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L2-STABILITY OF A FINITE ELEMENT – FINITE VOLUME DISCRETIZATION
OF CONVECTION-DIFFUSION-REACTION EQUATIONS

WITH NONHOMOGENEOUS MIXED BOUNDARY CONDITIONS

Paul Deuring
1

and Robert Eymard
2

Abstract. We consider a time-dependent and a steady linear convection-diffusion-reaction equation
whose coefficients are nonconstant. Boundary conditions are mixed (Dirichlet and Robin−Neumann)
and nonhomogeneous. Both the unsteady and the steady problem are approximately solved by a com-
bined finite element – finite volume method: the diffusion term is discretized by Crouzeix−Raviart
piecewise linear finite elements on a triangular grid, and the convection term by upwind barycentric
finite volumes. In the unsteady case, the implicit Euler method is used as time discretization. This
scheme is shown to be unconditionally L2-stable, uniformly with respect to diffusion, except if the
Robin−Neumann boundary condition is inhomogeneous and the convective velocity is tangential at
some points of the Robin−Neumann boundary. In that case, a negative power of the diffusion coeffi-
cient arises. As is shown by a counterexample, this exception cannot be avoided.
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1. Introduction

We consider the convection-diffusion-reaction equation

∂tw − divx(a∇xw) + divx(w b) +mw = g in Ω × (0, T ), (1.1)

with the boundary conditions

w |ΓD × (0, T ) = fD, −min{b · n, 0}w + n · a∇xw = fN on ΓN × (0, T ), (1.2)

and with the initial conditions

w(x, 0) = w(0)(x) for x ∈ Ω, (1.3)

where Ω ⊂ R
2 is a connected, bounded, open polygon with Lipschitz boundary ∂Ω. In condition (1.2), this

boundary is split into a part ΓD where Dirichlet boundary conditions are prescribed, and a part ΓN where
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Robin−Neumann conditions are imposed. We suppose that ΓD and ΓN are open in ∂Ω, ∂Ω = ΓD ∪ ΓN , ΓD ∩
ΓN = ∅, ΓD �= ∅, and ΓD and ΓN each consist of the union of a finite number of open segments. The letter n
stands for the outward unit normal to Ω.

We assume T ∈ (0,∞), that is, we consider (1.1)−(1.3) for a finite time interval, although all our estimates
yield upper bounds independent of T . The convective velocity b : [0, T ] 
→ H1(Ω)2 ∩ C0(Ω)2 is supposed to be
bounded with respect to the norm of H1(Ω), with |b| as a function on Ω × [0, T ] being bounded as well. We
further require there is p ∈ (2,∞] with

sup
0<t<T

‖divxb(t)‖Lp(Ω) <∞. (1.4)

Moreover, we suppose there is some real β > 0 and some Lipschitz continuous function ([29], Sect. 1.2.7)
ζ : Ω × [0, T ] 
→ R such that ζ( · , t) ∈ W 1,1

loc (Ω) for t ∈ (0, T ) and

divxb(x, t)/2 +m(x, t) ≥ 0 and − b(x, t) · ∇xζ(x, t) ≥ β for x ∈ Ω, t ∈ [0, T ]. (1.5)

Actually the Lipschitz continuity of ζ implies that ζ( · , t) ∈ W 1,1
loc (Ω) for t ∈ [0, T ]. But since we do not know a

direct reference for this result and do not want to enter into its proof here, we introduced it as an assumption.
In the case of constant b �= 0, a suitable function ζ is given by ζ(x, t) := −b · x.

Concerning the matrix-valued function a (diffusion coefficient), we suppose that a(t) : Ω 
→ R
2×2 is symmetric

and measurable for t ∈ [0, T ], and there are constants ν, ν ∈ (0,∞) with

ξT · a(x, t) ξ ≥ ν |ξ|2, |ξT · a(x, t) η| ≤ ν |ξ| |η| for ξ, η ∈ R
2, x ∈ Ω, t ∈ [0, T ]. (1.6)

We further assume that g : [0, T ] 
→ L2(Ω) is bounded, w(0) belongs to H1(Ω), m is bounded as a function
from [0, T ] into Lp(Ω), and fN : [0, T ] 
→ L2(ΓN ) is bounded, too. Concerning fD, we require there is a function
f̃D ∈ W 1,1

(
0, T,H1/2(∂Ω)

)
with f̃D|ΓD × (0, T ) = fD. This assumption that fD(t) may be extended to a

function in H1/2(∂Ω) for any t ∈ (0, T ) allows us to avoid technical difficulties when we further extend fD to a
function f : (0, T ) 
→ H1(Ω); compare ([32], Thm. 1.5.2.3) or ([36], p. 84/85) in this respect.

We will also consider the steady variant of problem (1.1)−(1.3), that is,

−div (A∇W ) + div (W B) +MW = G in Ω, (1.7)

W |ΓD = FD, −min{B · n, 0}W + n ·A∇W = FN on ΓN , (1.8)

under analogous assumptions on coefficients and data, that is, B ∈ H1(Ω)2 ∩ C0(Ω)2, divB ∈ Lp(Ω), M ∈
Lp(Ω),

divB/2 +M ≥ 0 and −B · ∇φ ≥ β (1.9)

for some Lipschitz continuous function φ ∈ W 1,1
loc (Ω), A : Ω 
→ R

2×2 symmetric and measurable, with

ξT ·A(x) ξ ≥ ν |ξ|2, |ξT ·A(x) η| ≤ ν |ξ| |η| for ξ, η ∈ R
2, x ∈ Ω, (1.10)

G ∈ L2(Ω), FN ∈ L2(ΓN ) and FD = F̃D|ΓD for some function F̃D ∈ H1/2(∂Ω). Concerning the assumption
φ ∈W 1,1

loc (Ω), an analogous remark is valid as the one with respect to ζ in the passage following (1.5).
A remark is perhaps in order with respect to conditions (1.5)2 and (1.9)2. In ([15], Sect. 5), we presented a

heuristic argument indicating that assumption (1.9)2 is necessary for obtaining an L2-stability estimate indepen-
dent of ν. The condition in (1.9)2 may be interpreted geometrically in the sense that the convective velocity B
does not exhibit closed curves or stationary points (points x ∈ Ω with B(x) = 0). In fact, it is shown in [16]
that if B is smooth and presents these geometrical properties, there exists a function φ with (1.9)2. This result
was generalized to the case B ∈ W 1,∞(Ω)2 in [3]. The problem of existence of a function φ with (1.9)2 is closely
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related to the question as to whether the vector field B admits a potential, that is, whether there is a function Z
with ∇Z = B (see ([31], Thm. I.2.9) for example). If such a potential exists and |B| is bounded away from zero,
then there is a function φ such that (1.9)2 holds. These remarks carry over to (1.5)2 in an obvious way.

Both problem (1.1)−(1.3) and (1.7), (1.8) are of particular interest in the convection-dominated regime, that
is, if ν � |b| in the evolutionary and ν � |B| in the steady case, an interest that seems to be due to the belief
that the preceding problems in the convection-dominated case show some affinity (although distant) with the
Navier–Stokes system in the same regime. In this spirit, numerical schemes working well for that latter system
are sometimes reduced to problem (1.1)−(1.3) or (1.7), (1.8) so that they may be accessible to theoretical studies
regarding stability or accuracy.

In the work at hand, we consider a discretization of (1.1)−(1.3) and (1.7), (1.8), respectively, that is mo-
tivated in this way. This scheme may be characterized by the fact that the diffusion term in (1.1) and (1.7)
is approximated by piecewise linear Crouzeix−Raviart finite elements, and the convective term by an upwind
finite volume method based on barycentric finite volumes on a triangular grid. Choosing an explicit time dis-
cretization, Feistauer e.a. ([18], Sect. 7, [26], Chap. 4.4) tested this FE-FV method in the case of high-speed
compressible Navier–Stokes flows in complex geometries and obtained very satisfactory results.

In [15], we applied this FE-FV method to problem (1.1)−(1.3), using the implicit Euler method as time
discretization. Under the assumptions ΓD = ∂Ω, fD = 0 (homogeneous Dirichlet boundary conditions), m = 0
(no reaction term) and b and ζ independent of t (autonomous differential equation), and with (1.5)1 replaced
by the equation divxb = 0 (solenoidal convective velocity), we showed for a shape-regular grid (minimum
angle condition) that the approximate solution provided by this approach may be estimated in the L∞(L2)-
norm against the data, with the constant in this estimate being independent of the diffusion parameter ν, and
depending polynomially on β−1, ‖b‖1,2 and on pointwise upper bounds of ζ and |∇ζ|. An analogous result was
established with respect to problem (1.7), (1.8). The results in [15] improve an earlier theory in [14], where the
case of constant b was considered under a restrictive assumption ([14], (3.9)) on the grid.

In the work at hand, we extend the theory from [15] to the more general framework set up above. The elliptic
operator considered in [15] consists of the Laplace operator multiplied by a constant diffusion coefficient ν. The
role of this coefficient will be played here by the ellipticity constant ν of the matrices a and A, respectively;
see (1.6) and (1.10). The condition divxb( · , t) = 0 = m in [15] is replaced by the condition divxb/2 + m ≥ 0
(see (1.5)1; in the steady case: divB/2 +M ≥ 0 instead of div B=0=M; see (1.9)1). But we need an additional
assumption in this context: in the unsteady case, the maximal diameter of the triangles of the grid must be
small with respect to the quantities β and sup0<t<T ‖divxb(t)‖Lp(Ω), and with respect to an upper bound on ζ
and the Lipschitz constant of ζ. This situation is expressed by the requirement h ≤ h0 in Theorem 2.14. A
corresponding condition is imposed in the steady case.

A surprising feature appears in the context of the inhomogeneous boundary conditions in (1.2) and (1.8). If the
Robin−Neumann boundary data are non-vanishing and the convective velocity does not keep a minimum angle
with respect to ΓN , at least in a suitable averaged sense, then a factor ν−K with K > 1/4 arises in our stability
estimates (2.17) (evolutionary case) and (2.20) (steady case); also see the remarks following Theorem 2.14. The
appearance of this factor is not due to our method of proof. Indeed, a counterexample in Section 5 (Thm. 5.1)
shows that the factor in question cannot be removed. Since it refers to the continuous problem (1.7), (1.8), this
counterexample implies that stability estimates analogous to ours for any discretization of (1.7), (1.8) necessarily
involve such a factor in the circumstances just described, if the constants in these estimates are independent of
the mesh size. Thus the interest of our theory extends beyond FE-FV schemes for (1.7), (1.8).

Except for these special features related to inhomogeneous Robin−Neumann boundary data, the stability
estimates from [15] carry over to the more general situation considered in the work at hand. More specifically,
it will turn out the L∞(L2)-norm and ν1/2 times the L2(H1)-norm of the solution to the discrete evolutionary
problem (2.11), (2.12) are bounded by a product involving certain norms of the data and of ζ, the factor
1+ sup0<t<T ‖b(t)‖H1(Ω), the quantities ν/ν, ν/ν1/2 and ε1/2, with ε from the condition on the minimum angle
between the convective velocity and ΓN , as well as a constant independent of ν. This constant depends on the
minimum angle of our grid, and polynomially on β−1, (diamΩ)1/2 and an upper bound of ζ and the Lipschitz
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constant of ζ. Moreover, there are some parameters entering linearly into this constant, namely the constants
from certain Sobolev, interpolation and trace estimates on Ω. A precise list of these linear dependencies is given
in Section 2 (see the passage preceding (2.4)). The factors ν/ν and ν/ν1/2 do not reduce the quality of our
estimates because if the elliptic operator in (1.1) reduces to −ν Δx (the benchmark case), we may take ν = ν, so
that ν/ν = 1 and ν/ν1/2 = ν1/2, with positive powers of ν being irrelevant in the critical case ν ≤ 1. Analogous
remarks are valid in the stationary case. For a detailed statement of our results, we refer to Theorem 2.14
(evolutionary problem) and 2.15 (steady case). Our results should be expected to hold in the 3D case as well,
although their proof would become more technical.

When we adapted the discretization from [15] to the inhomogeneous boundary conditions considered in the
work at hand, it was not so clear how to take account of the Robin−Neumann condition in (1.2) and (1.8).
We opted for a boundary term in our discrete convection operator which is easy to implement and fits in
well with our stability proof. Of course, one might ask whether this term degrades accuracy. These doubts,
however, are lifted by a companion paper [12], where we show that optimal error estimates hold with respect
to the L2(H1)- and the L∞(L2)-norm (in the steady case: with respect to the H1-norm). Thus our scheme
does allow to maintain accuracy. Reference [12] generalizes earlier results from [13], where the case b constant,
m = 0, ΓD = ∂Ω, fD = 0, a = −ν (δjk)1≤j,k≤2 is considered.

There is an vast literature dealing with stability estimates of various discretizations of (1.1)−(1.3)
or (1.7), (1.8). As examples, we cite the monographs ([42], Chaps. 8 and 12, [19], Sects. 5.2.3, 5.4.4), [44],
and the articles [2–4, 8–10, 18, 20–22, 24, 25, 27, 28, 30, 33, 34, 38–41, 43, 48–50]. However, the stability bounds
derived in these references depend on T or exponentially on some quantity related to b or B, or the assump-
tion ΓD = ∂Ω, fD = 0 is essential, or condition (1.5)1 or (1.9)1 is replaced by the stronger assumption
divxb/2 + m ≥ δ and divB/2 + M ≥ δ, respectively, for some δ > 0, or special types of grids are used, like
Shishkin meshes, or the diffusion parameter ν enters in some way into the stability bound even if no inhomo-
geneous Robin−Neumann boundary conditions are imposed. Here we are able to avoid all these features.

Our study was inspired by Feistauer e.a. [2, 18], who considered a scalar time-dependent nonlinear conser-
vation law with a diffusion term. Discretizing this equation by the combined FE-FV scheme described above,
with a rather general numerical flux adapted to the nonlinearity, and with a semi-implicit Euler method as
time discretization, they derived L2(H1)- and L∞(L2)-error estimates. References [5, 24, 25, 28] present results
analogous to those in [2, 18], but for a combined FE-FV method involving piecewise linear conforming finite
elements and dual finite volumes (triangular finite volumes in the case of [5]). Similar L2(H1)- and L∞(L2)-error
estimates as in [18] are shown in [27, 50], but with respect to various discontinuous Galerkin schemes.

The article most closely related to our work here and in [15] is reference [3], in which Ayuso and Marini study
stability and accuracy of various discontinuous Galerkin approximations of (1.7), (1.8), with discrete convection
terms similar to ours. These authors base their theory on condition (1.9)2 – to our knowledge the only ones doing
so previous to [15] in the context of convection-diffusion equations. However, their stability constant depends
exponentially on maxφ − minφ ([3], Lem. 4.1), and they impose additional technical conditions on B and M
([3], (H2), (H3)) we do not need. But the theory in [3] is remarkable because its assumptions are sufficient for
deriving not only ν-independent stability estimates, but also error bounds which are uniform in ν, with the
usual caveat that the bound in questions also depends on certain norms of the exact solution, and may thus
depend on ν implicitly.

2. Notation. FE-FV discretization of (1.1)–(1.3) and (1.7), (1.8), respectively.

Statement of main results.

For any function ψ : A 
→ R with domain A �= ∅, we put |ψ|∞ := sup{|ψ(x)|x ∈ A}. Define K̂ := {x ∈ (0, 1)2 :
x1 +x2 < 1}. The Euclidean norm of R

2 is designated by | |. For A ⊂ R
2, we set diam (A) := sup{|x−y| : x, y ∈

A}, and denote by Pk(A) the space of all polynomials on A of degree at most k, where k ∈ N. If A is measurable,
we write |A| for the measure of A. The usual Lebesgue space on A with exponent q ∈ [1,∞] is designated by
Lq(A), and its usual norm by ‖ ‖Lq(A). It will be convenient to use the notation ‖ ‖L2(A) also for the L2-norm
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of (vector-valuded) functions v = (v1, v2) ∈ L2(A)2, so ‖v‖L2(A) := (‖v1‖2
L2(A) + ‖v2‖2

L2(A))
1/2 in that case. Put

(u, v)L2(A) :=
∫

A u v dx for u, v ∈ L2(A) and (u, v)L2(A) :=
∫

A u · v dx for u, v ∈ L2(A)2 (L2-inner product).
We define a norm ‖ ‖L2(S) for the Lebesgue space L2(S) on measurable subsets S of the manifold ∂Ω by
setting ‖h‖L2(S) :=

∫
S
h2 dox for h ∈ L2(S). This means we choose a norm which is independent of the choice

of local charts. Let U ⊂ R
2 be an open set, and let q ∈ [1,∞], k ∈ N. Then the term W k,q(U) stands for

the standard Sobolev space of order k and of exponent q, and the term ‖ ‖W k,q(U) for its usual norm, that

is, ‖v‖W k,q(U) :=
(∑

α∈N2
0, α1+α2≤k ‖∂αv‖q

q

)1/q for v ∈ W k,q(U). We will use the notation Hk(U) instead of

W k,2(U), and ‖ ‖Hk(U) instead of ‖ ‖W k,q(U). The symbol W 1,1
loc (U) stands for the set of all functions v : U 
→ R

such that v|V ∈ W 1,1(V ) for any open bounded set V ⊂ R
2 with V ⊂ U. For s ∈ (0, 1), the Sobolev space

Hs(U) and its norm ‖ ‖Hs(U) is to be defined as in ([29], Sect. 6.8.2). For the definition of the space Hs(∂Ω)
and its norm ‖ ‖Hs(∂Ω), we refer to ([29], Sect. 6.8.6).

Let a, b ∈ R with a < b, p ∈ [1,∞], and H a Hilbert space. Then we will use the Lebesgue space Lp(a, b,H)
and its norm ‖ ‖Lp(a,b,H), defined as in ([52], Def. 24.4). The space W 1,1(a, b,H) is to consist of all functions
v ∈ L1

(
a, b,H) such that the distributional derivative v′ of v ([52], Def. 25.2)) is represented by a function, also

denoted by v′, belonging to L1(a, b,H).
If I ⊂ R and u : U×I 
→ R is a function with suitable smoothness, the index x in the expressions divxu, ∇xu

and Δxu means that the differential operators in question only act on the variable x ∈ U . Otherwise the
operators div, ∇ and Δ are used without index.

We recall that the bounded, open polygon Ω ⊂ R
2 with Lipschitz boundary ∂Ω was introduced in Section 1,

as were the sets ΓD, ΓN , the positive reals T, p, β, ν, ν, as well as the functions n, a, b, m, g, fD, f̃D, fN ,
w(0), ζ, A, B, M, G, FD, FN and φ. These sets, real numbers and functions will be kept fixed throughout.

By adding a suitable constant to ζ and φ, we may suppose without loss of generality that ζ(x, t) ≥ diamΩ
and φ(x) ≥ diamΩ (x ∈ Ω, t ∈ [0, T ]). For example, if b �= 0 is constant, we may choose ζ(x, t) := 2 diamΩ −
|b|−1 b · (x− x0), where x0 is some arbitrary but fixed point in Ω. Thus, since ζ and φ are Lipschitz continuous,
there is ϕ1 > 0 with

|ζ(x, t) − ζ(x′, t′)| ≤ ϕ1 (|x− x′| + |t− t′|), diamΩ ≤ ζ(x, t) ≤ ϕ1, (2.1)
|φ(x) − φ(x′)| ≤ ϕ1 |x− x′|, diamΩ ≤ φ(x) ≤ ϕ1 for x, x′ ∈ Ω, t, t′ ∈ [0, T ].

The Lipschitz continuity of ζ further implies that ζ ∈ C0(Ω × [0, T ]), as well as

Lemma 2.1. For x ∈ Ω, the function ζ(x, · ) is differentiable at a. e. t ∈ (0, T ). Put ∂3ζ(x, t) :=
lim suph↓0

(
ζ(x, t + h) − ζ(x, t)

)
/h for x ∈ Ω, t ∈ (0, T ). Then ∂3ζ is bounded, in particular ∂3ζ ∈

L1
(
0, T, L∞(Ω)

)
, and ζ(x, b) − ζ(x, a) =

∫ b

a ∂3ζ(x, t) dt for a, b ∈ [0, T ].

For a proof of this lemma, we refer to ([45], Problem 5.16a, pp. 104−108).
A technical problem we will have to take into account in the following is that no trace estimate of the form

‖v|∂Ω‖L2(Ω) ≤ C ‖v‖H1/2(∂Ω) holds for v ∈ H1/2(Ω). In view of this situation, we fix a parameter δ ∈ (0, 1/2),
and we will use the ensuing trace theorem, for which we refer to [35].

Theorem 2.2. There is a constant C1(δ) > 0 such that ‖v|∂Ω‖Hδ(∂Ω) ≤ C1(δ) ‖v‖Hδ+1/2(Ω) for v ∈ H1(Ω).

Moreover we will need a standard interpolation inequality for fractional order Sobolev norms. For the convenience
of the reader, we state this inequality in

Theorem 2.3. There is a constant C2(δ) > 0 such that ‖v‖H1/2+δ(Ω) ≤ C2(δ) ‖v‖1/2+δ
H1(Ω) ‖v‖1/2−δ

L2(Ω) for v ∈ H1(Ω).

Proof. The theorem follows from ([47], inequality (1.3.3.5)) with A0 = L2(Ω), A1 = H1(Ω), θ = 1/2 + δ, in
view of ([47], Rem. 4.4.1.2, 4.4.2.2, Def. 4.2.3, 4.2.1.1, Thm. 4.3.1.2, Eq. (2.4.2.16), Thm. 2.3.3 (b)). �

We will refer to the following result on Bochner integrals.
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Theorem 2.4 ([46], Lem. 3.1.1). Let H be a Hilbert space, a, b ∈ R with a < b, and v ∈ W 1,1(a, b,H). Then,
possibly after a modification on set with measure zero in [a, b], the function v belongs to C0([a, b], H), and
v(t) =

∫ t

s
v′(r) dr − v(s) for r, s ∈ [a, b], where the preceding integral is to be understood as a Bochner integral

in H.

Due to Theorem 2.4, we may suppose without loss of generality that f̃D belongs to the space
C0
(
[0, T ], H1/2(∂Ω)

)
as well as to W 1,1

(
0, T, H1/2(∂Ω)

)
.

Let E : H1/2(∂Ω) 
→ H1(Ω) be a linear, bounded extension operator ([29], Thm. 6.9.2). This means in
particular that E(b)|∂Ω = b for b ∈ H1/2(∂Ω). We put

f(t) := E
(
f̃D(t)

)
for t ∈ (0, T ), (2.2)

so that f : (0, T ) 
→ H1(Ω) and f(t)|∂Ω = f̃D(t) for t ∈ (0, T ).

Lemma 2.5. The function f belongs to W 1,1
(
0, T, H1(Ω)

)
and to C0

(
[0, T ], H1(Ω)

)
, and f ′(t) = E

(
f̃ ′

D(t)
)

for t ∈ (0, T ).

Proof. Since f̃D belongs to W 1,1
(
0, T, H1/2(∂Ω)

)
, and by the choice of E, we have f(t) ∈ H1(Ω) and

E
(
f̃ ′

D(t)
) ∈ H1(Ω) for t ∈ (0, T ), as well as

∫ T

0
f̃D(t)ϕ′(t) dt = − ∫ T

0
f̃ ′

D(t)ϕ(t) dt for ϕ ∈ C∞
0

(
(0, T )

)
,

with the preceding integrals being Bochner integrals in H1/2(∂Ω). But E : H1/2(∂Ω) 
→ H1(Ω) is linear
and bounded, so a well-known result on Bochner integrals allows to deduce from the preceding equation that∫ T

0
E
(
f̃D(t)

)
ϕ′(t) dt = − ∫ T

0
E
(
f̃ ′

D(t)
)
ϕ(t) dt for ϕ as before, where these integrals are to be understood as

Bochner integrals in H1(Ω). �

Let σ0 ∈ (0, 1), and let T be a triangulation of Ω with the following properties. The set T consists of a finite
number of open triangles K ⊂ R

2 with Ω = ∪{K : K ∈ T}. If K1,K2 ∈ T with K1 ∩K2 �= ∅ and K1 �= K2,
the set K1 ∩K2 is either a common vertex or a common side of K1 and K2. The relation

Bσ0 hK (x) ⊂ K holds for any K ∈ T and some x ∈ K, (2.3)

where Br(x) := {y ∈ R
2 : |x− y| < r} for r > 0, x ∈ R

2, and hK := diamK for K ∈ T. The parameter σ0 will
be the only grid-related quantity entering into the constants in our estimates. In other words, we only impose
a minimum angle condition on our grid (shape regularity). Set h := max{hK : K ∈ T}.

We write c for constants that are numerical or only depend on σ0, and c(γ) if they are influenced by an
additional parameter γ > 0. The symbol C stands for constants that may depend on σ0 and polynomially
on β−1, ϕ1 and (diamΩ)1/2, as well as linearly on the constant C1(δ) from the trace estimate in Theorem 2.2,
on the constant C2(δ) from the interpolation inequality in Theorem 2.3, on the operator norm of the extension
operator E, and on the constant from the Sobolev imbedding of H1(Ω) into L(1/2−1/p)−1

(Ω). We recall that the
parameter p was introduced in (1.4), ϕ1 in (2.1), and β in (1.5) and (1.9). As a consequence of (2.3), we have

h2
K ≤ c |K| for K ∈ T. (2.4)

Let S be the set of the sides – without their endpoints – of the triangles K ∈ T. Put J := {1, . . . , #S}, where
#S denotes the number of elements of S. Let (Si)i∈J be an enumeration of S. We write Qi for the midpoint
of Si, and li for the length of Si (i ∈ J). Put Jo := {i ∈ J : Qi ∈ Ω}.

Since it is Lipschitz bounded, the set Ω is locally located on one side of ∂Ω, so by our assumptions on T,
we have Si ⊂ Ω for i ∈ Jo, and Si ⊂ ∂Ω for i ∈ J\Jo. It further follows that for i ∈ Jo, there are exactly two
triangles K ∈ T, which we denote by K1

i and K2
1 , such that Si ⊂ K1

i ∩K2
i , and for i ∈ J\Jo, there is a single

triangle K ∈ T, denoted by Ki, with Si ⊂ Ki. It will be convenient to put K1
i := K2

i := Ki for i ∈ J\Jo.
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We further put JD := {i ∈ J : Qi ∈ ΓD}, JN := {i ∈ J : Qi ∈ ΓN}, and we require – this is another
assumption on T – that either Si ⊂ ΓD or Si ⊂ ΓN for any i ∈ J\Jo. Thus each boundary edge is a subset of
either ΓD or ΓN , and J\Jo = JD ∪ JN .

Next we introduce a barycentric mesh (Di)i∈J on the triangular grid T. If i ∈ Jo, we join the barycenters
of K1

i and K2
i with the endpoints of Si. The open quadrilateral containing Si and obtained in this way is

denoted by Di. If i ∈ J\Jo (hence Qi ∈ ∂Ω), let Di be the open triangle whose sides are the edge Si and the
segments joining the endpoints of Si with the barycenter of the (unique) triangle K ∈ T with Si ⊂ K. (This
latter triangle was denoted by Ki.) If i, j ∈ J with i �= j are such that the intersection Di ∩Dj contains more
than one point, this intersection is a common side of Di and Dj. In this case, the sets Di and Dj are called
“adjacent”, and their common side – without its endpoints – is denoted Γij . For i ∈ J , we set

s(i) := {j ∈ J\{i} : Di and Dj are adjacent.}.

If i ∈ J and j ∈ s(i), let nij denote the outward unit normal to Di on Γij , so that nij points from Di into Dj .
We find with (2.4) and the relation |K l

i ∩Di| = |K l
i |/3 that hKl

i
≤ c |K l

i|1/2 ≤ c |K l
i ∩Di|1/2 ≤ c |Di|1/2 for

i ∈ J, l ∈ {1, 2}. Since 1 − 2/p ≥ 0, we thus see there is a constant c0 > 0, only depending on σ0, such that

max
{
hKl

i
: l ∈ {1, 2}} |Di|1/p′ ≤ c0 |Di|h1−2/p for i ∈ J, (2.5)

where p′ := (1 − 1/p)−1, with p from (1.4). We introduce two finite element spaces by setting

Xh := {v ∈ L2(Ω) : v|K ∈ P1(K) for K ∈ T, v continuous at Qi for i ∈ J},
Vh := {vh ∈ Xh : vh(Qi) = 0 for i ∈ JD}.

The spaces Xh and Vh are nonconforming finite element spaces of piecewise linear functions based on the
Crouzeix−Raviart finite element. For i ∈ J , let ωi be the function from Xh that is uniquely determined by the
requirement that ωi(Qj) = δij for j ∈ J . The family (ωi)i∈J is a basis of Xh, and

vh =
∑
i∈J

vh(Qi)ωi for vh ∈ Xh. (2.6)

For vh ∈ Xh⊕H1(Ω), we define the function ∇hvh on Ω by setting (∇hvh)|K := ∇(vh|K) for K ∈ T. A discrete
Poincaré’s inequality is valid on Vh:

Theorem 2.6 ([7], Thm. 4.1, Rem. 4.4). For any vh ∈ Vh, the relation ‖vh‖L2(Ω) ≤ c‖∇hvh‖L2(Ω) holds.

Similar inequalities were discussed in [17, 37, 51]. The one in [7] fits our situation best because in that latter
reference, a Dirichlet boundary condition needs to hold only on part of the boundary of the domain in question.
From ([2], (3.30)) and (2.6), we obtain a formula for the L2-scalar product of vh, wh ∈ Xh, that is,

(vh, wh)L2(Ω) =
∑
i∈J

vh(Qi)wh(Qi) |Di|, for vh, wh ∈ Xh. (2.7)

Next we state a Sobolev inequality on the triangles K ∈ T.

Lemma 2.7. Let r ∈ (1,∞). Then the inequality

‖v‖Lr(K) ≤ c(r) (h2/r−1
K ‖v‖L2(K) + h

2/r
K ‖∇v‖L2(K))

holds for v ∈ H1(K) and K ∈ T.
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Proof. Let K ∈ T, and let c(1)1 , c(2), c(3) ∈ R
2 be the vertex points ofK. Put C := (c(1)−c(3), c(2)−c(3)) ∈ R

2×2,
where c(1) − c(3) and c(2) − c(3) are to be considered as columns. Put T (x) := C · x + c(3) for x ∈ R

2. Then∫
K v dx = 2 |K| ∫

K̂
v
(
T (x)

)
dx for v ∈ L1(K), with the reference triangle K̂ introduced at the beginning of this

section. This equation, the Sobolev inequality ‖v̂‖Lr(K̂) ≤ c(r) ‖v̂‖H1(K̂) for v̂ ∈ H1(K̂), and inequality (2.4)
imply Lemma 2.7. �

We further need a trace inequality on triangles, and an inverse inequality.

Lemma 2.8. The estimate ‖v|∂K‖L2(∂K) ≤ c (h−1/2
K ‖v‖L2(K) +h

1/2
K ‖∇v‖L2(K)) holds for K ∈ T, v ∈ H1(K).

Proof. Well known: by using a scaling argument as in the proof of Lemma 2.7, we may reduce Lemma 2.8 to a
trace estimate on the reference triangle K̂; see ([12], proof of Lem. 2.1) for details. �

Lemma 2.9 ([6], Lem. 4.5.3). We have hK ‖∇v‖L2(K) ≤ c ‖v‖L2(K) for v ∈ P2(K) and K ∈ T.

Put Wh := {v ∈ C0(Ω) : v|K ∈ P2(K) for K ∈ T} (P2 Lagrangian finite element space). Note that
Wh ⊂ H1(Ω). Functions from Xh may be approximated by functions from Wh in the following way.

Lemma 2.10. There is a linear operator Eh : Xh 
→Wh such that for vh ∈ Xh,∑
K∈T

h−1
K ‖(Eh(vh) − vh

)|K‖2
L2(K) ≤ c

∑
K∈T

hK ‖∇(vh|K)‖2
L2(K),

‖Eh(vh)‖H1(Ω) ≤ c (‖vh‖L2(Ω) + ‖∇hvh‖L2(Ω)), ‖Eh(vh)‖L2(Ω) ≤ c ‖vh‖L2(Ω).

Proof. The second and third estimate in Lemma 2.10 hold according to ([7], Cor. 3.3). As for the first, we
observe that the maximal number of triangles sharing a common vertex is bounded by some number n ∈ N

only depending on the constant c0 in (2.3), or in other words, on the minimum angle of the triangles K ∈ T.
Also by (2.3), if K,L ∈ T share a common vertex or midpoint, then hK ≤ c hL; compare ([7], (3.8)). These
observations and the estimate in ([7], (3.7)) imply the first inequality in Lemma 2.10. �

Let Ih : H1(Ω) 
→ Xh be the interpolation operator introduced in ([23], Eq. (8.9.79)), that is, Ih(v) :=∑
i∈J l

−1
i

∫
Si
v(x) dox ωi for v ∈ H1(Ω). Note that a function v ∈ H1(Ω) admits a trace on Si for any i ∈ J ,

so the operator Ih is well defined. For ψ ∈ L1(ΓD), we put Ih,D(ψ) :=
∑

i∈JD
l−1
i

∫
Si
ψ(x) dox ωi. This operator

is well defined because Si ⊂ ΓD for i ∈ JD. Note that since ωj(Qi) = 0 for i, j ∈ J with i �= j, we have

Ih(v)(Qi) = Ih,D(v|ΓD)(Qi) for i ∈ JD, v ∈ H1(Ω). (2.8)

We will need the following interpolation property of Ih.

Theorem 2.11. For v ∈ H1(Ω), K ∈ T, we have

h−1
K ‖v − Ih(v)|K‖L2(K) + ‖∇( v − Ih(v)|K )‖L2(K) ≤ c ‖∇v|K‖L2(K),

in particular ‖Ih(v)‖L2(Ω) + ‖∇hIh(v)‖L2(Ω) ≤ C‖v‖H1(Ω).

Proof. See ([23], Lem. 8.9.81) and its proof. Alternatively, this theorem may be deduced from ([11], Thm. 3.1.4);
see ([12], proof of Thm. 2.2). �

Corollary 2.12. Let r ∈ (1,∞), v ∈ H1(Ω). Then the inequality

‖Ih(v) − v‖Lr(Ω) ≤ c(r) (1 + diamΩ)2 ‖∇v‖L2(Ω)

is valid.
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Proof. By Lemma 2.7, Theorems 2.11 and (2.4), we get

‖Ih(v) − v‖Lr(Ω) =

⎛⎝∑
K∈T

‖Ih(v) − v|K‖r
Lr(K)

⎞⎠1/r

≤ c(r)

⎡⎣∑
K∈T

(
h

2/r−1
K ‖Ih(v) − v|K‖L2(K) + h

2/r
K ‖∇( Ih(v) − v|K )‖L2(K)

)r

⎤⎦1/r

≤ c(r)

⎛⎝∑
K∈T

(h2/r
K ‖∇v|K‖L2(K))r

⎞⎠1/r

≤ c(r) ‖∇v‖L2(Ω)

⎛⎝∑
K∈T

h2
K

⎞⎠1/r

≤ c(r) ‖∇v‖L2(Ω)

⎛⎝∑
K∈T

|K|
⎞⎠1/r

= c(r) ‖∇v‖L2(Ω) |Ω|1/r ≤ c(r) (1 + diamΩ)2 ‖∇v‖L2(Ω).

�

It will be useful to introduce another interpolation operator besides Ih. In fact, for v ∈ L2(Ω) with v|K ∈
C0(K) for K ∈ T, v continuous at Qi for i ∈ J , we set �h(v) :=

∑
i∈J v(Qi) ωi. Abbreviate

ϑ+
ij(t) :=

∫
Γij

max{b(x, t) · nij , 0} dox, mi(t) :=
∫

Di

m(x, t) dx (2.9)

for i ∈ J, j ∈ s(i), t ∈ (0, T ). We define a discrete convection term dh by setting

dh(t, vh, wh) :=
∑
i∈J

wh(Qi)

⎛⎝ ∑
j∈s(i)

(
ϑ+

ij(t)vh(Qi) − ϑ+
ji(t)vh(Qj)

)
+mi(t) vh(Qi)

⎞⎠
+

∑
i∈JN

vh(Qi)wh(Qi)
∫

Si

max{b(x, t) · n(x), 0} dox for vh, wh ∈ Xh, t ∈ (0, T ). (2.10)

This definition means that our numerical flux is based on an upwind finite volume method on the barycentric
grid (Di)i∈J .

In order discretize the time variable, we fix Z ∈ N and choose t1, . . . , tZ ∈ (0, T ) with t1 < . . . < tZ . Put
t0 := 0, tZ+1 := T, τk := tk − tk−1 for 1 ≤ k ≤ Z + 1.

Now we are in a position to introduce the finite element – finite volume discretization of problem (1.1)−(1.3)
we want to study in the work at hand. This problem consists in finding w(1)

h , . . . , w
(Z+1)
h ∈ Xh with

τ−1
k+1 (w(k+1)

h − w
(k)
h , vh)L2(Ω) +

(
a(tk+1)∇hw

(k+1)
h , ∇hvh

)
L2(Ω)

+ dh(tk+1, w
(k+1)
h , vh)

= (g(tk+1), vh)L2(Ω) +
∑
i∈JN

vh(Qi)
∫

Si

fN(x, tk+1) dox (2.11)

for vh ∈ Vh, k ∈ {0, . . . , Z}, w(0)
h := Ih(w(0)),

w
(k+1)
h (Qi) = Ih,D

(
fD(tk+1)

)
(Qi) for i ∈ JD, 0 ≤ k ≤ Z. (2.12)

This scheme is implicit because both the diffusion and the convection term are discretized on the same time
level. In (2.11), (2.12), our discrete problem is stated in a way which is suited for implementation. However,
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for our theoretical studies, a variant of (2.11), (2.12) with homogeneous Dirichlet boundary conditions on ΓD

is more appropriate. To this end, we put

fh(t) := Ih
(
f(t)

)
for t ∈ (0, T ), (2.13)

with f from (2.2).

Lemma 2.13. The relations fh ∈ W 1,1(0, T,Xh) and fh ∈ C0([0, T ], Xh) hold, where Xh is considered as a
space equipped with the L2-norm. We further have f ′

h(t) = Ih
(
f ′(t)

)
for t ∈ (0, T ).

Proof. By the second inequality in Theorem 2.11, the operator Ih : H1(Ω) 
→ Xh is bounded. Thus Lemma 2.5
follows by a reasoning as in the proof of Lemma 2.5. �

The variant of (2.11), (2.12) we have in mind may now be stated as follows: Find u(1)
h , . . . , u

(Z+1)
h ∈ Vh such

that

τ−1
k+1 (u(k+1)

h − u
(k)
h , vh)L2(Ω) +

(
a(tk+1)∇hu

(k+1)
h , ∇hvh

)
L2(Ω)

+ dh(tk+1, u
(k+1)
h , vh)

= (g(tk+1), vh)L2(Ω) +
∑
i∈JN

vh(Qi)
∫

Si

fN (x, tk+1) dox − (
a(tk+1)∇hfh(tk+1), ∇hvh

)
L2(Ω)

− dh

(
tk+1, fh(tk+1), vh) − τ−1

k+1

(
fh(tk+1) − fh(tk), vh)L2(Ω), (2.14)

with vh ∈ Vh, 0 ≤ k ≤ Z, u
(0)
h := Ih

(
w(0) − f(0)

)
. The relation u(1)

h , . . . , u
(Z+1)
h ∈ Vh means that the functions

u
(1)
h , . . . , u

(Z+1)
h satisfy homogeneous Dirichlet boundary conditions on ΓD. Due to (2.8), problem (2.11), (2.12)

on the one hand and (2.14) on the other are equivalent: if w(1)
h , . . . , w

(Z+1)
h ∈ Xh and u(1)

h , . . . , u
(Z+1)
h ∈ Vh with

w
(i)
h = u

(i)
h + fh(ti) for 1 ≤ i ≤ Z + 1, then the family (w(1)

h , . . . , w
(Z+1)
h ) solves (2.11), (2.12) if and only if

(u(1)
h , . . . , u

(Z+1)
h ) is a solution to (2.14). We state our stability estimate for our finite element – finite volume

discretization of (1.1)–(1.3) in terms of solutions to (2.11), (2.12). To this end, we introduce the abbreviations

A(v(1)
h , . . . , v

(Z+1)
h ) :=

(
Z+1∑
l=1

τl ‖v(l)
h ‖2

L2(Ω)

)1/2

+ max
1≤l≤Z+1

‖v(l)
h ‖L2(Ω)

+ ν1/2

(
Z+1∑
l=1

τl ‖∇hv
(l)
h ‖2

L2(Ω)

)1/2

+

(
Z+1∑
l=1

τl
∑
i∈JN

v
(l)
h (Qi)2

∫
Si

|b(x, t) · n(x)| dox

)1/2

(2.15)

for v
(1)
h , . . . , v

(Z+1)
h ∈ Xh,

h0 := min

{(
β/

[
4 c0 ϕ1

(
1 + sup

0<t<T
‖divxb(t)‖Lp(Ω)

)])p/(p−2)

, (diamΩ)/ϕ1

}
, (2.16)

with c0 from (2.5), β from (1.5), ϕ1 from (2.1) and p from (1.4). Then our theory with respect to discrete
solutions to (1.1)–(1.3) reads as follows.

Theorem 2.14. Problem (2.11), (2.12) admits a unique solution w
(1)
h , . . . , w

(Z+1)
h ∈ Xh.
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Let ε ∈ (0,∞) and put J (ε)
N := {i ∈ JN : l−1

i

∫
Si

|b(x, t) · n(x)| dox ≥ ε for any t ∈ [0, T ]}. Then, if h ≤ h0,

A(w(1)
h , . . . , w

(Z+1)
h ) ≤ C

(
1 + ν/ν + ‖∂3ζ‖

L1
(

0,T, L∞(Ω)

) (
1 + max

1≤l≤Z+1
‖b(tl)‖H1(Ω)

)
⎡⎢⎢⎣
(

Z+1∑
l=1

τl ‖g(tl)‖2
L2(Ω)

)1/2

+ ‖w(0)‖H1(Ω) + max
0≤l≤Z+1

‖f̃D(tl)‖H1/2(∂Ω)

+‖f̃ ′
D‖L1( 0,T, H1/2(∂Ω) ) + B(ν, ν, b,m)

(
Z+1∑
l=1

τl ‖f̃D(tl)‖2
H1/2(∂Ω)

)1/2

+ε−1/2

⎛⎜⎝Z+1∑
l=1

τl
∑

i∈J
(ε)
N

‖fN(tl)|Si‖2
L2(Si)

⎞⎟⎠
1/2

+ ν−1/4−δ/2

⎛⎜⎝Z+1∑
l=1

τl
∑

i∈JN\J
(ε)
N

‖fN(tl)|Si‖2
L2(Si)

⎞⎟⎠
1/2
⎤⎥⎥⎦ ,(2.17)

with δ from Theorem 2.2, ν, ν from (1.6), ζ from (1.5), ∂3ζ from Lemma 2.1, and with the term B(ν, ν, b,m)
defined by

B(ν, ν, b,m) := max
1≤l≤Z+1

(
1 + |b(tl)|∞ + ‖divxb(tl) +m(tl)‖Lp(Ω)) + ν/ν1/2,

where p was introduced in (1.4).

The constant C in (2.17) is to be understood as a generic constant of the type introduced further above,
depending on parameters as described there.

We draw the attention of the reader to the factor ν−1/4−δ/2, which is a surprising feature of (2.17). This
is the factor ν−K with K > 1/4 mentioned in Section 1. Note that it comes to bear only if fn �= 0 (non-
vanishing Robin−Neumann boundary data) and if the index set JN\J (ε)

N is not empty. But an index i ∈ J

belongs to J
(ε)
N if, for example, |b(x, t) · n(x)| ≥ ε for any x ∈ Si and t ∈ [0, T ]. Then maxx∈Si |b(x, t)| >

0, 0 < ε/maxx∈Si |b(x, t)| ≤ 1 for t ∈ [0, T ], and the angle between b(y, t) and Si is bounded from below by
π/2 − arccos(ε/maxx∈Si |b(x, t)|), for any y ∈ Si and t ∈ [0, T ]. Therefore the case JN\J (ε)

N �= ∅ for any ε > 0
may be interpreted in the sense that the convective velocity does not keep a minimum angle with ΓN . On the
other hand, if such an angle exists, it enters into the stability bound via the parameter ε.

As concerns the steady problem (1.7), (1.8), we define a discrete convection term Dh(vh, wh) in an analogous
way as in the evolutionary case. Then we consider an approximate solution Wh ∈ Xh of (1.7), (1.8) satisfying
the equations

(A∇hWh, ∇hvh)L2(Ω) +Dh(Wh, vh) = (G, vh)L2(Ω) +
∑
i∈JN

vh(Qi)
∫

Si

FN (x) dox, for vh ∈ Vh, (2.18)

Wh(Qi) = Ih,D(FD)(Qi) for i ∈ JD. (2.19)

Then the ensuing stability result for Wh holds.

Theorem 2.15. There is a unique solution Wh ∈ Xh to (2.18), (2.19).
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Put h1 := min
{(
β/
[
2 c0 ϕ1 (1 + ‖divB‖Lp(Ω))

] )p/(p−2)
, (diamΩ)/ϕ1

}
, with c0, β, ϕ1, and p as in (2.16).

Suppose that h ≤ h1. Let ε ∈ (0,∞). Then

‖Wh‖L2(Ω) + ν1/2 ‖∇hWh‖L2(Ω) +

(∑
i∈JN

Wh(Qi)2
∫

Si

|B(x) · n(x)| dox

)1/2

≤ C (1 + ν/ν) (1 + ‖B‖H1(Ω))⎡⎢⎢⎣‖G‖L2(Ω) +
(
1 + |B|∞ + ‖divB +M‖Lp(Ω) + ν/ν1/2

)
‖F̃D‖H1/2(∂Ω)

+ ε−1/2

⎛⎜⎝ ∑
i∈J̃

(ε)
N

‖FN |Si‖2
L2(Si)

⎞⎟⎠
1/2

+ ν−1/4−δ/2

⎛⎜⎝ ∑
i∈JN\J̃

(ε)
N

‖FN |Si‖2
L2(Si)

⎞⎟⎠
1/2
⎤⎥⎥⎦ , (2.20)

with J̃ (ε)
N := {i ∈ JN : l−1

i

∫
Si

|B(x) · n(x)| dox ≥ ε}.

We will give a proof only of Theorem 2.14. The same argument, but with considerable simplifications, may
be used to establish Theorem 2.15.

3. Coercivity of the discrete convection term

In this section, we derive a coercivity relation for dh(t, · , · ). We begin by fixing t ∈ (0, T ) and abbreviating
β := b( · , t), bh := dh(t, · , · ), θ+ij := ϑ+

ij(t) =
∫

Γij
max{β(x) · n(x), 0} dox for i ∈ J, j ∈ s(i); see (2.10), (2.9)

for the definition of dh and ϑ+
ij(t), respectively. Moreover, we set μ := m( · , t), ϕ := ζ( · , t), with ζ from (1.5),

μi :=
∫

Di
μ(x) dx = mi(t) for i ∈ J , with mi(t) defined in (2.9). Note that by (2.10),

bh(vh, wh) =
∑
i∈J

wh(Qi)

⎛⎝ ∑
j∈s(i)

(
θ+ij vh(Qi) − θ+ji vh(Qj)

)
+ μi vh(Qi)

⎞⎠
+
∑
i∈JN

vh(Qi)wh(Qi)
∫

Si

max{(β · n)(x), 0} dox for vh, wh ∈ Xh.

We further observe that by our assumptions in Section 1, we have β ∈ H1(Ω)2, div β ∈ Lp(Ω), μ ∈ Lp(Ω) with
p from (1.4),

div β(x)/2 + μ(x) ≥ 0, −∇ϕ(x) · β(x) ≥ β for x ∈ Ω. (3.1)

Since nij = −nji for i ∈ J, j ∈ s(i), we get θ+ij − θ+ji =
∫

Γij
(β · n)(x) dox for i ∈ J, j ∈ s(i), so

∑
j∈s(i)

(θ+ij − θ+ji) =
∫

Di

div β(x) dx − δJ\Jo(i)
∫

Si

(β · n)(x) dox (i ∈ J), (3.2)

with δJ\Jo(i) = 1 if i ∈ J\Jo, and δJ\Jo(i) = 0 else. Moreover, by (2.1),

|ϕ(x) − ϕ(x′)| ≤ ϕ1 |x− x′|, diamΩ ≤ ϕ(x) ≤ ϕ1 for x, x′ ∈ Ω. (3.3)
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Lemma 3.1. Let vh, wh ∈ Xh. Then, with ϕ1 from (3.3),(
vh, �h(whϕ)

) ≤ (
vh, �h(vhϕ)

)1/2 (
wh, �h(whϕ)

)1/2
,(

vh, �h(vhϕ)
) ≤ ϕ1 ‖vh‖2

2, and if vh ∈ Vh : ‖∇h�h(vhϕ)‖L2(Ω) ≤ c ϕ1‖∇hvh‖L2(Ω).

Proof. The first two estimates in the lemma are an immediate consequence of (2.7), (3.3)2 and the Cauchy–
Schwarz inequality for sums. As for the third, it follows by modifying the proof of ([15], Lem. 3.2). In fact, let
K ∈ T, and let i1, i2, i3 ∈ J be such that the points Qi1 , Qi2 , Qi3 are the midpoints of the edges of K. Then
by (2.6) and the definition of �h(vh ϕ),

‖∇( �h(vh ϕ)|K )‖L2(K) =
∫

K

∣∣∣∣∣
3∑

r=1

(vh ϕ)(Qir )∇(wir |K)

∣∣∣∣∣
2

dx ≤ A + 2ϕ(Qi1)
2 ‖∇(vh|K)‖2

L2(K), (3.4)

with A := 2
∫

K

∣∣∑3
r=1

(
ϕ(Qir ) − ϕ(Qi1)

)
vh(Qir )∇(wir |K)

∣∣2 dx. But
∣∣ϕ(Qir ) − ϕ(Qi1)

∣∣ ≤ ϕ1 hK

by (3.3), and ‖∇(wir |K)‖L2(K) ≤ c h−1
K ‖wir |K‖L2(K) by Lemma 2.9. Moreover the inequality

‖wir |K‖L2(K) ≤ |K| = 3 |Dir ∩K| holds for 1 ≤ r ≤ 3. These relations put together yield that
A ≤ c ϕ1

∑
i∈J, Qi∈K vh(Qi)2 |K ∩Di|. Thus, taking the sum with respect to K ∈ T in (3.4), we obtain that

‖∇h�h(vhϕ)‖L2(Ω) is bounded by the term c ϕ1

∑
i∈J vh(Qi)2 |Di| + 2ϕ1 ‖∇hvh‖2

L2(Ω). The third inequality in
Lemma 3.1 now follows with (2.7). �

The next lemma shows in particular that bh(vh, vh) is non-negative.

Lemma 3.2. Let vh ∈ Vh. Then

bh(vh, vh) ≥ Kh/2 +
∑
i∈JN

vh(Qi)2
∫

Si

|β · n|(x) dox / 2,

where Kh := Kh(vh) :=
∑

i∈J

∑
j∈s(i) θ

+
ji

(
vh(Qi) − vh(Qj)

)2
. In particular bh(vh, vh) ≥ Kh/2 ≥ 0.

Proof. As in ([12], proof of Lem. 3.1), we obtain

bh(vh, vh) = Kh/2 +
∑
i∈J

vh(Qi)2

⎛⎝ ∑
j∈s(i)

(θ+ij − θ+ji)/2 + μi

⎞⎠+
∑
i∈JN

vh(Qi)2
∫

Si

max{(β · n)(x), 0} dox. (3.5)

Recalling (3.2), (3.1)1 and the relations vh(Qi) = 0 for i ∈ JD, J\Jo = JN ∪ JD, we may deduce from (3.5)
that

bh(vh, vh) ≥Kh/2 −
∑

i∈JN

vh(Qi)2
∫

Si

(β · n)(x) dox/2 +
∑
i∈JN

vh(Qi)2
∫

Si

max{(β · n)(x), 0} dox

=Kh/2 +
∑

i∈JN

vh(Qi)2
∫

Si

|(β · n)(x)| dox/2. �

Lemma 3.3. Let vh ∈ Vh. Then bh
(
vh, �h(vhϕ)

) ≥ Ah/2 + Rh, where

Ah := Ah(vh) :=
∑
j∈J

vh(Qi)2
∑

j∈s(i)

(
θ+jiϕ(Qi) − θ+ij ϕ(Qj)

)
,

and Rh := Rh(vh) is an abbreviation for the expression∑
i∈J

vh(Qi)2 ϕ(Qi)
∫

Di

div β(x) dx/2 −
∑
i∈JN

vh(Qi)2 ϕ(Qi)
∫

Si

min{(β · n)(x), 0} dox.
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Proof. We modify the proof of ([15], Lem. 3.4), starting with the equation bh
(
vh, �h(vhϕ)

)
= A1 + A2 + A3,

where

A1 :=
∑
i∈J

vh(Qi)ϕ(Qi)
∑

j∈s(i)

(vh(Qi) − vh(Qj))θ+ji,

A2 :=
∑
i∈J

vh(Qi)2 ϕ(Qi)
( ∑

j∈s(i)

(θ+ij − θ+ji) + μi

)
,

A3 :=
∑
i∈JN

vh(Qi)2 ϕ(Qi)
∫

Si

max{(β · n)(x), 0} dox.

Proceeding as in the proof of ([15], Lem. 3.4), we find that A1 ≥ Ah. On the other hand, by (3.2), (3.1)1 and
the equations vh(Qi) = 0 for i ∈ JD, J\Jo = JN ∪ JD, we obtain

A2 ≥
∑
i∈J

vh(Qi)2 ϕ(Qi)
∫

Di

div β(x) dx/2 −
∑
i∈JN

vh(Qi)2 ϕ(Qi)
∫

Si

(β · n)(x) dox.

Now the lemma follows from the relation bh
(
vh, �h(vhϕ)

)
= A1 +A2 +A3. �

Lemma 3.4. Let vh ∈ Vh, and put

Bh := Bh(vh) := −
∑
i∈J

vh(Qi)2
∑

j∈s(i)

∫
Γij

ϕ(x)β(x) · nij dox.

Then

Bh ≥ β ‖vh‖2
L2(Ω) −

∑
i∈J

vh(Qi)2
∫

Di

div β(x)ϕ(x) dx +
∑
i∈JN

vh(Qi)2
∫

Si

(β · n)(x)ϕ(x) dox.

Proof. For i ∈ J , we find

−
∑

j∈s(i)

∫
Γij

ϕβ · nij dox = −
∫

Di

β · ∇ϕdx−
∫

Di

div β ϕdx+ δJ\Jo(i)
∫

Si

(β · n)ϕdox,

where δJ\Jo(i) is defined as in (3.2). But − ∫Di
β · ∇ϕdx ≥ β |Di| for i ∈ J by (3.1)2, so Lemma 3.4 follows

with (2.7) and the equations vh(Qi) = 0 for i ∈ JD, J\Jo = JD ∪ JN . �

Lemma 3.5. The estimate |Ah − Bh| ≤ c ϕ1 ‖β‖1/2
H1(Ω) ‖vh‖L2(Ω) K

1/2
h holds for vh ∈ Vh, with Bh from

Lemma 3.4, Ah from Lemma 3.3, and Kh from Lemma 3.2.

Proof. We refer to the proof of ([15], Lem. 3.6). �

The term
∑

i∈JN
vh(Qi)wh(Qi)

∫
Si

max{b(x, t) · n(x), 0} dox in the definition of dh(t, vh, wh), a term which
is linked to the Robin−Neumann boundary condition (1.2)2, causes most of the difficulties in the proof of the
next theorem. Actually this term was inserted into the definition of the term dh(t, vh, wh) because otherwise we
could not see how to carry through this proof. Since this term was not present in [15], we elaborate this proof
in more detail.

Theorem 3.6. Suppose that h ≤ h0, with h0 introduced in (2.16). Let vh ∈ Vh. Then

‖vh‖2
L2(Ω) ≤ C (1 + ‖β‖H1(Ω)) bh(vh, vh) + (4/β) bh

(
vh, �h(vh ϕ)

)
.
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Proof. Lemma 3.4 yields β ‖vh‖2
L2(Ω) ≤ Bh +A, with

A :=
∑
i∈J

vh(Qi)2
∫

Di

div β(x)ϕ(x) dx −
∑
i∈JN

vh(Qi)2
∫

Si

(β · n)(x)ϕ(x) dox.

Therefore

β ‖vh‖2
L2(Ω) ≤ |Ah − Bh| + Ah +A ≤ |Ah − Bh| + 2 bh(vh, �h(vh ϕ)

)− 2 Rh +A,

where we used Lemma 3.3 in the last inequality. We may conclude with Lemmas 3.5 and 3.2 that

β ‖vh‖2
L2(Ω) ≤ C ‖β‖1/2

H1(Ω) ‖vh‖L2(Ω) bh(vh, vh)1/2 + 2 bh(vh, �h(vh ϕ)
)− 2 Rh +A. (3.6)

But

−2 Rh +A =
∑
i∈J

vh(Qi)2
∫

Di

divβ(x)
(
ϕ(x) − ϕ(Qi)

)
dx (3.7)

+
∑
i∈JN

vh(Qi)2
∫

Si

(
2ϕ(Qi) min{(β · n)(x), 0} − ϕ(x) (β · n)(x)

)
dox.

For i ∈ JN , x ∈ Si, we find

2ϕ(Qi) min{(β · n)(x), 0} − ϕ(x) (β · n)(x) =
(
2ϕ(Qi) − ϕ(x)

)
min{(β · n)(x), 0} − ϕ(x) max{(β · n)(x), 0}

≤ (
2ϕ(Qi) − ϕ(x)

)
min{(β · n)(x), 0},

where the preceding inequality holds because −ϕ(x) max{(β · n)(x), 0} ≤ 0. Taking account of (3.3) and the
relation min{(β · n)(x), 0} ≤ 0 for any x ∈ ∂Ω, we may thus conclude that

2ϕ(Qi) min{(β · n)(x), 0} − ϕ(x) (β · n)(x) ≤ (
diamΩ − |ϕ(Qi) − ϕ(x)| ) min{(β · n)(x), 0}

≤ (
diamΩ − ϕ1 |Qi − x| ) min{(β · n)(x), 0} ≤ (

diamΩ − ϕ1 h
)

min{(β · n)(x), 0} ≤ 0

for i ∈ JN , x ∈ Si, where we used the relation h ≤ h0 ≤ (diamΩ)/ϕ1 (see (2.16)) in the last inequality
Therefore from (3.7),

− 2 Rh + A ≤
∑
i∈J

vh(Qi)2
∫

Di

div β(x)
(
ϕ(x) − ϕ(Qi)

)
dx. (3.8)

Using (3.3), we further observe that |ϕ(x) − ϕ(Qi)| ≤ max
{
hKl

i
: l ∈ {1, 2}} for i ∈ J, x ∈ Si. Therefore

with (2.5), ∣∣∣∣∫
Di

div β(x)
(
ϕ(x) − ϕ(Qi)

)
dx
∣∣∣∣ ≤ ϕ1 max

{
hKl

i
: l ∈ {1, 2}}∫

Di

|div β(x)| dx

≤ ϕ1 max
{
hKl

i
: l ∈ {1, 2}} |Di|1/p′ ‖divβ‖Lp(Ω) ≤ c0 ϕ1 |Di|h1−2/p ‖divβ‖Lp(Ω),

where c0 was introduced in (2.5) and p in (1.4). It follows with (3.8) and (2.7) that

−2 Rh +A ≤ c0 ϕ1 h
1−2/p ‖divβ‖Lp(Ω)

∑
i∈J

vh(Qi)2 |Di| ≤ c0 ϕ1 h
1−2/p ‖divβ‖Lp(Ω) ‖vh‖2

L2(Ω).

On the other hand, due to the assumptions h ≤ h0 and p > 2, and by the choice of h0 in (2.16), we find
c0 ϕ1 h

1−2/p ‖divβ‖Lp(Ω) ≤ β/4, so −2 Rh +A ≤ β ‖vh‖L2(Ω)/4. Hence by (3.6),

β ‖vh‖2
L2(Ω) ≤ C ‖β‖1/2

H1(Ω) ‖vh‖L2(Ω) bh(vh, vh)1/2 + 2 bh(vh, �h(vh ϕ)
)

+ β ‖vh‖2
L2(Ω)/4.
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As a consequence,

β ‖vh‖2
L2(Ω) ≤ C ‖β‖H1(Ω) bh(vh, vh) + 2 bh(vh, �h(vh ϕ)

)
+ β ‖vh‖2

L2(Ω)/2.

Theorem 3.6 follows from this inequality. �

Corollary 3.7. Suppose that h ≤ h0, and let vh ∈ Vh. Then

‖vh‖2
L2(Ω) +

∑
i∈JN

vh(Qi)2
∫

Si

|(β · n)(x)| dox ≤ C (1 + ‖β‖H1(Ω)) bh(vh, vh) + (4/β) bh
(
vh, �h(vh ϕ)

)
.

Proof. Lemma 3.2 yields that
∑

i∈JN
vh(Qi)2

∫
Si

|(β · n)(x)| dox ≤ 2 bh(vh, vh). Thus Corollary 3.7 follows with
Theorem 3.6. �

4. Proof of Theorem 2.14.

The proof of the next theorem is based on the argument in ([15], p. 521–522). However, since the function ζ
(see (1.5)2) is time-dependent, the reasoning becomes more complicated, so we present it some detail.

Theorem 4.1. Let (α(l)
i )i∈J ∈ R

J for l ∈ {1, . . . , Z + 1}. Suppose that h ≤ h0, with h0 defined in (2.16), and
let u(0)

h , . . . , u
(Z+1)
h ∈ Vh satisfy

τ−1
k+1 (u(k+1)

h −u
(k)
h , vh)L2(Ω) +

(
a(tk+1)∇hu

(k+1)
h , ∇hvh

)
L2(Ω)

+ dh(tk+1, u
(k+1)
h , vh) =

∑
i∈J

α
(k+1)
i vh(Qi) (4.1)

for 0 ≤ k ≤ Z, vh ∈ Vh. Then, with A(u(1), . . . , u
(Z+1)
h ) introduced in (2.15), ζ in (1.5) and ∂3ζ in Lemma 2.1,

A(u(1)
h , . . . , u

(Z+1)
h )2 ≤C

(
1 + ν/ν + ‖∂3ζ‖L1( 0,T, L∞(Ω) )

) (
1 + max

1≤l≤Z+1
‖b(tl)‖H1(Ω)

)
·
(∣∣∣∣∣

Z+1∑
l=1

τl
∑
i∈J

α
(l)
i u

(l)
h (Qi)

∣∣∣∣∣+
∣∣∣∣∣
Z+1∑
l=1

τl
∑
i∈J

α
(l)
i �h

(
u

(l)
h ζ(tl)

)
(Qi)

∣∣∣∣∣+ ‖u(0)
h ‖2

L2(Ω)

)
. (4.2)

Proof. Choosing vh = u
(k+1)
h in (4.1), we get with (1.6) and (4.1) that

ν ‖∇hu
(k+1)
h ‖2

L2(Ω) + τ−1
k+1 ‖u(k+1)

h ‖2
L2(Ω) + dh

(
tk+1, u

(k+1)
h , u

(k+1)
h

)
≤
(
a(tk+1)∇hu

(k+1)
h , ∇hu

(k+1)
h

)
L2(Ω)

+ τ−1
k+1 ‖u(k+1)

h ‖2
L2(Ω) + dh

(
tk+1, u

(k+1)
h , u

(k+1)
h

)
≤
∑
i∈J

α
(k+1)
i u

(k+1)
h (Qi) + (2τk+1)

−1 ‖u(k+1)
h ‖2

L2(Ω) + (2τk+1)−1‖u(k)
h ‖2

L2(Ω) for 0 ≤ k ≤ Z.

From this we may conclude as in the proof of ([15], (4.1), (4.2)) that

Z+1∑
l=1

τl dh

(
tl, u

(l)
h , u

(l)
h

)
+ ν

Z+1∑
l=1

τl ‖∇hu
(l)
h ‖2

L2(Ω) + max
1≤l≤Z+1

‖u(l)
h ‖2

L2(Ω)

≤ 4

(∣∣∣∣∣
Z+1∑
l=1

τl
∑
i∈J

α
(l)
i u

(l)
h (Qi)

∣∣∣∣∣+ ‖u(0)
h ‖2

L2(Ω)/2

)
. (4.3)
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In the following, we use the abbreviation ũ(k)
h := �h(u(k)

h ζ(tk)) for 0 ≤ k ≤ Z + 1, with ζ from (1.5)2. Referring
to (4.1) again, this time with vh = ũ

(k+1)
h , we find that

τk+1

(
a(tk+1)∇hu

(k+1)
h , ∇hũ

(k+1)
h

)
L2(Ω)

+ τk+1 dh

(
tk+1, u

(k+1)
h , ũ

(k+1)
h

)
+ (u(k+1)

h , ũ
(k+1)
h )L2(Ω)

≤ τk+1

∑
i∈J

α
(k+1)
i ũ

(k+1)
h (Qi) +

(
u

(k)
h , �h

(
u

(k)
h ζ(tk+1)

))1/2

L2(Ω)
(u(k+1)

h , ũ
(k+1)
h )1/2

L2(Ω)

≤ τk+1

∑
i∈J

α
(k+1)
i ũ

(k+1)
h (Qi) + (u(k+1)

h , ũ
(k+1)
h )L2(Ω)/2 +

(
u

(k)
h , �h

(
u

(k)
h ζ(tk+1)

))
L2(Ω)

/2 (4.4)

for 0 ≤ k ≤ Z, where we used Lemma 3.1 in the first inequality. But by (2.7) and Lemma 2.1,

∣∣∣∣(u(k)
h , �h

(
u

(k)
h [ζ(tk+1) − ζ(tk)]

))
L2(Ω)

∣∣∣∣ ≤∑
i∈J

u
(k)
h (Qi)2

∣∣ ζ(Qi, tk+1) − ζ(Qi, tk)
∣∣ |Di|

≤
∑
i∈J

u
(k)
h (Qi)2

∫ tk+1

tk

|∂3ζ(Qi, t)| dt |Di| ≤
∫ tk+1

tk

‖∂3ζ(t)‖L∞(Ω) dt
∑
i∈J

u
(k)
h (Qi)2 |Di|

=
∫ tk+1

tk

‖∂3ζ(t)‖L∞(Ω) dt ‖u(k)
h ‖2

L2(Ω) for 1 ≤ k ≤ Z + 1.

As a consequence

(
u

(k)
h , �h

(
u

(k)
h ζ(tk+1)

))
L2(Ω)

≤
∣∣∣∣(u(k)

h , �h

(
u

(k)
h [ζ(tk+1) − ζ(tk)]

))
L2(Ω)

∣∣∣∣
+
(
u

(k)
h , ũ

(k)
h

)
L2(Ω)

≤
∫ tk+1

tk

‖∂3ζ(t)‖L∞(Ω) dt max
0≤l≤Z

‖u(l)
h ‖2

L2(Ω) +
(
u

(k)
h , ũ

(k)
h

)
L2(Ω)

. (4.5)

Thus, by applying (4.5) on the right-hand side of (4.4), taking the sum with respect to k ∈ {0, . . . , Z} on both
sides of the resulting inequality, then subtracting the term

Z∑
k=0

(
u

(k+1)
h , ũ

(k+1)
h

)
L2(Ω)

/2 +
Z∑

k=1

(u(k)
h , ũ

(k)
h )L2(Ω)/2,

and taking account of the fact that (u(Z+1)
h , ũ

(Z+1)
h )L2(Ω) ≥ 0 (Lem. 3.1), we arrive at the estimate

Z∑
k=0

τk+1

(
a(tk+1)∇hu

(k+1)
h , ∇hũ

(k+1)
h

)
L2(Ω)

+
Z∑

k=0

τk+1 dh

(
tk+1, u

(k+1)
h , ũ

(k+1)
h

)

≤
Z∑

k=0

τk+1

∑
i∈J

α
(k+1)
i ũ

(k+1)
h (Qi) + (u(0)

h , ũ
(0)
h )L2(Ω)

)
/2

+
∫ T

0

‖∂3ζ(t)‖L∞(Ω) dt max
0≤l≤Z

‖u(l)
h ‖2

L2(Ω).
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Note that (u(0)
h , ũ

(0)
h )L2(Ω) ≤ ϕ1 ‖u(0)‖2

L2(Ω) by Lemma 3.1. Thus we may conclude that

Z+1∑
l=1

τl dh

(
tl, u

(l)
h , ũ

(l)
h

)
≤

Z+1∑
l=1

τl

∣∣∣ ( a(tl)∇hu
(l)
h , ∇hũ

(l)
h

)
L2(Ω)

∣∣∣+ ∣∣∣∣∣
Z+1∑
l=1

τl
∑
i∈J

α
(l)
i ũ

(l)
h (Qi)

∣∣∣∣∣
+ C

(
1 + ‖∂3ζ‖

L1
(

0,T, L∞(Ω)
)) max

0≤l≤Z
‖u(l)

h ‖2
L2(Ω). (4.6)

On the other hand, Corollary 3.7 with vh = u
(l)
h yields

‖u(l)
h ‖2

L2(Ω) +
∑
i∈JN

u
(l)
h (Qi)2

∫
Si

|b(x, tl) · n(x)| dox

≤ C (1 + ‖b(tl)‖H1(Ω)) dh(tl, u
(l)
h , u

(l)
h ) + (4/β) dh(tl, u

(l)
h , ũ

(l)
h ) for 1 ≤ l ≤ Z + 1.

We may deduce from (4.3), (4.6) and the preceding inequality that

Z+1∑
l=1

τl ‖u(l)
h ‖2

L2(Ω) +
Z+1∑
l=1

τl
∑
i∈JN

u
(l)
h (Qi)2

∫
Si

|b(x, tl) · n(x)| dox ≤ C

(
1 + max

1≤l≤Z+1
‖b(tl)‖H1(Ω)

)
R, (4.7)

with

R :=

∣∣∣∣∣
Z+1∑
l=1

τl
∑
i∈J

α
(l)
i ũ

(l)
h (Qi)

∣∣∣∣∣+
Z+1∑
l=1

τl

∣∣∣( a(tl)∇hu
(l)
h , ∇hũ

(l)
h

)∣∣∣
+
(
1 + ‖∂3ζ‖L1( 0,T, L∞(Ω) )

) (‖u(0)
h ‖2

L2(Ω) +

∣∣∣∣∣
Z+1∑
l=1

τl
∑
i∈J

α
(l)
i u

(l)
h (Qi)

∣∣∣∣∣
)
.

Proceeding as in the proof of ([15], (4.5)), we add the left- and right-hand side of (4.3) to respectively the
left- and right-hand side of (4.7). On taking account of the fact that dh(t, vh, vh) ≥ 0 for t ∈ (0, T ), vh ∈ Vh

(Lem. 3.2), we get

A(u(1)
h , . . . , u

(Z+1)
h )2 ≤ C

(
1 + max

1≤l≤Z+1
‖b(tl)‖H1(Ω)

)
R. (4.8)

Moreover, as a consequence of (1.6) and Lemma 3.1,

Z+1∑
l=1

τl
∣∣ ( a(tl)∇hu

(l)
h , ∇hũ

(l)
h

) ∣∣ ≤ ν
Z+1∑
l=1

τl ‖∇hu
(l)
h ‖L2(Ω)‖∇hũ

(l)
h ‖L2(Ω)

≤ Cν

Z+1∑
l=1

τl ‖∇hu
(l)
h ‖2

L2(Ω) ≤ C(ν/ν)

(∣∣∣∣∣
Z+1∑
l=1

τl
∑
i∈J

α
(l)
i u

(l)
h (Qi)

∣∣∣∣∣+ ‖u(0)
h ‖2

2

)
, (4.9)

where the last inequality follows from (4.3). Theorem 4.1 follows from (4.8) and (4.9). �

Due to (2.7) and (2.6), problem (4.1) corresponds to (2.14) if we put

α
(l)
i :=

(
g(tl), ωi

)
L2(Ω)

− (
a(tl)∇hfh(tl), ∇hωi

)
L2(Ω)

− dh(tl, fh(tl), ωi)

+
∫

Si

fN(x, tl) dox δJN (i) − τ−1
l

(
fh(tl) − fh(tl−1)

)
(Qi) |Di| (4.10)
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for i ∈ J, 1 ≤ l ≤ Z+1, where δJN (i) := 0 for i ∈ J\JN , δJN (i) := 1 for i ∈ JN . The function f was introduced
in (2.2), and fh in (2.13). In the ensuing lemmas, we will estimate terms which may be written in the form∣∣∣∑Z+1

l=1 τl
∑

i∈J β
(l)
i v

(l)
h (Qi)

∣∣∣, with certain coefficients β(l)
i and given functions v(l)

h ∈ Vh, and which are relevant

if the coefficients α(l)
i are chosen as in (4.10). At the end of this section (Proof of Thm. 2.14), we will then show

how Theorem 2.14 may be deduced from (4.10), Theorem 4.1 and the ensuing lemmas. We begin by an obvious
result.

Lemma 4.2. For functions v(1)
h , . . . , v

(Z+1)
h ∈ Vh, the following inequality holds:∣∣∣∣∣

Z+1∑
l=1

τl

(
g(tl), v

(l)
h

)
L2(Ω)

∣∣∣∣∣ ≤
(

Z+1∑
l=1

τl ‖g(tl)‖2
L2(Ω)

)1/2 (Z+1∑
l=1

τl ‖v(l)
h ‖2

L2(Ω)

)1/2

.

In Lemmas 4.3, 4.5 and Theorem 4.4, we deal with the terms generated by the nonhomogeneous Dirichlet
boundary conditions (1.2)1. We recall that f was fixed in (2.2) and fh in (2.13).

Lemma 4.3. Let v(1)
h , . . . , v

(Z+1)
h ∈ Vh. Then∣∣∣∣∣

Z+1∑
l=1

(
fh(tl) − fh(tl−1), v

(l)
h

)
L2(Ω)

∣∣∣∣∣ ≤ C · ‖f̃ ′
D‖

L1
(

0,T, H1/2(∂Ω)
) max

1≤l≤Z+1
‖v(l)

h ‖L2(Ω).

Proof. Obviously∣∣∣∣∣
Z+1∑
l=1

(
fh(tl) − fh(tl−1), v

(l)
h

)
L2(Ω)

∣∣∣∣∣ ≤
Z+1∑
l=1

‖fh(tl) − fh(tl−1)‖L2(Ω) max
1≤k≤Z+1

‖v(k)
h ‖L2(Ω).

But by Theorem 2.4 and Lemma 2.13,

Z+1∑
l=1

‖fh(tl) − fh(tl−1)‖L2(Ω) =
Z+1∑
l=1

‖
∫ tl

tl−1

f ′
h(s) ds‖L2(Ω) ≤

∫ T

0

‖f ′
h(s)‖L2(Ω) ds.

On the other hand, f ′
h(s) = Ih

(
f ′(s)

)
= Ih

(
E[f̃ ′

D(s)]
)

for s ∈ (0, T ) according to Lemmas 2.13 and 2.5, with the
extension operator E and the interpolation operator Ih introduced in Section 2. Thus we get ‖f ′

h(s)‖L2(Ω) ≤
C ‖E[f̃ ′

D(s)]‖H1(Ω) ≤ C ‖f̃ ′
D(s)‖H1/2(∂Ω) by the second inequality in Theorem 2.11 and the boundedness of

E : H1/2(∂Ω) 
→ H1(Ω). Lemma 4.3 follows from the preceding estimates. �

In the ensuing theorem, we estimate the term dh(tl, fh(tl), vh), with dh defined in (2.10).

Theorem 4.4. For v(1)
h , . . . , v

(Z+1)
h ∈ Vh, with fh from (2.13) and p from (1.4), we have∣∣∣∣∣

Z+1∑
l=1

τl dh(tl, fh(tl), v
(l)
h )

∣∣∣∣∣
≤ C max

1≤l≤Z+1

(
|b(tl)|∞ + |b(tl)|1/2

∞ + ‖divxb(tl) +m(tl)‖Lp(Ω)

)(Z+1∑
l=1

τl ‖f̃D(tl)‖2
H1/2(∂Ω)

)1/2

·
⎡⎣(Z+1∑

l=1

τl ‖v(l)
h ‖2

L2(Ω)

)1/2

+

(
Z+1∑
l=1

τl
∑
i∈JN

v
(l)
h (Qi)2

∫
Si

|min{b(x, tl) · n(x), 0}| dox

)1/2
⎤⎦ .
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Proof. Let t ∈ (0, T ), vh ∈ Vh. Then dh(t, fh(t), vh) = A1 +A2, with

A1 :=
∑
i∈J

vh(Qi)
∑

j∈s(i)

(
fh(t)(Qi) − fh(t)(Qj)

)
ϑ+

ji(t),

A2 :=
∑
i∈J

vh(Qi) fh(t)(Qi)
( ∑

j∈s(i)

(
ϑ+

ij(t) − ϑ+
ji(t)

)
+mi(t)

)
+
∑
i∈JN

vh(Qi) fh(t)(Qi)
∫

Si

max{b(x, t) · n(x), 0} dox.

We find

|A1| ≤
∑
i∈J

|vh(Qi)|
∑

k∈{1, 2}
|∇( fh(t)|Kk

i

)| ∑
j∈s(i), Qj∈Kk

i

|Qj −Qi| |ϑ+
ji(t)|

≤
∑
i∈J

|vh(Qi)|
∑

k∈{1, 2}
|∇( fh(t)|Kk

i

)|h2
Kk

i
|b(t)|∞,

where the last inequality follows from the definition of ϑ+
ji(t) (see (2.9)) and the fact that the length of Γij is

bounded by diamKk
i , for i ∈ J, j ∈ s(i), k ∈ {1, 2} with Qj ∈ Kk

i . Note that for each index j ∈ s(i), we have
either Qj ∈ K1

i or Qj ∈ K2
i . For i ∈ J, k ∈ {1, 2}, we use (2.4) and the relation |Kk

i |/3 = |Kk
i ∩Di| to obtain

h2
Kk

i
≤ c |Kk

i | ≤ c |Kk
i ∩Di| ≤ c |Di|. Thus we get

|A1| ≤ c |b(t)|∞
∑
i∈J

|vh(Qi)| |Di|1/2
∑

k∈{1, 2}
|Kk

i |1/2 |∇( fh(t)|Kk
i

)|
≤ c |b(t)|∞

(∑
i∈J

vh(Qi)2 |Di|
)1/2

⎛⎝∑
i∈J

∑
k∈{1, 2}

|Kk
i | |∇

(
fh(t)|Kk

i

) |2
⎞⎠1/2

,

hence with (2.7), the second estimate in Theorem 2.11 and the choice of fh and f (see (2.13) and (2.2),
respectively),

|A1| ≤ C |b(t)|∞ ‖vh‖L2(Ω) ‖∇hfh(t)‖L2(Ω) ≤ C |b(t)|∞ ‖vh‖L2(Ω) ‖f̃D(t)‖H1/2(∂Ω). (4.11)

Moreover, by (3.2) and the equation vh(Qi) = 0 for i ∈ JD, we have A2 = A2,1 +A2,2, where

A2,1 :=
∑
i∈J

vh(Qi) fh(t)(Qi)
∫

Di

(
divxb(x, t) +m(x, t)

)
dx,

A2,2 := −
∑
i∈JN

vh(Qi) fh(t)(Qi)
∫

Si

min{b(x, t) · n(x), 0} dox.

But |A2,1| ≤
∑

i∈J |vh(Qi) fh(t)(Qi)| |Di|1/p′ ‖divxb(t)+m(t)|Di‖Lp(Ω), with p from (1.4) and p′ := (1−1/p)−1.
Since p > 2, hence 1 > 1/2 − 1/p > 0, we may conclude that

|A2,1| ≤
(∑

i∈J

vh(Qi)2 |Di|
)1/2 (∑

i∈J

|fh(t)(Qi)|(1/2−1/p)−1 |Di|
)1/2−1/p

·
(∑

i∈J

‖divxb(t) +m(t)|Di‖p
Lp(Ω)

)1/p

.

(4.12)
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Referring to (2.7), we observe that
(∑

i∈J vh(Qi)2 |Di|
)1/2 = ‖vh‖L2(Ω) and(∑

i∈J

|fh(t)(Qi)|(1/2−1/p)−1 |Di|
)1/2−1/p

= ‖ |fh(t)|(1/2−1/p)−1/2 ‖1−2/p
L2(Ω) = ‖fh(t)‖Lr(Ω),

with r := (1/2 − 1/p)−1. The preceding equation, Corollary 2.12, (2.13) and the Sobolev imbedding of H1(Ω)
into Lr(Ω) imply(∑

i∈J

|fh(t)(Qi)|(1/2−1/p)−1 |Di|
)1/2−1/p

≤ ‖fh(t)−f(t)‖Lr(Ω)+‖f(t)‖Lr(Ω)≤ C ‖f(t)‖H1(Ω)≤ C ‖f̃D(t)‖H1/2(∂Ω),

where the last inequality follows from (2.2) and the boundedness of the extension operator E. Since Di ∩Dj is
a set of measure zero for i, j ∈ J with i �= j, and because of the relation Ω = ∪{Di : i ∈ J}, we obtain the
equation

∑
i∈J ‖divxb(t) +m(t)|Di‖p

Lp(Ω) = ‖divxb(t) +m(t)‖p
Lp(Ω). Now we may conclude from (4.12) that

|A2,1| ≤ C ‖vh‖L2(Ω) ‖f̃D(t)‖H1/2(∂Ω) ‖divxb(t) +m(t)‖Lp(Ω). (4.13)

In addition we have |A2,2| ≤ B1B2, with Bk :=
(∑

i∈JN
γk,i

∫
Si

|min{b(x, t) · n(x), 0}| dox

)1/2

for k ∈ {1, 2},
where γ1,i := vh(Qi)2 and γ2,i := fh(t)(Qi)2 for i ∈ JN . By (2.13), the definition of the operator Ih and the
choice of the functions ωi, we get fh(t)(Qi) = l−1

i

∫
Si
f(x, t) dox for i ∈ J . But f(t)|Si = f̃D(t)|Si for i ∈ J\Jo

by (2.2), so

B2 ≤ |b(t)|1/2
∞

(∑
i∈JN

l−1
i

(∫
Si

f̃D(x, t) dox

)2
)1/2

≤ |b(t)|1/2
∞

(∑
i∈JN

∫
Si

f̃D(x, t)2 dox

)1/2

≤ |b(t)|1/2
∞ ‖f̃D(t)‖L2(∂Ω).

Thus we have shown that

|A2,2| ≤ B1 |b(t)|1/2
∞ ‖f̃D(t)‖L2(∂Ω). (4.14)

Recalling that dh(t, fh(t), vh) = A1 + A2, A2 = A2,1 +A2,2 and |A2,2| ≤ B1B2, and referring to (4.11), (4.13)
and (4.14), we obtain the estimate stated in Theorem 4.4. �

Lemma 4.5. For v
(1)
h , . . . , v

(Z+1)
h ∈ Vh, the term

∣∣∣∑Z+1
l=1 τl

(
a(tl)∇hfh(tl), ∇hv

(l)
h )L2(Ω)

∣∣∣ admits the upper
bound

C (ν/ν1/2)

(
Z+1∑
l=1

τl ‖f̃D(tl)‖2
H1/2(∂Ω)

)1/2 (
ν

Z+1∑
l=1

τl ‖∇hv
(l)
h ‖2

L2(Ω)

)1/2

.

Proof. Let t ∈ (0, T ), vh ∈ Vh. Then with (1.6), (2.13) and Theorem 2.11,

∣∣ (a(tl)∇hfh(tl), ∇hvh)L2(Ω)

∣∣ =

∣∣∣∣∣∣
∑

K∈T

∫
K

∇ ( fh(t)|K ) · a(x, t)∇(vh|K) dx

∣∣∣∣∣∣
≤
∑

K∈T

ν

∫
K

|∇ ( fh(t)|K ) | |∇(vh|K)| dx = ν

∫
Ω

|∇hfh(t)| |∇hvh| dx

≤ ν ‖∇hfh(t)‖L2(Ω) ‖∇hvh‖L2(Ω) ≤ C ν ‖f(t)‖H1(Ω) ‖∇hvh‖L2(Ω).

Since ‖f(t)‖H1(Ω) ≤ C ‖f̃D(t)‖H1/2(∂Ω) by (2.2) and the boundedness of the extension operator E, Lemma 4.5
follows. �
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The term
∫

Si
fN(x, tl) dox δJN (i) in (4.10) is induced by the nonhomogeneous Robin−Neumann boundary

conditions (1.2)2, and gives rise to a sum |∑Z+1
l=1 τl

∑
i∈JN

u
(l)
h (Qi)

∫
Si
fN (x, tl) dox| on the right-hand side

of (4.2) if the coefficients α(l)
i are chosen as in (4.10). The aim of the two ensuing lemmas consists in estimating

this sum against the data times the expression A(u(1)
h , . . . , u

(Z+1)
h ) (see (2.15)), which coincides with the left-

hand side of our stability result (2.17). Such an estimate inevitably gives rise to a factor ν−K for some K ≥ 1/4,
as is shown by a counterexample in Section 5. The challenge then is to arrive at an exponent K > 1/4 as close
to 1/4 as possible. We will obtain K = 1/4 + δ/2, for some δ > 0 which may be chosen as small as we wish,
but must be kept fixed. A key role in our proof is played by the trace estimate in Theorem 2.2, which we use
instead of the standard estimate of the H1/2-norm on ∂Ω against the H1-norm on Ω. On the basis of that
latter estimate, we would end up with K = 1/2 instead of K = 1/4 + δ/2. We further have to deal with the
difficulty that we cannot see why for vh ∈ Xh, the relation vh|∂Ω ∈ H1/2+δ/2(∂Ω) should hold. For this reason,
we approximate functions from Xh by functions from Wh, using Lemma 2.10 for that purpose. The space Wh

is a subspace of H1(Ω) so that the trace estimate from Theorem 2.2 may be applied to functions from Wh.

Lemma 4.6. Recall the parameter δ introduced in Theorem 2.2. Let ψ ∈ L2(ΓN ), vh ∈ Vh and J̃ ⊂ JN . Then∣∣∣∣∣∣
∑
i∈J̃

∫
Si

ψ vh dox

∣∣∣∣∣∣ ≤ C ν−1/4−δ/2

⎛⎝∑
i∈J̃

‖ψ|Si‖2
L2(Si)

⎞⎠1/2

(‖vh‖L2(Ω) + ν1/2 ‖∇hvh‖L2(Ω)).

Proof. We use the operator Eh introduced in Lemma 2.10. Applying Lemma 2.8, we get⎛⎝∑
i∈J̃

‖vh|Si‖2
L2(Si)

⎞⎠1/2

≤
(∑

i∈JN

‖vh − Eh(vh)|Si‖2
L2(Si)

)1/2

+
(∑

i∈JN

‖Eh(vh)|Si‖2
L2(Si)

)1/2

≤ c

(∑
i∈JN

[
h−1

Ki
‖vh − Eh(vh)|Ki‖2

L2(Ki)
+ hKi ‖∇ ( vh − Eh(vh)|Ki ) ‖2

L2(Ki)

])1/2

+ ‖Eh(vh)|∂Ω‖L2(∂Ω)

≤ c

⎛⎝∑
K∈T

[
h−1

K ‖vh − Eh(vh)|K‖2
L2(K) + hK ‖∇(vh|K)‖2

L2(K) + hK ‖∇Eh(vh)|K‖2
L2(K)

]⎞⎠1/2

+ ‖Eh(vh)|∂Ω‖Hδ(∂Ω). (4.15)

It follows with the first inequality in Lemma 2.10 that⎛⎝∑
i∈J̃

‖vh|Si‖2
L2(Si)

⎞⎠1/2

≤ c

⎛⎝∑
K∈T

(
hK ‖∇(vh|K)‖2

L2(K) + hK ‖∇Eh(vh)|K‖2
L2(K)

)⎞⎠1/2

+ ‖Eh(vh)|∂Ω‖Hδ(∂Ω).

Due to the inverse inequality from Lemma 2.9, we may now conclude that
(∑

i∈J̃ ‖vh|Si‖2
L2(Si)

)1/2 is bounded by

c

⎛⎝∑
K∈T

( ‖vh|K‖L2(K) ‖∇(vh|K)‖L2(K) + ‖Eh(vh)|K‖L2(K) ‖∇Eh(vh)|K‖L2(K)

)⎞⎠1/2

+ ‖Eh(vh)|∂Ω‖Hδ(∂Ω),

and so by

c
( ‖vh‖L2(Ω) ‖∇hvh‖L2(Ω) + ‖Eh(vh)‖L2(Ω) ‖∇hEh(vh)‖L2(Ω)

)1/2 + ‖Eh(vh)|∂Ω‖Hδ(∂Ω).
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Hence by the second and third inequality in Lemma 2.10, and by Theorems 2.2, 2.3 and 2.6,⎛⎝∑
i∈J̃

‖vh|Si‖2
L2(Ω)

⎞⎠1/2

≤ C (‖vh‖1/2
L2(Ω) ‖∇hvh‖1/2

L2(Ω) + ‖vh‖L2(Ω) + ‖Eh(vh)‖Hδ+1/2(Ω))

≤ C
(
‖vh‖1/2

L2(Ω) ‖∇hvh‖1/2
L2(Ω) + ‖Eh(vh)‖1/2−δ

L2(Ω) ‖Eh(vh)‖δ+1/2
H1(Ω)

)
≤ C

(
‖vh‖1/2

L2(Ω) ‖∇hvh‖1/2
L2(Ω) + ‖vh‖1/2−δ

L2(Ω) (‖vh‖L2(Ω) + ‖∇hvh‖L2(Ω))1/2+δ
)

≤ C ‖vh‖1/2−δ
L2(Ω) ‖∇hvh‖1/2+δ

L2(Ω).

By Young’s inequality for real numbers as in ([1], p. 23, (4)), we may conclude for κ > 0 that

νκ

⎛⎝∑
i∈J̃

‖vh|Si‖2
L2(Si)

⎞⎠1/2

≤ C (‖vh‖L2(Ω) + νκ (1/2+δ)−1 ‖∇hvh‖L2(Ω)).

Choosing κ = 1/4 + δ/2, we now obtain∣∣∣∣∣∣
∑
i∈J̃

∫
Si

ψ vh dox

∣∣∣∣∣∣ ≤ C ν−1/4−δ/2

⎛⎝∑
i∈J̃

‖ψ|Si‖2
L2(Si)

⎞⎠1/2

ν1/4+δ/2

⎛⎝∑
i∈J̃

‖vh|Si‖2
L2(Si)

⎞⎠1/2

≤ C ν−1/4−δ/2

⎛⎝∑
i∈J̃

‖ψ|Si‖2
L2(Si)

⎞⎠1/2

(‖vh‖L2(Ω) + ν1/2 ‖∇hvh‖L2(Ω)). �

Lemma 4.7. Let ψ ∈ L2(ΓN ), vh ∈ Vh and J̃ ⊂ JN . Then∣∣∣∣∣∣
∑
i∈J̃

vh(Qi)
∫

Si

ψ dox

∣∣∣∣∣∣ ≤ C ν−1/4−δ/2

⎛⎝∑
i∈J̃

‖ψ|Si‖2
L2(Si)

⎞⎠1/2

(‖vh‖L2(Ω) + ν1/2 ‖∇hvh‖L2(Ω)).

Proof. We find with Lemma 4.6 that∣∣∣∣∣∣
∑
i∈J̃

vh(Qi)
∫

Si

ψ dox

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
∑
i∈J̃

∫
Si

ψ vh dox

∣∣∣∣∣∣+
∣∣∣∣∣∣
∑
i∈J̃

∫
Si

ψ(x)
(
vh(Qi) − vh(x)

)
dox

∣∣∣∣∣∣
≤ C ν−1/4−δ/2

⎛⎝∑
i∈J̃

‖ψ|Si‖2
L2(Si)

⎞⎠1/2

(‖vh‖L2(Ω) + ν1/2 ‖∇hvh‖L2(Ω)) + A, (4.16)

where A :=
∑

i∈J̃

∫
Si

|ψ(x)| |∇(vh|Ki)| |Qi − x| dox. But with (2.4) and since li ≤ hKi ,

A ≤
∑
i∈J̃

∫
Si

|ψ(x)| dox |∇(vh|Ki)|hKi ≤
∑
i∈J̃

‖ψ|Si‖L2(Si) |∇(vh|Ki)|h3/2
Ki

≤ c
∑
i∈J̃

‖ψ|Si‖L2(Si)

( |Ki| |∇(vh|Ki)|2
)1/2

h
1/2
Ki

≤ c
∑
i∈J̃

‖ψ|Si‖L2(Si) ‖∇(vh|Ki)‖L2(Ki) h
1/2
Ki

≤ c

⎛⎝∑
i∈J̃

‖ψ|Si‖2
L2(Si)

⎞⎠1/2 ⎛⎝∑
K∈T

‖∇(vh|K)‖2
L2(K) hK

⎞⎠1/2

.
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Using Lemma 2.9 (inverse inequality), we thus see that

A ≤ c

⎛⎝∑
i∈J̃

‖ψ|Si‖2
L2(Si)

⎞⎠1/2 ⎛⎝∑
K∈T

‖vh|K‖L2(K) ‖∇(vh|K)‖L2(K)

⎞⎠1/2

≤ c

⎛⎝∑
i∈J̃

‖ψ|Si‖2
L2(Si)

⎞⎠1/2

‖vh‖1/2
L2(Ω) ‖∇hvh‖1/2

L2(Ω).

On the other hand, as in the proof of Lemma 4.6, we observe that by Poincaré’s inequality (Thm. 2.6) and
Young’s inequality for real numbers,

ν1/4+δ/2 ‖vh‖1/2
L2(Ω) ‖∇hvh‖1/2

L2(Ω) ≤ c ν1/4+δ/2 ‖vh‖1/2−δ
L2(Ω) ‖∇hvh‖1/2+δ

L2(Ω) ≤ c (‖vh‖L2(Ω) + ν1/2 ‖∇hvh‖L2(Ω)).

This estimate and the preceding one yield that

A ≤ c ν−1/4−δ/2

⎛⎝∑
i∈J̃

‖ψ|Si‖2
L2(Si)

⎞⎠1/2 (
‖vh‖L2(Ω) + ν1/2 ‖∇hvh‖L2(Ω)

)
,

so Lemma 4.7 follows from (4.16). �

Corollary 4.8. Let v(1)
h , . . . , v

(Z+1)
h ∈ Vh and J̃ ⊂ JN . Then∣∣∣∣∣∣

Z+1∑
l=1

τl
∑
i∈J̃

v
(l)
h (Qi)

∫
Si

fN (x, tl) dox

∣∣∣∣∣∣ ≤ C ν−1/4−δ/2

⎛⎝Z+1∑
l=1

τl
∑
i∈J̃

‖fN(tl)|Si‖2
L2(Si)

⎞⎠1/2

·
⎡⎣(Z+1∑

l=1

τl ‖v(l)
h ‖2

L2(Ω)

)1/2

+ ν1/2

(
Z+1∑
l=1

τl ‖∇hvh‖2
L2(Ω)

)1/2
⎤⎦ .

Proof. Lemma 4.7. �

Lemma 4.9. Let ε > 0 and let v(1)
h , . . . , v

(Z+1)
h ∈ Vh. Then, with J (ε)

N defined in Theorem 2.14,∣∣∣∣∣∣∣
Z+1∑
l=1

τl
∑

i∈J
(ε)
N

v
(l)
h (Qi)

∫
Si

fN (x, tl) dox

∣∣∣∣∣∣∣
≤ ε−1/2

⎛⎜⎝Z+1∑
l=1

τl
∑

i∈J
(ε)
N

‖fN(tl)|Si‖2
L2(Si)

⎞⎟⎠
1/2 (

Z+1∑
l=1

τl
∑

i∈JN

v
(l)
h (Qi)2

∫
Si

|b(x, tl) · n(x)| dox

)1/2

.

Proof. Let vh ∈ Vh, t ∈ (0, T ). Then by the definition of J (ε)
N ,∣∣∣∣∣∣∣

∑
i∈J

(ε)
N

vh(Qi)
∫

Si

fN (x, t) dox

∣∣∣∣∣∣∣ ≤
∑

i∈J
(ε)
N

(∫
Si

|fN (x, t)|2 dox

)1/2

l
1/2
i |vh(Qi)|

≤ ε−1/2
∑

i∈J
(ε)
N

(∫
Si

|fN (x, t)|2 dox

)1/2 (∫
Si

|b(x, t) · n(x)| dox

)1/2

|vh(Qi)|
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≤ ε−1/2

⎛⎜⎝ ∑
i∈J

(ε)
N

‖fN(t)|Si‖2
L2(Si)

⎞⎟⎠
1/2 (∑

i∈JN

vh(Qi)2
∫

Si

|b(x, t) · n(x)| dox

)1/2

.

This proves the lemma. �

Now we are in a position to carry out the

Proof of Theorem 2.14. Due to Lemma 3.2 and (1.6), it follows as in the proof of ([15], (4.1), (4.2)) that
problem (2.14), and thus also problem (2.11), (2.12), admits a unique solution.

Suppose that h ≤ h0, with h0 from (2.16). Let u(1)
h , . . . , u

(Z+1)
h ∈ Vh be a solution of (2.14), and let ε > 0.

Recall that J (ε)
N was defined in Theorem 2.14. Choose the coefficients α(l)

i , for i ∈ J, 1 ≤ l ≤ Z+ 1, as in (4.10).
Then by (2.6) and (2.7), for vh ∈ Vh, 0 ≤ k ≤ Z, the sum

∑
i∈J α

(k+1)
i vh(Qi) coincides with the right-

hand side of (2.14). Thus the family (u(1)
h , . . . , u

(Z+1)
h ) solves (4.1). Recall the definition of A(v(1)

h , . . . , v
(Z+1)
h )

in (2.15), for v(1)
h , . . . , v

(Z+1)
h ∈ Vh. Let R denote the expression appearing inside brackets on the right-hand

side of (2.17), but with the term ‖w(0)‖H1(Ω) + max0≤l≤Z+1 ‖f̃D(tl)‖H1/2(∂Ω) omitted. Then equation (4.1),

Theorem 4.1 and 4.4, Lemma 4.2, 4.3 and 4.5, Corollary 4.8 with J̃ = JN\J (ε)
N , and Lemma 4.9 yield

A(u(1)
h , . . . , u

(Z+1)
h )2 ≤ C γ

[ (
A(u(1)

h , . . . , u
(Z+1)
h ) + A(ũ(1)

h , . . . , ũ
(Z+1)
h )

)
R + ‖w(0) − f(0)‖2

H1(Ω)

]
, (4.17)

where ũ(l)
l := �(u(l)

h ζ(tl)) for 1 ≤ l ≤ Z + 1, and where we used the abbreviation

γ := (1 + ν/ν + ‖∂3ζ‖L1( 0,T, L∞(Ω) ))
(

1 + max
1≤l≤Z+1

‖b(tl)‖H1(Ω)

)
.

Note that u(0)
h = Ih

(
w(0)−f(0)

)
by (2.14), and ‖Ih

(
w(0)−f(0)

)‖L2(Ω) ≤ C‖w(0)−f(0)‖H1(Ω) by Theorem 2.11.

By (2.1) and (2.7) we have ‖ũ(l)
h ‖L2(Ω) ≤ ϕ1 ‖u(l)

h ‖L2(Ω) for 1 ≤ l ≤ Z + 1, with ϕ1 from (2.1). Obviously
ũ

(l)
h (Qi)2 ≤ ϕ2

1 u
(l)
h (Qi)2 (i ∈ J, 1 ≤ l ≤ Z + 1). These relations and Lemma 3.1 yield A(ũ(1)

h , . . . , ũ
(Z+1)
h ) ≤

C A(u(1)
h , . . . , u

(Z+1)
h ), so we may deduce from (4.17)

A(u(1)
h , . . . , u

(Z+1)
h )2 ≤ C γ

(
A(u(1)

h , . . . , u
(Z+1)
h )R + ‖w(0) − f(0)‖2

H1(Ω)

)
.

Hence A(u(1)
h , . . . , u

(Z+1)
h )2 ≤ C γ2 R2 + C γ ‖w(0) − f(0)‖2

H1(Ω). As a consequence

A
(
u

(1)
h + fh(t1), . . . , u

(Z+1)
h + fh(tZ+1)

)
≤ C γ (R + ‖w(0) − f(0)‖H1(Ω)) + A

(
fh(t1), . . . , fh(tZ+1)

)
. (4.18)

In order to estimate the term A
(
fh(t1), . . . , fh(tZ+1)

)
, we first observe that by (2.13), (2.2), Theorem 2.11 and

the continuity of the extension operator E,

‖∇hfh(t)‖L2(Ω) + ‖fh(t)‖L2(Ω) ≤ C ‖f̃D(t)‖H1/2(∂Ω) for t ∈ (0, T ). (4.19)
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Moreover, for t ∈ (0, T ),

A :=

(∑
i∈JN

fh(t)(Qi)2
∫

Si

|b(x, t) · n(x)| dox

)1/2

≤ |b(t)|1/2
∞

(∑
i∈JN

fh(t)(Qi)2 li

)1/2

≤ |b(t)|1/2
∞

⎡⎣(∑
i∈JN

∫
Si

( fh(t)(Qi) − fh(t)(x) )2 dox

)1/2

+

(∑
i∈JN

∫
Si

( fh(t)(x) − f(x, t) )2 dox

)1/2

+

(∑
i∈JN

‖f(t)|Si‖2
L2(Si)

)1/2
⎤⎦ . (4.20)

But for t ∈ (0, T ), i ∈ JN , by (2.4),∫
Si

( fh(t)(Qi) − fh(t)(x) )2 dox ≤ |∇ ( fh(t)|Ki ) |2
∫

Si

|Qi − x|2 dox ≤ |∇( fh(t)|Ki

)|2 h3
Ki

≤ C

∫
Ki

|∇( fh(t)|Ki

)|2 dox ≤ C ‖∇f(t)|Ki‖2
L2(Ki)

,

where the last inequality follows from (2.13) and Theorem 2.11, and where we estimated a factor hKi by diamΩ.
Moreover, for i, t as before, we find with (2.13) and Lemma 2.8 that the integral

∫
Si

(
fh(t)(x)− f(x, t)

)2 dox is
bounded by

c
[
h−1

Ki
‖fh(t) − f(t)|Ki‖2

L2(Ki)
+ hKi ‖∇ ( fh(t) − f(t)|Ki ) ‖2

L2(Ki)

]
and hence by c hKi ‖∇f(t)|Ki‖2

L2(Ki)
according to Theorem 2.11. Again estimating a factor hKi by diamΩ, we

may thus conclude from (4.20) that

A ≤ C |b(t)|1/2
∞

(∑
i∈JN

‖∇f(t)|Ki‖2
L2(Ki)

+ ‖f(t)|ΓN‖2
L2(ΓN )

)1/2

≤ C |b(t)|1/2
∞ (‖∇f(t)‖L2(Ω) + ‖f(t)|∂Ω‖L2(∂Ω)) ≤ C |b(t)|1/2

∞ ‖f̃D(t)‖H1/2(∂Ω),

where the last inequality follows from (2.2) and the continuity of the extension operator E. From (4.19) and
the preceding estimate we may deduce that A

(
fh(t1), . . . , fh(tZ+1)

)
is bounded by

C (1 + max
1≤l≤Z+1

|b(tl)|∞ + ν1/2)

(
Z+1∑
l=1

τl ‖f̃D(tl)‖2
H1/2(∂Ω)

)1/2

+ C max
1≤l≤Z+1

‖f̃D(tl)‖H1/2(∂Ω).

Inequality (4.18) now implies inequality (2.17). �

5. A counterexample

We want to show that the factor ν−1/4−δ/2 in Theorem 2.15 cannot be replaced by ν−K with some K < 1/4.
Of course, this means such a modification should not be possible in Theorem 2.14 either. We consider the
case that Ω is a square, with two sides corresponding to ΓN , and the other two to ΓD. We choose G = 0,
FD = 0, A = ν (δjk)1≤j,k≤2, B = (0,−1). This convective velocity B is orthogonal to one edge – denoted
by Γ

(1)
N – constituting ΓN , and parallel to the other one – denoted by Γ

(2)
N . In this situation, for any ε ∈

(0, 1), the index set J̃ (ε)
N defined in Theorem 2.15 is such that ∪

i∈J̃
(ε)
N

Si = Γ
(1)
N and ∪

i∈JN\J̃
(ε)
N

Si = Γ
(2)
N .
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(Recall that Si ⊂ ΓN for i ∈ JN , Si ⊂ ΓD for i ∈ JD, and J\Jo = JN ∪ JD.) Thus the term ‖FN |Γ (1)
N ‖

L2(Γ
(1)
N )

in Theorem 5.1 coincides with the term (
∑

i∈J̃
(ε)
N

‖FN |Si‖2
L2(Si)

)1/2 in Theorem 2.15, and ‖FN |Γ (2)
N ‖

L2(Γ
(2)
N )

equals (
∑

i∈JN\J̃
(ε)
N

‖FN |Si‖2
L2(Si)

)1/2. It it true that Theorem 5.1 relates to the continuous problem (1.7), (1.8)
and not to the discrete one (2.18), (2.19). But since the right-hand side of (2.20) is uniform in h ∈ (0, h0], and
in view of the preceding remarks as to which terms in Theorem 5.1 and 2.15 coincide, the negative result in
Theorem 5.1 should carry over to (2.20) in the sense specified above, that is, the factor ν−1/4−δ/2 cannot be
replaced by ν−K with some K < 1/4.

Theorem 5.1. Suppose that Ω = (0, 1)2, ΓD =
(
(0, 1) × {0} ) ∪ ( {0} × (0, 1)

)
, ΓN = Γ

(1)
N ∪ Γ

(2)
N with

Γ
(1)
N := (0, 1) × {1}, Γ (2)

N := {1} × (0, 1). Let κ ∈ (0, 1). Then there is no constant C0 > 0 such that

‖W‖L2(Ω) ≤ C0 (‖FN |Γ (1)
N ‖

L2(Γ
(1)
N )

+ ν−1/4+κ ‖FN |Γ (2)
N ‖

L2(Γ
(2)
N )

) (5.1)

for each ν ∈ (0,∞), W ∈ C∞(Ω) satisfying (1.7) in the case B = (0,−1), M = 0, A = ν (δjk)1≤j,k≤2, G = 0,
and (1.8) with FD = 0, B = (0,−1),

FN (x) = −min{B(x) · n(x), 0}W (x) + ν ∂W (x)/∂n(x) for x ∈ ΓN .

Proof. Let ν1 ∈ (0, 1] be so small that 4 ν1−κ ≤ 1 for ν ∈ (0, ν1]. Let ν ∈ (0, ν1] and put

vν(t) := et ν−(1+κ)/2 − e−t ν−(1+κ)/2
(t ∈ R), z

(ν)
1 := (2 ν)−1

(
−1 +

√
1 − 4 ν1−κ

)
,

z
(ν)
2 := (2 ν)−1

(
−1 −

√
1 − 4 ν1−κ

)
, wν(t) := ez

(ν)
1 t − ez

(ν)
2 t (t ∈ R),

Wν(x) := vν(x1)wν(x2) for x ∈ Ω. Then Wν ∈ C∞(Ω), −ν ΔWν −∂2Wν = 0 and Wν |ΓD = 0. Let us determine
a lower bound of ‖Wν‖L2(Ω) in terms of ‖vν‖L2(0,1). To this end we observe that z(ν)

1 + z
(ν)
2 = −ν−1, −ν−1 ≤

z
(ν)
2 ≤ −(2 ν)−1 and z(ν)

1 = −2 ν−κ/(1 +
√

1 − 4 ν1−κ), so −2 ν−κ ≤ z
(ν)
1 ≤ −ν−κ. Thus

‖wν‖2
L2(0,1) =

(
e2 z

(ν)
1 − 1

)
/
(
2 z(ν)

1

)
+
(
e2 z

(ν)
2 − 1

)
/
(
2 z(ν)

2

)
+ 2

(
1 − ez

(ν)
1 +z

(ν)
2

)
/
(
z
(ν)
1 + z

(ν)
2

)
≥ −1/

(
2 z(ν)

1

)
− e2 z

(ν)
1 /

(
2 |z(ν)

1 |
)
− 3ν ≥ νκ/4 − νκ e−2 ν−κ

/2 − 3 ν.

We may choose ν2 ∈ (0, ν1] so small that νκ/4 − νκ e−2 ν−κ

/2 − 3 ν ≥ νκ/8 for ν ∈ (0, ν2]. Thus, for such ν, we
have ‖wν‖L2(0,1) ≥ νκ/2 8−1/2, hence ‖Wν‖L2(Ω) ≥ νκ/2 ‖vν‖L2(0,1) 8−1/2.

Put B(x) := (0,−1) for x ∈ Ω, F
(ν)
N (x) := ν ∂Wν(x)/∂n(x) − min{B(x) · n(x), 0}Wν(x) for x ∈ ΓN . Let

ν3 ∈ (0, ν2] with 2 ν ≤ νκ for ν ∈ (0, ν3]. Then, for x ∈ Γ
(1)
N , ν ∈ (0, ν3], we find

|F (ν)
N (x)| ≤ |vν(x1)|

(
ν |w′

ν(1)| + |wν(1)|), |wν(1)| ≤ ez
(ν)
1 + ez

(ν)
2 ≤ 2 e−ν−κ

,

and ν |w′
ν(1)| ≤ ν (|z(ν)

1 | ez
(ν)
1 + |z(ν)

2 | ez
(ν)
2 ) ≤ 3 e−ν−κ

, so that |F (ν)
N (x)| ≤ 5 e−ν−κ |vν(x1)|. Therefore

‖F (ν)
N |Γ (1)

N ‖
L2(Γ

(1)
N )

≤ 5 e−ν−κ ‖vν‖L2(0,1) ≤ 5 81/2 e−ν−κ

ν−κ/2 ‖Wν‖L2(Ω) for ν ∈ (0, ν3], (5.2)

where we used the lower bound of ‖Wν‖L2(Ω) determined above. For x ∈ Γ
(2)
N , we have B(x) · n(x) = 0, so

F
(ν)
N (x) = ν v′ν(1)wν(x2). But |ν v′ν(1)| ≤ 2 ν(1−κ)/2 eν−(1+κ)/2

, hence

ν−1/4+κ ‖F (ν)
N |Γ (2)

N ‖
L2(Γ

(2)
N )

≤ 2 ν1/4+κ/2 eν−(1+κ)/2 ‖wν‖L2(0,1) (ν ∈ (0, ν1]). (5.3)
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On the other hand, for ν ∈ (0, ν1], we get ‖vν‖2
L2(0,1) = ν(1+κ)/2 (e2 ν−(1+κ)/2−e−2ν−(1+κ)/2

)/2−2.We choose ν4 ∈
(0, ν3] so small that (1/2) e2ν−(1+κ)/2 ≥ e−2 ν−(1+κ)/2

and ν(1+κ)/2 e2 ν−(1+κ)/2
/8 ≥ 2 for ν ∈ (0, ν4]. For such ν, we

may conclude that ‖vν‖2
L2(0,1) ≥ ν(1+κ)/2 e2 ν−(1+κ)/2

/8, hence ‖Wν‖L2(Ω) ≥ ν(1+κ)/4 eν−(1+κ)/2 ‖wν‖L2(0,1) 8−1/2.

With this estimate we return to (5.3), to obtain

ν−1/4+κ ‖F (ν)
N |Γ (2)

N ‖
L2(Γ

(2)
N )

≤ 2
√

8 νκ/4 ‖Wν‖L2(Ω) for ν ∈ (0, ν4].

This estimate and (5.2) imply

‖F (ν)
N |Γ (1)

N ‖
L2(Γ

(1)
N )

+ ν−1/4+κ ‖F (ν)
N |Γ (2)

N ‖
L2(Γ

(2)
N )

≤ C̃
(
e−ν−κ

ν−κ/2 + νκ/4
)
‖Wν‖L2(Ω)

for ν ∈ (0, ν4]. Here and in the following, we write C̃ for numerical constants. There is ν5 ∈ (0, ν4] such that
ν−κ/2 e−ν−κ ≤ νκ/4 for ν ∈ (0, ν5]. Therefore

‖F (ν)
N |Γ (1)

N ‖
L2(Γ

(1)
N )

+ ν−1/4+κ ‖F (ν)
N |Γ (2)

N ‖
L2(Γ

(2)
N )

≤ C̃ νκ/4 ‖Wν‖L2(Ω) for ν ∈ (0, ν5]. (5.4)

Now suppose there is C0 > 0 such that inequality (5.1) holds. It follows with (5.4) that ‖Wν‖L2(Ω) ≤
C0 C̃ ν

κ/4 ‖Wν‖L2(Ω) for ν ∈ (0, ν5], hence 1 ≤ C0 C̃ ν
κ/4 for such ν, which is impossible. �
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