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Abstract. A Bayesian inversion system is used to evaluate
the capability of the current global surface network and of the
space-borne GOSAT/TANSO-FTS and IASI instruments to
quantify surface flux anomalies of methane at various spatial
(global, semi-hemispheric and regional) and time (seasonal,
yearly, 3-yearly) scales. The evaluation is based on a signal-
to-noise ratio analysis, the signal being the methane fluxes
inferred from the surface-based inversion from 2000 to 2011
and the noise (i.e., precision) of each of the three observing
systems being computed from the Bayesian equation. At the
global and semi-hemispheric scales, all observing systems
detect flux anomalies at most of the tested timescales. At the
regional scale, some seasonal flux anomalies are detected by
the three observing systems, but year-to-year anomalies and
longer-term trends are only poorly detected. Moreover, reli-
ably detected regions depend on the reference surface-based
inversion used as the signal. Indeed, tropical flux inter-annual
variability, for instance, can be attributed mostly to Africa in
the reference inversion or spread between tropical regions in
Africa and America. Our results show that inter-annual anal-
yses of methane emissions inferred by atmospheric inver-
sions should always include an uncertainty assessment and
that the attribution of current trends in atmospheric methane
to particular regions’ needs increased effort, for instance,
gathering more observations (in the future) and improving
transport models. At all scales, GOSAT generally shows the
best performance of the three observing systems.

1 Introduction

As the second most important anthropogenic greenhouse gas
after carbon dioxide in terms of radiative forcing, methane
(CH4) is an important climate driver. Monitoring atmo-
spheric CH4 concentrations and their driving emissions are
therefore primary research objectives for Earth observation
science. These two objectives are combined in atmospheric
inversion systems. Such systems infer the space–time vari-
ations of the global or regional emissions from the assim-
ilation of observations of atmospheric mole fractions into
chemistry-transport models (CTMs) (Houweling et al., 1999;
Bergamaschi et al., 2007; Bousquet et al., 2011; Pison et al.,
2013). For these systems, explaining the trends of CH4 con-
centrations, such as their stability between 2000 and 2006
and their later increase (Kirschke et al., 2013), is a major
scientific objective. Despite considerable efforts in develop-
ing observing systems at the Earth’s surface, in the atmo-
sphere and from space, the inferred fluxes are associated
with large uncertainties. This still allows diverging interpre-
tations of the trends, depending on which CTM is used or
on how the inversion setup is defined (Bousquet et al., 2006,
2011; Rigby et al., 2008; Dlugokencky et al., 2009; Berga-
maschi et al., 2013). In principle, the Bayesian framework
should reconcile all well-tuned inversion systems because
it characterizes the uncertainty of each inversion product at
all space–time scales, thereby weighting each scenario sug-
gested by the inversion approach. In practice, posterior un-
certainties are often difficult to compute and are also affected
by observation uncertainties or mis-specified prior uncertain-
ties (Berchet et al., 2015). In a previous study, Cressot et al.
(2014) applied objective tuning methods imported from nu-
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merical weather prediction (Desroziers et al., 2005) within
a robust Monte Carlo approach to optimize the input er-
ror covariance matrices of a global CH4 inversion system.
Here, we use their results as a starting point to character-
ize the uncertainty of the year-to-year variations of the in-
ferred fluxes at various temporal (e.g., seasonal, annual, 3-
yearly, monthly) and spatial (global, latitudinal bands, large
regions) scales in order to document which anomaly sig-
nals from the inversions are reliable and which are not re-
liable within our framework. To do so, three different global
CH4 observation systems are considered: surface sites from
various global networks (flasks and continuous), the space-
borne Infrared Atmospheric Sounding Interferometer (IASI)
that provides a middle-to-upper tropospheric column and the
Thermal And Near-infrared Sensor for carbon Observation -
Fourier transform spectrometer (TANSO-FTS), that observes
the total column from space. Using the flux anomalies of the
surface inversion as the signal, signal-to-noise ratios for dif-
ferent temporal and spatial scales are computed, the noise be-
ing the uncertainty (precision) of the year-to-year changes of
the inferred fluxes for each observing system. Signal-to-noise
ratios are then considered as a statistical criterion to evaluate
the ability of an observing system to retrieve the CH4 flux
inter-annual variability.

The paper is structured as follows. The theoretical frame-
work and the different data sets are presented in Sect. 2. The
signal-to-noise ratios are presented in Sect. 3 and further dis-
cussed in Sect. 4.

2 Method

2.1 Inversion framework

Our inversion system is based on a variational formulation
of Bayes’ theorem, as detailed by Chevallier et al. (2005),
which has been adapted to the inversion of CH4 fluxes by Pi-
son et al. (2009). It allows inferring grid-point-scale fluxes,
thereby avoiding gross aggregation errors (Kaminski et al.,
2001), while assimilating the large flow of satellite data at
appropriate observation times and locations. It ingests obser-
vations of CH4 mole fractions and prior information about
the variables that are to be optimized, with associated error
covariance matrices. Bayesian error statistics of the inferred
variables are computed from a Monte Carlo ensemble of in-
versions which is consistent with the assigned-prior and ob-
servation errors (Chevallier et al., 2007). The inversion sys-
tem includes the LMDZ transport model of Hourdin et al.
(2006) at a resolution of 3.75◦× 2.5◦ (longitude by latitude)
for 19 vertical levels nudged to ECMWF-analyzed winds in
its on-line mode. Here, we use its off-line mode that exploits
the output variables of the on-line version. We couple it to
a simplified chemistry module to represent the interactions
between CH4 and the hydroxyl radical (OH), its main sink
in the atmosphere, and between methyl chloroform (MCF)

and OH. Note that the loss due to chlorine in the marine
boundary layer is not implemented yet in this model. When
it assimilates both CH4 and MCF mole fractions, as is done
here, it synergistically optimizes both CH4 surface sources at
weekly and model grid resolution and OH at weekly resolu-
tion over four latitude bands (−90/−30,−30/0, 0/30, 30/90).
This setup therefore dynamically distinguishes between CH4
net surface emissions (soil uptake included) and atmospheric
loss. The system iteratively minimizes the Bayesian cost
function (made nonquadratic by the nonlinear chemistry) us-
ing the M1QN3 algorithm (Gilbert and Lemaréchal, 1989).

This system is applied here to assimilate data from each
of three CH4 observing systems together with data from a
MCF observing system (to constrain OH concentrations), in
the configuration used by Cressot et al. (2014). The reader is
referred to Cressot et al. (2014) for a detailed description of
this configuration. It is important here to recall that the prior
fluxes (fires excepted) have no inter-annual variability (IAV).
This choice is made for IAV to be generated by atmospheric
observations and atmospheric transport and chemistry and
not by prior IAVs of emissions (and sinks) which are still
uncertain or even controversial (e.g., Schaefer et al., 2016;
Hausmann et al., 2016; Nisbet et al., 2014).

Two types of inversions are presented in this study:

– a reference inversion (hereafter called REFSURF) us-
ing CH4 and MCF surface measurements from Decem-
ber 1999 to December 2011; and

– three ensembles of inversions (see Sect. 2.3 for the use
of these), one using surface measurements only (called
SURF hereafter), one using IASI data and MCF ob-
servations only (called IASI hereafter) and one using
TANSO-FTS data and MCF observations only (called
GOSAT hereafter, from the name of the platform,
Greenhouse Gases Observing Satellite); each ensemble
consists of 10 1-year inversions from October 2009 to
September 2010, with respective inversion setups tuned
according to an objective analysis described in Cressot
et al. (2014).

For all inversions, the minimization of the nonquadratic
cost function is stopped when the ratio of the final to the ini-
tial norm of the gradient is less than 0.01.

2.2 Data sets

In order to have continuous and homogeneous surface data
throughout the extended assimilation window of REFSURF,
we restrict the methane site list to 36 instead of 49, as used in
Cressot et al. (2014). They come from the National Oceanic
and Atmospheric Administration (NOAA) global coopera-
tive air sampling network (Dlugokencky et al., 1994, 2009),
the Commonwealth Scientific and Industrial Research Or-
ganisation (CSIRO) (Francey et al., 1999) and the National
Institute of Water and Atmospheric Research (NIWA) (Lowe
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Figure 1. Surface sites from the NOAA, CSIRO, NIWA and EC
networks used in this study with red circles for surface sites observ-
ing MCF dry air mole fractions and blue squares for surface sites
observing CH4 dry air mole fractions.

et al., 1991). We also use station Alert (ALT) from Environ-
ment Canada (EC) (Worthy et al., 2009). MCF measurements
are provided by 11 NOAA surface sites (Montzka et al.,
2011) and are used to constrain OH concentrations (Pison
et al., 2009). The surface sites used in our inversions are pre-
sented in Fig. 1.

We use observations of the middle-to-upper tropospheric
CH4 column made by IASI, a thermal interferometer on-
board the Meteorological Operational (MetOp) satellites.
This quantity is retrieved based on a nonlinear inference
scheme (Crevoisier et al., 2009) within 30◦ of the Equator
over both land and ocean at about 09:30/21:30 LT, with an
accuracy of 1.2 % (≈ 20 ppb).

Last, we use observations of the CH4 atmospheric total
column over land from TANSO-FTS, a near-infrared spec-
trometer onboard GOSAT. Total columns are retrieved by op-
timal estimation using the algorithm of Parker et al. (2011)
and with a precision of ∼ 0.6 % (≈ 10 ppb).

The averaging kernel or weighting function and the prior
profile (when available) of each IASI or TANSO-FTS re-
trieval are directly accounted for in the inversion system fol-
lowing Connor et al. (2008).

2.3 Error statistics

The error statistics are described in detail in Cressot et al.
(2014). For the fluxes, the spatial correlations are defined
by e-folding lengths of 500 km over land and 1000 km over
ocean (no correlation between land and ocean); time corre-
lations are defined by an e-folding length of 2 weeks. It was
checked that these choices led to a budget uncertainty which
is consistent with the uncertainty of bottom-up inventories as
described in Kirschke et al. (2013).

The input error statistics for the prior and the observations
are tuned using objective diagnostics as described by Cressot
et al. (2014). This means that they exhibit some objectivity
that is seen to translate into realistic Bayesian posterior er-
ror statistics, which in particular make all present inversions
statistically consistent at the annual and global or regional
scales (Cressot et al., 2014).

In order to keep the computational burden to a reason-
able level, we compute the posterior error statistics from a
Monte Carlo inversion ensemble of 10 times 1 year for each
of the three observing systems (ensembles GOSAT, IASI and
SURF as described in Sect. 2.1).

The posterior error statistics (the “noise” for our study) are
estimated as follows:

– We estimate the ratio of posterior-to-prior standard de-
viations of the annual flux errors r = σa

σb
from the en-

semble, a quantity which is more robust than σa and σb
individually for small ensembles (because some of the
underspread affects the prior and the posterior in a sim-
ilar way). The number of members in the ensemble de-
pends on the timescale, e.g., 10 members for the yearly
timescale (10 inversions, each one covering 1 year),
120 members for the monthly timescale.

– We estimate the posterior standard deviations of the an-
nual flux errors by multiplying r by the known value of
σb, i.e., the one implied by our error covariance matrix
(computed from the above assumptions).

– The posterior standard deviations of the multi-annual
flux errors for n years are obtained by applying a fac-
tor of 1

√
n

to the previous result, assuming that the errors
are uncorrelated from one year to the next.

– The posterior standard deviations of the difference be-
tween fluxes from one year to the next (i.e., the error on
the IAV for 2 consecutive years) is computed by apply-
ing an inflation factor of

√
2 to the previous result, still

assuming that the errors are uncorrelated from one year
to the next. We assume this approach to be a conserva-
tive hypothesis since, in reality, some of the transport
and retrieval errors are recurrent, thereby inducing pos-
itive correlations and reducing the inflation factor.

The variability of CH4 concentrations depends on the ox-
idizing capacity of the atmosphere, which is largely con-
trolled by OH concentrations. Since OH concentrations are
constrained through MCF data in our multi-species inversion
system (Sect. 2.1), the uncertainty on OH (≈ 5 % after opti-
mization) is accounted for in the uncertainty of the inferred
CH4 emissions and of their inter-annual variations.

At a given space–time scale, the differences between the
posterior errors of the three observing systems are mainly
due to the constraints that each observing system brings on
the flux estimates. This in turn is linked to the number of
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Figure 2. Regions on the model grid, adapted to key areas for
methane fluxes.

data, to their distribution in time and space and also to their
sensitivity to methane surface fluxes and to their uncertainty.
It may also depend on the ability of the transport model to
properly represent the various data.

2.4 Evaluation criterion

CH4 regional flux anomalies are defined here as the devia-
tion from a reference of the CH4 inferred fluxes for various
time periods, from the monthly to the 3-yearly scale. The
reference is the 2004–2005 mean over the same time period.
The aim of this definition is to get the order of magnitude of
the year-to-year changes at various timescales. As the 2004–
2005 reference corresponds to a period of minimum atmo-
spheric methane growth rate (Dlugokencky et al., 2011), it
leads to more positive anomalies for the longer timescales.
The regional scale is based on the regions defined and shown
in Fig. 2 and large latitudinal bands are defined as BorN for
latitudes higher than 60◦ N, MidN between 30 and 60◦ N,
TropN between 0 and 30◦ N, TropS between 0 and 30◦ S,
MidS between 30 and 60 ◦ S and BorS higher than 60◦ S.
We study various spatial and temporal scales of inferred flux
anomalies.

Our criterion consists in evaluating the ability of the ob-
serving systems to detect CH4 anomalies of a given ampli-
tude, defined by the reference inversion. For this, we define a
signal-to-noise ratio:

– The inversion with surface measurements is chosen to
provide the signal as the data cover a long time window
(2000–2011) as compared to the two other observing
systems. This longer window makes it possible to sam-
ple the CH4 IAV more robustly than a 2–3-year inver-
sion. We assume that the fluxes inferred by this inver-
sion are representative of state-of-the art inversions cur-
rently published. The signal is actually the CH4 anoma-
lies for the various timescales derived from REFSURF.

– For the three observing systems (SURF, IASI and
GOSAT), the Bayesian posterior errors of the year-to-

year changes of CH4 fluxes, computed from the Monte
Carlo ensemble as described in Sect. 2.3, constitute the
noise associated to each observing system.

Finally, the criterion for detecting CH4 anomalies is that the
signal-to-noise ratio is larger than 1 (≈ 68 % confidence).

Comparing signal-to-noise ratios amounts to comparing
noises normalized by the expected signals. The normaliza-
tion provides an absolute criterion to assess the timescales
and regions at which the CH4 anomalies are reliable. How-
ever, the quality of the chosen signal remains debatable and
our diagnostic for GOSAT and IASI may be pessimistic in
areas where SURF signal-to-noise ratio is low.

In the following, the presentation of the results is done for
three timescales (seasonal, yearly and 3-yearly trends) before
assessing their sensitivity to temporal and spatial aggrega-
tions.

3 Results: signal-to-noise ratios

3.1 Seasonal-scale detection

The signal-to-noise ratios are computed over 3-month peri-
ods (JFM, AMJ, JAS and OND, hereafter referred to as sea-
sons for simplicity) from 2000 to 2011, i.e., 48 occurrences
(12 JFM, 12 AMJ, 12 JAS and 12 OND).

The three observing systems are able to detect almost all
anomalies at the global scale (Table 1). As expected, the frac-
tion of detected anomalies decreases with the spatial scale.
At the global scale, 91–93 % of the flux anomalies are de-
tected depending on the observing system (Table 1). At semi-
hemispheric scales (excluding MidS and BorS areas), this
range is 0–87 % (median= 49.5 %), GOSAT having the best
range (8–87 %) compared to IASI (12–60 %) and SURF (0–
66 %). The lack of detection in MidS and BorS is not signif-
icant considering the small methane fluxes involved. At the
regional scale, the detection range is 0–79 % (median= 4%),
with large contrasts. Again the range is more favorable for
GOSAT (0–79 %, median= 7 %) than for SURF (0–75 %,
median= 3 %) and IASI (0–72 %, median= 0 %). Anoma-
lies in the USA, Central America (CentralAm), temperate
Africa (SouthernAfr), Middle East, and Australia and New
Zealand (AustrNZ) are not detected by any of the three ob-
serving systems. GOSAT is the only one of the three ob-
serving systems to detect any anomaly in temperate South
America (SouthSAm) and northern Africa (NorthAfrWest,
NorthAfrEast).

At the seasonal timescale, large signals are caused by vari-
ous processes, depending on the emitting area. At high north-
ern latitudes, a large seasonal cycle is expected for wetland
emission areas, with mostly no emissions during winter and
maximum emissions during summer; this leads to four sea-
sons that are very different from their average and therefore
also leads to large anomalies. The detection rate is above
50 % for the three observing systems in this region (Ta-
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Table 1. Detection of the signal consisting in the anomalies at the seasonal timescale, i.e., quarters of the year (JFM, AMJ, JAS, OND). The
signal is the difference between each quarter in the 2000–2011 period (i.e., 48 occurrences) and the 2004–2005 average from REFSURF. The
noise is computed at the quarter timescale from each of the three observation systems, GOSAT, IASI and SURF. See Sects. 2.4 and 2.3 for
details. In each cell of the table, we show X% (YY/ZZ) where X% is the percentage of quarterly anomalies detected (among 48 possible),
YY is the number of positive anomalies detected among the ZZ detected anomalies. Column labeled Ave. mass indicates the average emitted
mass of CH4 over 2004–2005 in the area.

Region Ave. mass (Tg) GOSAT IASI SURF

Global 517 93 % (22/45) 91 % (21/44) 91 % (21/44)
BorN 18 45 % (10/22) 39 % (07/19) 54 % (12/26)
MidN 177 77 % (14/37) 39 % (12/19) 70 % (12/34)
TropN 194 87 % (22/42) 60 % (16/29) 66 % (17/32)
TropS 115 08 % (03/04) 12 % (04/06) ∅
MidS 12 ∅ ∅ ∅
BorS 1 ∅ ∅ ∅
NorthAmBor 20 79 % (14/38) 58 % (04/28) 75 % (12/36)
USA 37 ∅ ∅ ∅
CentralAm 17 ∅ ∅ ∅
Amazonia 38 14 % (01/07) 06 % (00/03) ∅
SouthSAm 30 04 % (00/02) ∅ ∅
NorthAfrWest 13 10 % (05/05) ∅ ∅
NorthAfrEast 11 04 % (02/02) ∅ ∅
AfrEquat 32 22 % (11/11) 16 % (08/08) 02 % (01/01)
SouthernAfr 10 ∅ ∅ ∅
Europe 33 06 % (03/03) ∅ 04 % (02/02)
EastEurRussia 30 33 % (12/16) ∅ 16 % (08/08)
MiddleEast 16 ∅ ∅ ∅
SiberianLowlands 8 43 % (10/21) 02 % (01/01) 43 % (10/21)
SiberianHighlands 5 08 % (04/04) 04 % (02/02) 04 % (02/02)
FarEastSib 1 16 % (08/08) 08 % (04/04) 08 % (04/04)
CentralAsia 28 06 % (03/03) ∅ 06 % (03/03)
India 50 56 % (12/27) 35 % (05/17) 25 % (00/12)
China 64 14 % (03/07) 04 % (00/02) 10 % (01/05)
Indonesia 36 06 % (03/03) 06 % (03/03) 04 % (02/02)
AustrNZ 6 ∅ ∅ ∅

ble 1), but in contrast to the other regions and to the other
timescales, the prior error statistics already lead to detection
rates of 58 % for the prior. This shows that the tropical IASI
soundings do not add information for this region and at this
timescale, as expected. GOSAT performs better by detect-
ing more than three-quarters of the anomalies, about one-
third of which are in winter (Fig. 3, due to almost null emis-
sions when the surface is snow-covered), one-third in sum-
mer and one-third in fall (Fig. 3, due to maximum emissions
in summer). Due to a larger noise (≈ 1.5 Tg vs. ≈ 1.2 Tg
for GOSAT, Fig. 4a), SURF misses all springs (Fig. 3). In
the larger BorN area, only winter and summer are detected
(Fig. 3).

In the tropics, some areas also have large seasonal vari-
ations, mainly due to biomass burning or rice-paddies. In
AfrEquat, some of the AMJ positive signals generated are
detected by GOSAT and IASI (Fig. 4a). Note that SURF per-
forms poorly in this area (Table 1) due to the lack of sta-
tions, which leads to large noise (≈ 3.3 Tg, Fig. 4a). In In-

dia and China, rice-paddy practices led to a seasonal cycle
of methane emissions with a maximum in JAS and a mini-
mum in JFM (Matthews et al., 1991). The three systems de-
tect anomalies in JFM and JAS (Fig. 3) with consistent signs
(≈ half positive, half negative anomalies) for GOSAT, neg-
ative anomalies preferentially detected by IASI and SURF
(Table 1).

3.2 Yearly-scale detection

The signal-to-noise ratios are computed for each year from
2000 to 2011, i.e., 12 occurrences. At the yearly scale, detec-
tion rates are smaller than at the seasonal scale, at all spatial
scales. Note that most anomalies are positive since the refer-
ence for computing the signal is 2004–2005, i.e., the period
of global minimum over 2000–2011. At the global scale, de-
tection rates range from 58 to 75 % (Table 2). The boreal
zone (BorN) is not detected, whereas the tropics (TropN and
TropS) remain the best detected zone (16–50 %). At the re-
gional scale, the detection rates range between 0 and 33 %

www.atmos-chem-phys.net/16/9089/2016/ Atmos. Chem. Phys., 16, 9089–9108, 2016
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Figure 3. Number of detected seasons over the 12 possible for winter (JFM, blue), spring (AMJ, green), summer (JAS, red) and fall (OND,
orange) in the various regions.

with a median of 0 %; the only regions above 25 % of de-
tection are tropical Africa (AfrEquat) and NorthAfrWest for
GOSAT. No detection is obtained in key regions for methane
emissions such as Amazonia (except GOSAT at 8 %), India,
China and North America (NorthAmBor, USA).

The differences between the three observing systems are
larger at the yearly scale than at the seasonal scale: GOSAT
and IASI detect 75 % of the 12 possible global occurrences
vs. 58 % for SURF (Table 2). At the regional scale, GOSAT

detects more anomalies than the two other systems. In-
deed, GOSAT noises are smaller than the two other sys-
tems (< 3.5 Tg in AfrEquat for GOSAT against > 3.5 Tg
for IASI and > 5.8 for SURF; < 2.5 Tg in NorthAfrWest for
GOSAT against > 4.7 Tg for IASI and SURF). This is partly
due to the large number of data available in these two re-
gions (Table A1); with NorthAfrEast, NorthAfrWest has the
largest number of GOSAT and IASI data, mainly because it
is among the driest areas, i.e., with the lowest cloud cover.

Atmos. Chem. Phys., 16, 9089–9108, 2016 www.atmos-chem-phys.net/16/9089/2016/
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Figure 4. Noise at the seasonal timescale by the three observing systems (bars) and box plots (median, 25 and 75 %) for the signal in various
areas (latitudinal bands and regions). Detection is achieved when the signal is larger than the noise, i.e., for all the occurrences in each box
plot which lay outside the matching colored bar.

In agreement with the intuition of Bergamaschi et al. (2013)
that performing gross averages makes it possible to extract
a signal from the inversion, the detection is enhanced in the
latitudinal bands, e.g., detection rates ≥ 25 % in TropN for
GOSAT and SURF. But it remains difficult to robustly extract
yearly flux anomalies. Therefore, we now focus our analy-
sis on longer timescales, with a longer time aggregation of 3
years, to get hints at the longer trends in methane emissions.

3.3 Trend detection over 2000–2011

To study the detection of flux long-term trend over 12 years,
a compromise has to be found between the rather short length
of this time window and the time aggregation of fluxes,
which needs to filter out year-to-year changes. Aggregating
through time while still retaining a small-enough resolution
to discuss trends over 2000–2011, we define four time win-
dows of 3 years each: 2000–2002, 2003–2005, 2006–2008
and 2009–2011. The reference period for the definition of
the anomalies of each of these four periods is still 2004–2005
(Sect. 2.4).

At the global scale, the emissions have slowly decreased
from 2000 to 2005, with a global minimum in 2004–2005,
then increased at a larger rate after 2006 (Kirschke et al.,
2013). The three observing systems are able to detect the
large positive anomalies after 2006 and detect nothing before
(Table 3). The three observing systems are able to detect the
same temporal evolution of the signal in TropN and TropS.
Only GOSAT and SURF detect MidN anomalies; the lower
detection by IASI at these latitudes is expected since the data
used here are only within ±30◦ of the Equator (Table A1, no
IASI data in MidN). The signal in BorN is never detected.

This is consistent with the recent increase of methane global
emissions coming mostly from the tropics and to a lesser ex-
tent from the northern midlatitudes, as suggested by Berga-
maschi et al. (2013) and Nisbet et al. (2014).

Being able to detect anomalies at a smaller spatial scale
could help attributing the changes in methane emissions to
particular processes. Unfortunately, even when aggregating
3 years together (instead of 1 year as in Sect. 3.2), it is still
difficult to detect regional anomalies.

In TropN, among the regions with a good detection rate
are NorthAfrWest and NorthAfrEast plus some of AfrEquat,
the remainder of this region being in TropS. In these re-
gions, all three observing systems detect anomalies, even
though GOSAT has the largest signal-to-noise ratios. Note
that SURF seems to benefit from the stations located mostly
on the coasts (only ASK is actually inland). GOSAT is also
able to detect negative (2000–2003) and positive (2006–
2011) anomalies in MiddleEast; SURF is under the detection
threshold because the available station in the region, WIS,
is upwind the area and no other station is available close
enough downwind; the anomalies are not detected by IASI
either because IASI weighting function peaks in the mid-
dle troposphere. In a region dominated by subsidence, like
MiddleEast, the altitude concentrations seen by IASI are not
directly connected to the surface. The detection of surface
variations in the fluxes is therefore poor, contrary to regions
dominated by convection like Indonesia, where IASI has the
best detection rates. In Indonesia, IASI and GOSAT agree on
detectable positive anomalies in 2000–2002 and nothing de-
tectable for 2003–2005 and 2009–2011. Indeed, no large El
Niño occurred during the first decade of the 21st century with
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Table 2. Detection of the signal consisting in the anomalies at the yearly timescale. The signal is the difference between each year in the
2000–2011 period (i.e., 12 occurrences) and the 2004–2005 average from REFSURF. The noise is computed at the yearly timescale from
each of the three observation systems, GOSAT, IASI and SURF. See Sects. 2.4 and 2.3 for details. In each cell of the table, we show X%
(YY/ZZ) where X% is the percentage of yearly anomalies detected (among 12 possible), YY is the number of positive anomalies detected
among the ZZ detected anomalies. Column labeled Ave. mass indicates the average emitted mass of CH4 over 2004–2005 in the area.

Region Ave. mass (Tg) GOSAT IASI SURF

Global 517 75 % (08/09) 75 % (08/09) 58 % (07/07)
BorN 18 ∅ ∅ ∅
MidN 177 08 % (01/01) ∅ 08 % (01/01)
TropN 194 50 % (06/06) ∅ 25 % (03/03)
TropS 115 16 % (02/02) 16 % (02/02) 16 % (02/02)
MidS 12 ∅ ∅ ∅
BorS 1 ∅ ∅ ∅
NorthAmBor 20 ∅ ∅ ∅
USA 37 ∅ ∅ ∅
CentralAm 17 ∅ ∅ ∅
Amazonia 38 08 % (00/01) ∅ ∅
SouthSAm 30 ∅ ∅ ∅
NorthAfrWest 13 33 % (04/04) ∅ ∅
NorthAfrEast 11 08 % (01/01) ∅ ∅
AfrEquat 32 33 % (04/04) 33 % (04/04) 25 % (03/03)
SouthernAfr 10 ∅ ∅ ∅
Europe 33 16 % (02/02) ∅ ∅
EastEurRussia 30 ∅ ∅ ∅
MiddleEast 16 ∅ ∅ ∅
SiberianLowlands 8 ∅ ∅ ∅
SiberianHighlands 5 08 % (01/01) ∅ ∅
FarEastSib 1 08 % (01/01) ∅ ∅
CentralAsia 28 08 % (00/01) ∅ ∅
India 50 ∅ ∅ ∅
China 64 ∅ ∅ ∅
Indonesia 36 16 % (02/02) 16 % (02/02) ∅
AustrNZ 6 ∅ ∅ ∅

the associated large fires, such as those experienced in 1997–
1998 or more recently in 2015–2016, for instance (National
Weather Service – Climate Prediction Center, 2016).

Among the key areas for methane emissions, signals in
Amazonia (dominated by tropical wetlands) and in BorN,
particularly in SiberianLowlands (dominated by boreal wet-
lands in summer), remain undetectable by the three sys-
tems. In SiberianLowlands, the noises of the three systems
are small (between 3.8 and 7.8 Tg (not shown)); in Ama-
zonia, the noises of the satellites are relatively small (≈ 6
and ≈ 7 Tg, respectively, for GOSAT and IASI), whereas the
noise of SURF, for which no stations are available closer than
ASC in the Atlantic, is ≈ 24 Tg (Fig. 7, 3Y case). Never-
theless, all these anomalies remain smaller than the smaller
noise, and are therefore not detectable in our framework. This
is because the signal variability remains small after inversion
(less than 20 % of the average mass over 2004–2005). Pos-
sible reasons for this are an actual low variability in these
regions for this period and the fact that the choice to limit
IAV in the prior emissions to biomass burning together with

the lack of constraints from the atmosphere led the inferred
fluxes to stick to the low IAV prior.

3.4 Detection at other timescales

As shown previously, the temporal scale at which the sig-
nal and noise are computed has an impact on the detec-
tion: 3-monthly (seasonal, Sect. 3.1) and yearly (year-to-year
changes, Sect. 3.3) timescales over a 12-year time window;
3-yearly timescale in 3-year time windows (trend, Sect. 3.3).
We investigate the impact of the timescale of flux aggrega-
tion within the 3-year time windows of Sect. 3.3 on the noise
and the signal for three areas: global (Fig. 5), the northern
tropics (Fig. 6) and Amazonia (Fig. 7). For each area, we
perform time aggregations from 3-yearly to monthly scales;
the 3-yearly case corresponds to the results commented in
Sect. 3.3 about trend. At all spatial scales, the noises and sig-
nals are smaller when the timescale is smaller (from 3-yearly
to monthly). As expected for emissions with seasonal cycles,
the seasonal (4- or 3-monthly) scale is particularly detected
(Figs. 5, 6) in our relatively large areas.

Atmos. Chem. Phys., 16, 9089–9108, 2016 www.atmos-chem-phys.net/16/9089/2016/



C. Cressot et al.: Can we detect regional methane anomalies? 9097

Table 3. Detection of the signal consisting in the anomalies at the 3-yearly timescale. The signal is the difference between each 3-year time
window in the 2000–2011 period (2000–2002, 2003–2005, 2006–2008, 2009–2011) and the 2004–2005 average from REFSURF. The noise
is computed at the 3-yearly timescale from each of the three observation systems, GOSAT, IASI and SURF. See Sects. 2.4 and 2.3 for details.
In each cell of the table, we show whether a positive anomaly, a negative anomaly or no anomaly is detected and with which signal-to-noise
ratio: positive anomaly detected: +++= stn ratio> 3, ++= stn ratio> 2 and += stn ratio> 1; negative anomaly detected with −−= stn
ratio<−2, −= stn ratio<−2, ∅,= no anomaly detected. The number below the name of the area is the average emitted mass of CH4 over
2004–2005 in the area.

Region System 2000–2002 2003–2005 2006–2008 2009–2011

Global GOSAT ∅ ∅ +++ +++
517 IASI ∅ ∅ +++ +++

SURF ∅ ∅ +++ +++

BorN GOSAT ∅ ∅ ∅ ∅
18 IASI ∅ ∅ ∅ ∅

SURF ∅ ∅ ∅ ∅

MidN GOSAT ∅ ∅ + +
177 IASI ∅ ∅ ∅ ∅

SURF ∅ ∅ + +

TropN GOSAT ∅ ∅ ++ +++
194 IASI ∅ ∅ + +

SURF ∅ ∅ + +

TropS GOSAT ∅ ∅ ∅ +
115 IASI + ∅ ∅ +

SURF ∅ ∅ ∅ +

MidS GOSAT ∅ ∅ ∅ ∅
12 IASI ∅ ∅ ∅ ∅

SURF ∅ ∅ ∅ ∅

BorS GOSAT ∅ ∅ ∅ ∅
1 IASI ∅ ∅ ∅ ∅

SURF ∅ ∅ ∅ ∅

NorthAmBor GOSAT ∅ ∅ ∅ ∅
20 IASI ∅ ∅ ∅ ∅

SURF ∅ ∅ ∅ ∅

USA GOSAT ∅ ∅ ∅ ∅
37 IASI ∅ ∅ ∅ ∅

SURF ∅ ∅ ∅ ∅

CentralAm GOSAT ∅ ∅ ∅ ∅
17 IASI ∅ ∅ ∅ ∅

SURF ∅ ∅ ∅ ∅

Amazonia GOSAT ∅ ∅ ∅ ∅
38 IASI ∅ ∅ ∅ ∅

SURF ∅ ∅ ∅ ∅

SouthSAm GOSAT ∅ ∅ ∅ +
30 IASI ∅ ∅ ∅ ∅

SURF ∅ ∅ ∅ ∅

NorthAfrWest GOSAT ∅ ∅ + ++
13 IASI ∅ ∅ ∅ +

SURF ∅ ∅ ∅ +

NorthAfrEast GOSAT ∅ ∅ + +
11 IASI ∅ ∅ + +

SURF ∅ ∅ + +
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Table 3. Continued.

Region System 2000–2002 2003–2005 2006–2008 2009–2011

AfrEquat GOSAT ∅ ++ +++
32 IASI ∅ ∅ ++ +++

SURF ∅ ∅ + ++

SouthernAfr GOSAT ∅ ∅ ∅ ∅
10 IASI ∅ ∅ ∅ ∅

SURF ∅ ∅ ∅ ∅

Europe GOSAT + ∅ ∅ ∅
33 IASI ∅ ∅ ∅ ∅

SURF + ∅ ∅ ∅

EastEurRussia GOSAT ∅ ∅ ∅ ∅
30 IASI ∅ ∅ ∅ ∅

SURF ∅ ∅ ∅ ∅

MiddleEast GOSAT − ∅ ∅ +
16 IASI ∅ ∅ ∅ ∅

SURF ∅ ∅ ∅ ∅

SiberianLowlands GOSAT ∅ ∅ ∅ ∅
8 IASI ∅ ∅ ∅ ∅

SURF ∅ ∅ ∅ ∅

SiberianHighlands GOSAT ∅ ∅ ∅ ∅
5 IASI ∅ ∅ ∅ ∅

SURF ∅ ∅ ∅ ∅

FarEastSib GOSAT + ∅ ∅ ∅
1 IASI ∅ ∅ ∅ ∅

SURF ∅ ∅ ∅ ∅

CentralAsia GOSAT − ∅ ∅ ∅
28 IASI ∅ ∅ ∅ ∅

SURF ∅ ∅ ∅ ∅

India GOSAT ∅ ∅ ∅ ∅
50 IASI ∅ ∅ ∅ ∅

SURF ∅ ∅ ∅ ∅

China GOSAT ∅ ∅ ∅ ∅
64 IASI − ∅ ∅ ∅

SURF ∅ ∅ ∅ ∅

Indonesia GOSAT + ∅ ∅ ∅
36 IASI + ∅ + ∅

SURF ∅ ∅ ∅ ∅

AustrNZ GOSAT ∅ ∅ ∅ ∅
6 IASI ∅ ∅ ∅ ∅

SURF ∅ ∅ ∅ ∅

In key region Amazonia (Fig. 7), no signal is detected at
the 3-yearly timescale nor at the monthly timescale by any
of the three systems; only GOSAT detects about 8 % of the
anomalies at the yearly timescale. Actually, the timescale at
which the best detection rates are found depends on the re-
gion and varies from the largest possible (3-year scale) to
the 2-month scale. In Africa (NorthAfrWest, NorthAfrEast,

AfrEquat, SouthernAfr), the best detection rates are obtained
at the 3-year scale by all three systems, as in Europe, Indone-
sia, and Australia and New Zealand (AustrNZ). In the north
of Eurasia (EastEurRussia, SiberianLowlands, SiberianHigh-
lands, FarEastSib), the best detection rates range from the
3-yearly to the 3-monthly timescales. In CentralAsia, IASI
obtains the best detection rates at the 2-monthly timescale.
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Figure 5. Impact of temporal aggregation on noise (bars) and sig-
nal (box plots with median, 25 and 75 %) over 3-year time windows.
Detection is achieved when the signal is larger than the noise, i.e.,
for all the occurrences in each box plot which lay outside the match-
ing colored bar. Link to Table 3: the Global lines of the table corre-
sponds to the 3Y bars here.

Figure 6. Impact of temporal aggregation on noise (bars) and sig-
nal (box plots with median, 25 and 75 %) over 3-year time windows.
Detection is achieved when the signal is larger than the noise, i.e.,
for all the occurrences in each box plot which lay outside the match-
ing colored bar. Link to Table 3: the TropN lines of the table corre-
sponds to the 3Y bars here.

At high latitudes (NorthAmBor), the best detection rates are
found at the 2-monthly (SURF), 3-monthly (IASI) and 4-
monthly (GOSAT) timescales (with 88–100 % for GOSAT,
up to 75 % for IASI (but which is not better than the prior de-
tection rate, see Sect. 3.1) and up to 77 % for SURF), which is
consistent with seasonal cycles with a large magnitude over
a short period of time in this region.

In order to further understand the various levels of detec-
tion described above, we investigate the sensitivity of our re-
sults to two main parameters of our setup: spatial aggregation
and signal used.

4 Sensitivity analysis

4.1 Impact of spatial aggregation on trend detection

Our inversion system solves for methane fluxes at model res-
olution (3.75◦× 2.5◦) worldwide. Although spatial and tem-
poral correlations are prescribed (see Sect. 2.3), flux anoma-
lies of different signs may still be obtained. These anomalies
may be either the realistic result of the constraints or due
to the optimization taking an easy path when too few con-

Figure 7. Impact of temporal aggregation on noise (bars) and sig-
nal (box plots with median, 25 and 75 %) over 3-year time windows.
Detection is achieved when the signal is larger than the noise, i.e.,
for all the occurrences in each box plot which lay outside the match-
ing colored bar. Link to Table 3: the Amazonia lines of the table
corresponds to the 3Y bars here.

straints are available. The definition of larger areas may lead
to summing up anomalies of opposite signs and hide (real-
istic or not) spatial variations. We try here to investigate the
impact of the spatial aggregation of model pixels in the case
of one illustrative region, Amazonia, which is a key area for
methane emissions and remains poorly detected by all the
studied observing systems at all timescales (see Sect. 3.4).
In the region, as defined on our model grid, the signal at
the pixel scale is indeed patchy (Fig. 8). Dipoles of nega-
tive/positive signal are summed up when aggregating at re-
gional scale. The impact of the progressive aggregation of
rings of pixels from the center of Amazonia is displayed in
Fig. 9 for the 3-yearly timescale; the signal is detected by all
systems for the four 3-year periods up to the third ring, i.e.,
for a region covering 25 pixels instead of 66. It would then be
possible to define the regions based on the spatial aggregation
that allows the best detection rates for the chosen observing
system. Nevertheless, this may be inconsistent with users’
needs, e.g., if they are expressed in terms of country-based
budgets.

4.2 Impact of the signal on seasonal and yearly
detection

Since the signal is obtained from one inversion only, it de-
pends on a series of assumptions (error statistics, data selec-
tion, etc.) and may have large uncertainties in various areas
(e.g., far from the observing stations). Another signal defini-
tion is therefore tested. We choose an inversion by Bousquet
et al. (2011), (called PBSURF hereafter) instead of the REF-
SURF inversion described above. Like REFSURF, PBSURF
covers enough years of analysis to be representative of the
variability of methane fluxes. The main differences between
PBSURF and REFSURF are as follows:

– PBSURF uses an analytical inversion, whereas REF-
SURF is variational.
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Figure 8. Signal (Tg) for the four 3-year time windows at the pixel scale.

– Because of this, PBSURF solves for methane fluxes for
large regions, whereas REFSURF works at the pixel
scale.

– PBSURF retrieves monthly fluxes, whereas REFSURF
retrieves fluxes at a weekly resolution.

– PBSURF solves for methane fluxes for several pro-
cesses in each region, whereas REFSURF solves for net
emissions.

– As a consequence of the three previous points, the B
matrices of the two inversions are quite different.

– PBSURF uses monthly means of the surface observa-
tions as constraints, whereas REFSURF uses hourly
data.

– Because of this, the sets of surface stations used by PB-
SURF and REFSURF are different.

The large-region-scale inversion means that the spatial vari-
ability of the prior is kept within each region and is only
scaled (contrary to REFSURF, which is performed at the
pixel scale, i.e., is able to vary only a few pixels to match
the data). This difference in the methods may lead to very
different spatial variability in each of the regions of interest
(Fig. 4), a larger variability allowing a better detection rate
with our criterion. Indeed, the large-region-scale inversion
may lead to larger variability than pixel-based inversions in
some regions (e.g., Pison et al. (2013)) because of the ho-
mothetic scaling of the pixels composing each region in PB-
SURF (correlations of 1 between pixels) as opposed to the

individual scaling of model pixels with soft constraints in
REFSURF (spatial correlations less than 1).

We first focus on the seasonal (3-monthly) scale, which is
the timescale at which the detection is the most favorable in
the largest areas (Sect. 3.4) while being relevant for methane
emissions at the regional scale defined here. The issue here is
not whether the two inversions agree on the retrieved fluxes
but whether the detection rates differ. Europe illustrates how
the detection rates of two signals can differ; for GOSAT, sig-
nal PBSURF is more than twice as often detected as REF-
SURF and the signs of the detected anomalies are opposite
(positive for REFSURF, mostly negative with PBSURF, Ta-
bles 1 and A2; less positive anomalies are detected for a
larger total number of detected anomalies).

Signal PBSURF contains more negative anomalies than
REFSURF at the global scale and in MidN and TropN. This
is due to the fact that the 2 years of global minimum in
PBSURF are not 2004 and 2005 but 2004 and 2006, so
that using 2004–2005 as the reference period does not lead
to mainly positive anomalies. For the three observing sys-
tems, detection is better with signal PBSURF in the Southern
Hemisphere tropics (TropS). In the Northern Hemisphere,
at the regional scale, the detection rate is shifted in longi-
tude. NorthAmBor seasons are about 25 % less often de-
tected, whereas up to 30 times more occurrences are de-
tected in SiberianLowlands, SiberianHighlands and FarEast-
Sib. In SiberianLowlands and FarEastSib, the larger num-
ber is due to negative signals for GOSAT and SURF. The
same pattern is seen in the midlatitudes where MiddleEast,
India and China, which are almost never detected with sig-
nal PBSURF (only India for GOSAT), vs. NorthAfrWest
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Figure 9. Impact of spatial aggregation in Amazonia on noise (bars) and signal (box plots with median, 25 and 75 %) over 3-year time
windows, from a unique pixel to larger rings around it. Detection is achieved when the signal is larger than the noise, i.e., for all the
occurrences which lay outside the matching colored bar.

and NorthAfrEast, in which mainly positive anomalies are
detected (IASI and SURF) or both positive and negative
anomalies (GOSAT). The regional scale in the Southern
Hemisphere confirms the better detection with signal PB-
SURF (Amazonia, SouthSAm, SouthernAfr). In Amazonia,
the (mainly positive) signals are detectable by GOSAT and
IASI, but China (respectively India) is not any more (respec-
tively poorly) detectable using PBSURF.

At the yearly scale (Table A3), the detection rates are
shifted to the south (from TropN and MidN to TropS). De-
tection rates higher than 50 % are found in Amazonia for
GOSAT and IASI, and in Europe for GOSAT.

One important outcome of this sensitivity test to the sig-
nal is that some regional or hemispheric flux anomalies are
detected but the localization of the detected signal varies de-
pending on the inversion characteristics (including the ob-
servations used). This is of course one important limitation
in attributing the observed atmospheric changes to particular
regions and to the underlying emission processes.

The impact of the signal on the detection of anomalies
has also been tested by using a variational inversion at the

pixel scale assimilating both surface and IASI data. With this
signal, the detection rates are higher in the tropics (partic-
ularly in India and China) and in the Southern Hemisphere
at midlatitudes (not shown). This suggests that the joint as-
similation of surface and satellite data may lead to a better
localization of the anomalies of the surface methane fluxes.
Nevertheless, this requires that the consistency between the
two types of data (surface and remote sensed) be improved
(Locatelli et al., 2015; Monteil et al., 2013).

5 Conclusions

This study aimed at investigating the spatial and temporal
scales of methane surface flux anomalies that current atmo-
spheric inversions can detect. To do so, we have proposed
a signal-to-noise ratio analysis, the signal being the methane
fluxes inferred from a reference surface-based inversion from
2000 to 2011 and the noise being computed from three in-
version systems using surface or satellite data (GOSAT and
IASI). At the global and semi-hemispheric scales, all observ-
ing systems detect flux anomalies at various timescales from
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seasonal (3-month average) to long-term trend (3-year aver-
age). At all scales, GOSAT generally shows the best results
among the different systems, as could be expected from the
density of the data and their sensitivity to surface emissions.

At the regional scale, the results are more variable. In 8
regions out of 20, anomalies are detected by the three net-
works; in 5 regions, no anomaly is detected by any of the
three systems. The year-to-year changes are detected in 9 re-
gions by GOSAT but with poor detection rates (lower than
40 %). Longer term trends (3-year averages) in African re-
gions are detected with variable rates by the three systems.
In some key regions for the methane cycle, anomalies are
hardly detected, both in the case of dominant anthropogenic
emissions (North America) or natural emissions (Amazo-
nia, SiberianLowlands). A sensitivity test to the spatial scale
through aggregation shows that dipole effects in the retrieved
flux anomalies prevent anomalies in Amazonia (as defined in
this study) to be detected. Flux anomalies in India and China,
two areas with large and mixed (natural and anthropogenic)
methane emissions, are generally poorly detected. A sensitiv-
ity test with a second signal, also obtained from an inversion
with surface constraints, shows that, overall, the detection at
a yearly scale remains poor to fair (> 50 % in Amazonia for
the test signal). These tests point at the importance of prop-
erly determining the spatial aggregation at which the inferred
fluxes are used, with the issue that such an aggregation de-
pends on the inversion system used. This suggests that the
ability of the inversions to retrieve significant inter-annual
variations in the methane fluxes is not evident and should be
evaluated against uncertainties, which are not always com-
puted and/or provided with the inversion products.

The use of another signal (which is from a different
surface-based inversion) does not change the main conclu-
sion that anomalies at the regional scale are not well detected
but shows that the regions which are not seen may be differ-
ent: some yearly changes in Amazonia can be detected but
tropical Africa is much less detected with the second sig-
nal. Therefore, the precise identification of flux anomalies in
the tropics appears not to be robust with regard to changes
in the inversion used for the signal. This is of course an is-
sue when attributing the increase observed in atmospheric
methane since 2006 to a particular region, as already noticed
by Locatelli et al. (2015).

Our criterion is based on a 68 % confidence interval
(1σ ). At almost all regional space–time scales (except in
NorthAmBor, AfrEquat at the longer timescales and a few
cases in India, Indonesia, EastEurRussia and FarEastSib), the
three observing systems would fail the test at 2σ (95 %),
a more stringent criterion commonly used in other scien-
tific communities. We also have neglected the impact of
likely state-dependent systematic errors in current satellite
retrievals and transport models that further reduce the inver-
sion performance to an unknown extent.

Overall, our study may appear to be pessimistic about the
skill of current inversions at the regional scale. However, at
least two elements put this view into perspective.

First, we focused on the first decade of the 21st century,
a time period with relatively flat methane signals. Neither
a strong El Niño, nor a large volcanic eruption occurred,
contrary to the previous decade (1990–1999). As an illus-
tration, the methane atmospheric growth rate fluctuates from
2 to 16 ppb yr−1 in the 1990s (standard deviation of yearly
annual increase of ±4.5 ppb yr−1) as compared to −4 to
+7 ppb yr−1 (standard deviation of yearly annual increase of
±3.5 ppb yr−1) in the 2000s (Dlugokencky et al., 2011). This
reduces methane flux anomalies and their detectability for a
given noise. A time period with larger year-to-year changes
in the methane cycle could lead to an improved detectability.

Second, as mentioned in Sect. 2, we have been relatively
conservative to estimate the noise, possibly leading to its
overestimation, therefore also limiting the detectability of
methane flux anomalies.

Our work has several implications for methane inversions.
First, inversion results should never be presented without

an extensive uncertainty analysis to distinguish between ro-
bust and more hypothetical results. This may seem obvious
but such an analysis is not always provided, or only partially,
in inversion papers, mostly because of its computational cost.

Second, to increase the detection robustness, the infor-
mation amount from the satellite data and from the surface
sites should be dramatically increased, as shown by the re-
gional differences between the two surface-based inversions
(e.g., Africa vs. tropical regions and China) and between the
satellite-based inversions. Defining smaller regions, as tested
here in Amazonia, may also improve the detection of anoma-
lies in small key areas with intense methane emissions. An
increase in the robustness of the attribution of flux anoma-
lies to a particular region goes with the improvement of the
consistency of error statistics prescribed for fluxes and obser-
vations (Berchet et al., 2015).

Third, as the regions robustly inferred depend on the as-
similated data sets, but also on the transport model and in-
version setup, it seems important to push for regular com-
parisons and syntheses of the various transport models and
inversion systems, which is at present the only way to ap-
proach the full range of uncertainty.

With time, the increase of observations in density, preci-
sion and accuracy, if sustained by long-term funding of sur-
face networks and development of satellite instruments, to-
gether with the necessary improvement of transport models,
should allow to reduce uncertainties in methane flux esti-
mates. The joint assimilation of surface and satellite obser-
vations could be a solution to further improve the constraint
on methane surface fluxes, if the consistency between surface
and remote-sensed data can be improved (Locatelli et al.,
2015; Monteil et al., 2013; Cressot et al., 2014). Cloud cover
and aerosol layers limit the observability of key regions, such
as China and India or even Amazonia, and induce systematic
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errors in passive satellite instruments (e.g., Buchwitz et al.,
2016). Solar-based satellite instruments also provide limited
data at high latitudes. The future space mission MERLIN,
based on a differential active lidar measurement with a very
small spot on the ground, should overcome these issues and
provide data at all latitudes and all seasons (Kiemle et al.,
2014). In this context, MERLIN seems to be a promising
mission to improve some of the limitations raised in this pa-
per.

6 Data availability

The real surface and satellite data that correspond to our sim-
ulations are available from, respectively, http://ds.data.jma.
go.jp/gmd/wdcgg/ and http://ghgcci.physik.uni-bremen.de/.
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Appendix A: Appendix tables

Table A1. Yearly mean number of observations over the period used for the Monte Carlo noise computation (October 2009–September 2010)
in the various regions for the three observing systems.

Region Area (× 106 km2) GOSAT IASI SURF

Global 510 32 348 240 084 1722
BorN 31 92 00 172
MidN 91 9060 00 556
TropN 126 14 934 121 756 602
TropS 128 6118 10 7148 156
MidS 95 2132 9078 140
BorS 37 00 00 96
NorthAmBor 14 194 00 00
USA 11 2516 2218 124
CentralAm 05 608 6328 24
Amazonia 07 802 3366 00
SouthSAm 10 1780 3068 24
NorthAfrWest 10 4986 4564 94
NorthAfrEast 07 3756 5148 00
AfrEquat 07 1394 3572 14
SouthernAfr 07 1488 3246 28
Europe 06 572 00 94
EastEurRussia 07 896 00 00
MiddleEast 06 2456 3748 26
SiberianLowlands 02 170 00 00
SiberianHighlands 05 126 00 00
FarEastSib 03 54 00 00
CentralAsia 12 3864 694 74
India 03 1180 4190 00
China 05 1164 4574 00
Indonesia 07 312 3324 26
AustrNZ 10 3308 4362 50
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Table A2. Detection of the signal consisting in the anomalies at the seasonal timescale (JFM, AMJ, JAS, OND). The signal is the difference
between each quarter in the 2000–2011 period (i.e., 48 occurrences) and the 2004–2005 average from PBSURF. The noise is computed at
the quarter timescale from each of the three observation systems, GOSAT, IASI and SURF. See Sects. 2.4 and 2.3 for details. In each cell of
the table, we show X% (±T T ) (±YY/±ZZ) where X% is the percentage of quarterly anomalies detected, (±T T ) is the difference with
REFSURF (Table 1),±YY is the difference in the number of positive anomalies detected compared to REFSURF and±ZZ is the difference
in the total number of detected anomalies compared to REFSURF. Ave. mass indicates average emitted mass of CH4 over 2004–2005.

Region GOSAT IASI SURF
Ave. mass (Tg)
REFSURF/PBSURF

Global 517/499 87 % (−6) (−10/−3) 72 % (−19) (−9/−9) 72 % (−19) (−9/−9)
BorN 18/17 75 % (+30) (+2/+14) 75 % (+36) (+5/+17) 77 % (+23) (0/+11)
MidN 177/172 66 % (−11) (−2/−5) 35 % (−4) (0/−2) 62 % (−8) (0/−4)
TropN 194/165 47 % (−40) (−10/−19) 27 % (−33) (−5/−16) 29 % (−37) (−6/−18)
TropS 115/120 29 % (+21) (+9/+10) 31 % (+19) (+9/+9) 10 % (+10) (+5/+5)
MidS 12/25 ∅ ∅ 04 % (+4) (0/+2)
BorS 1/0 ∅ ∅ ∅
NorthAmBor 20/8 64 % (−15) (−2/−7) 43 % (−15) (+3/−7) 58 % (−17) (0/−8)
USA 37/54 31 % (+31) (+8/+15) 06 % (+6) (+1/+3) 10 % (+10) (+3/+5)
CentralAm 17/13 ∅ 02 % (+2) (+1/+1) ∅
Amazonia 38/31 45 % (+31) (+19/+15) 35 % (+29) (+15/+14) 04 % (+4) (+2/+2)
SouthSAm 30/45 45 % (+41) (+15/+20) 08 % (+8) (+3/+4) 20 % (+20) (+6/+10)
NorthAfrWest 13/13 41 % (+31) (+7/+15) 16 % (+16) (+8/+8) 16 % (+16) (+8/+8)
NorthAfrEast 11/12 39 % (+35) (+10/+17) 25 % (+25) (+12/+12) 25 % (+25) (+12/+12)
AfrEquat 32/33 18 % (−4) (−10/−2) 10 % (−6) (−8/−3) 00 % (−2) (−1/−1)
SouthernAfr 10/14 43 % (+43) (+7/+21) 14 % (+14) (+5/+7) 14 % (+14) (+5/+7)
Europe 33/33 14 % (+8) (−3/+4) 04 % (+4) (0/+2) 12 % (+8) (−2/+4)
EastEurRussia 30/27 33 % (0) (−2/0) ∅ 10 % (−6) (−3/−3)
MiddleEast 16/14 ∅ ∅ ∅
SiberianLowlands 8/14 89 % (+46) (+2/+22) 60 % (+58) (+11/+28) 85 % (+42) (+2/+20)
SiberianHighlands 5/4 22 % (+14) (+7/+7) 12 % (+8) (+4/+4) 20 % (+16) (+8/+8)
FarEastSib 1/2 52 % (+36) (+4/+17) 50 % (+42) (+8/+20) 50 % (+42) (+8/+20)
CentralAsia 28/32 20 % (+14) (+5/+7) ∅ 08 % (+2) (+1/+1)
India 50/45 10 % (−46) (−11/−22) 02 % (−33) (−5/−16) 00 % (−25) (0/−12)
China 64/46 00 % (−14) (−3/−7) 00 % (−4) (0/−2) 00 % (−10) (−1/−5)
Indonesia 36/33 06 % (0) (0/0) 12 % (+6) (+2/+3) 00 % (−4) (−2/−2)
AustrNZ 6/6 ∅ ∅ ∅
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Table A3. Detection of the signal consisting in the anomalies at the yearly timescale. The signal is the difference between each year in the
2000–2011 period (i.e., 12 occurrences) and the 2004–2005 average from PBSURF. The noise is computed at the yearly timescale from each
of the three observation systems, GOSAT, IASI and SURF. See Sects. 2.4 and 2.3 for details. In each cell of the table, we show X% (±T T )
(±YY/±ZZ) where X% is the percentage of yearly anomalies detected, (±T T ) is the difference with REFSURF (Table 2), ±YY is the
difference in the number of positive anomalies detected compared to REFSURF and ±ZZ is the difference in the total number of detected
anomalies compared to REFSURF. Ave. mass indicates average emitted mass of CH4 over 2004–2005.

Region
GOSAT IASI SURFAve. mass (Tg)

REFSURF/PBSURF

Global 517/499 58 % (−17) (−1/−2) 66 % (−9) (0/−1) 4 %1 (−17) (−2/−2)
BorN 18/17 ∅ ∅ ∅
MidN 177/172 00 % (−8) (−1/−1) ∅ 00 % (−8) (−1/−1)
TropN 194/165 00 % (−50) (−6/−6) ∅ 00 % (−25) (−3/−3)
TropS 115/120 41 % (+25) (+3/+3) 41 % (+25) (+3/+3) 41 % (+25) (+3/+3)
MidS 12/25 ∅ ∅ ∅
BorS 1/0 ∅ ∅ ∅
NorthAmBor 20/8 25 % (+25) (+3/+3) ∅ ∅
USA 37/54 ∅ ∅ ∅
CentralAm 17/13 ∅ ∅ ∅
Amazonia 38/31 58 % (+50) (+7/+6) 58 % (+58) (+7/+7) 08 % (+8) (+1/+1)
SouthSAm 30/45 33 % (+33) (+3/+4) 16 % (+16) (+2/+2) 16 % (+16) (+2/+2)
NorthAfrWest 13/13 00 % (−33) (−4/−4) ∅ ∅
NorthAfrEast 11/12 00 % (−8) (−1/−1) ∅ ∅
AfrEquat 32/33 00 % (−33) (−4/−4) 00 % (−33) (−4/−4) 00 % (−25) (−3/−3)
SouthernAfr 10/14 16 % (+16) (+1/+2) ∅ ∅
Europe 33/33 50 % (+34) (−2/+4) 08 % (+8) (0/+1) 33 % (+33) (0/+4)
EastEurRussia 30/27 16 % (+16) (+1/+2) ∅ ∅
MiddleEast 16/14 ∅ ∅ ∅
SiberianLowlands 8/+14 16 % (+16) (+1/+2) ∅ ∅
SiberianHighlands 5/4 00 % (−8) (−1/−1) ∅ ∅
FarEastSib 1/2 00 % (−8) (−1/−1) ∅ ∅
CentralAsia 28/32 00 % (−8) (0/−1) ∅ ∅
India 50/45 ∅ ∅ ∅
China 64/46 ∅ ∅ ∅
Indonesia 36/33 33 % (+17) (+2/+2) 33 % (+17) (+2/+2) ∅
AustrNZ 6/6 ∅ ∅ ∅
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