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Abstract. The management of agroecosystems plays a cru-
cial role in the global carbon cycle with soil tillage lead-
ing to known organic carbon redistributions within soils and
changes in soil CO2 emissions. Yet, discrepancies exist on
the impact of tillage on soil CO2 emissions and on the
main soil and environmental controls. A meta-analysis was
conducted using 46 peer-reviewed publications totaling 174
paired observations comparing CO2 emissions over entire
seasons or years from tilled and untilled soils across differ-
ent climates, crop types and soil conditions with the objective
of quantifying tillage impact on CO2 emissions and assess-
ing the main controls. On average, tilled soils emitted 21 %
more CO2 than untilled soils, which corresponded to a signif-
icant difference at P<0.05. The difference increased to 29 %
in sandy soils from arid climates with low soil organic car-
bon content (SOCC < 1 %) and low soil moisture, but tillage
had no impact on CO2 fluxes in clayey soils with high back-
ground SOCC (> 3 %). Finally, nitrogen fertilization and crop
residue management had little effect on the CO2 responses
of soils to no-tillage. These results suggest no-tillage is an
effective mitigation measure of carbon dioxide losses from
dry land soils. They emphasize the importance of including
information on soil factors such as texture, aggregate stabil-
ity and organic carbon content in global models of the carbon
cycle.

1 Introduction

The evidence for climate change is irrefutable, and the neces-
sity of mitigating climate change is now accepted. Yet, there
are still large uncertainties on the effectiveness of the mea-
sures that could be taken to reduce greenhouse gas (GHG)
emissions by land-use management (Smith et al., 2008; Ciais
et al., 2011).

There are several reasons for these uncertainties. While
inventories can be made of the different carbon pools (Bel-
lamy et al., 2005), carbon pool changes are small and diffi-
cult to detect; they require sampling programs with periodic
revisits over many years. Thus, the magnitude and variabil-
ity of CO2 fluxes, both sinks and sources, between the soil
and the atmosphere are difficult to quantify and they may not
have been accurately assessed. This is particularly the case
for CO2 fluxes associated with land use and land manage-
ment, such as deforestation and changes in agricultural prac-
tice (Al-Kaisi and Yin, 2005; Alluvione et al., 2009; Dilling
and Failey, 2012).

Soils are the largest terrestrial pool of carbon (C), storing
2344 Pg C (1 Pg= 1 billion tonnes) of soil organic carbon
(SOC) in the top 3 m (Jobbágy and Jackson, 2000). Tilling
the soil before planting for seedbed preparation and weeding
has been a common practice in agriculture since Neolithic
times (McKyes, 1985). This technique is energy intensive
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and also affects SOC stocks. Tilling changes the balance be-
tween organic carbon put into the soil by plants and ren-
dered available for soil micro-organisms, and carbon output
as greenhouse gases (GHGs) due to organic matter decom-
position (Rastogi et al., 2002). Soil tillage may also lead to
the vertical and lateral export of particulate and dissolved or-
ganic carbon by leaching and erosion (Jacinthe et al., 2002;
Mchunu et al., 2011).

Soil tillage is estimated to have decreased SOC stocks by
two-thirds from pre-deforestation levels (Lal, 2003). But this
estimate is highly uncertain, due to the lack of detailed site-
level meta-analysis for different climates, soil types and man-
agement intensities.

Six et al. (2000, 2004) reported that tillage induces soil
disturbance and disruption of soil aggregates, exposing the
protected SOC to microbial decomposition and thus causing
carbon loss from soils through CO2 emissions and leaching.
Tillage is also responsible for soil compaction, soil erosion
and loss of soil biodiversity (Wilson et al., 2004). In some
instances, tillage is thought to have caused a net sink of at-
mospheric CO2, for instance by displacing SOC to deeper
soil horizons or accumulation areas where it decomposes
more slowly (Baker et al., 2007; Van Oost et al., 2007). Soil
tillage also modifies the mineralization rates of nutrients,
which feeds back on soil carbon input, implying that the ef-
fect of tillage on the balance of SOC needs to be considered
at ecosystem level (Barré et al., 2010).

At the present time, tillage is being increasingly aban-
doned as the use of mechanized direct planters becomes
widespread and weed control is performed with herbicides
or in a more ecologically friendly way by using cover crops
and longer crop rotations.

The consequences of this change in practice on soil prop-
erties and soil functioning are numerous. Importantly, it
also raises the unsolved question: what is the impact of
tillage abandonment on GHG emissions and climate change?
Common wisdom is that no-tillage (or zero-tillage) agri-
culture enhances soil carbon stocks (Peterson et al., 1998;
Six et al., 2002; West and Post, 2002; Varvel and Wilhelm,
2008) by reducing soil carbon loss as CO2 emission (Paus-
tian et al., 1997; West and Post, 2002; Dawson and Smith,
2007). For instance, Paustian et al. (1997) reviewed 39 paired
comparisons and reported that abandonment of tillage in-
creased SOC stocks in the 0–0.3 m layer by an average of
258 g C m−2 (i.e. 8 %). Ussiri and Lal (2009) observed a 2-
fold increase of SOC stocks in the top 0.3 m of soil (800 vs.
453 g C m−2) after 43 years of continuous Zea mays (maize)
under no-tillage compared to tillage. Virto et al. (2012), in a
meta-analysis based on 92 paired comparisons. reported that
SOC stocks were 6.7 % greater under no-tillage than tillage.

While a consensus seemed to exist on the potential of no-
tillage for carbon sequestration and climate change mitiga-
tion, several voices alerted the scientific and policy commu-
nities to some possible flaws in early reports (Royal Society,
2001; VandenBygaart and Angers, 2006; Baker et al., 2007;

Luo et al., 2010; Dimassi et al. 2014; Powlson et al., 2014).
VandenBygaart and Angers (2006) indicated that the entire
plow depth had to be considered for not overstating zero-
tillage impact on SOC storage. To our knowledge, Baker et
al. (2007) were the first to point out that the studies conclud-
ing on carbon sequestration under no-tillage management
had only considered the topsoil (to a maximum of 0.3 m),
while plants allocate SOC to much greater depths. False con-
clusions may be drawn if only carbon in the topsoil is mea-
sured. Using 69 paired experiments worldwide where soil
sampling depth extended to 1.0 m, Luo et al. (2010) found
that conversion from tillage to no-tillage resulted in signifi-
cant topsoil SOC enrichment, but did not increase the total
SOC stock in the whole soil profile. Dimassi et al. (2014)
even reported SOC losses over the long term.

Evidence for greater CO2 emissions from land under
tillage as opposed to a no-tillage regimen has been widely re-
ported (e.g. Reicosky, 1997; Al-Kaisi and Yin, 2005; Bauer
et al., 2006; Sainju et al., 2008; Ussiri and Lal, 2009). For
instance, in a study performed in the US over an entire
year, Ussiri and Lal (2009) found that, tillage emits 11.3 %
(6.2 vs. 5.5 Mg of CO2-carbon per hectare per year, CO2-
C ha−1 yr−1) more CO2 than no-tillage. Similarly, all the
field surveys by Alluvione et al. (2009) reported that land
under tillage had 14 % higher CO2 emissions than land with
no-tillage. Al-Kaisi and Yin (2005) found this difference to
be as much as 58 %. A few in situ studies, however, found
CO2 emissions from no-tillage soils to be similar to those
from tilled soils (Aslam et al., 2000; Oorts et al., 2007; Li
et al., 2010). However, Hendrix et al. (1988) and Oorts et
al. (2007) found greater CO2 emissions from untilled com-
pared to tilled soils, with Oorts et al. (2007) reporting that no-
tillage increased CO2 emissions by 13 % compared to tillage.
In a further example, Cheng-Fang et al. (2012) showed that
in central China, no-tillage increased soil CO2 emissions
by 22–40 % compared with tillage. Oorts et al. (2007) at-
tributed the larger CO2 emissions from no-tilled soil com-
pared to tilled soil to increased decomposition of the weath-
ered crop residues lying on the soil surface. Crop residue
management has been shown to greatly impact CO2 emis-
sions from soils under both tillage and no-tillage (Oorts et
al., 2007; Dendooven et al., 2012). Jacinthe et al. (2002) re-
ported annual CO2 emissions to be 43 % higher with tillage
compared to no-tillage with no mulch, but found a 26 % dif-
ference for no-tillage with mulch. Some other authors asso-
ciated the changes in CO2 emissions following tillage aban-
donment to shifts in nitrogen fertilization application and in
crop rotations (Al-Kaisi and Yin, 2005; Álvaro-Fuentes et al.,
2008; Cheng-Fang et al., 2012). Sainju et al. (2008) work-
ing in North Dakota pointed to CO2 flux differences between
tilled and untilled soils only for fertilized fields, while other
studies pointed to the absence of nitrogen impact (Drury et
al., 2006; Cheng-Fang et al., 2012). Crop type and crop rota-
tion may also constitute important controls on the CO2 efflux
differences between tillage and no-tillage, mainly through
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differences in root biomass and its respiration and nitrogen
availability (Amos et al., 2005; Álvaro-Fuentes et al., 2008).
Omonode et al. (2007) found a 16 % difference in CO2 out-
puts between tillage and no-tillage under continuous maize,
while Sainju et al. (2010b) found no difference between con-
tinuous barley and barley–pea rotations.

Micro-climatic parameters such as soil temperature and
precipitation are other likely controls of the response of soil
CO2 emissions to tillage (Flanagan and Johnson, 2005; Lee
et al., 2006; Oorts et al., 2007). These controls also need fur-
ther appraisal.

The existence of research studies from different soil and
environmental conditions worldwide opens the way for a
more systematic assessment of tillage impact on soil CO2
emissions and their controls. Meta-analysis is commonly
used for combining research findings from independent stud-
ies and offers a quantitative synthesis of the findings (Rosen-
berg et al., 2000; Borenstein et al., 2011). This method has
been used here in order to assess the effects of background
climate (arid to humid), soil texture (clayey to sandy), crop
types (maize, wheat, barley, paddy rice, rapeseed, fallow
and grass), experiment duration, nitrogen fertilization, crop
residue management and crop rotations on the CO2 emission
responses of soils following tillage abandonment. CO2 emis-
sions from soil with tillage and no-tillage were compared for
174 paired observations across the world.

2 Materials and methods

2.1 Database generation

A literature search identified papers considering in situ soil
CO2 emissions and topsoil (0–0.03 m depth) SOC changes
under tillage and no-tillage management regimes. Google,
Google scholar, Science Direct, Springerlink, and SciFinder
were used. In order to make the search process as efficient
as possible, a list of topic-related keywords was used such
as “soil carbon losses under tillage compared to no-tillage”,
“soil CO2 emissions under tillage and no-tillage”, “land man-
agement practices and greenhouse gases emissions”, “land
management effects on CO2 emissions”, “effects of tillage
vs. no-tillage on soil CO2 emissions” and “SOC”. Many
studies reported soil CO2 emissions and SOC for cropland
systems, but only those that reported CO2 emissions mea-
sured in the field for both tillage and no-tillage from the
same crop and during the same period were used. In addi-
tion, we selected only studies that consistently reported to-
tal soil respiration (heterotrophic+ belowground autotrophic
respiration). The crops considered in this study were maize,
wheat, barley, oats, soybean, paddy rice and fallow. The prac-
tices considered as tillage in this review are those that involve
physical disturbance of the topsoil layers for seedbed prepa-
ration, weed control, or fertilizer application. Consequently,
conventional tillage, reduced tillage, standard tillage, mini-

mum tillage and conservation tillage were all considered as
tillage. However, only direct seeding and drilling were con-
sidered as no-tillage, among different practices reported in
the reviewed literature. The studies used in the meta-analysis
covered 13 countries (USA, Spain, Brazil, Canada, China,
Denmark, France, Finland, New Zealand, Lithuania, Mexico,
Argentina, and Kenya). A total of 46 peer-reviewed papers
with 175 comparisons for soil CO2 emissions and 162 for
SOC content (SOCC) were identified. Table 1 summarizes
information on site location, climatic conditions, crop rota-
tion systems, and average CO2 emissions under tilled and
untilled soils. Most of the data (37 %) came from USA, fol-
lowed by Canada, China and Spain (11 % each), and Brazil
(9 %). There was only one study from Africa, conducted in
Kenya by Baggs et al. (2006).

Several soil variables were considered, as follows: SOCC
(%), soil bulk density (ρb, g cm−3), and soil texture (clay,
silt, and sand, %) in the 0–0.03 m layer. In addition, mean
annual temperature (MAT, ◦C) and mean annual precipitation
(MAP, mm), crop types, crop rotations, nitrogen fertilization
rate, experiment duration and crop residue management were
also considered.

Data for soil CO2 emissions (n= 46) were obtained for
all studies by using open chambers and reported on an area
basis. Soil CO2 emissions were directly extracted from the
papers and were standardized to g CO2-C m−2 yr−1. Thirty-
eight studies gave SOCC for both tillage and no-tillage. Four
studies (Hovda et al., 2003; Álvaro-Fuentes et al., 2008; Lee
et al., 2009; Dendooven et al., 2012) gave SOCC, in term of
the mass of carbon in the 0–0.03 m layer and per unit area
(kg C m−2). Finally, for the four remaining studies, SOCC
was extracted from other publications describing measure-
ments at the same site. SOCC was estimated from soil organic
carbon stocks (SOCS kg C m−2) and bulk density following
Eq. (1) by Batjes (1996):

SOCS = SOCC× ρb× T (1−
PF
100

)b, (1)

where SOCS is the soil organic C stock (kg C m−2); SOCC
is soil organic C content in the ≤ 2 mm soil material
(g C kg−1 soil); ρb is the bulk density of the soil (kg m−3);
T is the thickness of the soil layer (m); PF is the proportion
of fragments of > 2 mm in percent; and b is a constant equal
to 0.001.

Information on MAP and MAT was extracted from the pa-
pers, but were estimated in nine studies where such infor-
mation was not provided, based on the geographic coordi-
nates of the study site and using the WORLDCLIM climatol-
ogy (Hijmans et al., 2005) with a spatial resolution of 30 s.
In eight studies where soil texture was only given as textu-
ral class, particle size distribution was estimated using the
adapted soil texture triangle (Saxton et al., 1986).

Table 2 shows the variables used in categorizing the ex-
perimental conditions. The climatic regions were extracted
directly from the papers and categorized into arid and humid
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Table 2. Categories used in describing the experimental conditions.

Categorical variable Level 1 Level 2 Level 3
SOCC Low Medium High

(< 10 g kg−1) (10–30 g kg−1) (> 30 g kg−1)
Climate Arid Humid
Soil texture Clay Loam Sand

(> 32 % clay) (20–32 clay) (< 20 % clay)
Experiment duration < 10 years ≥ 10 years
Nitrogen fertilizer Low high

(< 100 kg N ha−1) (≥ 100 kg N ha−1)
Crop residues Removed Returned
Crop rotation No rotation Rotation

climate (Köppen, 1936). SOCC were categorized into three
categories following Lal (1994): low (SOCC < 10 g C kg−1),
medium (10–30 g C kg−1), and high (> 30 g C kg−1). Soil
texture was categorized based on the soil textural triangle
(Shirazi and Boersma, 1984) into three classes (clay, loam,
and sand). Fertilization rate for this meta-analysis was clas-
sified into the categories defined by Cerrato and Black-
mer (1990) as follows: low when below 100 kg N ha−1 and
high when above 100 kg N ha−1.

In addition, no-tillage treatment was classified as short du-
ration when < 10 years, or long duration when exceeding
10 years. Crop residue was either left on the soil surface or
removed after harvest with no distinction between removal
proportions. Crop rotations were divided into two categories:
a series of different types of crop in the same area classed as
“rotation”, or continuous monoculture, classed as “no rota-
tion”.

2.2 Meta-analysis

The response ratio (R) of CO2 emissions to SOC under
tillage (T ) and no-tillage (NT) was calculated using Eqs. (2)
and (3). As common practice, natural log of the R (lnR) has
been calculated as an effect size of observation (Hedges et
al., 1999).

lnR = ln(CO2T /CO2NT) (2)
lnR = ln(SOCT /SOCNT) (3)

The MetaWin 2.1 software (Rosenberg et al., 2000) was
used for analyzing the data and generating a bootstrapped
(4999 iterations) to calculate 95 % confidence intervals. The
means of effect size were considered to be significantly dif-
ferent from each other if their 95 % confidence intervals were
not overlapping and were significantly different from zero if
the 95 % level did not overlap zero (Gurevitch and Hedges,
2001).

3 Results

3.1 General statistics of soil CO2 emissions from tilled
and untilled soils

Overall, average soil CO2 emissions computed from the 174
paired observations was 1152 g CO2-C m−2 yr−1 from tilled
soils compared to 916 g C-CO2 m−2 yr−1 from under no-
tillage (Table 3), which corresponds to a 21 % average differ-
ence, significant at P<0.05. The greatest soil CO2 emission
amongst the considered sites was 9125 g C-CO2 m−2 yr−1

observed under tilled soils with barley in an arid area at
Nesson Valley in western North Dakota, USA (Sainju et
al., 2008). The lowest soil CO2 emission was 11 g CO2-
C m−2 yr−1 observed under no-tillage wheat in the humid
climate of Lithuania (Feizienė et al., 2011).

3.2 Controls on the response of soil CO2 emissions to
tillage

3.2.1 Climate

Tillage emitted 27 % more CO2 than no-tillage in arid cli-
mates; while for pairs in humid climates, tillage emitted 16 %
more CO2 than no-tillage. However, the differences in CO2
emissions between tillage and no-tillage were not statistically
significant (at 0.05 confidence interval) between arid and hu-
mid climates (Fig. 1a). When compared across all studies,
mean SOCC under tillage was 10 % lower than under no-
tillage (Fig. 1b). In arid climates, SOCC in tillage was 11 %
lower than no-tillage, whereas in humid climates SOCC un-
der tillage was only 8 % less than for no-tillage. However,
the differences in SOCc between the two climatic zones were
found to be non-significant.

3.2.2 Soil organic carbon content

On average, soil CO2 emissions from tilled soils were 25 %
greater compared to untilled for soils with SOCC lower than
10 g kg−1 (Fig. 2). For SOCC between 10 and 30 g kg−1,
tilled soils emitted an average 17 % more CO2 than untilled
ones. In the case of carbon-rich soils with SOCC higher
than 30 g kg−1, there were no significant differences between
tillage and no-tillage CO2 emissions. Thus, the difference be-
tween tillage and no-tillage decreased with increasing back-
ground SOCC. Overall, soil CO2 emissions under no-tillage
were about 5 times greater for low compared to high SOCC.

3.2.3 Soil texture

Differences in CO2 emissions between tilled and untilled
soils were largest in sandy soils where tilled soils emitted
29 % more CO2 than untilled soils (Fig. 3a). In clayey soils,
the differences between tillage and no-tillage were much
smaller with tilled soils emitting 12 % more CO2 than un-
tilled soils. On the other hand, SOCC under tillage was sig-

www.biogeosciences.net/13/3619/2016/ Biogeosciences, 13, 3619–3633, 2016



3624 K. Abdalla et al.: No-tillage lessens soil CO2 emissions the most under arid and sandy soil conditions

Figure 1. Percent change in (a) soil CO2 emissions and (b) SOC in tillage (T ) soil compared to no-tillage (NT) as a function of climate (arid
and humid). The numbers in the parentheses indicate the direct comparisons of the meta-analysis. Error bars are 95 % confidence intervals.

Table 3. Summary statistics of mean annual precipitation (MAP), mean annual temperature (MAT), clay, soil bulk density (ρb), soil organic
carbon content (SOCC), soil organic carbon stocks (SOCS), and CO2 emissions (g CO2-C m−2 yr−1 and g CO2-C gC−1 yr−1) under tilled
(T ) and untilled (NT) soils.

MAP MAT CLAY ρb SOCC SOCS CO2 emissions

T NT T NT T NT T NT T NT

mm ◦ % g cm−3 % kg m−2 g CO2-C m−2 yr−1 g CO2-C gC−1 yr−1

Minimum 301 −1 3 0.5 0.8 0.3 0.6 0.7 1.1 33 11 0.006 0.001
Maximum 2721 25 60 1.9 1.9 8.0 7.8 9.6 10.4 9125 5986 0.823 0.118
Mean 904 15 1.3 1.3 1.3 1.3 2.9 2.9 3.1 1152 916 0.109 0.016
Median 704 16 1.3 1.3 1.3 1.1 2.5 2.5 2.7 587 533 0.071 0.012
SD 570 6 0.2 0.1 0.1 1.0 1.0 1.5 1.5 1482 1054 0.132 0.017
Skewness 1 0 −0.7 0.6 0.6 4.0 3.2 2.0 2.8 2.8 2.4 3.127 3.599
Quartile1 415 11 1.3 1.3 1.3 0.7 0.7 2.2 2.4 287 283 0.037 0.008
Quartile3 1321 18 1.4 1.4 1.4 1.3 1.7 3.3 3.3 1414 1210 0.107 0.020
Kurtosis 2 0 9.9 3.4 3.4 23.3 14.3 6.3 10.7 9.8 6.69 12.48 17.81
CV 63 41 0.1 0.1 0.1 0.8 0.4 0.5 0.5 1.29 1.15 1.214 1.018
SE 48 0 0.01 0.01 0.01 0.08 0.09 0.12 0.13 112 80 0.011 0.001

Figure 2. Percent change in CO2 emissions in tillage (T ) compared
to no tillage (NT) as a function of SOCC (low, < 10 g kg−1, medium
10–30 g kg−1, high >30 g kg−1). The numbers in the parentheses
indicate the direct comparisons of meta-analysis. Error bars are 95%
confidence intervals.

nificantly lower than under no-tillage: by 17 % under sandy
soils and 9 % in clayey soils (Fig. 3b). However, there were
no differences between clayey and loamy soils.

3.2.4 Crop type

Soil CO2 emissions were significantly greater in tilled com-
pared to untilled soils for all crop types with the exception
of paddy rice where there were no significant differences be-
tween tilled and untilled soils (Fig. 4a). The greatest CO2
emission difference between tillage and no-tillage was found
in fallow, with a value of 34 %.

Grouping all crop types together, SOCC under tillage was
significantly lower than under no-tillage. Among the differ-
ent crops (rice, maize, soybean, wheat, and barley) a signif-
icant SOCc difference between tilled and untilled soil was
only observed for maize (15 %) at one site and for rice
(7.5 %). SOCC under no-tillage was slightly greater than
under tillage for soils under fallow, but the difference was
not significant (Fig. 4b). Highest SOCC differences between
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Figure 3. Percent change in (a) soil CO2 emissions and (b) SOC in tillage (T ) soil compared to no-tillage (NT) as a function of soil particle
distribution (clay, loam and sand). The numbers in the parentheses indicate the direct comparisons of the meta-analysis. Error bars are 95 %
confidence intervals.

Figure 4. Percent change in (a) soil CO2 emissions and (b) SOC in tillage (T ) soil compared to no-tillage (NT) as a function of crop type.
The numbers in the parentheses indicate the direct comparisons of meta-analysis. Error bars are 95 % confidence intervals.

tilled and untilled soils were observed for maize where SOCC
was on average 15 % lower under tillage compared to no-
tillage.

3.2.5 Duration of no-tillage

The duration of no-tillage (i.e. time since tillage was aban-
doned) had no statistical association with soil CO2 emis-
sions. However, there was a tendency for the differences be-
tween tillage and no-tillage to increase with increasing du-
ration of the no-tillage regime with an average 18 % differ-
ence for experiments of less than 10 years, and 23 % for those
longer than 10 years (Fig. 5a). SOCC under tillage was 14 %
lower compared to no-tillage for experiments lasting longer
than 10 years, whereas there were no differences in SOCC
between tillage and no-tillage for shorter durations (Fig. 5b).

3.2.6 Nitrogen fertilization

Nitrogen fertilization did not produce statistically significant
differences between soil CO2 emissions and SOCC differ-
ences from tilled and untilled soil (Fig. 6). Compared to
tillage, no-tillage decreased soil CO2 emissions by an aver-
age of 19 % when 100 kg N ha−1 or more was applied, while
at lower fertilization rates, soil CO2 emissions decreased by

23 %, but owing to the small sample size this difference was
not statistically significant.

3.2.7 Crop residue management and crop rotation

On average, when crop residues were not exported, no-tillage
decreased soil CO2 emissions by 23 % compared to tillage,
which corresponded to a significant difference at P < 0.05.
On the other hand, crop residue removal resulted in a smaller
difference of only 18 % (Fig. 7a). SOCC was 12 % lower un-
der tillage than no-tillage in the absence of crop residues,
and only 5 % lower when crop residues were left on the
soil (Fig. 7a). On the other hand, soils under a crop rotation
regime exhibited much sharper decrease (i.e. 26 %) of CO2
emission following tillage abandonment than the soils under
continuous monoculture for which changes of CO2 emission
were not significant at P < 0.05.

3.2.8 Multiple correlations between soil CO2 emissions
and selected soil variable and environmental
factors

Figure 9 shows the interaction between the changes in CO2
emissions following tillage abandonment on one hand and
the selected soil and environmental variables on the other.
The first two axes of the PCA explained 66 % of the entire
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Figure 5. Percent change in (a) soil CO2 emissions and (b) SOC in tillage (T ) soil compared to no-tillage (NT) as a function of experiment
duration (< 10 years and ≥ 10 years). The numbers in the parentheses indicate the direct comparisons of the meta-analysis. Error bars are
95 % confidence intervals.

Figure 6. Percent change in (a) soil CO2 emissions (b) and SOC in tillage (T ) soil compared to no-tillage (NT) as a function of nitrogen
fertilization (low < 100 kg N ha−1 and high ≥ 100 kg N ha−1). The numbers in the parentheses indicate the direct comparisons of the meta-
analysis. Error bars are 95 % confidence intervals.

data variability. The first PCA axis (Axis 1), which described
35 % of the total data variance, was highly correlated to lati-
tude (LAT), mean annual temperature (MAT), SOCc, and soil
clay content (CLAY). LAT and ρb showed positive coordi-
nates on Axis 1, while the other variables showed negative
ones. Axis 1 could, therefore, be regarded as an axis, set-
ting clayey organic and warm soils against compacted, sandy
soils from a cold climate. The second PCA axis, which ex-
plained 21 % of the data variance, correlated the most with
silt content. The differences in CO2 fluxes between tillage
and no-tillage (1CO2T−NT) showed positive coordinates on
Axis 1, which revealed greater CO2 emissions under tillage
compared to no-tillage under cool sandy and dense soils
compared to warm clayey and organically rich soil from a
warm and humid climate.

4 Discussion

4.1 Overall influence of tillage on SOCC and soil CO2
emissions

Our meta-analysis shows that tillage has a significant im-
pact on decreasing topsoil (0–0.03 m) organic carbon con-
tent (SOCC) and increasing CO2 emissions, with 10 % lower

SOCC and 21 % greater CO2 emission in tilled than un-
tilled soils. Lower SOCC and greater CO2 emissions under
tillage reflect faster organic matter decomposition as a result
of greater soil aeration and incorporation of crop residues to
the soil, and breakdown of soil aggregates, which all ren-
der the organic material more accessible to decomposers
(Reicosky, 1997; Six et al., 2002, 2004). However, results
from the literature do not always agree with this. In case of
soil carbon, for example, Cheng-Fang et al. (2012) found 7–
48 % greater SOCC under tilled rice in China, when Ahmad
et al. (2009) observed no significant differences. In case of
soil CO2 emissions, while for instance Ussiri and Lal (2009)
for a 43 years maize monoculture in USA observed 31 %
greater CO2 emissions from tilled than from no-tilled soils,
Curtin et al. (2000) and Li et al. (2010) found no signifi-
cant difference in CO2 emissions between these treatments
while Oorts et al. (2007) reported greater soil CO2 emission
under no-tillage (4064 kg CO2-C ha−1) compared to tillage
(3160 kg CO2-C ha−1), which they attributed to greater soil
moisture content and amount of crop residue on the soil sur-
face.
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Figure 7. Percent change in (a) soil CO2 emissions and (b) SOC in tillage (T ) soil compared to no-tillage (NT) as a function of crop residues
(returned and removed). The numbers in the parentheses indicate the direct comparisons of the meta-analysis. Error bars are 95 % confidence
intervals.

Figure 8. Percent change in (a) soil CO2 emissions and (b) SOC in tillage (T ) soil compared to no-tillage (NT) as a function of crop rotation.
The numbers in the parentheses indicate the direct comparisons of the meta-analysis. Error bars are 95 % confidence intervals.

Figure 9. Principal components analysis (PCA) using the differ-
ent environmental factors as active variables and soil CO2 emission
difference between T and NT (1CO2T−NT) as the supplementary
variable.

4.2 Influence of climate

Although there was no significant difference between arid
and humid climates, CO2 emissions and SOCC changes be-
tween untilled and tilled soils tended to be greater in arid than
in humid climates (Fig. 1a). In support, Álvaro-Fuentes et
al. (2008), who investigated tillage impact on CO2 emissions
from soils in a semiarid climate, attributed the observed large
difference between tillage and no-tillage to differences in soil
water availability. At humid sites high soil moisture favour
high decomposition rates resulting in small differences be-
tween tilled and untilled soils, while large differences de-
velop in arid climates with much lower soil water content
(Fortin et al., 1996; Feizienė et al., 2011). This supports the
idea that the soil response to tillage is affected by climate
thresholds (Franzluebbers and Arshad, 1996).

4.3 Influence of soil properties

4.3.1 Soil organic carbon content

The decrease of CO2 emission differences between tillage
and no-tillage with increasing SOCC is most likely due to di-
minishing inter-aggregate protection sites as SOCc level in-
creases. Several studies have shown that carbon inputs into
carbon-rich soils show little or no increase in soil carbon
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content with most of the added carbon being released to
the atmosphere, while carbon inputs in carbon-depleted soils
translate to greater carbon stocks because of processes that
stabilize organic matter (Paustian et al., 1997; Solberg et al.,
1997; Six et al., 2002). Another reason, which does not in-
volve stabilization, is the fact that soils that have been de-
pleted in carbon tend to recover and accumulate SOC un-
til equilibrium is reached (Carvalhais et al., 2008). There-
fore, abandoning tillage in soils with low SOCC tends to
offer greater protection of SOC than in soils with inher-
ently high SOCC levels. In support, Lal (1997) reported
low SOCC and aggregation correlations under high SOCC
soils, which suggests that substantial proportions of the SOC
were not involved in aggregation. Hence, the greater dif-
ference of CO2 emissions between tilled and untilled soils
for carbon-depleted soils compared to carbon-rich soils may
be due to much greater stabilization of extra SOC delivered
to the carbon-depleted soil by protection in soil aggregates
within the topsoil layers (0.0–0.05 m). Tillage of carbon-
depleted soils is likely to lead to the breakdown of more
soil aggregates, thus leading to greater decomposition of the
residues added under no-tillage, as hypothesized by Madari
et al. (2005) and Powlson et al. (2014).

4.3.2 Soil texture

Soils under zero tillage emitted less CO2 than tilled soils, and
the CO2 emission difference was the greatest in sandy soils
(Fig. 3). Further, in sandy soils, as indicated by Fig. 3, the
largest CO2 emission difference is mirrored by the largest
SOCC difference.

Greater SOCC and then CO2 differences under sandy soils
might be due to the lower resistance of soil aggregates to dis-
aggregation, with tillage accelerating aggregate breakdown
and decreasing organic matter protection, which causes a fast
loss of soil carbon. Differences in CO2 emissions between
treatments were greater in sandy than in clayey soils (Fig. 3).
This might be due to the fact that sandy soils have higher
porosity, allowing changes in soil management to translate
into large variations in the gas fluxes to the atmosphere (Ras-
togi et al., 2002; Bauer et al., 2006). These suggestions con-
trast, however, with the results of, for instance, Chivenge et
al. (2007) working in Zimbabwe and in other locations where
little impact of tillage on carbon sequestration was found un-
der sandy soils as compared to clayey ones.

4.4 Influence of the duration since tillage abandonment

The differences in SOCC between tilled and untilled soils in-
creased with the time since abandonment of tillage (Fig. 5b).
When abandonment of tillage took place before less than 10
years, there were no differences in SOCC between tillage
and no-tillage, but for longer durations, tilled soils had 14 %
less SOCC than untilled soils. This can be explained by the
progressive increase of soil carbon accumulation with time

as a result of the retention of a fraction of the crop residue
under no-tillage. This explanation is consistent with the re-
sults of Paustian et al. (1997) and Ussiri and Lal (2009).
Six et al. (2004) reported that the potential of no-tillage to
mitigate global warming is only noticeable a long time af-
ter (> 10 years) a no-tillage regime has been adopted. This
would suggest that shifts in CO2 emission differences be-
tween tillage and no-tillage will occur over time; this could
not be observed in our analysis (Fig. 5a) because the ma-
jority of experiments in this study were less than 10 years
in length. Further, in some cases no-tillage leads to carbon
loss in the topsoil layer (0–0.3 m) during the first years of
adoption (Halvorson et al., 2002; Six et al., 2004), a re-
sponse which can be attributed to slower incorporation of
surface residues into the soils by soil fauna. However, dif-
ferent studies give contrasting results; for instance, the long-
term no-tillage experiments in northern France by Dimassi et
al. (2014) showed that SOC increased in the topsoil (0–0.1 m)
during 24 years after tillage abandonment, then did not in-
crease, whereas SOC continuously decreased below 0.1 m.
A loss of SOC following tillage abandonment was also sug-
gested by Luo et al. (2010) and Baker et al. (2007).

4.5 Crop types, residue management, and crop rotation

The no-tillage minus tillage variations of CO2 emission and
SOCC between crop types are correlated with the quantity
and quality of crop residue (Fig. 4a–b). Both quantity and
quality of crop residues are important factors for soil car-
bon sequestration and CO2 emissions, and are highly de-
pendent on crop type. Reicosky et al. (1995), reported that
corn returned nearly twice as much residue than soybean,
and that soybean residues decomposed faster because of their
lower C : N ratio. Thus, maize residues result in higher soil
organic matter than soybean. Al-Kaisi and Yin (2005) also
reported reduced soil CO2 emissions and improved soil car-
bon sequestration in maize-soybean rotations due to better
residue retention. Reicosky (1997) summarized that maxi-
mizing residue retention results in carbon sequestration with
subsequent decrease in CO2 emissions. However, several re-
cent studies pointed to the lack of impact of residue man-
agement on soil carbon, with Lemke et al. (2010) show-
ing that crop-residue removal in a 50-year experiment did
not significantly (P > 0.05) reduce soil carbon, and Ren et
al. (2014) showing that inputs from wheat straw and manure
up to 22 ton ha−1 yr−1 could not increase soil carbon over
4 years. De Luca et al. (2008) explained the lack of crop
residue impact on soil carbon with the very low amount of
carbon in residues compared to the bulk soil in their study,
while Russell et al. (2009), having investigated several sys-
tems, pointed out to a concomitant increase of organic matter
decomposition with carbon input rates.

Wilson and Al Kazi (2008) indicated that continuous corn
cropping systems had higher soil CO2 emissions than corn-
soybean rotations because of a greater residue amount. Van
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Eerd et al. (2014) concluded from winter that wheat–legumes
rotations yielded higher carbon input during wheat cultiva-
tion, due to a greater belowground allocation. The present
analysis suggests that tilled soils have significantly greater
CO2 emissions than no-tilled soils irrespective of the crop
rotation system (Fig. 8). This is likely because crop rota-
tion increases SOCC, microbial activity, and diversity. For in-
stance, Lupwayi et al. (1998, 1999) found greater soil micro-
bial biomass under tillage legume-based crop rotations than
under no-tillage with tillage increasing the richness and di-
versity of active soil bacteria by increasing the rate of diffu-
sion of O2 and the availability of energy sources (Pastorelli
et al., 2013). This study showed that continuous monocul-
ture did not result in significantly different CO2 between
tilled and untilled soils (Fig. 8a). Rice is one crop often pro-
duced under a continuous monoculture practice; however, in
this meta-analysis, paddy rice did not show significant dif-
ference of CO2 emissions between tillage and no-tillage. Li
et al. (2010) and Pandey et al. (2012) attributed the lack of
difference to anaerobic soil conditions occurring under both
practices.

4.6 Nitrogen fertilization

The differences of CO2 between tillage and no-tillage did
not differ with nitrogen fertilizer level (Fig. 6a), confirm-
ing observations by Alluvione et al. (2009) and Almaraz et
al. (2009b). This result could be due to the fact that nitro-
gen fertilization increases productivity and carbon inputs to
the soil under both tilled and untilled systems, which may
override nitrogen effects on decomposition such as shown by
Russell et al. (2009). Increasing SOC as a response to nitro-
gen fertilization was found under no-tillage during a period
of 4 years (Morell et al., 2010), and during the 50 year ex-
periment of Lemke et al. (2010). Yet Sainju et al. (2008) re-
ported the opposite: a 14 % increase of soil CO2 flux with
nitrogen fertilizer, because fertilizer application stimulated
biological activity, thereby producing more CO2, and caus-
ing SOCC decline (Khan et al., 2007; Mulvaney et al., 2009).
In contrast, Wilson and Al Kazi (2008) showed that increas-
ing N fertilization generally decreased soil CO2 emissions,
with a maximum decrease of 23 % from 0–135 kg N ha−1 to
270 kg N ha−1 occurring during the growing season, which
might be explained by a series of mechanisms, including the
inhibition of soil enzymes and fungus and the reduction of
root activity.

Overall, these results pointed to little benefit in not till-
ing clayey soils with high SOCC, with the highest no-tillage
benefits occurring under sandy soils with low SOCC. This
can be explained by differences in soil aggregate stability.
Indeed, since the stability of soil aggregates shows a positive
correlation with clay and organic matter content, clayey and
organic soils produce stable aggregates which are likely to
be more disaggregated by tillage compared to sandy aggre-
gates of low carbon content. The SOC protected within soil

aggregates under no-tillage becomes exposed under tillage
because of aggregate dispersion; which explains the greater
reduction in CO2 emission with no-tillage under sandy soils.
Rather, emission is likely to be reduced under zero tillage
as a result of improved soil aggregate stability and the as-
sociated protection of decomposed and stable organic mat-
ter. Crop management such as fertilization and crop type, or
climate are shown to have little effect on aggregation. Our
analysis did not include time since cessation of tillage as a
specific predictor and classified instead the experiments into
two simple categories (short vs. long term).

5 Conclusion

The aim of this study was to provide a comprehensive quan-
titative synthesis of the impact of tillage on CO2 emissions
using meta-analysis. Three main conclusions can be drawn.
Firstly, tillage systems had 21 % greater CO2 emissions than
no-tillage, worldwide. Secondly, the reduction in CO2 emis-
sions following tillage abandonment was greater in sandy
soils with low SOCC compared to clayey soils with high
SOCC. Thirdly, crop rotation significantly reduced the CO2
emissions from untilled soil, by 26 % compared to tilled soil,
while continuous monocultural practice had no significant ef-
fect. This is most probably due to the fact that crop rotation
can increase SOCC and more microbial activity under a tilled
compared to an untilled treatment. These results emphasize
the importance of including soil factors such as texture, ag-
gregate stability and organic carbon content in global models
of the carbon cycle.

Long-term process studies of the entire soil profile are
needed to better quantify the changes in SOC following
tillage abandonment and to clarify the changes in the dynam-
ics of carbon inputs and outputs in relation to changes in mi-
crobial activity, soil structure and microclimate. In addition,
more research is needed to identify the underlying reasons
why, over a long period of time, the abandonment of tillage
results in a decrease in integrated CO2 emissions, that ap-
pears to be much higher than the observed increase in SOCS.
The goal remains to design agricultural practices that are ef-
fective at sequestering carbon in soils.

Finally, one future application of these data could be to use
them to calibrate soil carbon models. The models could be
run with prescribed inputs (from observation sites) used to
simulate decomposition and the mass balance of SOC over
time for different climates, soil texture and initial SOC con-
tent with respect to the theoretical value assuming equilib-
rium of decomposition and input (Kirk and Bellamy, 2010).
Most soil carbon models developed for generic applications
(e.g. RothC, DNDC, and CENTURY) would be suitable tools
for exploitation of the data presented here (Adams et al.,
2011).
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Feizienė, D., Feiza, V., Kadziene, G., Vaideliene, A., Povilaitis, V.,
and Deveikyte, I.: CO2 fluxes and drivers as affected by soil type,
tillage and fertilization, Acta Agr. Scand., Section B-Soil Plant,
62, 311–328, 2011.

Flanagan, L. B. and Johnson, B. G.: Interacting effects of temper-
ature, soil moisture and plant biomass production on ecosystem
respiration in a northern temperate grassland, Agr. Forest Mete-
orol., 130, 237–253, 2005.

Fortin, M. C., Rochette, P., and Pattey, E.: Soil carbon dioxide fluxes
from conventional and no-tillage small-grain cropping systems,
Soil Sci. Soc. Am. J., 60, 1541–1547, 1996.

Franzluebbers, A. and Arshad, M.: Soil organic matter pools with
conventional and zero tillage in a cold, semiarid climate, Soil
Till. Res., 39, 1–11, 1996.

Gurevitch, J. and Hedges, L.: Meta-analysis; combining the results
of independent studies in experimental, in: Design and Analysis
of ecological experiments, 2nd Edn., edited by: Sceiner, S. M.,
Gurevitch, J., Oxford University Press, UK, 347–369, 2001.

Halvorson, A. D., Wienhold, B. J., and Black, A. L.: Tillage, ni-
trogen, and cropping system effects on soil carbon sequestration,
Soil Sci. Soc. Am. J., 66, 906–912, 2002.

Hedges, L. V., Gurevitch, J., and Curtis, P. S.: The meta-analysis
of response ratios in experimental ecology, Ecology, 80, 1150–
1156, 1999.

Hendrix, P., Han, C. R., and Groffman, P.: Soil respiration in con-
ventional and no-tillage agroecosystems under different winter
cover crop rotations, Soil Till. Res., 12, 135–148, 1988.

Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., and Jarvis,
A.: Very high resolution interpolated climate surfaces for global
land areas, Int. J. Climatol., 25, 1965–1978, 2005.

Hovda, J., Mehdi, B. B., Madramootoo, C. A., and Smith, D. L.:
Soil carbon dioxide fluxes from one season measured in silage
and grain corn under conventional and no tillage, The Canadian
socitey for engenerring in agriculutre, food and biological sys-
tems, Written for presentation at the CSAE/SCGR 2003 Meeting
Montréal, Québec (6–9 July 2003), 2003.

Jabro, J., Sainju, U., Stevens, W., and Evans, R.: Carbon diox-
ide flux as affected by tillage and irrigation in soil converted
from perennial forages to annual crops, J. Environ. Manage., 88,
1478–1484, 2008.

Jacinthe, P. A., Lal, R., and Kimble, J.: Carbon budget and seasonal
carbon dioxide emission from a central Ohio Luvisol as influ-
enced by wheat residue amendment, Soil Till. Res., 67, 147–157,
2002.

Jobbágy, E. G. and Jackson, R. B.: The vertical distribution of soil
organic carbon and its relation to climate and vegetation, Ecol.
Appl., 10, 423–436, 2000.

Khan, S., Mulvaney, R., Ellsworth, T., and Boast, C.: The myth of
nitrogen fertilization for soil carbon sequestration, J. Environ.
Qual., 36, 1821–1832. 2007.

Kirk, G. J. D. and Bellamy, P. B.: Analysis of changes in organic
carbon in mineral soils across England and Wales using a simple
single-pool model, Eur. J. Soil Sci., 61, 401–411, 2010.

Köppen, W.: Das geographische system der klimate, in: Handbuch
der Klimatologie, Vol. I, Part C, edited by: Köppen, W. and
Geiger, R., Gebrüder Borntraeger, Berlin, 44 pp. 1936.

Lal, R.: Methods and guidelines for assessing sustainable use of
soil and water resources in the tropics, The Ohio state university,
Columbus, Ohio, 1994.

Lal, R.: Residue management, conservation tillage and soil restora-
tion for mitigating greenhouse effect by CO2 enrichment, Soil
Till. Res., 43, 81–107, 1997.

Lal, R.: Global potential of soil carbon sequestration to mitigate the
greenhouse effect, Crit. Rev. Plant Sci., 22, 151–184, 2003.

La Scala Jr., N., Lopes, A., Marques, J., and Pereira, G.: Carbon
dioxide emissions after application of tillage systems for a dark
red latosol in southern Brazil, Soil Till. Res., 62, 163–166, 2001.

La Scala Jr., N., Lopes, A., Panosso, A., Camara, F., and Pereira,
G.: Soil CO2 efflux following rotary tillage of a tropical soil,
Soil Till. Res., 84, 222–225, 2005.

La Scala Jr., N., Bolonhezi, D., and Pereira, G.: Short-term soil CO2
emission after conventional and reduced tillage of a no-till sugar
cane area in southern Brazil, Soil Till. Res., 91, 244–248, 2006.

Lee, J., Six, J., King, A. P., Van Kessel, C., and Rolston, D. E.:
Tillage and field scale controls on greenhouse gas emissions, J.
Environ. Qual., 35, 714–725, 2006.

Lee, J., Hopmans, J. W., van Kessel, C., King, A. P., Evatt, K. J.,
Louie, D., Rolston, D. E., and Six, J.: Tillage and seasonal emis-
sions of CO2, N2O and NO across a seed bed and at the field

www.biogeosciences.net/13/3619/2016/ Biogeosciences, 13, 3619–3633, 2016

http://dx.doi.org/10.1016/j.gloenvcha.2012.10.012


3632 K. Abdalla et al.: No-tillage lessens soil CO2 emissions the most under arid and sandy soil conditions

scale in a Mediterranean climate, Agr. Ecosyst. Environ., 129,
378–390, 2009.

Li, C., Kou, Z., Yang, J., Cai, M., Wang, J., and Cao, C.: Soil CO2
fluxes from direct seeding rice fields under two tillage practices
in central China, Atmos. Environ., 44, 2696–2704, 2010.

Li, C., Zhang, Z., Guo, L., Cai, M., and Cao, C.: Emissions of CH4
and CO2 from double rice cropping systems under varying tillage
and seeding methods, Atmos. Environ., 80, 438–444, 2013.

Liu, X., Mosier, A., Halvorson, A., and Zhang, F.: The impact of
nitrogen placement and tillage on NO, N2O, CH4 and CO2 fluxes
from a clay loam soil, Plant Soil, 280, 177–188, 2006.

López-Garrido, R., Díaz-Espejo, A., Madejón, E., Murillo, J., and
Moreno, F.: Carbon losses by tillage under semi-arid Mediter-
ranean rainfed agriculture (SW Spain), Spanish J. Agric. Res., 7,
706–716, 2009.

López-Garrido, R., Madejón, E., Moreno, F., and Murillo, J.: Con-
servation tillage influence on carbon dynamics under Mediter-
ranean conditions, Pedosphere, 24, 65–75, 2014.

Lemke, R. L., VandenBygaart, A. J., Campbell, C. A., Lafond, G. P.,
and Grant, B. B.: Crop residue removal and fertilizer N: Effects
on soil organic carbon in a long-term crop rotation experiment
on a Udic Boroll, Agr. Ecosyst. Environ., 135, 42–51, 2010.

Luo, Z., Wang, E., and Sun, O. J.: Can no-tillage stimulate carbon
sequestration in agricultural soils? A meta-analysis of paired ex-
periments, Agr. Ecosyst. Environ., 139, 224–231, 2010.

Lupwayi, N. Z., Rice, W. A., and Clayton, G. W.: Soil microbial
diversity and community structure under wheat as influenced by
tillage and crop rotation, Soil Biol. Biochem., 30, 1733–1741,
1998.

Lupwayi, N., Rice, W., and Clayton, G.: Soil microbial biomass and
carbon dioxide flux under wheat as influenced by tillage and crop
rotation, Can. J. Soil Sci., 79, 273–280, 1999.

Madari, B., Machado, P. L., Torres, E., de Andrade, A. S. G., and
Valencia, L. I.: No tillage and crop rotation effects on soil aggre-
gation and organic carbon in a Rhodic Ferralsol from southern
Brazil, Soil Till. Res., 80, 185–200, 2005.

Mchunu, C. N., Lorentz, S., Jewitt, G., Manson, A. and Chaplot, V.:
No-till impact on soil and soil organic carbon erosion under crop
residue scarcity in Africa, Soil Sci. Soc. Am. J., 75, 1503–1512,
2011.

McKyes, E.: Soil cutting and tillage, Developments in agricultural
engineering, Elsevier Science publisher, Amsterdam, 1985.

Menéndez, S., Lopez-Bellido, R., Benítez-Vega, J., Gonzalez-
Murua, C., Lopez-Bellido, L., and Estavillo, J.: Long-term ef-
fect of tillage, crop rotation and N fertilization to wheat on
gaseous emissions under rainfed Mediterranean conditions, Eur.
J. Agron., 28, 559–569, 2008.

Morell, F., Álvaro-Fuentes, J., Lampurlanés, J., Cantero-Martínez,
C.: Soil CO2 fluxes following tillage and rainfall events in a
semiarid Mediterranean agroecosystem: Effects of tillage sys-
tems and nitrogen fertilization, Agr. Ecosyst. Environ., 139, 167–
173, 2010.

Mosier, A., Halvorson, A., Peterson, G., Robertson, G., and Sher-
rod, L.: Measurement of net global warming potential in three
agroecosystems, Nutr. Cycl. Agroecosys., 72, 67–76, 2005.

Mosier, A. R., Halvorson, A. D., Reule, C. A., and Liu, X. J.: Net
global warming potential and greenhouse gas intensity in irri-
gated cropping systems in northeastern Colorado, J. Environ.
Qual., 35, 1584–1598, 2006.

Mulvaney, R., Khan, S., and Ellsworth, T.: Synthetic nitrogen fer-
tilizers deplete soil nitrogen: a global dilemma for sustainable
cereal production, J. Environ. Qual., 38, 2295–2314, 2009.

Omonode, R. A., Vyn, T. J., Smith, D. R., Hegymegi, P., and
Gál, A.: Soil carbon dioxide and methane fluxes from long-term
tillage systems in continuous corn and corn–soybean rotations,
Soil Till. Res., 95, 182–195, 2007.

Oorts, K., Merckx, R., Gréhan, E., Labreuche, J., and Nicolardot,
B.: Determinants of annual fluxes of CO2 and N2O in long-term
no-tillage and conventional tillage systems in northern France,
Soil Till. Res., 95, 133–148, 2007.

Pandey, D., Agrawal, M., and Bohra, J. S.: Greenhouse gas emis-
sions from rice crop with different tillage permutations in rice–
wheat system, Agr. Ecosyst. Environ., 159, 133–144, 2012.

Pastorelli, R., Piccolo, R., Simoncini, S., and Landi, S.: New
Primers for Denaturing gradient gel electrophoresis analysis of
nitrate-reduction bacterial community in soil, Pedoshere, 23,
340–349, 2013.

Paustian, K., Andrén, O., Janzen, H. H., Lal, R., Smith, P., Tian, G.,
Tiessen, H., Noordwijk, M. V., and Woomer, P. L.: Agricultural
soils as a sink to mitigate CO2 emissions, Soil Use Manage., 13,
230–244, 1997.

Pes, L. Z., Amado, T. J., La Scala Jr., N., Bayer, C., and Fiorin,
J. E.: The primary sources of carbon loss during the crop-
establishment period in a subtropical Oxisol under contrasting
tillage systems, Soil Till. Res., 117, 163–171, 2011.

Peterson, G., Halvorson, A., Havlin, J., Jones, O., Lyon, D., and
Tanaka, D.: Reduced tillage and increasing cropping intensity in
the Great Plains conserves soil C, Soil Till. Res., 47, 207–218,
1998.

Powlson, D. S., Stirling, C. M., Jat, M. L., Gerard, B. G., Palm,
C. A., Sanchez, P. A., and Cassman, K. G.: Limited potential of
no-till agriculture for climate change mitigation, Nature Climate
Change, 4, 678–683, doi:10.1038/nclimate2292, 2014.

Rastogi, M., Singh, S., and Pathak, H.: Emission of carbon dioxide
from soil, Curr. Sci., 82, 510–517, 2002.

Regina, K. and Alakukku, L.: Greenhouse gas fluxes in varying soils
types under conventional and no-tillage practices, Soil Till. Res.,
109, 144–152, 2010.

Reicosky, D.: Tillage-induced CO2 emission from soil, Nutr. Cycl.
Agroecosys., 49, 273–285, 1997.

Reicosky, D. and Archer, D.: Moldboard plow tillage depth and
short-term carbon dioxide release, Soil Till. Res., 94, 109–121,
2007.

Ren, T., Wang, J., Chen, Q., Zhang, F., and Lu, S.: The Effects
of Manure and Nitrogen Fertilizer Applications on Soil Organic
Carbon and Nitrogen in a High-Input Cropping System, PLoS
One, 9, e97732, doi:10.1371/journal.pone.0097732, 2014.

Rosenberg, M. S., Adams, D. C., and Gurevitch, J.: MetaWin: statis-
tical software for meta-analysis, Sinauer Associates Sunderland,
Massachusetts, USA, 2000.

Royal Society: The role of land carbon sinks in mitigating global
climate change, Royal Society, London, UK, 2001.

Ruan, L. and Robertson, G.: Initial nitrous oxide, carbon diox-
ide, and methane costs of converting conservation reserve pro-
gram grassland to row crops under no-till vs. conventional tillage,
Glob. Change Biol., 19, 2478–2489, 2013.

Russell, A. E., Cambardella, C. A., Laird, D. A., Jaynes, D. B., and
Meek, D. W.: Nitrogen fertilizer effects on soil carbon balances

Biogeosciences, 13, 3619–3633, 2016 www.biogeosciences.net/13/3619/2016/

http://dx.doi.org/10.1038/nclimate2292
http://dx.doi.org/10.1371/journal.pone.0097732


K. Abdalla et al.: No-tillage lessens soil CO2 emissions the most under arid and sandy soil conditions 3633

in Midwestern U.S. agricultural systems, Ecol. Appl., 19, 1102–
1113, 2009.

Sainju, U. M., Jabro, J. D., and Stevens, W. B.: Soil carbon diox-
ide emission and carbon content as affected by irrigation, tillage,
cropping system, and nitrogen fertilization, J. Environ. Qual., 37,
98–106, 2008.

Sainju, U. M., Stevens, W. B., Caesar-TonThat, T., and Jabro, J.
D.: Land use and management practices impact on plant biomass
carbon and soil carbon dioxide emission, Soil Sci. Soc. Am. J.,
74, 1613–1622, 2010a.

Sainju, U. M., Stevens, W. B., Caesar-TonThat, T., and Jabro, J. D.:
Carbon input and soil carbon dioxide emission affected by land
use and management practices, 19th World Congress of Soil Sci-
ence, 1–6 August 2010, Brisbane, Australia, Published on DVD,
2010b.

Saxton, K., Rawls, W. J., Romberger, J., and Papendick, R.: Esti-
mating generalized soil-water characteristics from texture, Soil
Sci. Soc. Am. J., 50, 1031–1036, 1986.

Shirazi, M. A. and Boersma, L.: A unifying quantitative analysis of
soil texture, Soil Sci. Soc. Am. J., 48, 142–147, 1984.

Six, J., Conant, R., Paul, E., and Paustian, K.: Stabilization mech-
anisms of soil organic matter: implications for C-saturation of
soils, Plant Soil, 241, 155–176, 2002.

Six, J., Bossuyt, H., Degryze, S., and Denef, K.: A history of re-
search on the link between (micro) aggregates, soil biota, and
soil organic matter dynamics, Soil Till. Res., 79, 7–31, 2004.

Smith, D., Hernandez-Ramirez, G., Armstrong, S., Bucholtz, D.,
and Stott, D.: Fertilizer and tillage management impacts on non-
carbon-dioxide greenhouse gas emissions, Soil Sci. Soc. Am. J.,
75, 1070–1082, 2011.

Smith, K., Watts, D., Way, T., Torbert, H., and Prior, S.: Impact of
tillage and fertilizer application method on gas emissions in a
corn cropping system, Soil Science Society of China, 22, 604–
615, 2012.

Smith, P., Martino, D., Cai, Z., Gwary, D., Janzen, H., Kumar, P.,
McCarl, B., Ogle, S., O’Mara, F., and Rice, C.: Greenhouse gas
mitigation in agriculture, Philos. T. Roy. Soc. B, 363, 789–813,
2008.

Solberg, E. D., Nyborg, M., Izaurralde, R. C., Janzen, H. H., Malhi,
S. S., and Molina-Ayala, M.: Carbon Storage in soils under con-
tinuous cereal grain cropping: N fertilizer and straw, in: Manage-
ment of Carbon Sequestration in Soil, edited by: Lal, R., Kimble,
J. M., Follett, R. F., and Stewart, B. A., CRC Press, Boca Raton,
FL, 235–254, 1997.

Ussiri, D. A. N. and Lal, R.: Long-term tillage effects on soil carbon
storage and carbon dioxide emissions in continuous corn crop-
ping system from an alfisol in Ohio, Soil Till. Res., 104, 39–47,
2009.

VandenBygaart, A. J. and Angers, D. A.: Towards accurate mea-
surements of soil organic carbon stock change in agroecosys-
tems, Canadian J. Soil Sci., 86, 465–471, 2006.

Van Eerd, L. L., Congreves, K. A., Hayes, A., Verhallen, A. and
Hooker, D. C.: Incidence à long terme du travail du sol et de
l’assolement sur la qualité du sol, sur sa teneur en carbone or-
ganique et sur la concentration totale d’azote, Can. J. Soil Sci.
94, 303–315, 2014.

Van Oost, K., Quine, T., Govers, G., De Gryze, S., Six, J., Harden,
J., Ritchie, J., McCarty, G., Heckrath, G., and Kosmas, C.: The
impact of agricultural soil erosion on the global carbon cycle,
Science, 318, 626–629, 2007.

Varvel, G. E. and Wilhelm, W.: Soil carbon levels in irrigated west-
ern Corn Belt rotations, Agron. J., 100, 1180–1184, 2008.

Virto, I., Barré, P., Burlot, A., and Chenu, C.: Carbon input differ-
ences as the main factor explaining the variability in soil organic
C storage in no-tilled compared to inversion tilled agrosystems,
Biogeochemistry, 108, 17–26, 2012.

West, T. O. and Post, W. M.: Soil organic carbon sequestration rates
by tillage and crop rotation, Soil Sci. Soc. Am. J., 66, 1930–1946,
2002.

Wilson, G., Dabney, S., McGregor, K., and Barkoll, B.: Tillage and
residue effects on runoff and erosion dynamics, T. ASAE, 47,
119–128, 2004.

Wilson, H. M. and Al-Kaisi, M. M.: Crop rotation and nitrogen fer-
tilization effect on soil CO2 emissions in central Iowa, Appl. Soil
Ecol., 39, 264–270, 2008.

www.biogeosciences.net/13/3619/2016/ Biogeosciences, 13, 3619–3633, 2016


	Abstract
	Introduction
	Materials and methods
	Database generation 
	Meta-analysis 

	Results
	General statistics of soil CO2 emissions from tilled and untilled soils
	Controls on the response of soil CO2 emissions to tillage
	Climate
	Soil organic carbon content
	Soil texture
	Crop type
	Duration of no-tillage
	Nitrogen fertilization 
	Crop residue management and crop rotation
	Multiple correlations between soil CO2 emissions and selected soil variable and environmental factors


	Discussion
	Overall influence of tillage on SOCC and soil CO2 emissions
	Influence of climate
	Influence of soil properties
	Soil organic carbon content 
	Soil texture

	Influence of the duration since tillage abandonment
	Crop types, residue management, and crop rotation
	Nitrogen fertilization

	Conclusion
	Acknowledgements
	References

