Chandrasekhar

realised that something was “missing” in his description and that the diffusive process must be accompanied by a dissipative process. He

concluded that the star must also experience a dynamical friction. Using a phenomenological Langevin equation incorporating a friction

force proportional and opposite to the velocity of the star and a random force modeled as a white noise, he derived a Fokker-Planck equation

describing the evolution of the velocity distribution function f(v, t) of the star. Then, requiring that the Maxwell-Boltzmann distribution

must be a stationary state of this Fokker-Planck equation, he showed that the coefficients of diffusion and friction are related to each other

by an Einstein relation. This is the manifestation of the fluctuation-dissipation theorem. In parallel, using a more rigorous kinetic theory, he

directly computed the coefficients of diffusion and friction in the approximation of close binary encounters and explicitly checked that, for a

Maxwellian distribution, the Einstein relation is indeed satisfied. He then used his kinetic theory to estimate the rate of escape of stars from

clusters (Chandrasekhar 1943b), and found observational evidence for the operation of dynamical friction.

In the approach of Chandrasekhar, further developed by Cohen et al. (1950); Rosenbluth et al. (1957); King (1960); Binney & Tremaine

⋆ Hubble Fellow.
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(2008), the diffusion and friction coefficients are obtained independently, from two different calculations, and are then injected into the

Fokker-Planck equation. When the distribution function is allowed to change self-consistently, one obtains an integrodifferential equation

describing the evolution of the distribution function of the stellar system as a whole. This integrodifferential equation is formally equivalent

to the Landau equation that was introduced earlier in the different context of plasma physics (Landau 1936).1 Indeed, a few years before

Chandrasekhar’s seminal papers on stellar dynamics, Landau derived an integrodifferential kinetic equation for homogeneous Coulombian

plasmas interacting via inverse-square forces. He obtained this equation as a weak deflection approximation of the Boltzmann equation. In

this equation, the terms of diffusion and friction arise simultaneously from a unique formalism. The Landau equation has a form similar to the

Fokker-Planck equation except that the diffusion tensor is placed between the two velocity derivatives, ∂tf=∂vi(Dij∂vjf)−∂vi(F pol
i f),

while in the standard Fokker-Planck equation it is placed after the two velocity derivatives, ∂tf=∂vi∂vj (Dijf)−∂vi(F fric
i f). As a result, the

friction force that appears in the Landau equation differs from the friction force that appears in the Fokker-Planck equation of Chandrasekhar.

We shall call it the “friction by polarisation” Fpol, to distinguish it from the “true friction” Ffric. Of course, one can immediately transform

the Landau equation into the standard Fokker-Planck equation and find the relation F fric
i =F pol

i +∂vjDij between the two friction forces.

One can then check (see, e.g. Chavanis 2013) that the Landau equation is fully equivalent to the Fokker-Planck equation of Chandrasekhar

even if the equations do not appear in the same form.2

The force of dynamical friction was calculated by Marochnik (1968); Kalnajs (1971); Kandrup (1983); Bekenstein & Zamir (1990);

Chavanis (2008) from a linear response theory based on the Liouville or on the Klimontovich equation. In these calculations, it results from a

polarisation process. A test star perturbs the distribution of the field stars and the retroaction of the field stars on the test star leads to a friction

force that decelerates the test star. The force of dynamical friction calculated by these authors differs from that calculated by Chandrasekhar

by a factor of two (or by a factor (m+mf)/m if the test star and the field stars have different masses). This is because, as noted in Chavanis

(2013), they actually calculated the “friction by polarisation” (the one that arises in the Landau equation), not the “true friction” (the one that

arises in the Fokker-Planck equation of Chandrasekhar).

The kinetic theory of Chandrasekhar is based on two simplifying assumptions. He assumed that the system is spatially homogeneous

and neglected collective effects (the fact that a star is surrounded by a cloud of other stars that tends to enhance the gravitational attrac-

tion). Various generalisations and improvements of the theory of Chandrasekhar (1943a) were subsequently proposed. Some authors tried to

deal with spatial inhomogeneity. Kandrup (1983); Bekenstein & Maoz (1992); Maoz (1993); Nelson & Tremaine (1999); Chavanis (2008)

reconsidered the interaction of a test particle with a background stochastic force in the context of the fluctuation-dissipation theorem, and

showed that the friction force depends on the global structure of the system. This was also investigated in Del Popolo & Gambera (1999);

Del Popolo (2003) which extended Chandrasekhar & von Neumann (1943)’s analysis to the case where the background particles are inho-

mogeneously distributed with a density profile decaying as ρ ∼ r−p. Kinetic theories for spatially inhomogeneous systems were developed

in Severne & Haggerty (1976); Parisot & Severne (1979); Kandrup (1981); Chavanis (2008, 2013) using position-velocity variables. Collec-

tive effects were first taken into account in plasma physics, where the system is spatially homogeneous because of electroneutrality. Balescu

(1960) and Lenard (1960) derived a generalisation of the Landau equation by accounting properly for collective effects (the fact that a charge

is surrounded by a cloud of opposite charges that tends to shield the electrostatic interaction). In the Balescu-Lenard equation, the bare po-

tential of interaction is replaced by a dressed potential of interaction that takes into account the dressing of the particles by their polarisation

cloud. As a result, the Debye length appears naturally without any ad hoc assumptions and regularises the logarithmic divergence at large

scales that occurs in the Landau equation when collective effects are neglected. Balescu (1960) started from the diagram technique introduced

by Prigogine & Balescu (1959), and Lenard (1960) started from the Bogoliubov (1946) equations (now known as the BBGKY hierarchy).

Independently, Hubbard (1961) used a Fokker-Planck approach and directly calculated the coefficients of diffusion and friction by taking

collective effects into account.3

In order to take collective effects into account in stellar systems, one must simultaneously account for their spatial inhomogeneity oth-

erwise the kinetic equation presents a strong (algebraic) divergence at large-scales related to the Jeans instability (Weinberg 1993; Chavanis

2013). Kinetic theories for spatially inhomogeneous systems with position-velocity variables taking collective effects into account were de-

veloped by Miller (1966); Thorne (1968); Gilbert (1968, 1970); Lerche (1971). Their kinetic equations are very complicated but they managed

to show that collective effects are equivalent to increasing the effective mass of the stars, hence reducing the relaxation time. Spatial inhomo-

geneity can conveniently be dealt with by using angle-action variables for integrable systems (Goldstein 1950; Binney & Tremaine 2008).

On the other hand, collective effects can be dealt with by introducing a biorthogonal basis of potentials and densities and using Kalnajs

(1976)’s matrix method. The friction force and the energy exchange rate for spatially inhomogeneous stellar systems with angle-action

1 The Landau equation was sometimes misunderstood. For example, the paper of Cohen et al. (1950) comments: “A similar but incomplete approach [to the

work of Chandrasekhar] was made somewhat earlier by Landau. In this reference, the important terms representing dynamical friction, which should appear

in the diffusion equation, are set equal to zero as a result of certain approximations.” This claim is misleading since the Landau equation includes both terms

of diffusion and friction.
2 A virtue of the Landau equation resides in its symmetric structure from which we can immediately derive the conservation laws (mass, energy, impulse,

angular momentum) and the H−theorem for the Boltzmann entropy.
3 If one substitutes these expressions into the Fokker-Planck equation and performs minor transformations (a substitution that Hubbard did not explicitly

make), one obtains the Balescu-Lenard equation. Inversely, from the Balescu-Lenard equation, one can recover the expressions of the diffusion and friction

coefficients obtained by Hubbard. These considerations show that the self-consistent Fokker-Planck equation of Hubbard is fully equivalent to the Balescu-

Lenard equation (see, e.g. Chavanis 2012b).
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variables were calculated by Lynden-Bell & Kalnajs (1972); Tremaine & Weinberg (1984); Palmer & Papaloizou (1985); Weinberg (1986,

1989); Rauch & Tremaine (1996). The corresponding inhomogeneous Balescu-Lenard equation has been derived by Heyvaerts (2010) from

the BBGKY hierarchy and by Chavanis (2012c) from the Klimontovich approach.4 Chavanis (2012c) developed a Fokker-Planck approach

and directly calculated the diffusion and friction coefficients with angle-action variables by taking collective effects into account, thereby

generalising the results of Hubbard (1961) to inhomogeneous systems. He also developed a test particle approach relying on a (thermal) bath

approximation in which the integrodifferential Balescu-Lenard equation is transformed into a differential Fokker-Planck equation. Neglect-

ing collective effects, one recovers the results obtained from the inhomogeneous Landau equation (Chavanis 2007, 2013). Making a local

approximation, one recovers the original results of Landau (1936) and Chandrasekhar (1942); Chandrasekhar (1943a).

The inhomogeneous Balescu-Lenard equation was recently implemented for the first time in astrophysics. In Fouvry et al. (2015b,c,

2017b), it was applied to razor-thin and thickened stellar discs, and proved useful to probe complex secular regimes of diffusion. These

works showed in particular how collective effects cause cool discs to have two-body relaxation times much shorter than naively expected.

In addition, they showed how this relaxation introduces small-scale structures in the disc, which secularly destabilise it at the collisionless

level. The inhomogeneous Balescu-Lenard equation was also recently applied in the context of the 1D inhomogeneous Hamiltonian Mean

Field (HMF) model (Benetti & Marcos 2017). Finally, it was specialised to dynamically degenerate systems, such as quasi-Keplerian systems

(galactic centers, protostellar discs) in Fouvry et al. (2017a) and Sridhar & Touma (2017) (without collective effects). Following these recent

successes, the inhomogeneous Balescu-Lenard equation now appears as a powerful and predictive framework. It could also be used as a

valuable check of the accuracy of N−body integrators on secular timescales.

In this paper, we present a derivation of the coefficients of diffusion and dynamical friction for self-gravitating stellar systems, while

taking into account both inhomogeneity and collective effects. We also present the set of stochastic Langevin equations, dual to the Fokker-

Planck equation, that can be a powerful alternative to numerically solving the inhomogeneous Balescu-Lenard equation through stochastic

N−body techniques. Compared to the derivation of Chavanis (2012c), the present formalism presents several advantages: it shows more

clearly the dressing of particles by their polarisation cloud, as we calculate from the start an explicit expression of the dressed potential of

a moving particle. Collective effects are obtained by solving the linearised Klimontovich equation. As a result, the approximation where

collective effects are neglected is straightforwardly recovered. In addition, this calculation also takes into account the possibility for particles

to have different masses, a generalisation that is particularly important for astrophysical applications, where mass segregation is deemed to

play a significant role on secular timescales. In the single component case, the results of Chavanis (2012c) are recovered.

The paper is organised as follows. Section 2 presents the dressed potential of a test particle. Section 3 computes the diffusion coefficient

in action space. Section 4 focuses on the coefficient of dynamical friction. Section 5 relates the corresponding Fokker-Planck equation to

the Balescu-Lenard equation. Section 6 provides the equivalent stochastic Langevin equations and stresses their practical interest. Section 7

discusses the different stages in the evolution of stellar systems in the light of kinetic theory, and finally, section 8 wraps up. Appendix A

computes the drift vector. Appendix B gives a direct derivation of the friction force by polarisation. Appendix C derives the main properties

of the multicomponent Balescu-Lenard equation (steady states, energy conservation, H−theorem). Appendix D develops the corresponding

test particle approach in a bath formalism and considers the thermal bath and the sinking satellite problems. Appendices E and F provide

mathematical results needed in the calculations.

2 DRESSED POTENTIAL OF A MOVING PARTICLE

When considering self-gravitating systems, two main difficulties have to be overcome. First, self-gravitating systems are spatially inho-

mogeneous, which makes the trajectories of individual particles intricate. Assuming the mean system to be integrable, one can deal with

inhomogeneity thanks to the use of angle-action coordinates. The second difficulty arises from the system’s self-gravity, i.e. its ability to

amplify perturbations. Dealing with these collective effects requires to study the dressing of fluctuations on dynamical times. Let us therefore

first compute the gravitational polarisation induced by a moving particle in a self-gravitating system.

2.1 Notations

We consider a test particle moving in a self-gravitating inhomogeneous system, composed of various components denoted with “a”, “b”, etc.

We note as F a
tot(x,v) the distribution function (DF) of particles of component “a” with individual mass µa. The DFs are normalised such

that
∫
dxdvF a

tot=M
a
tot, where Ma

tot=Naµa is the total active mass of the component “a” composed of Na particles. The test particle is

denoted by a subscript “t”, which should not be mixed up with the time t. The system’s total gravitational potential is written as U(x, t). The

DFs and the potential can be decomposed as

F a
tot(x,v, t) = F a(x) + δF a(x, t) ; U(x, t) = U0(x) + δUt(x, t) + δUp(x, t) , (1)

4 The inhomogeneous Balescu-Lenard equation with angle-action variables was previously derived by Luciani & Pellat (1987), where the response matrix is

introduced at a formal level without an explicit representation.

MNRAS 000, 1–27 (0000)
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where F a only varies on secular times and stands for the unperturbed part of the DF, while δF a depends on time and is associated with the

polarisation cloud surrounding the test particle. Here, U0 stands for the system’s mean potential and carries on secular timescales, δUt is the

potential created by the test particle, and finally δUp is the polarisation cloud induced by the test particle. We assume that all perturbations

are small, so that

δF a ≪ F a ; δUt, δUp ≪ U0 . (2)

The dynamics of a particle of component “a” is given by the total Hamiltonian Ha reading

Ha =
µa

2
v
2+µa

[
U0(x)+δUt(x, t)+δUp(x, t)

]
= H0+δHt+δHp . (3)

For simplicity, the phase coordinates are denoted by Γ=(x,v). We assume the system to be quasi-stationary and integrable. As a conse-

quence, one can introduce angle-action coordinates (θ,J) (Binney & Tremaine 2008). Within these coordinates, the system’s mean potential

becomes U0=U0(J) while, following Jeans’ theorem, the mean quasi-stationary DFs F a depend also only on the actions J . These coordi-

nates are canonical and conserve infinitesimal volumes, so that

dΓ = dxdv = dθdJ . (4)

The gradients w.r.t. to a vectorial variable such as x are denoted by ∂x, while the derivative w.r.t. the time t will sometimes be written as

∂t for brevity. We also rely on the matrix method (Kalnajs 1976) and introduce a biorthogonal basis of potentials and densities (ψ(α), ρ(α))

satisfying

ψ(α)(x) =

∫
dx′ ρ(α)(x′)u(|x−x

′|) ;

∫
dxψ(α)(x) ρ(β)∗(x) = −δβα , (5)

where u(x) corresponds to the interaction potential, i.e. u(|x|)=−G/|x| in the gravitational case. Any perturbation in the system can then be

represented using these basis elements. For example, a density field and the corresponding potential can be written as δρ(x, t)=aα(t) ρ(α)(x)

and δU(x, t)=aα(t)ψ(α)(x), where the sum over α is implied.

2.2 Dressing of a test particle

The Klimontovich equation (Klimontovich 1967) reads symbolically for the one particle DF, F a
tot=

∑
i
µaδD(x−xi(t))δD(v−vi(t)):

∂tF
a
tot + ẋa ·

∂F a
tot

∂xa
+v̇a ·

∂F a
tot

∂va
= 0 , (6)

where individual motions are given by Hamilton’s equations reading µaẋa=∂Ha/∂va and µav̇a=−∂Ha/∂xa. When the motion of the

stars is described by the angle-action variables (J , θ), associated with the mean potential U0, the components of the Hamiltonian Ha from

equation (3) read

H0 = µa Ω·J ; δHt = µa δUt(xa(θ,J), t) ; δHp = µa δUp(xa(θ,J), t) . (7)

Following equation (6), the Klimontovich equation for the total DF F a
tot=F

a+δF a becomes

µa ∂tF
a + µa ∂tδF

a + ∂θ(F
a+δF a)·∂J (H0+δHt+δHp)− ∂J (F

a+δF a)·∂θ(H0+δHt+δHp) = 0 . (8)

Taking into account that ∂θH0=0, ∂θF
a=0, and ∂JH0=µaΩ, and retaining only linear terms (quasilinear approximation) (here ∂tF

a is

a second order term that can be neglected), equation (8) becomes

∂tδF
a +Ω·∂θδF a − ∂JF

a ·∂θ(δUt + δUp) = 0 . (9)

Equation (9) is the linearised Klimontovich equation and describes the amplification of perturbations on dynamical timescales.

2.3 Dressed potential of a test particle

In this section, let us compute the dressed potential generated by a given test particle. The density δρt generated by the test particle is

straightforwardly expressed as

δρt(x, t) = µtδD(x−xt(t)) , (10)

where µt stands for the mass of the test particle, and xt(t) for its position at time t. Here δD is the Dirac function. One may then expand this

density on the basis of densities so that δρt(x, t)=a
α
t (t) ρ

(α)(x). One has

aαt (t) = −
∫
dx δρt(x, t)ψ

(α)∗(x) = −µtψ
(α)∗(xt(t)) . (11)

The polarisation potential δUp is self-consistently generated by the contributions of the perturbation DFs, δF b, so that the associated density

perturbation δρp reads

δρp(x, t) =
∑

b

∫
dv δF b(x,v, t) . (12)

MNRAS 000, 1–27 (0000)
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The associated coefficients in the potential-density expansion δρp(x, t)=a
α
p(t) ρ

(α)(x) read

aαp (t) = −
∫
dx δρp(x, t)ψ

(α)∗(x) = −
∑

b

∫
dxdv δF b(x,v, t)ψ(α)∗(x) . (13)

Relying on the 2π−periodicity of the angles θ, one can perform harmonic (Fourier) expansions of these expressions. Let us first decompose

the basis elements as

ψ(α)(x) =
∑

m

ψ(α)
m (J) eim·θ

with ψ(α)
m (J) =

1

(2π)d

∫
dθψ(α)(x(θ,J)) e−im·θ , (14)

where we introduced d as the dimension of the physical space. In the angle-action coordinates, the unperturbed motion of the test particle is

given by θt=θ0
t +Ωtt and Jt=cst., so that equation (11) becomes

aαt (t) = −µt

∑

m

ψ(α)∗
m (Jt) e

−im·(θ0

t
+Ωtt) . (15)

Let us now introduce the temporal Fourier transform with the convention

f̂(ω) =

∫ +∞

−∞

dt f(t) eiωt ; f(t) =
1

2π

∫ +∞

−∞

dω f̂(ω) e−iωt . (16)

Starting from equation (15), the temporal Fourier transform of aαt (t) reads

âαt (ω) = −2πµt

∑

m

ψ(α)∗
m (Jt) e

−im·θ0

t δD(ω−m·Ωt) . (17)

The coefficients produced by the polarisation cloud of the test particle, aαp , can similarly be expressed via the harmonic Fourier transforms

of the DFs, δF b
m(J , t), so that equation (13) gives

aαp (t) = −
∑

b

∑

m,m′

∫
dθdJ δF b

m(J , t)ψ
(α)∗
m′ (J) ei(m−m

′)·θ . (18)

The integral over dθ yields (2π)dδm
′

m . The Fourier transform of equation (18) w.r.t. time then reads

âαp (ω) = −(2π)d
∑

b

∑

m

∫
dJ δF̂ b

m(J , ω)ψ(α)∗
m (J) . (19)

Finally, the potentials δUt and δUp can straightforwardly be expressed in terms of the aαt and aαp coefficients as

δUt(x, t) = aαt (t)ψ
(α)(x) ; δUp(x, t) = aαp (t)ψ

(α)(x) . (20)

The next step involves computing the coefficients âαp as a function of the parameters of the test particle. This is possible by solving equa-

tion (9), which describes the self-gravitating amplification of perturbations on dynamical timescales. When Fourier transformed w.r.t. the

angles and time, it yields

δF̂ a
m(J , ω) = −m·∂JF a

ω−m·Ω

[
δÛ t

m(J , ω)+δÛp
m(J , ω)

]
. (21)

Substituting equation (20) into equation (21), δF̂ a
m(J , ω) can be expressed as a function of the âαp coefficients. Equation (19) then becomes

a self-consistent equation for these coefficients. After a few transformations, it can be recast as

εαβ(ω) â
β
p(ω) =

[
δαβ−εαβ(ω)

]
âβt (ω) = M̂αβ(ω) â

β
t (ω) , (22)

where the sum over β is implied. In equation (22), we introduced the usual Kronecker symbol δαβ , and the system’s susceptibility εαβ as

εαβ(ω) = δαβ −
∑

m

(2π)d
∫
dJ

m·∂J
[∑

b F
b(J)

]

ω−m·Ω ψ(α)∗
m (J)ψ(β)

m (J) . (23)

Finally, in equation (22), we also introduced the system’s response matrix M̂(ω), which controls the strength of the self-gravitating ampli-

fication in the system. The total dressed potential, δUd, defined as δUd=δUp+δUt immediately follows. Its coefficients ad=at+ap read

âαd (ω) = âαt (ω) + âαp (ω) = ε−1
αβ(ω) â

β
t (ω) , (24)

where we assumed that the system is linearly stable so that εαβ(ω) can be inverted. In conclusion, thanks to the coefficients âβt (ω) from

equation (17), the total dressed potential perturbation δUd reads

δÛd(x, ω) = ψ(α)(x) ε−1
αβ(ω) â

β
t (ω) = −2πµt

∑

m

ψ(α)(x) ε−1
αβ(ω)ψ

(β)∗
m (Jt) e

−im·θ0

t δD(ω −m·Ωt) . (25)

Written as a function of time, equation (25) becomes

δUd(x, t) = −µt

∑

m

ψ(α)(x) ε−1
αβ(m·Ωt)ψ

(β)∗
m (Jt) e

−im·(θ0

t
+Ωtt) . (26)

Note that the bare potential perturbation δUbare=δUt has the same functional form with ε being replaced by the identity, so that

δUbare(x, t) = −µt

∑

m

ψ(α)(x)ψ(α)∗
m (Jt) e

−im·(θ0

t
+Ωtt) . (27)
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The dressed potential, δUd
2|1, created by particle 2 and felt by particle 1 with action J1 and angle θ1, is given by equation (26) when

taking for ψ(α)(x1) the sum

ψ(α)(x1) =
∑

m1

ψ(α)
m1

(J1) e
im1·θ1 , (28)

and replacing the test particle “t” by the particle 2. After some reordering, equation (26) gives

δUd
2|1(1, t) = −

∑

m1,m2

µ2 e
i(m1·θ1−m2·θ2) ψ(α)

m1
(J1) ε

−1
αβ(m2 ·Ω2)ψ

(β)∗
m2

(J2) . (29)

Let us finally introduce the system’s dressed susceptibility coefficients 1/Dm1 ,m2
(J1,J2, ω) as

1

Dm1,m2
(J1,J2, ω)

= ψ(α)
m1

(J1) ε
−1
αβ(ω)ψ

(β)∗
m2

(J2) , (30)

so that one can write

δUd
2|1(1, t) = −

∑

m1,m2

µ2
ei(m1·θ1−m2·θ2)

Dm1,m2
(J1,J2,m2 ·Ω2)

. (31)

With the shorthand notations

ω1 = m1 ·Ω1 ; ω2 = m2 ·Ω2 ; z12 = zm1,m2
(1, 2) = m1 ·θ1−m2 ·θ2 ; Λm1,m2

(1, 2, ω) =
1

Dm1,m2
(J1,J2, ω)

, (32)

equation (31) becomes

δUd
2|1(1, t) = −µ2

∑

m1,m2

eiz12 Λm1,m2
(J1,J2, ω2) . (33)

The total potential created by the sum over all discrete particles in the system, each of them having its own angle-action variables, is then

simply the sum over all the individual contributions given by equation (33), so that

Udi
1 (1, t) = −

∑

2

µ2

∑

m1,m2

eiz12 Λm1,m2
(J1,J2, ω2) . (34)

Under the assumptions made in the present derivation, the discrete noise is small which means that the fluctuating part in Udi
1 is small

(compared to the typical kinetic energy of a given particle). This implies that
∑

m1

∑
m2 6=0 Λm1,m2

(J1,J2, ω2) should be treated like a

small contribution. The smallness in the noise level should therefore be measured as a function of the number of Λ in an expression. For

example, Udi
1 in equation (34), is expressed to first order in the noise level.

3 DIFFUSION COEFFICIENTS IN ACTION SPACE

The evolution of the action of particle 1 under the influence of the force applied by all other discrete particles is captured by the Hamiltonian

H1=µ1U
di
1 . The associated Hamilton’s equation for the action reads

dJ1

dt
= − 1

µ1

∂H1

∂θ1
= −∂θ1

Udi
1 (1, t) . (35)

Given equation (34), it becomes

dJ1

dt
=

∑

2

µ2

∑

m1,m2

im1 Λm1,m2
(J1,J2, ω2) e

iz12 , (36)

which can be integrated for a time ∆t to give

∆J1 =
∑

2

µ2

∑

m1,m2

im1

∫ ∆t

0

dtΛm1,m2
(J1,J2, ω2; t) e

iz12(t) . (37)

Equation (37) requires the full knowledge of the particles’ motion in order to account for the explicit time dependencies in the integral term.

The frequency spectrum of fluctuations generated by the particles 2 is associated will all harmonics m2 ·Ω2. Provided the system is not

dynamically degenerate, its zero frequency component corresponds to m2=0. Its fluctuating part corresponds to non-zero values of m2 in

equation (37). Summation over all but null vectors will be represented with a dash. The action diffusion tensor is an average which will be

written as
〈
∆J1⊗∆J1/∆t

〉
. This average is carried on the dynamical variables of the particles 2 and on the angles of particle 1. It enters

the Fokker-Planck equation for the DF in action space for particle 1 and component “a”. As always in Fokker-Planck theory, this diffusion

coefficient must be evaluated at second order in the noise level (Risken 1996). Since equation (37) is by construction first order, and, since

the diffusion tensor is quadratic in ∆J , one should compute other involved expression, e.g., ez12(t)=ei(m1·θ1(t)−m2·θ2(t)) to zeroth order.

For this term, this corresponds to the uniform angular motion, for which one can write

m1 ·θ1(t)−m2 ·θ2(t) ≈ m1 ·θ0
1 −m2 ·θ0

2 +m1 ·Ω1(0) t−m2 ·Ω2(0) t . (38)

Similarly, the susceptibility coefficient Λ(...; t) can be evaluated at t=0. At the level of this approximation, one therefore gets

∆J1 =
∑

2

µ2

′∑

m1,m2

m1 Λm1,m2
(J1,J2, ω2; 0) e

i(m1·θ
0

1
−m2·θ

0

2
) e

i∆t(m1·Ω1(0)−m2·Ω2(0)) − 1

m1 ·Ω1(0)−m2 ·Ω2(0)
. (39)
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While omitting that slowly varying variables should be evaluated at t=0, it follows from equation (39) that

〈
∆J1⊗∆J1

∆t

〉
=

∑

2,3

µ2µ3

′∑

m1,m2

′∑

m′

1
,m3

m1⊗m
′
1 Λm1,m2

(1, 2,m2 ·Ω2)Λm′

1
,m3

(1, 3,m3 ·Ω3) e
i(m1·θ

0

1
−m2·θ

0

2
)+i(m′

1
·θ0

1
−m3·θ

0

3
)

×
[
ei∆t(m1·Ω1−m2·Ω2)−1

][
ei∆t(m′

1
·Ω1−m3·Ω3)−1

]

∆t (m1 ·Ω1 −m2 ·Ω2)(m′
1 ·Ω1 −m3 ·Ω3)

. (40)

One may now average this expression over the initial angles of the particles 1, 2, and 3, and on the action distribution of particles 2 and 3.

Here, one should pay attention to the fact that particle 1 acts as our test star, while particles 2 and 3 both run over the field stars, i.e. over all

stars except particle 1. Let us first perform an average over the initial angles of the test and field stars. Keeping only the dependencies w.r.t.

the initial angles, equation (40) requires to consider a term generically of the form

∑

2,3

∫
dθ0

1dθ
0
2dθ

0
3 e

i(m1·θ
0

1
−m2·θ

0

2
+m

′

1
·θ0

1
−m3·θ

0

3
) , (41)

where it is important to note that the sum on particles 2 and 3 is restricted to all the field stars for particle 1, i.e. particles 2 and 3 are always

different from particle 1. Because only non-zero values of m2 and m3 contribute to the fluctuations, equation (41) immediately imposes for

particle 2 and 3 to be the same, so that the sum
∑

3 can straightforwardly be executed. Averaging over θ0
1 , θ0

2 , and over the action distribution

of particle 2, then amounts to performing in equation (40) the replacement

∑

2

−→
∫

dθ0
1

(2π)d

∑

b

1

µb

∫
dθ0

2dJ2 F
b(J2) , (42)

where the presence of the prefactor 1/µb is associated with the chosen normalisation of the DFs,
∫
dxdvF b=Mb

tot=Nbµb. In equation (40),

the average over θ0
1 yields δ

−m
′

1
m1

, while the integration over the initial angle θ0
2 gives (2π)dδ−m3

m2
. Equation (40) becomes

〈
∆J1⊗∆J1

∆t

〉
=(2π)d

∑

b

µb

′∑

m1,m2

m1⊗m1

∫
dJ2 F

b(J2) Λm1,m2
(1, 2,m2 ·Ω2)

× Λ−m1,−m2
(1, 2,−m2 ·Ω2)

∣∣ei∆t(m1·Ω1−m2·Ω2)−1
∣∣2

∆t (m1 ·Ω1 −m2 ·Ω2)2
. (43)

Now symmetries imply that (see Appendix F)

Λ−m1,−m2
(1, 2,−m2 ·Ω2) = Λ∗

m1,m2
(1, 2,m2 ·Ω2) . (44)

Finally, the time limit can be carried using the relation (see Appendix E)

lim
∆t→+∞

∣∣ei∆t(m1·Ω1−m2·Ω2)−1
∣∣2

∆t (m1 ·Ω1 −m2 ·Ω2)2
= 2π δD(m1 ·Ω1 −m2 ·Ω2) . (45)

It follows that
〈
∆J1⊗∆J1

∆t

〉
= (2π)d+1

∑

b

µb

′∑

m1,m2

m1⊗m1

∫
dJ2 F

b(J2)
∣∣Λm1,m2

(J1,J2,m2 ·Ω2)
∣∣2δD(m1 ·Ω1−m2 ·Ω2) . (46)

Equation (46) is the final expression of the diffusion tensor acting on the action vector of the test particle.

4 COEFFICIENTS OF DYNAMICAL FRICTION

4.1 Mean potential and shot noise

In section 2, the dressed potential created by all discrete particles was computed. This potential can be split into a quasi-stationnary part, Ust,

which is essentially the mean ensemble potential, U0, and a fluctuation, δŨ , coming from the discrete particles. The real potential, including

the noise contributions, which is felt by particle 1 is given by

Udi(1, t) = Ust(1) + δŨ(1, t). (47)

The potential U0 is the average, computed from the one point DF of the zero frequency component of the discrete potential, i.e. Ust. This

averaging may differ subtly from this zero frequency part, in as much as it might display coarse grained features induced by textures in the

action distribution which are not taken into account by the DF. Here, we will assume that the two potentials can be identified. The power

spectrum of fluctuations caused by particle 2 is given by all the harmonics m2 ·Ω2. Its zero frequency contribution is given by the m2=0

component, provided the system’s potential is not dynamically degenerate. The fluctuating part induced by discrete particles corresponds

then to the non-zero values of m2 in equation (34). The components corresponding to m1=0 do not impact the variation of the actions,

as can be seen in equation (36). In contrast, they could impact the angles, which do play a role in what follows. The potential fluctuations

corresponding to the discrete nature of the particles are accounted for in equation (34) by the m2 6=0 and any m1 contribution in the sum. As
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8 J. Heyvaerts, J-B. Fouvry, P-H. Chavanis & C. Pichon

previously, summations over all but null vectors will be represented by a dash. When identifying the mean potential with the zero frequency

potential, the Hamiltonian for the motion of particle 1 in the presence of shot noise from the other particles then reads

H(1) = µ1Ω1 ·J1 − µ1

∑

2

µ2

∑

m1

′∑

m2

Λm1,m2
(J1,J2,m2 ·Ω2) e

iz12(t) , (48)

where we relied on equation (34). Without any ensemble average at this stage, the dynamical evolution of particle 1 under the influence of

the Hamiltonian (48) is given by the following differential equations

dJ1

dt
=

∑

2

µ2

∑

m1

′∑

m2

im1Λm1,m2
(J1,J2,m2 ·Ω2; t) e

iz12(t) ,

dθ1

dt
= Ω1−

∑

2

µ2

∑

m1

′∑

m2

eiz12(t) ∂J1

[
Λm1,m2

(J1,J2,m2 ·Ω2; t)
]
. (49)

4.2 Mean friction at second order

Let us now compute the mean drag
〈
∆J1

〉
applied onto particle 1 during ∆t. This change in the vector action must be computed to second

order in the level of the noise. Since equation (49) is clearly first order only, this implies that we cannot rely on zeroth order approximation

for the Λm1,m2
(J1,J2,m2 ·Ω2; t) and eiz12(t) factors.5 They must then be computed at the next order following, e.g., Ecker (2013).

The calculation at second order of the change in action
〈
∆J1

〉
is a somewhat technical calculation, that we present in detail in Ap-

pendix A. In the same Appendix, we also detail how one may average this drift vector over the initial angles of the involved particles. One

finally obtains in equation (A22) that the averaged drift vector is given by

〈
∆J1

∆t

〉
=

∑

b

′∑

m1,m2

∫
dJ2 F

b(J2) π(2π)
d
m1

(
µb m1 ·∂J1

−µa m2 ·∂J2

)
δD(m1 ·Ω1−m2 ·Ω2)

∣∣Λm1,m2
(1, 2,m2 ·Ω2)

∣∣2 . (50)

Equation (50) is the final expression of the dynamical friction coefficient acting on the action vector of the test particle.

5 FROM FOKKER-PLANCK TO BALESCU-LENARD

Let us now show how the Fokker-Planck equation based on the friction and diffusions coefficients obtained previously is in fact fully con-

sistent with the Balescu-Lenard equation (see also Appendix D for a discussion of the test particle approach). The Fokker-Planck equation

for the system’s DF can be obtained from the Master equation of a Markov process by using the Kramers-Moyal expansion for the transi-

tion probability (Risken 1996). If the expansion stops after the second term, one gets the Fokker-Planck equation (also called the forward

Kolmogorov equation), reading

∂tF
a(J1, t) =

1

2
∂J1

⊗∂J1
·
[〈

∆J1⊗∆J1

∆t

〉
F a(J1, t)

]
− ∂J1

·
[〈

∆J1

∆t

〉
F a(J1, t)

]
. (51)

It involves only the drift and diffusion coefficients

D
(1) =

〈
∆J1

∆t

〉
= Ffric, D

(2) =
1

2

〈
∆J1⊗∆J1

∆t

〉
= D, (52)

where one should note that these coefficients depend on “a”, the considered component. In the present context, Ffric represents the friction

force and D is the diffusion matrix in action space. In general, for complex systems, it is not possible to determine the Kramers-Moyal

coefficients D(n) from first principles. However, in the present case, this could be achieved, in the two previous sections, by considering

an expansion of the equations of Hamiltonian dynamics in powers of 1/N in the limit N→+∞.6 At order 1/N , the diffusion and drift

coefficients were obtained in equations (46) and (50), and read

D = π(2π)d
∑

b

µb

′∑

m1,m2

∫
dJ2 F

b(J2, t)m1⊗m1
δD(m1 ·Ω1−m2 ·Ω2)∣∣Dm1,m2

(J1,J2,m2 ·Ω2)
∣∣2 , (53)

Ffric = π(2π)d
∑

b

′∑

m1,m2

∫
dJ2 F

b(J2, t)m1

[
µb m1 · ∂

∂J1
−µa m2 · ∂

∂J2

]
δD(m1 ·Ω1−m2 ·Ω2)∣∣Dm1,m2

(J1,J2,m2 ·Ω2)
∣∣2 , (54)

where we note that the sums
∑′

m1,m2
are restricted to non-zero values of m1 and m2. It can be shown that the higher order Kramers-Moyal

coefficients are negligible at order 1/N . This fully justifies the Fokker-Planck equation (51).

5 Should we do so,
〈

∆J1
〉

would vanish identically.
6 It can be shown that the quasilinear approximation amounts to neglecting terms of order 1/N2 or smaller (Chavanis 2012c).
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Using the notations from equation (52), the Fokker-Planck equation (51) can be rewritten as

∂tF
a(J1, t) = ∂J1

⊗∂J1
·
[
D

(2)(J1, t)F
a(J1, t)

]
− ∂J1

·
[
D

(1)(J1, t)F
a(J1, t)

]
(55)

or, equivalently, as

∂F a

∂t
(J1, t)=

∂

∂J1
·
[
∂

∂J1
·
(
D(J1, t)F

a(J1, t)

)
− Ffric(J1, t)F

a(J1, t)

]
. (56)

In order to make the connection with the Balescu-Lenard equation, let us rewrite equation (56) under a form in which the diffusion coefficient

is “sandwiched” between the two action derivatives, i.e.

∂F a

∂t
(J1, t) =

∂

∂J1
·
[
D(J1, t)·

∂F a

∂J1
−Fpol(J1, t)F

a(J1, t)

]
, (57)

where we defined

Fpol = Ffric −
∂D

∂J1
. (58)

Here, Fpol represents the friction force by polarisation (Chavanis 2012c). It differs from the true friction force Ffric by a term involving the

derivatives of the diffusion tensor D. Integrating equation (54) by parts and comparing the resulting expression with equations (53) and (58),

we finally get

Fpol = π(2π)dµa

∑

b

′∑

m1,m2

∫
dJ2 m1

[
m2 ·

∂F b

∂J2

]
δD(m1 ·Ω1−m2 ·Ω2)∣∣Dm1,m2

(J1,J2,m2 ·Ω2)
∣∣2 . (59)

The friction force by polarisation can also be obtained from a direct calculation based on a linear response theory (see Appendix B). Substi-

tuting equations (53) and (59) into equation (57), we immediately obtain

∂F a

∂t
(J1, t) = π(2π)d

∑

b

′∑

m1,m2

m1 · ∂

∂J1

∫
dJ2

δD(m1 ·Ω1−m2 ·Ω2)∣∣Dm1,m2
(J1,J2,m2 ·Ω2)

∣∣2
[
µb m1 · ∂

∂J1
−µa m2 · ∂

∂J2

]
F a(J1, t)F

b(J2, t) . (60)

This is the inhomogeneous Balescu-Lenard equation (Heyvaerts 2010; Chavanis 2012c). Hence we have demonstrated that the Balescu-

Lenard equation is equivalent to the Fokker-Planck equation. These are the kinetic equations describing the secular evolution of dressed

particles in inhomogeneous systems via resonant binary interactions.

It is straightforward to specialise the previous expressions to the case where collective effects are not accounted for. This amounts to

replacing the dressed potential perturbation δUd from equation (26) by the bare potential perturbation δUbare from equation (27), while all

the following calculations remain the same. The dressed susceptibility coefficients 1/Dm1 ,m2
from equation (30) then become the bare

susceptibility coefficients 1/Dbare
m1 ,m2

reading

1

Dbare
m1,m2

(J1,J2)
= ψ(α)

m1
(J1)ψ

(α)∗
m2

(J2) = −Am1,m2
(J1,J2) , (61)

where the bare susceptibility coefficients Am1,m1
(J1,J2) (Lynden-Bell 1994; Pichon 1994; Chavanis 2013) are given by the Fourier

transform in angles of the interaction potential u, so that

u(x(θ1,J1)−x(θ2,J2)) =
∑

m1,m2

Am1,m2
(J1,J2) e

i(m1·θ1−m2·θ2) ,

Am1,m2
(J1,J2) =

1

(2π)2d

∫
dθ1dθ2 u(x(θ1,J1)−x(θ2,J2)) e

−i(m1·θ1−m2·θ2) . (62)

The detailed calculations leading to the third equality of equation (61) are given in Appendix B of Fouvry et al. (2015b). Because of these

strong similarities, the bare analogs of the drift and diffusion coefficients from equations (53), (54) and (59) are immediately given by

D = π(2π)d
∑

b

µb

′∑

m1,m2

∫
dJ2 F

b(J2, t)m1⊗m1 δD(m1 ·Ω1−m2 ·Ω2)
∣∣Am1,m2

(J1,J2)
∣∣2 , (63)

Ffric = π(2π)d
∑

b

′∑

m1,m2

∫
dJ2 F

b(J2, t)m1

[
µb m1 · ∂

∂J1
−µa m2 · ∂

∂J2

]
δD(m1 ·Ω1−m2 ·Ω2)

∣∣Am1,m2
(J1,J2)

∣∣2 , (64)

Fpol = π(2π)dµa

∑

b

′∑

m1,m2

∫
dJ2 m1

[
m2 · ∂F

b

∂J2

]
δD(m1 ·Ω1−m2 ·Ω2)

∣∣Am1,m2
(J1,J2)

∣∣2 . (65)

Similarly, the inhomogeneous Balescu-Lenard equation (60), when neglecting collective effects, becomes the inhomogeneous Landau equa-

tion (Chavanis 2013) reading

∂F a

∂t
(J1, t)=π(2π)

d
∑

b

′∑

m1,m2

m1· ∂
∂J1

∫
dJ2 δD(m1·Ω1−m2·Ω2)

∣∣Am1,m2
(J1,J2)

∣∣2
[
µb m1· ∂

∂J1
−µa m2· ∂

∂J2

]
F a(J1, t)F

b(J2, t) .

(66)
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One can easily check that, in the single species case, all the results presented in this section agree with those obtained in Chavanis (2012c)

via a different method.

6 FROM FOKKER-PLANCK TO LANGEVIN

The Kramers-Moyal coefficients appearing in the Fokker-Planck equation (51) may be derived from stochastic Langevin equations (Risken

1996). In the present context, such a Langevin equation describes the evolution of the action J(t) of a given (test) star. Let us consider a

general Langevin equation of the form

dJ

dt
= h(J , t) + g(J , t)·Γ(t) , (67)

where h(J , t) is a vector, g(J , t) is a tensor, and Γ(t) is a Gaussian white noise (Langevin force) whose statistics satisfy
〈
Γ(t)

〉
= 0 ;

〈
Γ(t)⊗Γ(t′)

〉
= 2 I δD(t−t′) , (68)

where I is the identity matrix. When the tensor g(J , t) explicitly depends on the action J of the particle, we say that the noise is multiplica-

tive. Using the Stratonovich picture (ordinarily used by physicists), the drift and diffusion coefficients are given by

D
(1)
i = hi+

∑

j,k

gkj
∂gij
∂Jk

; D
(2)
ij =

∑

k

gikgjk . (69)

The other Kramers-Moyal coefficients are zero. The last term in the expression of D(1) is the noise-induced drift or spurious drift. The drift

and diffusion coefficients determine the Fokker-Planck equation (55) which describes the evolution of the probability density. The drift and

diffusion coefficients D(1) and D(2) are uniquely determined by the functions h and g of the Langevin equations as given by equation (69).

Let us now consider the inverse problem, i.e., the determination of the Langevin equations from the Fokker-Planck equation. As dis-

cussed in Risken (1996), in the multidimensional case, the functions h and g are not uniquely determined by the drift and diffusion coeffi-

cients D(1) and D(2). One particular solution obtained by diagonalising the positive definite matrix D(2) is given by

hi = D
(1)
i −

∑

j,k

(√
D

(2))
kj

∂
(√
D

(2))
ij

∂Jk
; gij =

(√
D

(2))
ij

=
(√
D

(2))
ji
. (70)

The general solution can then be obtained by multiplying the matrix
(√
D

(2))
ij

with arbitrary orthogonal matrices. However, the expression

of equation (70) is sufficient for our purposes.

It is not easy to numerically solve the Balescu-Lenard equation (60). However, since we have established that the Balescu-Lenard

equation is equivalent to the Fokker-Planck equation, it may be more convenient to solve numerically the stochastic Langevin equations for

each individual star (characterised by its action J ) and make an ensemble average to reconstruct the system’s DF. In the theory of Brownian

motion, this is the so-called molecular dynamics method. The main idea is to simulate the Langevin force on a computer, integrate the

equations of motion with the simulated Langevin force and then take the average for a large number of realisations (Risken 1996). Of course,

in the present context, the diffusion and friction coefficients D(1) and D(2), and therefore the Langevin coefficients h and g, which describe

the self-induced noisy environment, must be updated self-consistently as the system’s DF F (J , t) changes on secular timescales. Even if

we are led back to a discrete N−particles system (recall that we started from a Hamiltonian system of N stars), the gain of the stochastic

approach is to allow for a time discretisation of the particles’ trajectories with a timestep ∆t that is orders of magnitude larger than the

timestep required to solve the Hamiltonian dynamics, since the complicated effects of collisions are encapsulated in the stochastic force and

in the drift.

In addition, this method may be more flexible for generalisation. For example, for non integrable systems, equation (67) could be

extended to account for chaotic stochasticity as

dJ

dt
= h(J , t) + g(J , t)·Γ(t) + gc(J , t)·Γc(t) , (71)

where the stochastic Langevin force, Γc(t), and its action varying amplitude, gc, are set to match the orbital diffusion induced by the chaotic

sea within action space.

7 THE DIFFERENT STAGES IN THE EVOLUTION OF STELLAR SYSTEMS

We are now in a position to describe accurately the different stages that occur in the evolution of a stellar system. Fundamentally, a stellar

system is a Hamiltonian system of N stars in gravitational interaction. If we are interested in the evolution of the DF, F =F (x,v, t), one

can identify different dynamical regimes, each of them characterised by a different kinetic equation:

(i) For sufficiently “short” times (that can be astronomical in practice!), the evolution of the DF of a stellar system is governed by

the Vlasov-Poisson equations (Jeans 1915; Vlasov 1938). The Vlasov equation is a mean field equation which describes the “collisionless”
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evolution of the system. Mathematically speaking, it is valid in the limit N→+∞ with µ∼1/N .7 A stellar system described by the

Vlasov equation that is initially in an unsteady state, or in a dynamically unstable steady state, generically undergoes a process of violent

relaxation (Lynden-Bell 1967) and reaches a quasi-stationary (virialised) state on a coarse-grained scale. This process takes place in a few

dynamical times td. Violent relaxation is a complex process associated with large potential fluctuations, phase mixing and nonlinear Landau

damping (Mouhot & Villani 2011). The quasi-stationary state resulting from violent relaxation is difficult to predict in general. However, it

must be (close to) a stable steady state of the Vlasov-Poisson equations, as found in numerical simulations. According to Jeans’ theorem, the

DF of a stellar system trapped in a quasi-stationary state is generically a function of the actions only, F =F (J).

(ii) On a secular timescale ∼Ntd, gravitational encounters between stars (departures from the mean field dynamics, granularities,

graininess, finite−N effects,...) come into play and must be taken into account in the dynamics. Because of gravitational encounters (via res-

onances), the system’s DF slowly changes by evolving through a succession of quasi-stationary states, F =F (J , t). This self-induced “colli-

sional” evolution of the DF is described by the inhomogeneous Balescu-Lenard or Fokker-Planck equation (Heyvaerts 2010; Chavanis 2012c),

which is a refinement of the homogeneous Chandrasekhar (Chandrasekhar 1942) and Landau (Landau 1936) equations, taking into account

spatial inhomogeneity and collective effects. We note that gravitational encounters between stars need not be local (Lynden-Bell & Kalnajs

1972) but can be distant, e.g. capturing the mechanism of resonant relaxation (Rauch & Tremaine 1996). An alternative description of the

system’s dynamics can be written in terms of N−body stochastic Langevin equations associated with the inhomogeneous Fokker-Planck

equation (see section 6).

(iii) It may happen that, during the collisional evolution, the system’s DF, F =F (J , t), becomes dynamically (Vlasov) unstable. In that

case, one has to come back to the Vlasov-Poisson equations to describe its evolution. This drives a dynamical phase transition from this

unstable state to a new stable state. This has been found in Sellwood (2012) and explicity demonstrated in Fouvry et al. (2015c) in the case

of stellar discs, showing the transition between a disc-phase (axisymmetric) and a bar-phase (non-axisymmetric). A similar dynamical phase

transition was evidenced previously for a toy model of particles with long-range interactions (Campa et al. 2008).

(iv) It can be shown that the (inhomogeneous) Balescu-Lenard equation conserves mass and energy and satisfies a H−theorem for the

Boltzmann entropy (Chavanis 2007; Heyvaerts 2010), see Appendix C. As a result, one expects that the DF relaxes for t→+∞ towards the

Boltzmann DF which maximises the entropy at fixed mass and energy. However, for self-gravitating systems, in most cases, the Boltzmann

entropy has no maximum (e.g. Padmanabhan 1990), so that there exists no statistical equilibrium state in a strict sense. For example, the

late time evolution of globular clusters proceeds through stellar evaporation (Spitzer 1940). According to the virial theorem, the central

density increases as the system expands. When the system becomes sufficiently centrally condensed, an instability develops and leads to core

collapse. This instability, called the gravothermal catastrophe (Lynden-Bell & Wood 1968), arises from the negative specific heat of the inner

part of the cluster. Core collapse can be stopped by the formation of a binary star that can release an enormous amount of energy able to

reverse the collapse and drive a re-expansion of the whole cluster until the next collapse takes place. This can lead to a series of gravothermal

oscillations (Bettwieser & Sugimoto 1984).

(v) Finally, even in the collisionless regime N→+∞, the DF may evolve under the effect of external perturbations, again passing

through a succession of quasi-stationary states, F =F (J , t). The kinetic equation that governes this dynamics is the secular collisionless dif-

fusion equation introduced in Binney & Lacey (1988); Weinberg (2001); Pichon & Aubert (2006); Fouvry et al. (2015a) for inhomogeneous

systems and in Nardini et al. (2012); Chavanis (2012b) for homogeneous systems. We note that, contrary to the Balescu-Lenard equation

which has no free parameter, this equation needs an input which is the power spectrum of the external potential fluctuations. The effect of

the external environment may or may not outrun that of the self-induced evolution: this is the classical conundrum of “nature” and “nurture”

driven secular evolutions.

8 CONCLUSION

The derivation of the coefficients of diffusion and dynamical friction in a stable, inhomogeneous, multicomponent, self-gravitating system

was presented. The method followed here is based on the detailed study of the dynamics of a test particle, when perturbed by the dressed

potential perturbations induced by a discrete bath of background particles. It was shown in particular how the averaged coefficients of

diffusion and dynamical friction are fully consistent with those involved in the associated inhomogeneous Balescu-Lenard equation. As a

result, the Balescu-Lenard equation can be interpreted as a Fokker-Planck equation in which the diffusion and friction coefficients evolve

self-consistently (i.e. they depend on the DF itself).

The present derivation has several advantages. First of all, it clarifies the physical content of the Balescu-Lenard equation by showing its

equivalence with the traditional Fokker-Planck equation that was introduced initially in the seminal work of Chandrasekhar (1943a) and that

has been adopted by most astrophysicists. This approach confirms that the force acting on a star can be decomposed into a smooth component

due to the mean field of the whole system and fluctuations due to finite−N effects (encounters). In turn, the fluctuations have a completely

random part that can be described by a multiplicative Gaussian white noise and a systematic part corresponding to the effect of dynamical

friction. This is in complete agreement with the physical picture given by Chandrasekhar (1943a). However, considerable progress has

7 For self-gravitating systems, there are mathematical difficulties to rigorously justify the Vlasov equation because of the r−1 divergence of the gravitational

potential as r→0.
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been made in the calculation of the coefficients of diffusion and dynamical friction with respect to early approaches that focused on spatially

homogeneous stellar systems (making a local approximation) and neglected collective effects (the dressing of a star by its gravitational wake).

We are now in a position to account for spatial inhomogeneity and collective effects accurately. This results in self-consistent expressions of

the coefficients of diffusion and dynamical friction (given by equations (53) and (54)) at order 1/N , that encompass previous results obtained

in the literature.8 We refer the reader to Chavanis (2013) for a thorough and detailed discussion of the links between self-consistent kinetic

equations such as the Balescu-Lenard and Landau equations, and other approaches, such as the two-body encounters theory introduced

in Chandrasekhar (1943a). The present formalism also allows for a self-consistent description of a spectrum of masses, with a proper

accounting of the induced secular mass segregation, which should be of interest to various astrophysical contexts, from galactic centers to

protostellar discs. Another advantage of the present derivation is practical. Instead of numerically solving the Balescu-Lenard equation or

the Fokker-Planck equation, it may be more convenient to solve a system of N Langevin equations describing the stochastic trajectories of

stars on an intermediate timescale with the coefficients of diffusion and dynamical friction obtained from the Fokker-Planck approach. This

procedure may be useful in stellar dynamical simulations since it allows one to use larger timesteps compared to the ones used in the original

N−body Hamiltonian equations, as the encounters between stars have been taken into account in the kinetic parametrisation. Yet, computing

the diffusion flux of such kinetic equations remains a challenge. In order to deal with the system’s inhomogeneity, one has to construct a set

of angle-action coordinates (θ,J). In order to characterise the self-gravitating amplification, one may rely on the matrix method to construct

a biorthogonal basis of potential and density elements (ψ(p), ρ(p)) and estimate the system’s global response matrix M̂(ω). Finally, the

secular evolution being driven by resonant encounters, one has to solve the non-local resonance condition, δD(m1 ·Ω1−m2 ·Ω2), present

in the Balescu-Lenard equation (60). See, e.g., Fouvry et al. (2015c) for an illustration of how these various difficulties may be solved in the

context of razor-thin axisymmetric stellar discs.

Although the formalism and discussions are presented in the context of self-gravitating systems, this approach is actually valid for

arbitrary systems with long-range interactions in any dimension of space. One just has to introduce a proper biorthogonal basis of potentials

and densities associated with the specific interaction potential, as defined by equation (5), and introduce the set of angle-action variables

associated with the unperturbed Hamiltonian H0. In addition, there are strong analogies between two-dimensional point vortices and stellar

systems (see, e.g. Chavanis 2002). In the same manner that a test star in a star cluster has a diffusion motion in velocity space due to the

fluctuations of the gravitational force and experiences a dynamical friction due to a polarisation process, a point vortex evolving in a sea of

field vortices has a diffusion motion in position space due to the fluctuations of the velocity field and experiences a systematic drift (Chavanis

1998) due to a polarisation process. The evolution of the probability density of its position is governed by a Fokker-Planck equation that

can be written in the form of a Balescu-Lenard equation (Chavanis 2012a) in complete parallel with the Fokker-Planck and Balescu-Lenard

equations of stellar systems. In the thermal bath approach, the friction and drift coefficients are related to the diffusion coefficients by a form

of Einstein relation expressing the fluctuation-dissipation theorem.
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APPENDIX A: COMPUTING THE DRIFT VECTOR

In this Appendix, we compute the mean drag
〈
∆J1

〉
acting on particle 1 during the time ∆t. Using the shorthand notation introduced in

equation (32), equation (49) can be rewritten as

dJ1

dt
=

∑

2

µ2

∑

m1

′∑

m2

im1Λm1,m2
(J1,J2, ω2; t) e

iz12(t) , (A1)

dz12
dt

= m1 ·Ω1−m2 ·Ω2−
∑

3

µ3

∑

m′

1

′∑

m′

3

eiz1′3′ (t)m1 ·∂J1

[
Λm′

1
,m′

3
(1, 3, ω′

3; t)
]

+
∑

4

µ4

∑

m′

2

′∑

m′

4

eiz2′4′ (t)m2 ·∂J2

[
Λm′

2
,m′

4
(2, 4, ω′

4; t)
]
, (A2)

dΛm1,m2
(1, 2, ω2; t)

dt
= ∂J1

[
Λm1,m2

(1, 2, ω2; t)
]
· dJ1

dt
+ ∂J2

[
Λm1,m2

(1, 2, ω2; t)
]
· dJ2

dt
, (A3)

where in the last equation, the gradient w.r.t. J2 also includes the dependency of ω2=m2 ·Ω2(J2). The solution to the previous system must

be sought to second order in the noise, which is given by the number of Λ factors. The change in ∆J1 during ∆t is formally given through

integration of equation (A1) between 0 and ∆t, so that

∆J1 =
∑

2

µ2

∑

m1

′∑

m2

im1

∫ ∆t

0

dt1 Λm1,m2
(J1,J2,m2 ·Ω2; t1) e

iz12(t1) , (A4)

where one must note the time dependence of Λ( · ; t) which has to be accounted for at this order in the noise.

Progress can be made towards solution accurate to second order by computing Λm1,m2
(1, 2, ω2; t), after substituting the expressions

for J̇1 and J̇2 given by equation (A1). Then equation (A3) gives

dΛm1,m2
(1, 2, ω2; t)

dt
=

∑

3

µ3

∑

m′

1

′∑

m′

3
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3
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∑
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,m′
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(2, 4, ω′

4; t)m
′
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(1, 2, ω2; t)
]
. (A5)

Via time integration, we may then obtain an expression for Λm1,m2
(1, 2, ω2; t) which is explicitly second order (recalling that Λ is already

first order). At this order, all the involved elements can be evaluated to zeroth order, so that in the r.h.s. of equation (A5), all the occurences

of Λ can be evaluated for t=0. In the upcoming calculations, this is no more explicitly written to simplify the notations. The time integration

of equation (A5) gives

Λm1,m2
(1, 2, ω2; t1) =Λm1,m2
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+ i
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(1, 3, ω′

3)m
′
1 ·∂J1

[
Λm1,m2

(1, 2, ω2)
]

+ i

∫ t1

0

dt2
∑

4

µ4

∑

m
′

2

′∑

m
′

4

eiz2′4′ (t2)Λm′

2
,m′

4
(2, 4, ω′

4)m
′
2 ·∂J2

[
Λm1,m2

(1, 2, ω2)
]
, (A6)

where we insist on the fact that the occurences of Λ in the r.h.s. of equation (A6) are evaluated at zeroth order, i.e. for t=0. Let us now obtain

z12(t1), which enters equation (A4), thanks to the time integration of equation (A2). One gets

z12(t1) = z12(0) +

∫ t1

0

dt2 (m1 ·Ω1(t2)−m2 ·Ω2(t2)) (A7)

−
∫ t1

0

dt2
∑

3

µ3

∑

m′

1

′∑

m′

3

eiz1′3′ (t2)m1 ·∂J1

[
Λm′

1
,m′

3
(1, 3, ω′

3)
]
+

∫ t1

0

dt2
∑

4

µ4

∑

m′

2

′∑

m′

4

eiz2′4′ (t2)m2 ·∂J2

[
Λm′

2
,m′

4
(2, 4, ω′

4)
]
,

where Λ is evaluated at zeroth-order, i.e. for t=0. The frequencies Ω1(t2) and Ω2(t2) follow by time integration of equation (49) and read

Ω1(t2) = Ω1(0) +

∫ t2

0

dt3
[
∂J1

⊗Ω1

]
·J̇1(t3) . (A8)

Then, the relative angular velocity g12 at time t2 reads

g12(t2) ≡ m1 ·Ω1(t2)−m2 ·Ω2(t2) = g12(0) +

∫ t2

0

dt3

[[
(m1 ·∂J1

)Ω1(t3)
]
·J̇1(t3)−

[
(m2 ·∂J2

)Ω2(t3)
]
·J̇2(t3)

]
. (A9)

Equation (A7) finally becomes

z12(t1) = z12(0) + g12(0) t1
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+

∫ t1

0

dt2

∫ t2

0

dt3

[[
(m1 ·∂J1

)Ω1(t3)
]
·J̇1(t3)−

[
(m2 ·∂J2

)Ω2(t3)
]
·J̇2(t3)

]
(A10)

−
∫ t1

0

dt2
∑

3

µ3

∑

m′

1

′∑

m′

3

eiz1′3′ (t2)m1 ·∂J1

[
Λm′

1
,m′

3
(1, 3, ω′

3)
]
+

∫ t1

0

dt2
∑

4

µ4

∑

m′

2

′∑

m′

4

eiz2′4′ (t2)m2 ·∂J2

[
Λm′

2
,m′

4
(2, 4, ω′

4)
]
.

The lines 2 and 3 of equation (A10) correspond to the first order correction relative to the zeroth expression on the first line. Hence the

complex exponential eiz12(t1) can be expanded as

eiz12(t1) = ei(z12(0)+g12(0)t1)

{
1 + i

∫ t1

0

dt2

∫ t2

0

dt3

[[
(m1 ·∂J1

)Ω1(t3)
]
·J̇1(t3)−

[
(m2 ·∂J2

)Ω2(t3)
]
·J̇2(t3)

]

− i

∫ t1

0

dt2
∑

3

µ3

∑

m′

1

′∑

m′

3

eiz1′3′ (t2)m1 ·∂J1

[
Λm′

1
,m′

3
(1, 3, ω′

3)
]
+ i

∫ t1

0

dt2
∑

4

µ4

∑

m′

2

′∑

m′

4

eiz2′4′ (t2)m2 ·∂J2

[
Λm′

2
,m′

4
(2, 4, ω′

4)
]}

, (A11)

where we relied on the usual development eiε≃1+iε at first order in ε. In equation (A11), the expressions of J̇1(t3) and J̇2(t3) are given

by Hamilton’s equation (A1). The expressions (A6) and (A11) are then replaced in equation (A4). It yields the expression of ∆J1/∆t which

now reaches the required second order level, so that

∆J1

∆t
=

∑

2

µ2

∑

m1

′∑

m2

im1

∫ ∆t

0

dt1
∆t

ei(z12(0)+g12(0)t1)

×
[
Λm1,m2

(1, 2, ω2) + i

∫ t1

0

dt2
∑

3

µ3

∑

m′

1

′∑

m′

3

eiz1′3′ (t2)Λm′

1
,m′

3
(1, 3, ω′

3)m
′
1 ·∂J1

[
Λm1,m2

(1, 2, ω2)
]

+ i

∫ t1

0

dt2
∑

4

µ4

∑

m′

2

′∑

m′

4

eiz2′4′ (t2)Λm′

2
,m′

4
(2, 4, ω′

4)m
′
2 ·∂J2

[
Λm1,m2

(1, 2, ω2)
]]

×
[
1 + i

∑

3

µ3

∑

m′

1

′∑

m′

3

∫ t1

0

dt2

∫ t2

0

dt3 im1 ·∂J1

[
m

′
1 ·Ω1

]
eiz1′3′ (t3) Λm′

1
,m′

3
(1, 3, ω′

3)

− i
∑

4

µ4

∑

m′

2

′∑

m′

4

∫ t1

0

dt2

∫ t2

0

dt3 im2 ·∂J2

[
m

′
2 ·Ω2

]
eiz2′4′ (t3) Λm′

2
,m′

4
(2, 4, ω′

4) (A12)

− i

∫ t1

0

dt2
∑

3

µ3

∑

m′

1

′∑

m′

3

eiz1′3′ (t2) m1 ·∂J1

[
Λm′

1
,m′

3
(1, 3, ω′

3)
]
+ i

∫ t1

0

dt2
∑

4

µ4

∑

m′

2

′∑

m′

4

eiz2′4′ (t2) m2 ·∂J2

[
Λm′

2
,m′

4
(2, 4, ω′

4)
]]
.

Let us first insist on the fact that equation (A12) is explicitly second order in the noise. Indeed, the only linear term in equation (A12), arising

from eiz12(0)Λm1,m2
(1, 2, ω2) will vanish when averaged over the initial angle θ0

2 . We also recall that at the present level of approximation,

the complex exponentials eiz(t) should be evaluated to zeroth order, that corresponding to the uniform angular motion at fixed frequency. For

example, in equation (A12), one should read eiz1′3′ (t2) as

eiz1′3′ (t2) = ei(m
′

1
·θ0

1
−m

′

3
·θ0

3
)eit2(m

′

1
·Ω1(0)−m

′

3
·Ω3(0)) . (A13)

Similarly, at the order considered here, the susceptibility coefficients Λ(...; t) should be evaluated at t=0.

One may then follow the same method as the one presented in equation (40) to obtain the averaged action diffusion tensor. Indeed, one

can average equation (A12) over the initial angles of the particles 1, 2, 3, and 4, as well as on the action distribution of particles 2, 3, and 4.

Here, one should pay attention to the fact that particle 1 acts as our test star, while particles 2 and 3 both run over the field stars associated

with particle 1, i.e. over all stars except particle 1. The situation is slightly different for particle 4 which runs over the field stars associated

with particle 2, i.e. over all stars except particle 2. Let us first perform an average over the initial angles of all stars. Considering only second

order terms (i.e. involving two factors Λ) and keeping only the dependencies w.r.t. the initial angles, equation (A12) requires to study two

different generic terms

∑

2,3

∫
dθ0

1dθ
0
2dθ

0
3 e

i(m1·θ
0

1
−m2·θ

0

2
+m

′

1
·θ0

1
−m

′

3
·θ0

3
) ;

∑

2,4

∫
dθ0

1dθ
0
2dθ

0
4 e

i(m1·θ
0

1
−m2·θ

0

2
+m

′

2
·θ0

2
−m

′

4
·θ0

4
) , (A14)

where it is important to note that the sums on particles 2 and 3 are restricted to all stars except particle 1, while the sum on particle 4 is

restricted to all stars except particle 2. Because only non-zero values of m2, m′
3, and m′

4 contribute to the fluctuations, equation (A14)

therefore immediately imposes for particles 3 and 2 to be the same and for particles 4 and 1 to be the same. As a consequence, the sums
∑

3

and
∑

4 can be straightforwarldy executed. We may then average equation (A12) over θ0
1 , θ0

2 , and over the action distribution of particle 2,

following the same substitution as in equation (42). All in all, equation (A12), when averaged and restricted to second order terms, becomes

〈
∆J1

∆t

〉
=

∑

b

∑

m1,m
′

1

′∑

m2,m
′

2

∫
dθ0

1

(2π)d

∫
dθ0

2dJ2 F
b(J2) im1

∫ ∆t

0

dt1
∆t
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×
[
i

∫ t1

0

dt2 e
i(z12(t1)+z

1′2′
(t2))Λm′

1
,m′

2
(1, 2, ω′

2)µb m
′
1 ·∂J1

[
Λm1,m2

(1, 2, ω2)
]

+ i

∫ t1

0

dt2 e
i(z12(t1)+z

2′1′
(t2))Λm′

2
,m′

1
(2, 1, ω′

1)µa m
′
2 ·∂J2

[
Λm1,m2

(1, 2, ω2)
]

−
∫ t1

0

dt2

∫ t2

0

dt3 e
i(z12(t1)+z

1′2′
(t3))Λm1,m2

(1, 2, ω2)µb m1 ·∂J1

[
m

′
1 ·Ω1

]
Λm′

1
,m′

2
(1, 2, ω′

2)

+

∫ t1

0

dt2

∫ t2

0

dt3 e
i(z12(t1)+z

2′1′
(t3))Λm1,m2

(1, 2, ω2)µa m2 ·∂J2

[
m

′
2 ·Ω2

]
Λm′

2
,m′

1
(2, 1, ω′

1)

− i

∫ t1

0

dt2 e
i(z12(t1)+z

1′2′
(t2))Λm1,m2

(1, 2, ω2)µb m1 ·∂J1

[
Λm′

1
,m′

2
(1, 2, ω′

2)
]

+ i

∫ t1

0

dt2 e
i(z12(t1)+z

2′1′
(t2))Λm1,m2

(1, 2, ω2)µa m2 ·∂J2

[
Λm′

2
,m′

1
(2, 1, ω′

1)
]]
, (A15)

where one should pay attention to the different mass prefactors µa=µ1 and µb, whose role is essential to induce mass segregation in

multicomponent systems. In equation (A15), we also performed the change of notations m′
3→m′

2 and m′
4→m′

1. The averaging process

over the initial angles θ0
1 and θ0

2 yields
∫

dθ0
1

(2π)d
dθ0

2 e
i(z12(t1)+z

1′2′
(t2))=(2π)d δ

−m
′

1
m1

δ
−m

′

2
m2

eig12(t1−t2) ;

∫
dθ0

1

(2π)d
θ
0
2 e

i(z12(t1)+z
2′1′

(t2))=(2π)d δ
m

′

1
m1

δ
m

′

2
m2

eig12(t1−t2) , (A16)

where we recall that g12≡m1 ·Ω1−m2 ·Ω2, and is evaluated at zeroth order. Equation (A15) then becomes
〈
∆J1

∆t

〉
=

∑

b

∑

m1

′∑

m2

∫
dJ2 F

b(J2)(2π)
d
m1

∫ ∆t

0

dt1
∆t

×
[∫ t1

0

dt2 e
ig12(t1−t2)Λ−m1,−m2

(1, 2,−ω2)µb m1 ·∂J1

[
Λm1,m2

(1, 2, ω2)
]

−
∫ t1

0

dt2 e
ig12(t1−t2)Λm2,m1

(2, 1, ω1)µa m2 ·∂J2

[
Λm1,m2

(1, 2, ω2)
]

+ i

∫ t1

0

dt2

∫ t2

0

dt3 e
ig12(t1−t3)Λm1,m2

(1, 2, ω2)µb m1 ·∂J1

[
m1 ·Ω1

]
Λ−m1,−m2

(1, 2,−ω2)

+ i

∫ t1

0

dt2

∫ t2

0

dt3 e
ig12(t1−t3)Λm1,m2

(1, 2, ω2)µa m2 ·∂J2

[
m2 ·Ω2

]
Λm2,m1

(2, 1, ω1)

+

∫ t1

0

dt2 e
ig12(t1−t2)Λm1,m2

(1, 2, ω2)µb m1 ·∂J1

[
Λ−m1,−m2

(1, 2,−ω2)
]

−
∫ t1

0

dt2 e
ig12(t1−t2)Λm1,m2

(1, 2, ω2)µa m2 ·∂J2

[
Λm2,m1

(2, 1, ω1)
]]
. (A17)

The various double and triple time integrals of complex exponentials occuring in equation (A17) can be replaced by distributions in the limit

∆t→+∞. They are computed in Appendix E, and one has

lim
∆t→+∞

∫ ∆t

0

dt1
∆t

∫ t1

0

dt2 e
ix(t1−t2) = πδD(x) ; lim

∆t→+∞

∫ ∆t

0

dt1
∆t

∫ t1

0

dt2

∫ t2

0

dt3 e
ix(t1−t3) = −iπ

d

dx

(
δD(x)

)
. (A18)

These relations allow us to rewrite equation (A17) as
〈
∆J1

∆t

〉
=

∑

b

∑

m1

′∑

m2

∫
dJ2 F

b(J2) π(2π)
d
m1

×
[
δD(g12) Λ−m1,−m2

(1, 2,−ω2)µb m1 ·∂J1

[
Λm1,m2

(1, 2, ω2)
]

− δD(g12)Λm2,m1
(2, 1, ω1)µa m2 ·∂J2

[
Λm1,m2

(1, 2, ω2)
]

+
dδD(g12)

dg12
Λm1,m2

(1, 2, ω2)µb m1 ·∂J1

[
m1 ·Ω1

]
Λ−m1,−m2

(1, 2,−ω2)

+
dδD(g12)

dg12
Λm1,m2

(1, 2, ω2)µa m2 ·∂J2

[
m2 ·Ω2

]
Λm2,m1

(2, 1, ω1)

+ δD(g12)Λm1,m2
(1, 2, ω2)µb m1 ·∂J1

[
Λ−m1,−m2

(1, 2,−ω2)
]

− δD(g12)Λm1,m2
(1, 2, ω2)µa m2 ·∂J2

[
Λm2,m1

(2, 1, ω1)
]]
. (A19)

One can straightforwardly show that for any function G(g12), one has

m1 ·∂J1

[
G(g12)

]
= m1 ·∂J1

[
m1 ·Ω1

] dG

dg12
; m2 ·∂J2

[
G(g12)

]
= −m2 ·∂J2

[
m2 ·Ω2

] dG

dg12
. (A20)
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Applying these formulae to equation (A19), one can collect quite a few terms in this equation, to get

〈
∆J1

∆t

〉
=

∑

b

∑

m1

′∑

m2

π(2π)dm1

∫
dJ2 F

b(J2)

×
{
µb m1 ·∂J1

[
δD(m1 ·Ω1−m2 ·Ω2) Λ−m1,−m2

(1, 2,−m2 ·Ω2)Λm1,m2
(1, 2,m2 ·Ω2)

]

− µa m2 ·∂J2

[
δD(m1 ·Ω1−m2 ·Ω2)Λm2,m1

(2, 1,m1 ·Ω1) Λm1,m2
(1, 2,m2 ·Ω2)

]}
. (A21)

The lack of symmetry of this equation might look troublesome. In fact at the second order level, one can identify Λm2,m1
(2, 1, ω1) with

the complex conjugate of Λm2,m1
(2, 1, ω1), as demonstrated in Appendix F. Similarly, Λ−m1,−m2

(2, 1,−ω2) is the complex conjugate of

Λm1,m2
(1, 2, ω2) (see Appendix F). Equation (A21) can therefore be rewritten as

〈
∆J1

∆t

〉
=

∑

b

′∑

m1,m2

∫
dJ2 F

b(J2) π(2π)
d
m1

(
µb m1 ·∂J1

−µa m2 ·∂J2

)
δD(m1 ·Ω1−m2 ·Ω2)

∣∣Λm1,m2
(1, 2,m2 ·Ω2)

∣∣2 . (A22)

APPENDIX B: DIRECT CALCULATION OF THE FRICTION FORCE BY POLARISATION

The friction force Fpol that appears in the Fokker-Planck equation (57) is called the “friction by polarisation” (Chavanis 2013). This is just one

component of the total friction force Ffric that appears in the Fokker-Planck equation (56). Physically, Fpol is the force resulting directly from

the retroaction of the field stars to the perturbation caused by the test star, like in a polarisation process. Some particular, or formal, expressions

of the friction force by polarisation have been derived in Marochnik (1968); Kalnajs (1971); Kandrup (1983); Bekenstein & Zamir (1990);

Chavanis (2008) from a linear response theory based on the Liouville equation or on the Klimontovich equation. Let us derive here its general

expression in angle-action variables taking spatial inhomogeneity and collective effects into account and check that its expression agrees with

equation (59). This calculation is inspired by section 3.3 of Chavanis (2012c). The perturbation induced by the test particle is determined by

the coefficients âαp (ω). Following equation (24), they can be rewritten as

âαp (ω) = (ε−1
αβ(ω)− δαβ) â

β
t (ω) . (B1)

The temporal Fourier transform of the potential perturbation δUp associated with the gravitational wake reads

δÛp(x, ω) = ψ(α)(x) (ε−1
αβ(ω)− δαβ) â

β
t (ω) , (B2)

where the coefficients âβt (ω) of the test particle potential are given by equation (17). Therefore

δÛp(x, ω) = −2πµt

∑

m′

ψ(α)(x) (ε−1
αβ(ω)− δαβ)ψ

(β)∗

m′ (Jt) e
−im′·θ0

t δD(ω −m
′ ·Ωt) . (B3)

Written as a function of time, equation (B3) becomes

δUp(x, t) = −µt

∑

m′

ψ(α)(x) (ε−1
αβ(m

′ ·Ωt)− δαβ)ψ
(β)∗

m′ (Jt) e
−im′·(θ0

t
+Ωtt) . (B4)

Replacing ψ(α)(x) by the sum

ψ(α)(x) =
∑

m

ψ(α)
m (J) eim·θ , (B5)

we obtain

δUp(x, t) = −µt

∑

m,m′

ei(m·θ−m
′·θt) ψ(α)

m (J) (ε−1
αβ(m

′ ·Ωt)− δαβ)ψ
(β)∗

m′ (Jt) . (B6)

This formula completely specifies the polarisation cloud. The corresponding force in action, δFp(x, t)=−∂θδUp(x, t), is

δFp(x, t) = µt

∑

m,m′

im ei(m·θ−m
′·θt) ψ(α)

m (J) (ε−1
αβ(m

′ ·Ωt)− δαβ)ψ
(β)∗
m′ (Jt) . (B7)

One may then evaluate this force at the location of the test particle, and average it over the orbit of the test particle. One obtains the friction

force by polarisation, Fpol=
∫
dθt/(2π)

dδFp(x(θt,Jt)), reading

Fpol = µt

∑

m

imψ(α)
m (Jt) (ε

−1
αβ(m·Ωt)− δαβ)ψ

(β)∗
m (Jt) . (B8)

Introducing the system’s dressed and bare susceptibility coefficients 1/Dm1 ,m2
(J1,J2, ω) and 1/Dbare

m1 ,m2
(J1,J2)=−Am1,m1

(J1,J2)

from equations (30) and (61), one gets

Fpol = µt

∑

m

im

[
1

Dm,m(Jt,Jt,m·Ωt)
+Am,m(Jt,Jt)

]
= −µt

∑

m

m Im

[
1

Dm,m(Jt,Jt,m·Ωt)

]
. (B9)
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Finally, using identity (54) of Chavanis (2012c), i.e.

Im

[
1

Dm,m(J ,J ,m·Ω)

]
= −π(2π)d

∑

b

∑

m′

∫
dJ ′ 1

|Dm,m′ (J ,J ′,m·Ω)|2 δD(m·Ω−m
′ ·Ω′)

(
m

′ · ∂F
b

∂J ′

)
, (B10)

we obtain

Fpol = π(2π)dµt

∑

b

∑

m,m′

m

∫
dJ ′ 1

|Dm,m′ (Jt,J ′,m·Ωt)|2
δD(m·Ωt−m

′ ·Ω′)

(
m

′ · ∂F
b

∂J ′

)
, (B11)

which coincides with equation (59). If we neglect collective effects, we recover equation (65). The fact that Fpol is just one component of

the true friction force Ffric is clear from equation (58) (see also section 3 of Chavanis (2012c)).

Note that this calculation remains valid if the test particle is of different nature from the field particles. In particular, it could be a

satellite of mass µt moving in a collisionless fluid of stars with mass µb∼1/Nb governed by the Vlasov equation when Nb→+∞. In the

limit µt≫µb, the friction by polarisation is the only force that acts on the test particle, and the satellite sinks at the center of the system (see

Appendix D2).

APPENDIX C: PROPERTIES OF THE MULTICOMPONENT BALESCU-LENARD EQUATION

In this Appendix, we derive the main properties of the inhomogeneous Balescu-Lenard equation (60) following the works of Chavanis

(2007); Heyvaerts (2010); Chavanis (2012c) and references therein. This extends their results to the important class of astrophysical systems

containing different components.

C1 Conservative form

The Balescu-Lenard equation (60) can be written in the conservative form

∂F a

∂t
(J1, t) =

∂

∂J1
·Fa , (C1)

where

F
a = D(J1, t)·

∂F a

∂J1
(J1, t)−Fpol(J1, t)F

a(J1, t)

= π(2π)d
∑

b

′∑

m1,m2

m1

∫
dJ2

δD(m1 ·Ω1−m2 ·Ω2)∣∣Dm1,m2
(J1,J2,m2 ·Ω2)

∣∣2 (µb m1 ·∂J1
−µa m2 ·∂J2

)F a(J1, t)F
b(J2, t) (C2)

is the flux of particles of component “a”. Under that form, it is immediately clear that the Balescu-Lenard equation conserves the total mass

of each component.

C2 Equilibrium state: Boltzmann distribution

It is straightforward to check that the Boltzmann distribution

F a(J) = Aa e
−βµaǫ(J) , (C3)

where ǫ(J) is the energy of a star by unit of mass, β=1/T is the inverse “temperature” and Aa is a normalisation constant, is a steady state

of the Balescu-Lenard equation. Indeed, using

∂ǫ

∂J
= Ω(J) , (C4)

we get

∂F a

∂J
= −βµa F

a(J)Ω(J) . (C5)

Substituting this relation into the Balescu-Lenard flux from equation (C2), we find

F
a = −βπ(2π)d

∑

b

′∑

m1,m2

m1

∫
dJ2

δD(m1 ·Ω1−m2 ·Ω2)∣∣Dm1,m2
(J1,J2,m2 ·Ω2)

∣∣2 µaµb(m1 ·Ω1−m2 ·Ω2)F
a(J1)F

b(J2). (C6)

The integrand involves the term δD(m1 ·Ω1−m2 ·Ω2)(m1 ·Ω1−m2 ·Ω2), which is obviously equal to zero, so that one has ∂tF
a=0

for each component. Note that the temperature in the Boltzmann distribution of equation (C3) is the same for all the components. This

corresponds to an equipartition of energy, and usually implies that heavy particles sink at the center of the system while light particles

wander around.

The Boltzmann distribution can be obtained by maximising the Boltzmann entropy SB defined by equation (C16) while conserving the

total energy E and the total mass Ma of each species of particles. Writing the variational principle as

δSB − βδE −
∑

a

αaδMa = 0 , (C7)
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where β (inverse temperature) and αa (chemical potentials) are the Lagrange multipliers associated with energy and mass conservation, we

obtain
∑

a

{
− 1

µa

[
ln

(
F a

µa

)
+1

]
− βǫ− αa

}
δF a = 0 . (C8)

Since this condition must be satisfied for arbitrary variations δF a the term in braces must vanish, leading to the Boltzmann distribution (C3).

The Boltzmann distribution is therefore a critical point of entropy at fixed mass and energy. However, let us stress once again that a statistical

equilibrium state does not always exist for self-gravitating systems (notably for 3D spherical systems). The Boltzmann entropy may not

have a (global or local) maximum. Even worse, the Boltzmann distribution from equation (C3) may not be normalisable (i.e. the Boltzmann

entropy may not have any critical point).

C3 Energy conservation

The total energy of the system is

E =
∑

a

∫
dJ1 F

a(J1, t)ǫ(J1) =
∑

a

Ea . (C9)

Taking its time derivative and using equation (C1), we get

Ė =
∑

a

∫
dJ1

(
∂

∂J1
·Fa

)
ǫ(J1) . (C10)

Integrating by parts, assuming that boundary terms do not contribute, and using equation (C4), we obtain

Ė = −
∑

a

∫
dJ1 F

a ·Ω(J1) . (C11)

Substituting equation (C2) into equation (C11), we get

Ė = −π(2π)d
∑

a,b

′∑

m1,m2

∫
dJ1dJ2

δD(m1 ·Ω1−m2 ·Ω2)∣∣Dm1,m2
(J1,J2,m2 ·Ω2)

∣∣2 (m1 ·Ω1)(µb m1 ·∂J1
−µa m2 ·∂J2

)F a(J1)F
b(J2) . (C12)

Interchanging the dummy variables (a,b), (m1,m2) and (J1,J2), and using the property Dm2 ,m1
(J2,J1, ω)=Dm1,m2

(J1,J2, ω)
∗

(see Appendix F2), we obtain

Ė = π(2π)d
∑

a,b

′∑

m1,m2

∫
dJ1dJ2

δD(m1 ·Ω1−m2 ·Ω2)∣∣Dm1,m2
(J1,J2,m2 ·Ω2)

∣∣2 (m2 ·Ω2)(µb m1 ·∂J1
−µa m2 ·∂J2

)F a(J1)F
b(J2) . (C13)

Taking the half-sum of these equations, we get

Ė = −π(2π)
d

2

∑

a,b

′∑

m1,m2

∫
dJ1dJ2

δD(m1 ·Ω1−m2 ·Ω2) (m1 ·Ω1 −m2 ·Ω2)∣∣Dm1,m2
(J1,J2,m2 ·Ω2)

∣∣2 (µb m1 ·∂J1
−µa m2 ·∂J2

)F a(J1)F
b(J2) . (C14)

As in equation (C6), the integrand involves the term δD(m1 ·Ω1−m2 ·Ω2)(m1 ·Ω1−m2 ·Ω2), which is identically zero. One therefore

has Ė=0, the total energy of the system is conserved. Note, however, that the energy of each species is not individually conserved. Using

equations (C2) and (C11), one has

Ėa = −
∫
dJ1 D(J1, t)·Ω(J1, t)⊗ ∂F a

∂J1
(J1, t) +

∫
dJ1 Fpol(J1, t)·Ω(J1, t)F

a(J1, t) . (C15)

C4 H−theorem

The multicomponent Boltzmann entropy is

SB = −
∑

a

∫
dJ1

F a

µa
ln

(
F a

µa

)
=

∑

a

Sa . (C16)

Taking its time derivative, and using equation (C1), we get

ṠB = −
∑

a

∫
dJ1

1

µa

[
1+ln

(
F a

µa

)](
∂

∂J1
·Fa

)
. (C17)

Integrating by parts and assuming that boundary terms do not contribute, we obtain

ṠB =
∑

a

∫
dJ1

1

µaF a(J1)

∂F a

∂J1
·Fa . (C18)

Substituting equation (C2) into equation (C18), we get

ṠB=π(2π)d
∑

a,b

′∑

m1,m2

∫
dJ1dJ2

δD(m1 ·Ω1−m2 ·Ω2)∣∣Dm1,m2
(J1,J2,m2 ·Ω2)

∣∣2
[

1

µaF a(J1)
m1 ·∂J1

F a

]
(µb m1 ·∂J1

−µa m2 ·∂J2
)F a(J1)F

b(J2) .
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(C19)

Interchanging the dummy variables (a,b), (m1,m2) and (J1,J2), and using the property Dm2,m1
(J2,J1, ω) = Dm1,m2

(J1,J2, ω)
∗

(see Appendix F2), we obtain

ṠB=−π(2π)d
∑

a,b

′∑

m1,m2

∫
dJ1dJ2

δD(m1 ·Ω1−m2 ·Ω2)∣∣Dm1,m2
(J1,J2,m2 ·Ω2)

∣∣2
[

1

µbF b(J2)
m2 ·∂J2

F b

]
(µb m1 ·∂J1

−µa m2 ·∂J2
)F a(J1)F

b(J2) .

(C20)

Taking the half-sum of these equations, we get

ṠB=
1

2
π(2π)d

∑

a,b

′∑

m1,m2

∫
dJ1dJ2

δD(m1 ·Ω1−m2 ·Ω2)∣∣Dm1 ,m2
(J1,J2,m2 ·Ω2)

∣∣2
1

µaF a(J1)µbF b(J2)

[
(µb m1 ·∂J1

−µa m2 ·∂J2
)F a(J1)F

b(J2)

]2
,

(C21)

from which we obtain the H−theorem

ṠB > 0 . (C22)

It establishes that the Boltzmann entropy is monotonically increasing. Note however that the Boltzmann entropy of each species does not

individually satisfy a H−theorem. Using equations (C2) and (C18), one has

Ṡa =

∫
dJ1

1

µaF a(J1, t)
D(J1, t)·

∂F a

∂J1
(J1, t)⊗

∂F a

∂J1
(J1, t)−

∫
dJ1

1

µa
Fpol(J1, t)·

∂F a

∂J1
(J1, t) . (C23)

For neutral plasmas, that are spatially homogeneous, the Boltzmann entropy is bounded from above. In that case, one can show from

the H−theorem that the homogeneous Balescu-Lenard relaxes, for t→+∞, towards the Boltzmann distribution (C3). This is the maximum

entropy state at fixed mass and energy. We note that the Balescu-Lenard equation singles out the Boltzmann distribution among all possible

steady states of the Vlasov equation. For self-gravitating systems, that are spatially inhomogeneous, the Boltzmann entropy is typically not

bounded from above (this is notably the case for 3D spherical or 2D flat systems). In that case, the inhomogeneous Balescu-Lenard equation

does not relax towards an equilibrium state. It can describe stellar evaporation and core collapse (gravothermal catastrophe) as discussed in

section 7. It cannot, however, account for the formation of binary stars and for gravothermal oscillations since the formation of binaries results

from three-body collisions that are neglected in the Balescu-Lenard treatment. For other systems with long-range interactions for which

the Boltzmann entropy is bounded from above, the Boltzmann distribution is always a steady state of the inhomogeneous Balescu-Lenard

equation (see section C2). However, the inhomogeneous Balescu-Lenard equation does not necessarily relax towards this distribution. In very

specific situations, the system may remain blocked in another state if the resonance condition cannot be fulfilled. This “kinetic blocking” is

illustrated in the case of 2D point vortices in Chavanis & Lemou (2007) when the profile of angular velocity is monotonic. In that case, no

resonance is possible whatever the distribution function and the system remains frozen in a distribution that is different from the Boltzmann

distribution. Only higher order correlations (three-body, four-body...) may unblock the system. Such correlations have their own higher order

(e.g. 1/N2) kinetic equations.

C5 Initial flux in non-thermalised mix

Let us consider an initial condition in which all the particles have a Boltzmann distribution of the form

F a(J) = Aa e
−βaµaǫ(J) . (C24)

However, we do not assume equipartition of energy: the temperature Ta=1/βa of each species may be different. This may correspond to

the situation in a stellar disc where old and young populations of stars co-exist. The collisions, described by the Balescu-Lenard equation,

change the energy of each component so that their temperature is the same at equilibrium (equipartition of energy). The initial value of the

flux defined by equation (C2) is

F
a = −π(2π)d

∑

b

′∑

m1,m2

m1

∫
dJ2

δD(m1 ·Ω1−m2 ·Ω2)∣∣Dm1,m2
(J1,J2,m2 ·Ω2)

∣∣2 µaµb(m1 ·Ω1)(βa−βb)F a(J1)F
b(J2) . (C25)

It can be written as

F
a = −

∑

b

µa(βa−βb)Dab ·Ω1F
a(J1) , (C26)

where Dab is the diffusion tensor of component “a” caused by the collisions with the particles of component “b”. The total diffusion tensor

defined by equation (53) can be written as D=
∑

b D
ab. The initial rate of change of energy, obtained from equations (C11) and (C26) is

given by

Ėa =
∑

b

∫
dJ1 µa(βa−βb)Dab ·Ω1⊗Ω1F

a(J1). (C27)
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It can be written more explicitly as

Ėa = π(2π)d
∑

b

′∑

m1,m2

∫
dJ1dJ2

δD(m1 ·Ω1−m2 ·Ω2)∣∣Dm1,m2
(J1,J2,m2 ·Ω2)

∣∣2 µaµb(m1 ·Ω1)
2(βa−βb)F a(J1)F

b(J2) . (C28)

The rate of change of energy of species “a” scales like the mass weighted sum of inverse temperature differences. We can similarly compute

the initial rate of change of entropy from equations (C18) and (C26). We find that

Ṡa = βaĖa . (C29)

APPENDIX D: TEST PARTICLE APPROACH

Different interpretations can be given to the Balescu-Lenard equation. The Balescu-Lenard equation (60) is an integro-differential equation

that describes the evolution of an ensemble of particles (e.g. stars) in interaction. In this interpretation, all the particles are treated on the

same footing and their distribution function F a(J1, t) evolves self-consistently according to equation (60). In a second interpretation, one

can select a particular test particle with mass µt and study the evolution of its probability density P (J1, t) in a cloud of field particles with a

static distribution function F b(J2). In this interpretation,9 the Balescu-Lenard equation (60) is transformed into a differential equation

∂P

∂t
(J1, t) = π(2π)d

∑

b

′∑

m1,m2

m1 ·
∂

∂J1

∫
dJ2

δD(m1 ·Ω1−m2 ·Ω2)∣∣Dm1,m2
(J1,J2,m2 ·Ω2)

∣∣2
(
µb m1 ·

∂

∂J1
−µt m2 ·

∂

∂J2

)
P (J1, t)F

b(J2) , (D1)

usually referred to as the Fokker-Planck equation. The diffusion and friction coefficients are given by

D = π(2π)d
∑

b

µb

′∑

m1,m2

∫
dJ2 F

b(J2)m1⊗m1
δD(m1 ·Ω1−m2 ·Ω2)∣∣Dm1,m2

(J1,J2,m2 ·Ω2)
∣∣2 , (D2)

Ffric = π(2π)d
∑

b

′∑

m1,m2

∫
dJ2 F

b(J2)m1

[
µb m1 · ∂

∂J1
−µt m2 · ∂

∂J2

]
δD(m1 ·Ω1−m2 ·Ω2)∣∣Dm1,m2

(J1,J2,m2 ·Ω2)
∣∣2 , (D3)

Fpol = π(2π)dµt

∑

b

′∑

m1,m2

∫
dJ2 m1

[
m2 ·

∂F b

∂J2
(J2)

]
δD(m1 ·Ω1−m2 ·Ω2)∣∣Dm1,m2

(J1,J2,m2 ·Ω2)
∣∣2 . (D4)

The Fokker-Planck equation (D1) can be rewritten as

∂P

∂t
(J1, t) =

∂

∂J1
·
[
D(J1)· ∂P

∂J1
(J1, t)−Fpol(J1)P (J1, t)

]
. (D5)

The rates of change of energyEt(t)=
∫
dJ1 P (J1, t)µtǫ(J1) and Boltzmann entropy St(t)=−

∫
dJ1P (J1, t) lnP (J1, t) of the test particle

are

Ėt = −µt

∫
dJ1 D(J1)· ∂P

∂J1
(J1, t)⊗Ω(J1) + µt

∫
dJ1 Fpol(J1)·Ω(J1)P (J1, t) , (D6)

Ṡt =

∫
dJ1

1

P (J1, t)
D(J1)·

∂P

∂J1
(J1, t)⊗

∂P

∂J1
(J1, t)−

∫
dJ1Fpol(J1)·

∂P

∂J1
(J1, t) . (D7)

For the self-consistency of this interpretation, the field stars must be at statistical equilibrium with the Boltzmann distribution (see section D1),

in a “blocked state” (see section C4), or have a very long relaxation time (see section D2) so that their distribution function F b(J2) does

not change under the effect of collisions among themselves on the timescale over which the test particle evolves. A possible astrophysical

situation of relevance is a hot halo embedding a cold galactic disc. At zeroth order, the halo can be taken to remain unresponsive to its own

fluctuations and to that of its disc.

D1 Thermal bath: Einstein relation and fluctuation-dissipation theorem

In this subsection, let us consider the relaxation of a test star described by a probability density P (J1, t) in a cloud of field stars at statistical

equilibrium with the Boltzmann distribution given by equation (C3). Using equation (C5), we find that the friction by polarisation (D4)

experienced by the test star becomes

Fpol = −π(2π)dβµt

∑

b

∑

m1,m2

m1

∫
dJ2

δD(m1 ·Ω1−m2 ·Ω2)

|Dm1 ,m2
(J1,J2,m1 ·Ω1)|2

(m2 ·Ω2)µbF
b(J2) . (D8)

9 As discussed in Appendix F of Chavanis (2013), this interpretation is valid either for a single component system or for a multicomponent system. The test

particle may represent just one particle or an ensemble of non-interacting particles of the same species. In all cases, one has to assume that the collisions

between the test particle(s) and the field particles do not alter the distribution of the field particles.
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Using the Dirac delta function to replace m2 ·Ω2 by m1 ·Ω1 in the last parenthesis, we find that

Fpol = −βµtD(J1)·Ω(J1) , (D9)

where D is the diffusion tensor given by equation (D2), in which the field stars have the Boltzmann distribution (C3). We may then define

the friction tensor, ξ, as

ξ = βµtD . (D10)

Equation (D10) is the appropriate form of the Einstein relation for this problem. It relates the friction coefficient ξ to the diffusion coefficient

D, the inverse temperature β=1/T , and the mass of the test particle µt. This is a manifestation of the fluctuation-dissipation theorem.

As previously emphasised (Chavanis 2012c), the Einstein relation is valid for the friction by polarisation, not for the true friction. The

Fokker-Planck equation (D1), when written similarly to equation (D5), takes the form of a generalised Kramers equation

∂P

∂t
(J1, t) =

∂

∂J1
·
[
D(J1)·

(
∂P

∂J1
+ βµtP (J1, t)Ω(J1)

)]
. (D11)

At equilibrium, the probability density of the test particle relaxes towards the Boltzmann distribution

P (J1) = Aa e
−βµtǫ(J1) , (D12)

which is the steady state of equation (D11). These results generalise those of Chandrasekhar (1943a).

For a thermal bath, the rates of energy and entropy of the test particle are

Ėt = −µt

∫
dJ1 D(J1)· ∂P

∂J1
(J1, t)⊗Ω(J1) − βµ2

t

∫
dJ1 D(J1) ·Ω(J1)⊗Ω(J1)P (J1, t) , (D13)

Ṡt =

∫
dJ1

1

P (J1, t)
D(J1)· ∂P

∂J1
(J1, t)⊗ ∂P

∂J1
(J1, t) + βµt

∫
dJ1D(J1)·Ω(J1)⊗ ∂P

∂J1
(J1, t) . (D14)

We have the general relation Ṡpol=−βĖdiff between the rate of entropy due to the polarisation and the rate of energy due to the diffusion.

We note that the Fokker-Planck equation (D11) does not conserve the energy and does not satisfy a H−theorem for the Boltzmann entropy

contrary to the Balescu-Lenard equation (60). This is because it describes the evolution of a test particle in a thermal bath with a fixed

temperature T . This corresponds to a canonical description while the Balescu-Lenard equation corresponds to a microcanonical one. We can

obtain a form of H−theorem for the Fokker-Planck equation (D11) by introducing the free energy Ft=Et−TSt which is the Legendre

transform of the entropy St w.r.t. the energy Et, with conjugate parameter T . Taking the time derivative of Ft, substituting the Fokker-Planck

equation (D11), and integrating by parts, we obtain the (canonical) H−theorem

Ḟt = −
∫
dJ1

D(J1)

βP (J1)
·
(
∂P

∂J1
+ βµtP (J1, t)Ω(J1)

)
⊗
(
∂P

∂J1
+ βµtP (J1, t)Ω(J1)

)
6 0 . (D15)

It establishes that the Boltzmann free energy is monotonically decreasing. At equilibrium, Ḟt=0, leading to the Boltzmann distribution

from equation (D12). The Boltzmann distribution minimises the Boltzmann free energy Ft while accounting for the normalisation condition∫
dJ1P (J1)=1. The first variations write δFt−α δ

∫
dJ1P (J1)=0, leading to the equilibrium state from equation (D12).

Let us now consider an initial condition in which the test particle has a Boltzmann distribution of the form

P (J1) = A e−βtµtǫ(J1) , (D16)

where Tt=1/βt may be different from the temperature T =1/β of the bath. The initial rate of change of the test particle energy, Et, is given

by

Ėt = µ2
t (βt−β)

∫
dJ1 D1 ·Ω1⊗Ω1P (J1) . (D17)

It can be written more explicitly as

Ėt = µ2
t (βt−β)π(2π)d

∑

b

′∑

m1,m2

∫
dJ1dJ2

δD(m1 ·Ω1−m2 ·Ω2)∣∣Dm1,m2
(J1,J2,m2 ·Ω2)

∣∣2 µb(m1 ·Ω1)
2 P (J1)F

b(J2) . (D18)

The initial rate of change of entropy is

Ṡt = βtĖt . (D19)

The initial rate of change of free energy Ft=Et−TSt can be written as Ḟt=(1−T/Tt)Ėt.

D2 Sinking satellite

Let us now assume that the test particle has a mass µt much larger than the mass µb of the field particles. More precisely, we assume that

µt∼1 while µb∼1/Nb withNb≫1. ForNb→+∞, µb→0 and the field particles form a collisionless fluid of stars. Since their distribution

function F b(J2) does not evolve under the effect of collisions (the relaxation time of the field particles scales like Nbtd→+∞), it can have

an arbitrary shape provided that it is Vlasov stable. In this fluid limit for which Nb→+∞, the diffusion coefficient from equation (D2)
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vanishes and the friction force from equation (D3) reduces to the component proportional to µt, which corresponds to the friction by

polarisation given by equation (D4). Finally, the Fokker-Planck equation (D1) reduces to

∂P

∂t
(J1, t) = −π(2π)dµt

′∑

m1,m2

m1 ·
∂

∂J1

∫
dJ2

δD(m1 ·Ω1−m2 ·Ω2)∣∣Dm1 ,m2
(J1,J2,m2 ·Ω2)

∣∣2
[
m2 ·

∂F

∂J2
(J2)

]
P (J1, t) , (D20)

where F =
∑

b F
b is the total distribution function of the field particles. Equation (D20) can be rewritten as

∂P

∂t
(J1, t) =

∂

∂J1
·
[
−Fpol(J1)P (J1, t)

]
. (D21)

This is just the continuity equation corresponding to the deterministic (not stochastic) equation of motion

dJ

dt
= Fpol = π(2π)dµt

′∑

m1,m2

∫
dJ2 m1

[
m2 · ∂F

∂J2
(J2)

]
δD(m1 ·Ω1−m2 ·Ω2)∣∣Dm1,m2

(J1,J2,m2 ·Ω2)
∣∣2 . (D22)

We note that the mass µb of the field particles does not appear explicitly in this expression since they form a collisionless “fluid of stars”

entirely determined by its total distribution function F . As a result, the friction force given by equation (D22) can be obtained from the

calculation of Appendix B, which is solely based on the Vlasov equation (when Nb→+∞) without reference to a discrete Hamiltonian

system. Equation (D22) can be viewed as the correct generalisation of the famous Chandrasekhar’s formula of dynamical friction when the

mass of the test particle is much larger than the mass of the field particles (Chavanis 2013). One can easily compute the average energy lost

by the test particle. We have

Ėt = µt

∫
dJ1 P (J1, t)Fpol(J1, t)·Ω(J1, t) . (D23)

Substituting equation (D22) into equation (D23), we get

Ėt = π(2π)dµ2
t

′∑

m1,m2

∫
dJ1 dJ2 (m1 ·Ω1)

[
m2 · ∂F

∂J2
(J2)

]
δD(m1 ·Ω1−m2 ·Ω2)∣∣Dm1 ,m2

(J1,J2,m2 ·Ω2)
∣∣2 P (J1, t) . (D24)

When F =F (ǫ), we obtain

Ėt = π(2π)dµ2
t

′∑

m1,m2

∫
dJ1 dJ2 (m1 ·Ω1)

2 dF

dǫ
[ǫ(J2)]

δD(m1 ·Ω1−m2 ·Ω2)∣∣Dm1 ,m2
(J1,J2,m2 ·Ω2)

∣∣2 P (J1, t) . (D25)

For a thermal bath, considering the limit µb∼1/Nb→0 and β→+∞ such that βµb∼1, we may finally write

Ėt = −π(2π)dβµ2
t

∑

b

′∑

m1,m2

∫
dJ1 dJ2 (m1 ·Ω1)

2µbF
b(J2)

δD(m1 ·Ω1−m2 ·Ω2)∣∣Dm1,m2
(J1,J2,m2 ·Ω2)

∣∣2 P (J1, t) . (D26)

This expression is consistent with equation (D18) when β→+∞. It shows the somehow paradoxical resurgence of the diffusion coefficient

from equation (D2) in the friction term from equation (D22) due to the fluctuation-dissipation theorem from equation (D9), although diffusion

caused by finite−N effects is neglected (at leading order) in the present approach.

The Balescu-Lenard equation (60), the Fokker-Planck equation (D1) and the generalised Kramers equation (D11) describe a competition

between diffusion and friction. As a result, the probability density of the test particle relaxes towards a statistical equilibrium state in which

the two effects balance each other establishing the Boltzmann distribution from equations (C3) or (D12).10 In the situation described by

the deterministic equation (D22), the test particle just feels a friction force and sinks towards the center of the system. In astrophysics,

this is traditionally referred to as the “sinking satellite” problem. For small but non-zero values of µb, this result is consistent with the

multicomponent Balescu-Lenard equation (60) and with the multicomponent Boltzmann distribution (C3) that account for a segregation of

mass. Heavy particles have the tendency to sink at the center of the system while light particles move around. Various descriptions of this

collisionless dynamical friction have already been proposed in astrophysics (Kalnajs 1971; Tremaine & Weinberg 1984; Weinberg 1986,

1989). For a thorough illustration of this process, we refer in particular to Weinberg (1989), which provides a detailed numerical analysis of

the sinking of satellites in spherical galaxies, when accounting for or neglecting collective effects.

Note that the diffusion coefficient (D2) is proportional to the mass µb∼1/Nb of the field particles because it is due to the fluctuations

of the force produced by these particles (see section 3). When Nb→+∞, the fluctuations vanish (the field particles form a collisionless

fluid) and the diffusion coefficient tends to zero. On the other hand, the friction force (D3) involves a term proportional to µb∼1/Nb related

to the derivative of the diffusion coefficient ∂D/∂J and a term proportional to µt∼1, which corresponds to the friction by polarisation

Fpol from equation (D4) (see the decomposition from equation (58)). When Nb→+∞, the first term tends to zero while the second term

remains finite. The term in ∂D/∂J is proportional to the mass µb of the field particles because it is due to the fluctuations of the force

produced by these particles. The force by polarisation from equation (D4) is proportional to the mass µt of the test particle because it is due

to the retroaction of the fluid of stars to the perturbation caused by the test particle (see Appendix B). Therefore, this force remains finite

even when the field particles have no fluctuation (Nb→+∞), i.e. even if the test particle is evolving within a collisionless fluid. This is the

10 This is the usual picture of Brownian theory. As we previously indicated, the situation is more complicated for self-gravitating systems since a statistical

equilibrium state does not always exist.
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collisionless resonant dynamical friction, which accounts for both the system’s inhomogeneity and collective effects. We refer to Chavanis

(2013) for a detailed discussion of the links between this formalism and other approaches, in particular the two-body encounters theory

pioneered by Chandrasekhar (1943a).

D3 An ilustration of dynamical friction in a Mestel disc

The calculation of the force of dynamical friction acting on a star is a problem of considerable interest, initiated by the seminal work

of Chandrasekhar (1943a). Chandrasekhar & von Neumann (1943) attempted to derive this force from a purely stochastic formalism in the

case where the system is infinite and homogeneous and the stars have a Maxwellian velocity distribution. Their calculations were extended

by Del Popolo & Gambera (1999); Del Popolo (2003) to an inhomogeneous medium with a density decaying as ρ∼r−p, assuming again

that the velocity distribution of the stars is Maxwellian. In order to treat in a self-consistent manner more general situations of spatial

inhomogeneity, and take into account collective effects, the formalism developed in the present paper is necessary.11 Explicit applications

were carried for razor-thin (Fouvry et al. 2015b,c), thickened (Fouvry et al. 2017b) stellar discs, and Keplerian discs (Fouvry et al. 2017a).

Let us illustrate this kinetic theory with the calculation of the friction force acting on a sinking satellite in a collisionless fluid of stars.

Computing the resonant collisionless dynamical friction acting on a massive perturber requires the construction of the angle-action

coordinates (θ,J), the specification of the biorthogonal basis (ψ(p), ρ(p)), the computation of the system’s response matrix M̂(ω), and

the resolution of the non-local resonance condition δD(m1 ·Ω1−m2 ·Ω2). Fouvry et al. (2015c) presented this calculation for razor-thin

axisymmetric stellar discs and recovered the spontaneous self-consistent formation on secular timescales of a narrow resonant ridge of orbits

in action space, as first observed in the numerical simulations of Sellwood (2012).

Relying on the calculations performed in Fouvry et al. (2015c), let us estimate the friction force by polarisation that a massive perturber

undergoes when embedded in a collisionless disc (i.e. in the limit of an infinite number of bath particles in the disc). Let us specifically

consider an infinitely thin Mestel disc for which the circular speed is a constant V0 independent of the radius. The stationary background

potential ψM and its associated surface density ΣM are given by

ψM(R) = V 2
0 log

[
R

Rmax

]
; ΣM(R) =

V 2
0

2πGR
, (D27)

where Rmax is a scale parameter of the disc. Following Binney & Tremaine (2008), a self-consistent DF for this system is given by

FM(E, Jφ) = CM Jq
φ exp[−E/σ2

r ] , (D28)

where the exponent q is given by q = V 2
0 /σ

2
r −1 , with σr being the constant radial velocities spread within the disc. In equation (D28),

CM is a normalisation constant. In order to ensure linear stability, the DF from equation (D28) is additionally tapered in the inner and outer

regions of the disc. We refer to Fouvry et al. (2015c) for further details on the physical system considered. Razor-thin axisymmetric discs are

explicitly integrable, so that one naturally introduces the action coordinates J=(Jφ, Jr). Here, Jφ is the azimuthal action of the particle, its

angular momentum, and encodes the typical distance of the particle to the center. The second action is Jr , the radial action, which captures

the amplitude of the particle’s radial libration. The larger Jr , the wider the radial oscillations and the hotter the orbit. Because the radial

action satisfies Jr>0, exactly circular orbits (i.e. orbits with Jr=0) remain circular during the secular evolution and can therefore only

diffuse along the Jφ−direction. For simplicity, the calculation will be restricted to massive perturbers on circular orbits in the collisionless

limit, assuming that the razor-thin disc is made of an infinite number of particles. See also Weinberg (1989) for an example of calculation

of the dressed dynamical friction acting on circular orbits in the case of 3D spherical systems. Following equation (D22), the evolution of a

massive perturber on a circular orbit of angular momentum Jt
φ is given by the one-dimensional differential equation

dJt
φ

dt
= Fφ

pol(J
t
φ) , (D29)

where Fφ
pol stands for the component along the Jφ−direction of the 2D friction force vector Fpol. Through equation (58), such a friction force

is straightforwardly estimated once the disc’s self-consistent first- and second-order diffusion coefficients are computed. These coefficients

were computed in Fouvry et al. (2015c) for a razor-thin tapered Mestel disc. In the collisionless limit (i.e. µ⋆→0, with µ⋆ the individual

mass of the particles forming the disc), the friction force Fφ
pol(J

t
φ) acting on a massive perturber of mass µt on the circular orbit Jt

φ follows.

This is illustrated in figure D1, which performs the calculations respectively within the Balescu-Lenard and Landau frameworks, i.e. with or

without collective effects.

Figure D1 exhibits a complex behaviour for the friction force by polarisation. First note the importance of collective effects, which

significantly hasten the dynamical friction. Around Jt
φ≃2.8 the Balescu-Lenard formalism predicts Fφ

pol>0, i.e. a diffusion towards higher

angular momentum. This abnormal diffusion is also found in the lower panel of figure 8 in Sellwood (2012), where the individual diffusion of

stars also follows this trend. This can be interpreted as a consequence of the corotation resonance, whose inner Lindblad resonance is at the

11 We emphasise that this formalism recovers in the appropriate limit the two-body encounters theory of Chandrasekhar (1943a) for a 3D homogeneous

medium (this is discussed in detail in Chavanis (2013)). Conversely, the situation presented in e.g. Del Popolo & Gambera (1999); Del Popolo (2003) cannot

be treated with this formalism because the corresponding distribution (albeit physically interesting) is not a quasi-stationary state of the Vlasov equation and,

as such, does not possess suitable angle-action coordinates.
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Figure D1. Illustration of the friction force by polarisation acting on a massive perturber of individual mass µt=10−3Mtot=5.4×10−3, embedded in

a collisionless razor-thin Mestel disc considered in Sellwood (2012); Fouvry et al. (2015c). Here, the perturber is assumed to remain on circular orbits,

characterised by the angular momentum Jt
φ

. The two different lines correspond to the respective predictions of the Balescu-Lenard and Landau formalisms,

i.e. with or without collective effects. Negative values of Fφ
pol corresponds to a diffusion towards smaller angular momenta.

central ridge (Jt
φ≃1.2). When collective effects are neglected, this region of positive friction vanishes. One should also keep in mind that the

geometrical constraints associated with the razor-thin geometry (compared to 3D spherical systems) impact the expected properties of the

friction force, leading in some regimes to its complete cancellation (Kalnajs 1971). Understanding the properties of the resonant collisionless

dynamical friction in razor-thin discs in more details could be the subject of future works.

APPENDIX E: SOME DISTRIBUTION FORMULAE

Let us compute here the few distributions encountered in the main text.

E1 Calculation of η(x)

Let us first see how the distribution

η(x) = lim
∆t→+∞

[
|eix∆t−1|2
x2∆t

]
= lim

∆t→+∞

[
2 (1−cos(x∆t))

x2∆t

]
(E1)

operates on a given function f(x). Writing u=x∆t, one has

lim
∆t→+∞

∫ +∞

−∞

dx f(x)
2 (1−cos(x∆t))

x2∆t
= lim

∆t→+∞

∫ +∞

−∞

du f(u/∆t)
2 (1−cos(u))

u2
= f(0)

∫ +∞

−∞

du
2 (1−cos(u))

u2
. (E2)

The integral on u converges and can be computed noting that
∫ +∞

−∞

du
2 (1−cos(u))

u2
= lim

ε→0

[∫ +∞

−∞

du
2 (1−cos(u))

u2+ε2

]
= lim

ε→0

2π

ε

[
1−e−ε

]
= 2π . (E3)

Hence

η(x) = 2π δD(x) . (E4)

E2 Calculation of κ(x)

We now compute

κ(x) = lim
∆t→+∞

∫ ∆t

0

dt1
∆t

∫ t1

0

dt2 e
ix(t1−t2) . (E5)

Let us introduce τ= t1−t2 and reverse integration between t1 and τ while keeping track of the triangular shape of the (t1, τ ) integration

domain. One gets

κ(x) = lim
∆t→+∞

∫ ∆t

0

dτ eixτ
∫ ∆t

τ

dt1
∆t

= lim
∆t→+∞

∫ ∆t

0

dτ eixτ
[
1− τ

∆t

]

= lim
∆t→+∞

[
eix∆t−1

ix
+

i

∆t

d

dx

∫ ∆t

0

dτ eixτ
]
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= −i lim
∆t→+∞

[
eix∆t−1

ix

]
+

1

∆t

d

dx

[
lim

∆t→+∞

[
eix∆t−1

x

]]
. (E6)

We recall the identity

lim
∆t→+∞

[
eix∆t−1

x

]
= iπδD(x) . (E7)

Hence

κ(x) = lim
∆t→+∞

[
πδD(x)+

iπ

∆t

dδD(x)

dx

]
= πδD(x) . (E8)

E3 Calculation of γ(x)

Let us finally compute

γ(x) = lim
∆t→+∞

∫ ∆t

0

dt1
∆t

∫ t1

0

dt2

∫ t2

0

dt3 e
ix(t1−t3) . (E9)

Reversing integration between t2 and t3 yields

γ(x) = lim
∆t→+∞

∫ ∆t

0

dt1
∆t

∫ t1

0

dt3 e
ix(t1−t3)(t1−t3) = −i lim

∆t→+∞

[
d

dx

∫ ∆t

0

dt1
∆t

∫ t1

0

dτ eixτ
]

= −i lim
∆t→+∞

[
d

dx

∫ ∆t

0

dτ eixτ
∫ ∆t

τ

dt1
∆t

]
= −i

dκ(x)

dx
= −iπ

dδD(x)

dx
. (E10)

APPENDIX F: SYMMETRIES

F1 Relation between Λ−m1,−m2
(J1,J2,−ω) and Λm1 ,m2

(J1,J2, ω)

Let us first show that

Λ−m1,−m2
(J1,J2,−ω) = Λ∗

m1,m2
(J1,J2, ω) . (F1)

Recall that

Λ−m1,−m2
(J1,J2,−ω) = ψ

(α)
−m1

(J1) ε
−1
αβ(−ω)ψ

(β)∗
−m2

(J2) . (F2)

Following equations (25) and (A25) from Heyvaerts (2010), one can write

ψ
(α)
−m

(J) = ψ(α̂)∗
m (J) ; ε−1

αβ(−ω) = ε−1∗

α̂β̂
(ω) , (F3)

where α̂ is an element of the basis, which is in general different from α (see Heyvaerts (2010)). This immediately gives

Λ−m1,−m2
(J1,J2,−ω) = ψα̂∗

m1
(J1) ε

−1∗

α̂β̂
(ω)ψβ̂

m2
(J2) =

[
ψα̂

m1
(J1) ε

−1

α̂β̂
(ω)ψβ̂∗

m2
(J2)

]∗
= Λ∗

m1,m2
(J1,J2, ω) . (F4)

F2 Relation between Λm2,m1
(J2,J1, ω) and Λm1,m2

(J1,J2, ω)

Let us now demonstrate that to second order in the noise level, one can assume that Λm2,m1
(J2,J1, ω)=Λ∗

m1,m2
(J1,J2, ω). First note

that in equation (A21) the two frequencies ω1 and ω2 coincide because of the Dirac Delta factor δD(ω1−ω2). Now we have

Λm2,m1
(J2,J1, ω) = ψ(α)

m2
(J2) ε

−1
αβ(ω)ψ

(β)∗
m1

(J1)

= ψ(α)
m2

(J2)
{
ε−1∗
βα (ω) +

[
ε−1
βα(ω)− ε−1∗

βα (ω)
]}
ψ(β)∗

m1
(J1)

=

[
ψ(β)

m1
(J2) ε

−1
βα(ω)ψ

(α)∗
m2

(J2)

]∗

+ ψ(α)
m2

(J2)
[
ε−1
αβ(ω)− ε−1∗

βα (ω)
]
ψ(β)∗

m1
(J1)

= Λ∗
m1,m2

(J1,J2, ω) + ψ(α)
m2

(J2)
[
ε−1(ω)− ε−1†(ω)

]
αβ
ψ(β)∗

m1
(J1) , (F5)

where, in the last line, we introduced ε−1† as the hermitian conjugate of ε−1. The anti-hermitic part of ε−1, which appears in the square

bracket, was computed by Heyvaerts (2010) and can be written as
[
ε−1 − ε−1†]

αβ
= ε−1

αλ

[
ε† − ε

]
λµ
ε−1†
µβ . (F6)

Now we have (see equation (25) in Heyvaerts (2010))

[
ε†(ω)− ε(ω)

]
λµ

= −i
∑

c

′∑

m3

(2π)d+1

∫
dJ3 δD(ω−m3 ·Ω3)m3 ·∂J3

[
F c(J3)

]
ψ(λ)∗

m3
(J3)ψ

(µ)
m3

(J3) . (F7)
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Injecting this relation into equation (F5) yields

Λm2,m1
(J2,J1, ω) = Λ∗

m1,m2
(J1,J2, ω)− i

∑

c

′∑

m3

(2π)d+1

∫
dJ3 δD(ω−ω3)m3 ·∂J3

[
F c(J3)

]

× ψ(α)
m2

(J2) ε
−1
αλ(ω)ψ

(λ)∗
m3

(J3)ψ
(µ)
m3

(J3) ε
−1∗
βµ (ω)ψ(β)∗

m1
(J1)

= Λ∗
m1,m2

(J1,J2, ω)− i
∑

c

′∑

m3

(2π)d+1

∫
dJ3 δD(ω − ω3)m3 ·∂J3

[
F c(J3)

]

×
[
ψ(α)

m2
(J2) ε

−1
αλ(ω)ψ

(λ)∗
m3

(J3)

][
ψ(β)

m1
(J1) ε

−1
βµ(ω)ψ

µ∗
m3

(J3)

]∗

= Λ∗
m1,m2

(J1,J2, ω)− i
∑

c

′∑

m3

(2π)d+1

∫
dJ3 δD(ω−ω3)m3 ·∂J3

[
F c(J3)

]
Λm2,m3

(J2,J3, ω)Λ
∗
m1,m3

(J1,J3, ω) . (F8)

This relation shows that the difference between Λm2,m1
(J2,J1, ω) and Λ∗

m1,m2
(J1,J2, ω) is a term involving two Λ factors, which implies

that it is of higher order with respect to the noise, as discussed in the end of section 2. This difference is proportional to the anti-hermitic

part of ε, and therefore corresponds to a particular form of the fluctuation-dissipation theorem. Since equation (A21) aims for a second order

expression in the noise, the difference δD(ω1−ω2)
[
Λm2,m1

(J2,J1, ω1)−Λ∗
m1,m2

(J1,J2, ω2)
]
, because it would introduce a third order

correction, can be neglected here.
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