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The standard two-step perturbative approach of the gyrokinetic reduction usually consists in a
guiding-center reduction and a subsequent gyrocenter reduction. At each step, a Lie transform
procedure is applied aiming to eliminate the fast gyroangle dependencies from the one-form of the
particle motion. Here we present an alternative two-step procedure: Using a translation in velocity,
we embed the Lie transform performed on the symplectic part of the gyrocenter reduction in the
guiding-center one. Using a canonical Lie transform, we then eliminate the gyroangle dependence
from the Hamiltonian. As a result we present a systematic and self-contained derivation of the
second order fully electromagnetic gyrokinetic equations for the code ordering, assuming that the
perturbations related to the curvature of the background magnetic field are of higher order with
respect to the relative amplitudes of the fluctuating fields.

I. INTRODUCTION

A strongly magnetized plasma forms a complex multi-scaled system in space and time. Building reduced models
allows the identification of the main physical mechanisms in different regimes and configurations.
After more than three decades of active development, gyrokinetic theory is nowadays one of the important theoretical

frameworks for the investigation of strongly magnetized plasmas. The main idea behind the gyrokinetic dynamical
reduction consists in a systematic elimination of the fastest scales of motion, which leads to a drastic reduction of
computational time.
From a theoretical viewpoint, the gyrokinetic reduction provides access to accurate predictions on long-scale pro-

cesses such as transport which is one of the main issues for fusion plasma confinement [1]. In astrophysical plasmas,
the gyrokinetic theory is also of interest [2]: Recently, gyrokinetic simulations have been used to access small scale
spectra, in order to fill the gaps when magnetohydrodynamics approximations fail.
The gyrokinetic dynamical reduction exploits the fact that the particle dynamics is decomposed into a fast rotation

around the magnetic field lines and a slow drift motion. The temporal scale of the gyromotion is set by the cyclotron
frequency Ω = eB/mc, where e and m are, respectively, the charge and mass of the particles, B is the magnetic field
amplitude and c the speed of light. The gyromotion is described by a fast gyroangle variable θ to which corresponds
to a canonically conjugate slowly varying magnetic moment µ, which is, at the lowest order,

µ =
mv2⊥
2B

,

where v⊥ is the perpendicular velocity of the charged particle with respect to the magnetic field lines. The magnetic
moment is a measure of the area enclosed by the motion of a particle rotating around a magnetic field line. From
this geometrical picture comes the idea of using µ as an action variable canonically conjugated to the fast gyromotion
around the magnetic field lines. In the case of a constant and uniform background magnetic field, µ is an exact
dynamical invariant.
The sources for the violation of the conservation of the magnetic moment come from two different origins: first,

spatial variations of the background quantities such as magnetic field non-uniformities and curvature and, second,
the presence of electromagnetic fluctuations generated by the plasma. The goal of the gyromagnetic reduction is to
average the fast dynamics taking into account these two sources of perturbations, and restore a conserved quantity,
a modified magnetic moment.
There exist several ways to derive the gyrokinetic theory: direct ones and systematic ones. A direct approach [3]

consists in performing directly an asymptotic expansion on the Vlasov equation, making the control of orderings and
consistency rather cumbersome. Systematic derivations of gyrokinetic reductions use the Hamiltonian/Lagrangian
framework [4, 5]. The main advantage of systematic approaches is the consistency of the reduced particle model.
Moreover, the coupling between the reduced particle dynamics with electromagnetic fields within the field-particle
Lagrangian provides a framework for the consistent derivation of the models. The implementation of the Hamiltonian
formalism for the particle dynamical reduction towards the guiding-center motion began with the works of Littlejohn
in the Hamiltonian framework [6, 7] and in the Lagrangian one [8]. Subsequent developments of the gyrokinetic field
theory, coupling the reduced particle dynamics with electromagnetic fields were done in Refs. [9, 10]. Nowadays this
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framework is widely used for the derivation of consistently reduced models suitable for the numerical implementation
[5, 11, 12].
More specifically, the goal of the systematic gyrokinetic dynamical reduction consists in building a new set of

phase-space variables, such that the θ-dependence is completely decoupled from the other variables, and that the
magnetic moment µ has a trivial dynamics, i.e., µ̇ = 0. Therefore, the reduced particle dynamics is described in the
5-dimensional phase space with variables

(
X, v‖, µ

)
where X represents the reduced particle position (the gyrocenter),

v‖ is a variable which mirrors the parallel velocity of the particle and µ is the conserved magnetic moment. This
change of coordinates is constructed via a perturbative series of phase-space transformations. The main advantage
of this approach is that these transformations are invertible at each step of the perturbative procedure, allowing to
recover information on the particle dynamics from the averaged one.
The phase-space Lagrangian is the starting point of the gyrokinetic derivation. It is given by

L0(x,v; t) =
( e
ǫc
A(x) +mv

)
· ẋ−H(x,v, t), (1)

where x and v are the position and velocity of the charged particle. The term in ẋ represents the symplectic part
and the second term the Hamiltonian part.
Electromagnetic perturbations are introduced via the phase-space Lagrangian perturbation:

L1(x,v; t) = ǫδ

(e
c
A1(x) · ẋ− eφ1(x)

)
, (2)

where we notice that the perturbation associated with the magnetic potential only affects the symplectic part of the
phase-space Lagrangian and the electrostatic potential, its Hamiltonian part.
A fundamental aspect of the gyrokinetic theory is the assumption on the ordering of the various small parameters

present in the system. Three small parameters are identified: ǫB, ǫδ and ǫ‖. First, the background magnetic field is
supposed to vary slowly in space and time. A small parameter of pure geometrical meaning is associated with this
hypothesis: ǫB = ρth/LB, where ρth is the thermal Larmor radius and LB = ‖∇B/B‖ defines the spatial scale on
which the magnetic field exhibits significant variations. Second, the gyrokinetic theory assumes that the amplitude of
the fluctuating electromagnetic fields is small, i.e., ǫδ = (k⊥ρth)eφ1/Ti, where φ1 is the amplitude of the fluctuating
electrostatic potential and Ti the ion temperature. Similarly to that we assume that φ1 ∼ A1‖/v‖ is of order ǫδ.
Finally, experimental observations report that the most dangerous instabilities occur in the plane perpendicular
to the background magnetic field for strongly magnetized plasmas. We take this into account by assuming that
ǫ‖ = E1‖/E1⊥ ∼ k‖/k⊥ is also of order ǫδ.
The only two main assumptions on the small parameters which sustain the derivation of the gyrokinetic model we

propose are ǫB ∼ ǫ2δ and ǫ‖ ∼ ǫδ. In particular, we notice that we do not make any assumption on ǫ which is the ratio
of the gyroradius to scale length, indicating how strong the magnetic field is.
In the literature (see, e.g., Ref. [5] for a review), the standard gyrokinetic dynamical reduction is organized in

two consecutive steps: the guiding-center reduction, where the new set of phase-space variables is constructed to
evidence the conservation of the magnetic moment µ with respect to the background magnetic field nonlinearities,
and the subsequent gyrocenter reduction which builds a modified set of variables to restore the magnetic moment
conservation broken by the introduction of the electromagnetic fluctuations. This gyrokinetic dynamical reduction
splits the difficulties in two steps with respect to the small parameter of the system: ǫB for the guiding-center step and
ǫδ for the gyrocenter step. Each of these steps consists in eliminating the gyrophase dependence from the symplectic
and the Hamiltonian part, simultaneously.
In this work, we propose an alternative derivation of the gyrokinetic equations by combining the guiding-center

and the gyrocenter reductions in a single step, treating the symplectic and the Hamiltonian part of the Lagrangian
in two consecutive steps. This is achieved by an apt shift of the velocity, followed by a modified guiding-center
reduction to move the θ-dependence of the symplectic part of the Lagrangian to the Hamiltonian part. Subsequently,
the θ-dependence of the Hamiltonian is removed by some canonical Lie transforms. This approach follows the one
developed in Ref. [12] in the particular case where the electromagnetic potential does not have any perpendicular
component.
This paper is organised as follows: In Sec. II we introduce the velocity shift which allows the application of the

guiding-center theory following Ref. [8]. In Sec. III we recall the general procedure of canonical Lie transforms and
we apply this perturbative procedure to derive the reduced Hamiltonian dynamics at the second order in ǫδ, explicitly
providing the new set of variables at order ǫδ. Finally, in Sec. IV, we present the gyrocenter characteristics, from which
the gyrokinetic Vlasov equation is reconstructed, and we briefly remind the variational method to derive the reduced
Maxwell equations. For completeness, we add an appendix containing a slightly revisited guiding-center derivation,
with the full details of the derivation, which is suited for our choice or ordering. As a result, the derivation of the
gyrokinetic model is self-consistent, and does not rely on previous knowledge of the guiding-center theory.
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II. GYROCENTER AS A MODIFIED GUIDING-CENTER

The perturbed one-form associated with the perturbed Lagrangian (1)-(2) is given by

γpert =
( e
ǫc
A(x) + ǫδ

e

c
A1(x) +mv

)
· dx−Hdt,

where

H =
1

2
mv

2 + ǫδeφ1(x). (3)

The part in dt is referred to as the Hamiltonian part of the one-form, whereas the part in dx is its symplectic part.
We translate the particle velocity v:

v̄ = v + ǫδ
e

mc
A1(x).

This velocity shift allows us to apply directly and readily Littlejohn’s guiding-center theory [8] without performing
the reduction calculations twice (first, the guiding-center reduction without the perturbation A1 and φ1, and then the
gyrocenter reduction) in the symplectic part of the one-form. Therefore we can now apply the guiding-center results
on γpert in the variables (x, v̄). We decompose v̄ into

v̄ = v̄‖b̂(x) + v̄⊥⊥̂(θ̄,x),

where b̂ = B/B. The above-relation defines the two vectors ⊥̂ and ρ̂ of the orthonormal basis (⊥̂, ρ̂, b̂). Given an

orthonormal basis (b̂1(x), b̂2(x), b̂(x)), the following vectors

⊥̂(θ̄,x) = −b̂1(x) sin θ̄ − b̂2(x) cos θ̄,

ρ̂(θ̄,x) = b̂1(x) cos θ̄ − b̂2(x) sin θ̄,

define the angle θ̄. The crucial step in the guiding-center theory is a shift of the particle position, i.e., x = X̄+ρ with

ρ = ǫ
mv̄⊥c

eB(X̄)
ρ̂(θ̄, X̄) + ρ̄1 +O(ǫ2B),

where the explicit expression of ρ̄1 which is of order ǫB is given in Appendix (for more details on the guiding-center
theory, we refer to Refs. [8, 13, 14]). Here the expression for ρ̄1 is not explicitly needed since we only provide the
change of coordinates at order ǫδ (see Sec. III). After the modified guiding-center reduction, the one-form becomes

γ̄pert =
( e
ǫc
A(X̄) +mv̄‖b̂(X̄)− ǫ

mc

e
µR∗

)
· dX̄+ ǫ

mc

e
µ̄dθ̄ −Hdt+O(ǫ2B),

where µ̄ = mv̄2⊥/(2B(X̄)), and R
∗ = ∇b̂1 · b̂2 + (b̂ · ∇ × b̂)b̂/2. We notice that the symplectic part of γ̄pert has no

explicit dependence on θ̄, which was the objective of the guiding-center reduction. The Poisson bracket associated
with the symplectic part of γ̄pert is given by

{F,G}gc =
e

ǫmc

(
∂F

∂θ̄

∂G

∂µ̄
−
∂F

∂µ̄

∂G

∂θ̄

)
+

B
∗

mB∗
‖

·

(
∇F

∂G

∂v̄‖
−
∂F

∂v̄‖
∇G

)
− ǫ

cb̂

eB∗
‖

· (∇F ×∇G), (4)

for observables F and G, functions of (X̄, θ̄, µ̄, v̄‖), and where

B
∗ = B+ ǫ

mc

e
v̄‖∇× b̂− ǫ2

mc2

e2
µ̄∇×R

∗,

and B∗
‖ = b̂ ·B∗. After the translation in velocity, Hamiltonian (3) becomes

H =
1

2
mv̄2‖ + µ̄B(X̄) + ǫδeψ1(X̄, θ̄, µ̄, v̄‖) + ǫ2δ

e2

2mc2
‖A1(X̄+ ρ)‖2, (5)

where there is an explicit θ-dependence at order ǫδ and ǫ2δ through the potentials ψ1 and A1. The modified potential
ψ1 is given by

ψ1(X̄, θ̄, µ̄, v̄‖) = φ1(X̄+ ρ)−
v̄‖

c
b̂(X̄+ ρ) ·A1(X̄+ ρ)−

√
2µ̄B(X̄)

mc2
⊥̂(θ̄, X̄+ ρ) ·A1(X̄+ ρ).
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It is important to note that all the fluctuating part has been removed from the symplectic part of the one-form and
moved to the Hamiltonian part. In this way, the averaging over the fast variable θ̄ has to be performed only on the
Hamiltonian and not on the symplectic part of the one-form. By using canonical transformations, the symplectic part
of the one-form is not affected (up to an exact one-form).
As a final remark, we notice that the shift in the position contains the Larmor radius from the guiding center and

also the displacement generated by the perturbation field A1, and explicitly depends on A1. At the leading order we
have:

x = X̄+ ǫ
mc

eB
b̂× v̄ = X̄+ ǫ

mc

eB
b̂× v + ǫǫδ

1

B
b̂×A1 +O(ǫ2δ). (6)

Furthermore, the averaging procedure performed in the Hamiltonian will modify the position X̄. We will come back
to the expressions of the new coordinates after performing the averaging procedure.

III. AVERAGING PROCEDURE OF THE HAMILTONIAN

A. Canonical Lie transforms

In order to perform the averaging with respect to the fast variable θ̄ in the Hamiltonian, we use canonical Lie
transforms. These transforms are near-identity canonical changes of coordinates which do not modify the expression
of the symplectic part of the one-form (up to an exact one form), or equivalently, do not change the expression of
the Poisson bracket. A canonical Lie transform only affects the Hamiltonian, and with an apt choice of generating
function eliminates the unwanted part of the Hamiltonian, in our case, its fast-varying part. For more details on Lie
transforms, we refer to Ref. [15]. The invertible change of coordinates from the old variables z to the new ones Z is
defined as

Z = e£Sz,

where S is the scalar generating function of the transformation, and the operator LS is defined as £S = {S, ·}gc. The
bracket {·, ·}gc is given by Eq. (4). This change of coordinates transforms any observable F (z) into F̄ (Z) as

F̄ (Z) = e−£SF (Z) = F − {S, F}gc +
1

2
{S, {S, F}gc}gc +O(S3), (7)

which is obtained from the scalar invariance F̄ (Z) = F (z) (and the fact that the Poisson bracket satisfies the Leibniz
rule) and where the right-hand-side of Eq. (7) is evaluated at Z.
We recall that the guiding-center Poisson bracket (4) is decomposed into

{F,G}gc = ǫ−1{F,G}−1 + {F,G}0 + ǫ{F,G}1,

and the Hamiltonian H = H0 + ǫδH1 + ǫ2δH2 [see Eq. (5)]. In order to remove the θ̄-dependence from H , we consider
a generating function of the type S = ǫǫδS1 + ǫǫ2δS2. The purpose of S1 is to eliminate the fluctuating part of
the Hamiltonian H at order ǫδ (i.e., present in H1) and S2 eliminates the fluctuating terms at order ǫ2δ. In order
to illustrate the method, we first consider the order ǫδ. We decompose H1 in a fluctuating and an averaged part:

H1 = H̃1 + 〈H1〉, where 〈H1〉 = (2π)−1
∫ 2π

0
dθ̄H1. At order ǫδ, it leads to

H̄ = H0 + ǫδ

(
〈H1〉+ H̃1 − {S1, H0}−1 − ǫ {S1, H0}0 − ǫ2 {S1, H0}1

)
+O(ǫ2δ).

By inspecting the various terms in the above-equation, we notice that {S1, H0}1 is of order ǫB since it involves ∇B.
This term is thus neglected even at the next order since ǫB ∼ ǫ2δ. The term {S1, H0}0 involves a term proportional to
B

∗ · ∇S1. Up to order ǫB, this term is the parallel gradient of the generating function. Since the generating function
is a function of the fluctuating fields, this term will be of order of the parallel gradients of the fluctuating fields φ1
and A1. We assumed that these fluctuations are of order ǫδ, so the term {S1, H0}0 is moved to order ǫ2δ. Therefore
the resulting equation which determines the generating function S1 is

{S1, H0}−1 =
eB

mc

∂S1

∂θ̄
= H̃1. (8)
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The same line of reasoning leads to the expansion of the new Hamiltonian at the second order where we have neglected
all terms involving {Si, H0}1 and the terms {Si, H0}0 and {Si, H1}0 (for i = 1, 2) present at order ǫ2δ :

H̄ = H0 + ǫδ〈H1〉 − ǫǫδ {S1, H0}0 + ǫ2δ

(
〈H2〉+ H̃2 − {S2, H0}−1 − {S1, H1}−1 − ǫ2{S1, H1}1

+
1

2

{
S1, {S1, H0}−1

}
−1

+
ǫ2

2

{
S1, {S1, H0}−1

}
1

)
+O(ǫ3δ).

The equation which determines S2 is

{S2, H0}−1 = H̃2 − {S1, 〈H1〉}−1 −
1

2

︷ ︸
{S1, H̃1}−1−ǫǫ

−1
δ {S1, H0}0 − ǫ2{S1, 〈H1〉}1 −

ǫ2

2

︷ ︸
{S1, H̃1}1,

where we have used Eq. (8). Consequently, the new Hamiltonian becomes

H̄ = H0 + ǫδ〈H1〉+ ǫ2δ

(
〈H2〉 −

1

2
〈{S1, H̃1}−1〉 −

ǫ2

2
〈{S1, H̃1}1〉

)
+O(ǫ3δ).

B. Application to Hamiltonian (5)

We rewrite the Poisson bracket {S1, H̃1}−1 as

{S1, H̃1}−1 =
e

mc

∂

∂µ̄

(
H̃1

∂S1

∂θ̄

)
−

e

mc

∂

∂θ̄

(
H̃1

∂S1

∂µ̄

)
.

From the expression of S1, we conclude that the averaged Hamiltonian H̄ obtained from H = H0 + ǫδH1 + ǫ2δH2 is

H̄ = H0 + ǫδ〈H1〉+ ǫ2δ

(
〈H2〉 −

1

2B

∂

∂µ̄

〈
H̃1

2
〉
+ ǫ2

c

2eB
b̂ · 〈∇S1 ×∇H̃1〉

)
+O(ǫ3δ),

where we have used Eq. (8) and where we notice the presence of two additional second order terms, compared to the
näıve average of the Hamiltonian. Next, we apply this result to Hamiltonian (5) where

H0 = µ̄B(X̄) +
1

2
mv̄2‖,

H1 = eψ1(X̄, θ̄, µ̄, v̄‖),

H2 =
e2

2mc2
‖A1(X̄+ ρ)‖2.

The new coordinates are denoted (Xgy, θgy, µgy, v‖gy). The reduced Hamiltonian is then

Hgy = Hgc + ǫδe〈ψ1〉

+ǫ2δ

(
e2

2mc2
〈‖A1(Xgy + ρ)‖2〉 −

e2

2B(Xgy)

∂

∂µgy

〈
ψ̃1

2
〉
− ǫ2

mc2

2B(Xgy)2
b̂(Xgy) ·

〈
∇ψ̃1 ×

∫
dθgy∇ψ̃1

〉)
,

where ψ1 is evaluated at (Xgy, θgy, µgy, v‖gy) and where

Hgc = µgyB(Xgy) +
1

2
mv2‖gy.

The averaging has been performed using the generating function S1 given by

S1(Xgy, θgy, µgy, v‖gy) =
mc

B

∫
dθgy ψ̃1(Xgy, θgy, µgy, v‖gy),

which is essential in order to determine, at the leading order, the change of coordinates which has realized the
reduction.
We notice that the fields φ1 and A1 are evaluated at Xgy + ρ which is the position of the particle, which in turn

depends on the fields φ1 and A1 through ρ [see Eq. (6)]. We want to evaluate these fields at the position Xgy + ρ0,
where ρ0 is the Larmor radius given by

ρ0 = ǫ
mc

eB
b̂× v,
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which no longer depends on φ1 and A1. We expand the term ǫδe〈ψ1〉 in Hgy at order ǫ2δ [see Eq. (6)], using expansions
of the form

ǫδeφ1(Xgy + ρ) = ǫδeφ1(Xgy + ρ0) + eǫǫ2δ
1

B
b̂×A1(Xgy + ρ0) · ∇φ1(Xgy + ρ0) +O(ǫ3δ),

where the background-related fields (e.g., B and b̂) are now evaluated at Xgy since their spatial dependences provide
contributions to order ǫ3δ in the Hamiltonian. The shift due to the fluctuating fields induces an additional ǫ2δ term in
the Hamiltonian Hgy which becomes

Hgy = Hgc + ǫδe〈Ψ1〉+ ǫ2δe
2

(
1

2mc2
〈‖A1‖

2〉 −
1

2B

∂

∂µgy

(〈Ψ2
1〉 − 〈Ψ1〉

2)

)

+ǫ2δ

(
ǫ
e

B
〈b̂×A1 · ∇Ψ1〉 − ǫ2

mc2

2B2
b̂ ·

〈
∇Ψ̃1 ×

∫
dθgy∇Ψ̃1

〉)
, (9)

where the fields φ1 and A1 are now evaluated at Xgy + ρ0. The magnetic field is evaluated at Xgy, and the vector ⊥̂
at (θgy,Xgy). Here the modified potential is given by

Ψ1(Xgy, θgy, µgy, v‖gy) = φ1(Xgy + ρ0)−
v‖gy

c
b̂(Xgy) ·A1(Xgy + ρ0)−

√
2µgyB(Xgy)

mc2
⊥̂(θgy,Xgy) ·A1(Xgy + ρ0),

which is a slightly different function than ψ1 since the fields are now evaluated at Xgy + ρ0 and not at the position
of the particle. The last two terms in Eq. (9) are often discarded using an assumption on the small parameter ǫ.

C. Changes of coordinates

Next, we look at the expression of the change of coordinates which links the particle dynamics with the gyrocenter
dynamics. We recall that, at the leading order, this change is a result of two steps: a translation of the velocity by the
perturbation fields and of the position by a modified Larmor radius, and an averaging performed at the Hamiltonian
level using a canonical Lie transform. Below, we provide the explicit expressions at order ǫδ.
Given our choice of generating function and the ordering of the bracket, the old coordinates z as functions of the

new ones Z are written as

z = Z− ǫǫδ{S1,Z}gc +O(ǫ2δ).

We remind that there was a first step (a modified guiding-center step) which mapped (x,v) into (X̄, θ̄, µ̄, v̄‖):

x = X̄+ ǫ
mc

eB(X̄)

√
2µ̄B(X̄)

m
ρ̂(θ̄, X̄),

v = v̄‖b̂(X̄) +

√
2µ̄B(X̄)

m
⊥̂(θ̄, X̄)− ǫδ

e

mc
A1(X̄+ ρ). (10)

We recall that the expressions of θ̄ and µ̄ depend on A1. In order to identify this dependence at the leading order,
we use the identity

√
2µ̄B(X̄)

m
ρ̂ = b̂× v + ǫδ

e

mc
b̂×A1(X̄+ ρ),

which is obtained by the cross product of Eq. (10) with b̂. We define ρ0 as

ρ0 = ǫ
mc

eB
b̂× v.

Therefore, up to order ǫ2δ terms,

x = X̄+ ρ0 + ǫǫδ
1

B
b̂×A1(X̄+ ρ0),

v = v̄‖b̂−
eB

ǫmc
b̂× ρ0 − ǫδ

e

mc
b̂A1‖(X̄+ ρ0),
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where A1‖ = b̂ ·A1.

The second step performed the averaging of the Hamiltonian using a canonical Lie transform. It mapped (X̄, θ̄, µ̄, v̄‖)

into (Xgy, θgy, µgy, v‖gy). Up to order O(ǫ2δ), the expressions for this second change of coordinates are

Xgy = X̄+ ǫǫδ{S1, X̄}0 + ǫ2ǫδ{S1, X̄}1 = X̄− ǫǫδ

(
1

m
b̂
∂S1

∂v̄‖
+ ǫ

c

eB
b̂×∇S1

)
,

θgy = θ̄ + ǫδ{S1, θ̄}−1 = θ̄ − ǫδ
e

mc

∂S1

∂µ̄
,

µgy = µ̄+ ǫδ{S1, µ̄}−1 = µ̄+ ǫδ
e

B
ψ̃1,

v‖gy = v̄‖.

By combining the two changes of coordinates, we obtain

x = Xgy + ρ0 + ǫǫδ

(
1

m
b̂
∂S1

∂v̄‖gy
+ ǫ

c

eB
b̂×∇S1 +

1

B
b̂×A1

)
,

v = v‖gyb̂−
eB

ǫmc
b̂× ρ0 − ǫδ

e

mc
b̂A1‖,

where the functions b̂, B, ρ̂ and ⊥̂ are taken atXgy, and the functions ψ̃1, S1 and its derivatives, at (Xgy, θgy, µgy, v‖gy).
The fields A1 and φ1 are evaluated at Xgy +ρ0. The terms in ρ0 in the above equations are slightly misleading since
they are not fully expressed as functions of the new variables (Xgy, θgy, µgy, v‖gy). For consistency, we introduce the
variables (θ, µ, v‖) associated with the velocity v:

v = v‖b̂(x) +

√
2µB(x)

m
⊥̂(θ,x).

The expressions of the variables (θ, µ, v‖) are given by

θ = θgy + ǫδ
e

mc

(
∂S1

∂µgy

+

√
m

2µgyB
ρ̂ ·A1

)
,

µ = µgy − ǫδ
e

B

(
Ψ̃1 +

√
2µgyB

m
⊥̂ ·A1

)
,

v‖ = v‖gy − ǫδ
e

mc
A1‖.

We recover the expressions of Refs. [5, 16].

IV. GYROKINETIC VLASOV-MAXWELL EQUATIONS

The electromagnetic gyrokinetic equations consist in a Vlasov equation which is defined from its characteristics and
a set of Maxwell equation, a Poisson and an Ampère equation. They are obtained from Hamiltonian Hgy given by
Eq. (9).

A. Gyrokinetic particle characteristics and the gyrokinetic Vlasov equation

The particle characteristics are given by:

Ẋgy = {Xgy, Hgy}gc = ǫ
cb̂

eB∗
‖

×∇Hgy +
B

∗

mB∗
‖

∂Hgy

∂v‖gy
,

v̇‖gy =
{
v‖gy, Hgy

}
gc

= −
B

∗

mB∗
‖

· ∇Hgy,

where Hgy is given by Eq. (9). The fully nonlinear gyrokinetic Vlasov equation for the Vlasov distribution
F (Xgy, v‖gy, µgy, t) is reconstructed from the gyrocenter particle characteristics by stating that it is constant along
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the characteristics:

0 =
dF

dt
=
∂F

∂t
+ {Xgy, Hgy}gc · ∇F + {v‖gy, Hgy}gc

∂F

∂v‖gy
,

where we notice that the term in ∂F/∂µgy is absent since {µgy, Hgy}gc = 0. The Vlasov equation can be rewritten
with the help of the Poisson bracket (4):

∂F

∂t
= −{F,Hgy}gc. (11)

B. Gyrokinetic Vlasov-Maxwell equations

The expression for the action functional in the quasineutrality approximation is given by:

A =

∫ t1

t0

dtL =

∫
dt

[∫
dΩ
(( e

ǫc
A+mv‖gyb̂

)
· Ẋgy + ǫ

mc

e
µgyθ̇gy −Hgy

)
F (Xgy, v‖gy, µgy, t)

−ǫ2δ

∫
dV

|∇ ×A1|
2

8π

]
,

where dΩ = dV dW with dV = d3Xgy and dW = B∗
‖dv‖gydµgydθgy. The gyrokinetic quasineutrality equation is

obtained in the weak form using the functional derivatives of the action:

0 =
δL

δφ1
◦ φ̂1 = ǫδ

∫
dΩ F

(
−e〈φ̂1〉+ ǫδ

e2

B

∂

∂µgy

(
〈Ψ1φ̂1〉 − 〈Ψ1〉〈φ̂1〉

)

−ǫǫδ
e

B
〈b̂×A1 · ∇φ̂1〉+ ǫ2ǫδ

mc2

2B2
b̂ ·

〈
∇
˜̂
φ1 ×

∫
dθgy∇Ψ̃1 +∇Ψ̃1 ×

∫
dθgy∇

˜̂
φ1

〉)
, (12)

where φ̂1 is a test function, evaluated at Xgy + ρ0.
The parallel component of the gyrokinetic Ampère equation is given by

0 =
∂L

∂A1‖
◦ Â1‖ = −

ǫ2δ
4π

∫
dV ∇Â1‖ · [b̂× (∇×A1)]− ǫ2δ

e2

mc2

∫
dΩ F 〈A1‖Â1‖〉

+ eǫδ

∫
dΩ F

v‖gy

c

(
〈Â1‖〉 − ǫδ

e

B

∂

∂µgy

(
〈Ψ1Â1‖〉 − 〈Ψ1〉〈Â1‖〉

)
+ ǫǫδ

1

B
〈b̂×A1 · ∇Â1‖〉

)

− ǫ2ǫ2δ

∫
dΩ F

mc2

2B2

v‖gy

c
b̂ ·

〈
∇
˜̂
A1‖ ×

∫
dθgy∇Ψ̃1 +∇Ψ̃1 ×

∫
dθgy∇

˜̂
A1‖

〉
, (13)

where Â1‖ is a test function, evaluated at Xgy+ρ0. The perpendicular component of the gyrokinetic Ampère equation
is given by:

0 =
δL

δA1⊥
◦ Â1⊥ = −

ǫ2δ
4π

∫
dV (∇×A1) · (∇× Â1⊥)− ǫ2δ

e2

mc2

∫
dΩ F 〈A1 · Â1⊥〉

+eǫδ

∫
dΩ F

[√
2µgyB

mc2
〈⊥̂ · Â1⊥〉 − ǫδ

e

B

∂

∂µgy

(√
2µgyB

mc2
(〈Ψ1⊥̂ · Â1⊥〉 − 〈Ψ1〉〈⊥̂ · Â1⊥〉)

)]

+ǫǫ2δ

∫
dΩ F

e

B

(
−〈b̂× Â1⊥ · ∇Ψ1〉+

√
2µgyB

mc2
〈b̂×A1 · ∇(⊥̂ · Â1⊥)〉

)

−ǫ2ǫ2δ

∫
dΩ F

mc2

2B2

√
2µgyB

mc2
b̂ ·

〈
∇(

︷ ︸
⊥̂ · Â1⊥)×

∫
dθgy∇Ψ̃1 +∇Ψ̃1 ×

∫
dθgy∇(

︷ ︸
⊥̂ · Â1⊥)

〉
, (14)

where Â1⊥ is a test function, evaluated at Xgy + ρ0.
Equation (11) for the Vlasov equation and Eqs. (12), (13) and (14) for the Maxwell equations constitute the second

order gyrokinetic Vlasov Maxwell equations associated with the second order Hamiltonian for the gyrocenters given
by Eq. (9), consistent with the ordering ǫB ∼ ǫ2δ.
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APPENDIX: LITTLEJOHN’S GUIDING-CENTER THEORY

In this Appendix, we revisit Littlejohn’s guiding-center theory [8]. We begin with the one-form for the motion of
the particle:

γ =
( e
ǫc
A(x) +mv

)
· dx−Hdt.

The revisit comes from the fact that we do not consider ǫ as a small parameter as it was done in Refs. [6–8]. Here the
small parameter is ǫB which relates to the spatial variation of the external magnetic field. The parameter ǫ is kept
in our expressions for coherence with the existing literature in order to better compare our expressions with the ones
obtained by Littlejohn in Refs. [7, 8].
The idea of the guiding center is to find a change of coordinates which removes the fluctuating part from the

one-form. The guiding-center transformation is based on two different changes of coordinates, a far-from-identity
transformation which consists in a shift of the position by the Larmor radius, and a near-identity transformation
which eliminates the fluctuating terms of the one-form at order ǫB.
The first step is a translation by the Larmor radius, inspired from the situation where the magnetic field is constant

and uniform:

x = x̄+ ρ0.

We translate the velocity, by defining

w = v +
e

ǫmc

[
A(x̄+ ρ0)−A(x̄)− (ρ0 · ∇)A(x̄)−

1

2
(ρ0ρ0 : ∇∇)A(x̄)

]
,

where the last term written in indices is −(1/2)ρiρj∂
2
A/∂x̄i∂x̄j . We notice that the quantity with which the velocity

has been translated is of order ǫ2B (since it involves third derivatives of the vector potential, i.e., second derivatives of
the magnetic field). We decompose the velocity w in the following way:

w = w‖b̂(x) + w⊥⊥̂(θ,x),

where the orthonormal basis (b̂, ⊥̂, ρ̂) is defined in Sec. II. We decompose the one-form as

γ = γ0 + γ1,

where

γ0 =
( e
ǫc
A(x̄) +mw‖b̂(x̄)

)
· dx̄−Hdt,

and

γ1 =
( e
ǫc
(ρ0 · ∇)A+

e

2ǫc
(ρ0ρ0 : ∇∇)A +mw⊥⊥̂(θ, x̄ + ρ0) +mw‖[b̂(x̄+ ρ0)− b̂(x̄)]

)
· dx̄

+
( e
ǫc
A+

e

ǫc
(ρ0 · ∇)A+

e

2ǫc
(ρ0ρ0 : ∇∇)A+mw⊥⊥̂(θ, x̄+ ρ0) +mw‖b̂(x̄+ ρ0)

)
· dρ0.

We use a gauge-invariance to simplify the one form: γ can be replaced by γ + dσ where σ is any scalar function of
(x̄, w‖,w⊥). Looking at the shape of γ1, especially the terms in dρ0, some terms are removed by considering

σ1 = −
e

ǫc
A · ρ0 −

e

2ǫc
(ρ0 · ∇)A · ρ0 −

e

6ǫc
(ρ0ρ0 : ∇∇)A · ρ0. (15)
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In what follows and otherwise specified, the dependence of the functions on the variables is omitted when these
functions are unambiguously expressed in the current set of variables. The one-form becomes

γ1 + dσ1 =

(
eB

ǫc
b̂× ρ0 +

e

2ǫc
(ρ0 · ∇)(Bb̂)× ρ0 +mw⊥⊥̂+mw⊥(ρ0 · ∇)⊥̂+mw‖(ρ0 · ∇)b̂

)
· dx̄

+

(
eB

2ǫc
b̂× ρ0 +

e

3ǫc
(ρ0 · ∇)(Bb̂)× ρ0 +mw⊥⊥̂+mw⊥(ρ0 · ∇)⊥̂+mw‖b̂+mw‖(ρ0 · ∇)b̂

)
· dρ0,

where we have neglected the contributions of order ǫ2B. In the above expression we have used the identity

(ρ0 · ∇)A−∇A · ρ0 = Bb̂× ρ0.

The condition for ρ0 is

eB

ǫc
b̂× ρ0 +mw⊥⊥̂ = 0,

i.e.,

ρ0 = ǫ
mw⊥c

eB
ρ̂.

The one-form becomes

γ1 + dσ1 = ǫ
m2c

eB

(
w2

⊥

2B
(ρ̂ · ∇)(Bb̂)× ρ̂+ w2

⊥(ρ̂ · ∇)⊥̂ + w‖w⊥(ρ̂ · ∇)b̂

)
· dx̄

+ǫ
m2c

eB

[
w‖b̂+

1

2
w⊥⊥̂+ ǫ

mc

eB

(
w2

⊥

3B
(ρ̂ · ∇)(Bb̂)× ρ̂+ w2

⊥(ρ̂ · ∇)⊥̂+ w‖w⊥(ρ̂ · ∇)b̂

)]
· d(w⊥ρ̂).

The leading order term (in the small parameter ǫB) is

ǫ
m2c

eB

(
w‖b̂+

1

2
w⊥⊥̂

)
· d(w⊥ρ̂) = ǫ

m2c

eB

[
w2

⊥

2
dθ −

(
w2

⊥

2
∇⊥̂ · ρ̂− w⊥w‖∇ρ̂ · b̂

)
· dx̄

]
,

since ⊥̂ = ∂ρ̂/∂θ and where we have used ∇ρ̂ · ⊥̂ = −∇⊥̂ · ρ̂. We notice that the terms in dx̄ are of order ǫB. We
rewrite the one-form γ as

γ + dσ1 = γ̃0 + γ̃1,

where

γ̃0 =
( e
ǫc
A(x̄) +mw‖b̂(x̄)

)
· dx̄+ ǫ

m2w2
⊥c

2eB
dθ −Hdt,

is the leading order and

γ̃1 = ǫ
m2c

eB

(
w2

⊥

2B
(ρ̂ · ∇)(Bb̂)× ρ̂+ w2

⊥(ρ̂ · ∇)⊥̂−
w2

⊥

2
∇⊥̂ · ρ̂+ w‖w⊥(∇× b̂)× ρ̂

)
· dx̄

+ǫ2
m3c2

e2B2

(
w2

⊥

3B
(ρ̂ · ∇)(Bb̂)× ρ̂+ w2

⊥(ρ̂ · ∇)⊥̂+ w‖w⊥(ρ̂ · ∇)b̂

)
· (ρ̂dw⊥ + w⊥⊥̂dθ), (16)

is of order ǫB. Here we have used the identity (ρ̂ · ∇)b̂ + ∇ρ̂ · b̂ = (∇ × b̂) × ρ̂. We notice that the order ǫB of
the one-form, i.e., γ̃1, contains fluctuating terms in θ. These terms are eliminated by a near-identity transformation
which we consider at order one in ǫB:

x̄ = X+ ξ(X,W‖,W⊥,Θ), (17a)

w‖ =W‖ +W‖(X,W‖,W⊥,Θ), (17b)

w⊥ =W⊥ +W⊥(X,W‖,W⊥,Θ), (17c)

θ = Θ+ T (X,W‖,W⊥,Θ), (17d)

where the unknown functions ξ, W‖, W⊥ and T are of order ǫB.
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Since γ̃1 is of order ǫB, its expression in the new coordinates (X,W‖,W⊥,Θ) is exactly the same as in the old

coordinates (x̄, w‖, w⊥, θ) up to ǫ2B terms. It remains to expand γ̃0 at the first order in ǫB. The expansion leads to

γ̃0 =
( e
ǫc
A(X) +mW‖b̂(X)

)
· dX+ ǫ

m2W 2
⊥c

2eB
dΘ−Hdt+ γ̃2,

where

γ̃2 =
( e
ǫc
(ξ · ∇)A +mW‖b̂

)
· dX+

( e
ǫc
A+mW‖b̂

)
· dξ

+ǫ
m2c

eB
W⊥W⊥dΘ + ǫ

m2W 2
⊥c

2eB
dT .

We notice that we have used the approximation B(X + ξ) ≈ B(X) since the gradients of B are of order ǫB and ξ is

also of order ǫB, so the difference B(X + ξ) − B(X) is of order ǫ2B. The same approximation holds for b̂. Using a
gauge transformation similar to Eq. (15), we simplify γ̃2 into

γ̃2 + dσ2 =

(
eB

ǫc
b̂× ξ +mW‖b̂

)
· dX+mW‖b̂ · dξ

+ǫ
m2c

eB
W⊥W⊥dΘ + ǫ

m2W 2
⊥c

2eB
dT , (18)

with

σ2 = −
e

ǫc
A · ξ.

We look at the one-form γ̃1+ γ̃2+dσ2 and determine the unknown functions ξ, W‖, W⊥ and T such that this one-form
no longer possesses Θ-dependent terms. We notice that the spatial derivatives of T and ξ are of order ǫB; therefore,
the terms in dξ and dT only contain terms in dW‖, dW⊥ and dΘ. For the same reason, the terms in dρ0 in γ̃1 only
involve terms in dW⊥ and dΘ.
Combining Eqs. (16) and (18), the one-form γ̃1 + γ̃2 + dσ2 can be written as

γ̃1 + γ̃2 + dσ2 = ΓX · dX+ ΓΘdΘ + Γ‖dW‖ + Γ⊥dW⊥.

The terms in dX are

ΓX =
eB

ǫc
b̂× ξ +mW‖b̂+ ǫ

m2c

eB

[
W 2

⊥

2B
(ρ̂ · ∇)(Bb̂)× ρ̂+W 2

⊥(ρ̂ · ∇)⊥̂−
W 2

⊥

2
∇⊥̂ · ρ̂+W‖W⊥(∇× b̂)× ρ̂

]
.

The terms in dΘ are

ΓΘ = mW‖b̂ ·
∂ξ

∂Θ
+ ǫ

m2W 2
⊥c

2eB

∂T

∂Θ
+ ǫ

m2c

eB
W⊥W⊥ + ǫ2

m3c2

e2B2

[
−
W 3

⊥

3B
ρ̂ · ∇B +W‖W

2
⊥(ρ̂ · ∇)b̂ · ⊥̂

]
,

where we have used the identities ∇b̂ · b̂ = ∇⊥̂ · ⊥̂ = 0 since b̂ and ⊥̂ are of unit norm. The terms in dW‖ are

Γ‖ = mW‖b̂ ·
∂ξ

∂W‖
+ ǫ

m2W 2
⊥c

2eB

∂T

∂W‖
,

and the terms in dW⊥ are

Γ⊥ = mW‖b̂ ·
∂ξ

∂W⊥
+ ǫ

m2W 2
⊥c

2eB

∂T

∂W⊥
+ ǫ2

m3c2

e2B2

[
W 2

⊥(ρ̂ · ∇)⊥̂ · ρ̂+W‖W⊥(ρ̂ · ∇)b̂ · ρ̂
]
.

The terms in ΓX perpendicular to b̂ determine the perpendicular component of ξ, whereas the terms parallel to b̂

determine W‖. The perpendicular component of ξ is obtained from the cross-product of ΓX with b̂, and is given by

ξ⊥ = ǫ2
m2c2

e2B2

(
−
W 2

⊥

2B
(ρ̂ · ∇B)ρ̂+W 2

⊥b̂× (ρ̂ · ∇)⊥̂−W‖W⊥(b̂ · ∇ × b̂)ρ̂

)
,
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where we have used the fact that b̂× [(ρ̂ · ∇)b̂ × ρ̂] = 0 which comes from ∇b̂ · b̂ = 0. The scalar product between

ΓX and b̂ leads to

W‖ = ǫ
mc

eB

(
W 2

⊥

2
(ρ̂ · ∇)b̂ · ⊥̂−W‖W⊥(∇× b̂) · ⊥̂

)
,

where we have used the identity ∇⊥̂ · b̂ = −∇b̂ · ⊥̂. In ΓX, which this choice of functions, it remains

ΓX = −ǫ
mc

e
µR,

where R = ∇⊥̂ · ρ̂ = ∇b̂1 · b̂2 which is independent of the gyroangle Θ.
The first two terms in ΓΘ, Γ‖ and Γ⊥ calls for a gauge transformation with

σ3 = −mW‖b̂ · ξ − ǫ
m2W 2

⊥c

2eB
T

The terms in ΓΘ, Γ‖ and Γ⊥ becomes

Γ̃Θ = ǫ
m2c

eB
W⊥W⊥ + ǫ2

m3c2

e2B2

[
−
W 3

⊥

3B
ρ̂ · ∇B +W‖W

2
⊥(ρ̂ · ∇)b̂ · ⊥̂

]
,

Γ̃‖ = −mb̂ · ξ,

Γ̃⊥ = −ǫ
m2c

eB
W⊥T + ǫ2

m3c2

e2B2

[
W 2

⊥(ρ̂ · ∇)⊥̂ · ρ̂+W‖W⊥(ρ̂ · ∇)b̂ · ρ̂
]
.

Using this gauge transformation, the equations which determine the unknown functions W⊥, W‖ and the parallel
component of ξ have been decoupled. We choose T such that it only eliminates the fluctuating terms. Using the

following expression for the fluctuating part of (ρ̂ · ∇)b̂ · ρ̂ :

︷ ︸
(ρ̂ · ∇)b̂ · ρ̂ =

1

2

(
(ρ̂ · ∇)b̂ · ρ̂− (⊥̂ · ∇)b̂ · ⊥̂

)
, (19)

we obtain the following expression for T :

T = ǫ
mc

eB

[
W⊥(ρ̂ · ∇)⊥̂ · ρ̂+

W‖

2

(
(ρ̂ · ∇)b̂ · ρ̂− (⊥̂ · ∇)b̂ · ⊥̂

)]
.

In the one form it remains a term in dW⊥:

ǫ2
m3c2

2e2B2
W‖W⊥

[
(ρ̂ · ∇)b̂ · ρ̂+ (⊥̂ · ∇)b̂ · ⊥̂

]
dW⊥.

Using a gauge transformation with

σ4 = −ǫ2
m3c2

4e2B2
W‖W

2
⊥

[
(ρ̂ · ∇)b̂ · ρ̂+ (⊥̂ · ∇)b̂ · ⊥̂

]
,

the term in dW⊥ is eliminated and a new term appears in dW‖, which then determines the parallel component of ξ:

b̂ · ξ = −ǫ2
mc2

4e2B2
W 2

⊥

[
(ρ̂ · ∇)b̂ · ρ̂+ (⊥̂ · ∇)b̂ · ⊥̂

]
.

For W⊥, we choose

W⊥ = ǫ
mc

eB

[
W 2

⊥

3B
ρ̂ · ∇B −W‖W⊥(ρ̂ · ∇)b̂ · ⊥̂

]
,

in order to eliminate terms in dΘ. Other choices of functions ξ, W‖, W⊥ and T are possible and lead to equivalent
theories, also when pushed to high orders (see Refs. [14, 17–19] for more details). Using the change of variables defined
by Eq. (17) with the functions defined above, the Θ-dependence has been removed from the symplectic part of the
one-form. However there is still some dependence in Θ in the Hamiltonian



13

Now, we proceed with the last step which is a canonical Lie transform of the Hamiltonian as in Sec. III. This
transformation does not affect the symplectic part of the one-form and is only designed to eliminate the Θ-dependence
in the Hamiltonian. With the change of coordinates (17), the Hamiltonian has been changed into

H =
1

2
mW 2

‖ +
1

2
mW 2

⊥ +m(W‖W‖ +W⊥W⊥) +O(ǫ2B).

We consider a canonical Lie transform with the following generating function

∂S

∂Θ
+ ǫ

m2c

eB
(W‖W̃‖ +W⊥W̃⊥) = 0,

where W̃‖ and W̃⊥ are the fluctuating part of W‖ and W⊥. We notice that the gradient of the generating function,

i.e., ∇S, is of order ǫ2B. The way to determine the generating function S follows from the same principle as briefly
explained in Sec. III. The Hamiltonian becomes

H =
1

2
mW 2

‖ +
1

2
mW 2

⊥ +m(W‖〈W‖〉+W⊥〈W⊥〉) =
1

2
mW 2

‖ + µB + ǫ
mc

2e
W‖µb̂ · (∇× b̂),

where µ = mW 2
⊥/(2B). Here we have used the identity 〈(ρ̂ · ∇)b̂ · ⊥̂〉 = −(b̂ · (∇ × b̂))/2. In order to complete

the guiding-center derivation, we need to specify the full change of coordinates, which is a combination of the change
given by Eqs. (17a)-(17d) and the canonical Lie transform, which is, up to order ǫ2B terms:

x̄ = X+ ξ + {S,X}gc = X+ ξ⊥ + (b̂ · ξ)b̂−
b̂

m

∂S

∂W‖
,

w‖ =W‖ +W‖ + {S,W‖}gc =W‖ +W‖,

w⊥ =W⊥ +W⊥ + {S,W⊥}gc =W⊥ +W⊥ +
eB

ǫm2W⊥c

∂S

∂Θ
,

θ = Θ+ T + {S,Θ}gc = Θ+ T −
eB

ǫm2W⊥c

∂S

∂W⊥
,

where the Poisson bracket is obtained from the symplectic part of the one-form, and is given by

{F,G}gc =
e

ǫmc

(
∂F

∂Θ

∂G

∂µ
−
∂F

∂µ

∂G

∂Θ

)
+

B
∗

mB∗
‖

·

(
∇F

∂G

∂W‖
−

∂F

∂W‖
∇G

)
− ǫ

cb̂

eB∗
‖

· (∇F ×∇G),

where

B
∗ = B+ ǫ

mc

e
W‖∇× b̂− ǫ2

mc2

e2
µ∇×R,

and B∗
‖ = B

∗ · b̂. In order to obtain explicit expressions for the change of coordinates, we specify the fluctuating part

of the functions W‖ and W⊥:

W̃⊥ = ǫ
mc

eB

(
W 2

⊥

3B
ρ̂ · ∇B −

W‖W⊥

2

(
(ρ̂ · ∇)b̂ · ⊥̂+ (⊥̂ · ∇)b̂ · ρ̂

))
,

W̃‖ = ǫ
mc

eB

(
W 2

⊥

4

(
(ρ̂ · ∇)b̂ · ⊥̂+ (⊥̂ · ∇)b̂ · ρ̂

)
−W‖W⊥(∇× b̂) · ⊥̂

)
,

where we have used the fact that the fluctuating part of (ρ̂ · ∇)b̂ · ⊥̂ is given by

︷ ︸
(ρ̂ · ∇)b̂ · ⊥̂ =

1

2

(
(ρ̂ · ∇)b̂ · ⊥̂+ (⊥̂ · ∇)b̂ · ρ̂

)
.

The generating function S is chosen to be purely fluctuating:

S = ǫ2
m3c2

e2B2

[
W 3

⊥

3B
⊥̂ · ∇B +

W‖W
2
⊥

8

(
(ρ̂ · ∇)b̂ · ρ̂− (⊥̂ · ∇)b̂ · ⊥̂

)
+W 2

‖W⊥(∇× b̂) · ρ̂

]
,
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where we have used the fluctuating part of (ρ̂ · ∇)b̂ · ρ̂ is given by Eq. (19). Therefore the change of coordinates from
(x,v) to (X,W‖,W⊥,Θ) is given by

x = X+ ǫ
mW⊥c

eB
ρ̂+ ǫ2

m2c2

e2B2

(
−
W 2

⊥

2B

(
(ρ̂ · ∇B)ρ̂+ 2(⊥̂ · ∇B)⊥̂

)
−W‖W⊥

(
(b̂ · ∇ × b̂)ρ̂+ 2(ρ̂ · ∇ × b̂)b̂

)

−
W 2

⊥

8

(
3ρ̂ · ∇b̂ · ρ̂+ ⊥̂ · ∇b̂ · ⊥̂

)
b̂+W 2

‖

(
(⊥̂ · ∇ × b̂)ρ̂− (ρ̂ · ∇ × b̂)⊥̂

)

+
W‖W⊥

4

(
−3ρ̂ · ∇b̂ · ⊥̂+ ⊥̂ · ∇b̂ · ρ̂

)
ρ̂+

W‖W⊥

4

(
ρ̂ · ∇b̂ · ρ̂− ⊥̂ · ∇b̂ · ⊥̂

)
⊥̂

)
, (20a)

v‖ =W‖ + ǫ
mc

eB

(
W 2

⊥

2
ρ̂ · ∇b̂ · ⊥̂−W‖W⊥∇× b̂ · ⊥̂

)
, (20b)

v⊥ =W⊥ + ǫ
mc

eB

(
−
3W‖W⊥

4
ρ̂ · ∇b̂ · ⊥̂+

W‖W⊥

4
⊥̂ · ∇b̂ · ρ̂+W 2

‖∇× b̂ · ⊥̂

)
, (20c)

θ = Θ+ ǫ
mc

eB

(
−
W⊥

B
⊥̂ · ∇B +W⊥ρ̂ · ∇⊥̂ · ρ̂+

W‖

4

(
ρ̂ · ∇b̂ · ρ̂− ⊥̂ · ∇b̂ · ⊥̂

)
−
W 2

‖

W⊥
∇× b̂ · ρ̂

)
, (20d)

where the right hand side is evaluated at (X,W‖,W⊥,Θ) and where

v = v‖b̂(x) + v⊥⊥̂(θ,x).

The inversion of the change of variables given by Eq. (20), i.e., providing (X,W‖,W⊥,Θ) as functions of (x, v‖, v⊥, θ),
gives the exact same equations given in Ref. [8].

We note that the term W‖µb̂ · (∇× b̂) is usually moved to the symplectic part of the one-form by a translation in
W‖. In the new coordinates, it leads to the Hamiltonian

Hgc = µB(X) +
1

2
mW 2

‖ ,

and the one-form

γgc =
[ e
ǫc
A(X) +mW‖b̂(X)− ǫ

mc

e
µR∗

]
· dX+ ǫ

mc

e
µdΘ −Hgcdt,

where R
∗ = ∇b̂1 · b̂2 + (b̂ · ∇ × b̂)b̂/2.
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