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Abstract:25

The semi-empirical, kernel-driven, linear RossThick-LiSparseReciprocal (RTLSR) Bidirectional26

Reflectance Distribution Function (BRDF) model is used to generate the routine MODIS27

BRDF/Albedo product due to its global applicability and the underlying physics. A challenge of28

this model in regard to surface reflectance anisotropy effects comes from its underestimation of29

the directional reflectance signatures near the Sun illumination direction; also known as the30

hotspot effect. In this study, a method has been developed for improving the ability of the31

RTLSR model to simulate the magnitude and width of the hotspot effect. The method corrects32

the volumetric scattering component of the RTLSR model using an exponential approximation of33

a physical hotspot kernel, which recreates the hotspot magnitude and width using two free34

parameters (C1 and C2, respectively). The approach allows one to reconstruct, with reasonable35

accuracy, the hotspot effect by adjusting or using the prior values of these two hotspot variables.36

Our results demonstrate that: (1) significant improvements can be made to this method by using37

the inverted hotspot parameters; (2) the reciprocal nature allow this method to be more adaptive38

for simulating the hotspot height and width with high accuracy, especially in cases where hotspot39

signatures are available; and (3) while the new approach is consistent with the heritage RTLSR40

model inversion used to estimate intrinsic narrowband and broadband albedos, it presents some41

differences for vegetation clumping index (CI) retrievals. With the hotspot-related model42

parameters determined a priori, this method offers improved performance for various ecological43

remote sensing applications; including the estimation of canopy structure parameters.44
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1. Introduction48

Semi-empirical kernel-driven linear Bidirectional Reflectance Distribution Function (BRDF)49

models have been widely used to determine the properties of complex heterogeneous50

environments from multi-angle remote sensing. These models have been used to produce the51

routine BRDF/Albedo products from the Moderate Resolution Imaging Spectroradiometer52

(MODIS) (Lucht et al., 2000; Schaaf et al., 2002; Schaaf et al., 2011), the Polarization and53

Directionality of the Earth's Reflectances (POLDER) (Bicheron and Leroy, 2000; Bacour and54

Bréon, 2005), the Meteosat Second Generation (MSG) (van Leeuwen and Roujean, 2002; Geiger55

et al., 2005), and the Visible/Infrared Imager/Radiometer Suite (VIIRS) on board the platforms56

of the Suomi National Polar-orbiting Partnership (NPP) (Justice et al., 2013). They have been57

also used to retrieve canopy structure parameters (e.g., Chopping et al., 2008; Wang et al., 2011;58

Hill et al., 2011; He et al., 2012), to examine the improved accuracy of land cover classification59

(de Colstoun et al., 2006; Jiao, Woodcock & Schaaf et al, 2011; Jiao & Li, 2012), to accumulate60

and apply prior knowledge of BRDF archetypal shapes (Li, Gao, Wang & Strahler, 2001; Jiao,61

Hill, Schaaf et al., 2014; Jiao, Zhang & Dong et al., 2015), to couple surface reflectance with62

atmospheric scattering for improving atmospheric correction algorithms (Hu et al., 1999; Wang63

et al., 2010; Román et al., 2010; Litvinov et al., 2011), to correct for the effect of64

remotely-sensed anisotropic reflectance (e.g., Leroy and Roujean, 1994; Li et al., 1996), and for65

monitoring ecosystem disturbance and vegetation dynamics (e.g., Friedl et al., 2002, 2010;66

Zhang et al., 2003).67

Despite their wide use, recent studies have recognized that the directional signatures near68
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the Sun illumination direction (aka the hotspot effect) are often underestimated by the69

semi-empirical BRDF models (e.g., Chen and Cihlar, 1997; Maignan et al., 2004; Román et al.,70

2011) such as RTLSR (Wanner et al., 1995; Lucht et al., 2000). In particular, the volumetric71

scattering (aka Ross) component of RTLSR, originally derived from a horizontally homogeneous72

plant canopy (Ross, 1981), does not include all possible correlations between the illumination73

and observation geometries (Kuusk, 1991; Jupp and Strahler, 1991; Qin & Geol, 1995). Although74

the geometric-optical (Li-Strahler) component derived from geometric optical (GO) models75

characterizes a significant hotspot effect (Li and Strahler, 1992), the RTLSR model that linearly76

combines these two (Ross and Li-Strahler) components has difficulties to simulate the both the77

magnitude and signature of the hotspot effect. This model deficiency, while not significantly78

impacting an albedo retrieval (Huang, Jiao & Dong et al., 2013) (based on the integral of the79

entire view-illumination hemisphere), may still constrain the application of BRDF models in80

retrieving canopy structure parameters (e.g., clumping index) that need the hotspot amplitude as81

primary input (e.g., He et al., 2012; Zhu et al., 2012).82

Various efforts have been made to improve the hotspot effect for such models. Chen and83

Cihlar (1997) enhanced the hotspot effect of the kernel-driven Roujean BRDF model by84

multiplying the model with an exponential approximation of a physically-based hotspot function.85

He et al. (2012) and Zhu et al. (2012) suggested that the Chen and Cihlar (1997) model might86

still slightly underestimate the reflectance magnitude when it is used to extrapolate the hotspot.87

Recent efforts have focused on correcting the RossThick kernel with a hotspot factor (Maignan88

& Bréon et al., 2004; hereafter referred to as the Maignan method) based on the geometrical89



6

principles of the intersection of viewed and sunlit leaf areas (Jupp and Strahler, 1991). With a90

view to improving retrieval of clumping index (CI) from the MODIS BRDF product, He at al.91

(2012) also developed a correction for the MODIS hotspot amplitude by adding the difference92

between POLDER and MODIS hotspot BRFs, which has also been used to correct the hotspot93

magnitude of MISR BRFs for CI retrievals (Pisek, Ryu, Sprintsin & He et al., 2013). On the94

other hand, Zhu et al. (2012) corrected the hotspot amplitude by multiplying both the geometric95

optical scattering and volumetric scattering items by the exponential approximation of a96

modified hotspot function; also based on the MODIS RTLSR model.97

In this study, we propose a method for improving the hotspot effect of the linear RTLSR98

BRDF model. The method revises the RossThick kernel using the corrected exponential99

approximation of the hotspot function (Chen and Cihlar, 1997, thereafter named RTCLSR model100

here). The principle of the formation of the hotspot is based on a canopy gap size distribution101

function, but is approximated by using an exponential function with two free parameters (C1 and102

C2) characterizing the height and width of the hotspot effect. The hotspot kernel within-crown103

and between-crown has very similar shapes, and thus can be directly applied to the scenario104

where a canopy cover is provided with a uniform leaf orientation of horizontally homogeneous105

plant canopies, as was used in the assumption in deriving this kernel from canopy radiative106

transfer theory (Ross, 1981). Such a correction to the RossThick kernel mainly accounts for the107

correlation between two gap probabilities from sun and view in the hotspot direction, which was108

not properly considered when deriving the original RossThick kernel.109

To validate this model, the study uses a variety of hotspot data to determine appropriate110
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hotspot-related parameters including POLDER, MODIS, airborne multiangle Cloud Absorption111

Radiometer (CAR) (King et al., 1986, Gatebe et al., 2003, Román et al., 2011), and two112

field-measured data sets (Irons et al., 1992; Deering et al., 1999). We also explore the sensitivity113

of two hotspot parameters (C1 and C2) to hotspot-fits. Finally, we examined the influences of this114

new approach on the retrieval of intrinsic albedos and clumping index.115

2. Hotspot data116

2.1. POLDER-3 BRDF database117

The spaceborne POLDER instrument can sample the land surface for viewing angles up to118

60°-70° and for the full azimuth range, at a coarse spatial resolution of approximately 6 km.119

Comprehensive BRDF sampling with large spatial coverage enables this instrument to collect120

observations for the development of BRDF modeling, particularly capturing distinct hotspot121

signatures. The POLDER-3 sensor onboard the Polarization and Anisotropy of Reflectances for122

Atmospheric Sciences coupled with Observations from a Lidar (PARASOL) satellite acquired123

multiangular measurements for more than 6 years, which were used to create four BRDF124

databases (Bréon et al., 2007). The approach uses POLDER data from relatively homogeneous125

pixels to represent the dominant continental ecosystems. The data are geocoded, calibrated,126

atmospherically-corrected and cloudy-screened for acquiring the land surface bidirectional127

reflectance factors (BRFs) for each orbit. This study uses a monthly database containing 14,649128

BRFs in 16 IGBP land cover classes. According to phase angle129

The spatial distribution of view and Sun geometries for a typical POLDER data set, i.e.,130

IGBP_01_20060609brdf_ndvi08.0824_1671, is exemplified in Figure 1 (b). Since Snow and131
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Ice class tends to have maximum reflectance in forward scattering direction that current surface132

BRF models cannot characterize, we exclude this class from the database. The BRDF signatures133

are based on inversions of approximately 20 orbits worth of spectral BRF data, for each of the134

six POLDER bands. Up to 16 different multiangular measurements for a given POLDER pixel135

are included in each orbit. BRFs measured at two typical bands (red, centered 670 nm and NIR,136

centered 865 nm) are mainly selected to assess the hotspot effect reconstructed from the137

proposed model. Notably, POLDER-3 spectral measurements are not simultaneous, meaning that138

each channel is acquired with a slightly different viewing geometry. As such, to analyze the139

variability of hotspot signatures, this requires a careful assessment of measurement differences,140

including normalization of the POLDER viewing geometry (Bréon et al., 2005).141

2.2. MODIS hotspot data142

We extracted 2,275 MODIS hotspot data sets from one 10 × 10 tile (h20v11) of MODIS143

surface reflectance products (MOD09 and MYD09) at a spatial resolution of approximately144

500-m, for 7 solar reflective bands, and using high-quality BRDF sampling distributions,145

represented by a phase angle range . There are only 80 high-quality hotspot data sets within146

a phase angle range of 1.5°; indicating that MODIS seldom acquires exact hotspot147

observations. Each data set consists of at least 10 observations with a proper directional sampling148

in approximate principal plane (PP), and includes fewer hotspot measurements within the149

defined area (Figure 1, a). The corresponding MODIS tile h20v11 captures a wide range of150

grass-shrub-savanna vegetation types in the Southern Hemisphere. The 329th Day of Year (DOY)151

in 2010 represents a maturity season (Zhang et al., 2003). Solar zenith angles (SZAs) mainly152
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ranged from 20° to 40° during the study period. The full-model inversion quality of the MODIS153

BRDF/Albedo product (MCD43A2) accounts for approximately 70 % of total pixels. The spatial154

distribution of MODIS observations and solar geometry from an extreme data set in this tile is155

presented in Figure 1 (c), where solid points are for MODIS observations, and circles are for156

solar geometries. The concentric circles are at 20° intervals.157

Since the Terra and Aqua MODIS accumulate multiangular observations through multiple158

overlapping image swaths, the solar geometry corresponding to each observation will be159

different during a typical (16-day) retrieval period (e.g., approximately 20 for SZA in the160

h20v11 tile). This means that MODIS does not capture enough real-time observations in the161

principal plane (PP) under identical solar illumination conditions. Here, we adopt the assumption162

used with the MODIS BRDF/Albedo product, whereby the surface BRDF shape does163

abruptly for the range of SZAs capturing during a 16-day retrieval period. With this assumption,164

we can accumulate some multiangular observations in the proximity of the hotspot (i.e., )165

to constrain the RTCLSR model for acquiring the optimal free parameters describing the hotpot166

magnitude (C1) and width (C2). Figure 1 (d) presents an extreme example that uses the RTCLSR167

model to reconstruct BRDF shapes as a function of phase angle for IGBP savanna in the NIR168

band. Red solid points represent observations extracted by using this method in the approximate169

PP. The black curve is the reconstructed BRDF shape using the RTCLSR model with C1=0.4,170

and C2=4.5° as the optimal values for the 2,275 MODIS data sets in this tile. The SZA was set to171

30.58 , and the observation in the closest proximity to the hotspot direction (red point).172
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The BRDF shape reconstructed using the Maignan method (green curve) is provided here for173

visual comparison.174

Figure 1 near here175

2.3. Finer resolution measurements176

177

(Gatebe et al., 2003), which captures hotspot signatures over 2 field sites. To acquire178

multiangular measurements, the CAR instrument is flown using a clockwise circular pattern179

above the surface repeatedly, and observes the reflected solar radiation at a fine angular180

resolution (i.e., 0.5 intervals through its 190° aperture at a rate of 100 scans per minute). This181

sampling scheme results in a BRDF retrieval that is based on 76,400 and 114,600 BRFs182

measurements per channel per complete orbit, which corresponds to a representative sample of183

the landscape-level (~5 km) reflected surface (Gatebe et al., 2003). At an altitude of 600m above184

the targeted surface area and 1185

186

accuracy of CAR measurements is within an error margin of 0.3% (~2.0-3.5 meters as derived187

from the high resolution scene across the entire scan track). This accuracy holds well particularly188

with off-nadir looking observations (Gatebe et al., 2007). These CAR measurements used in this189

study are averaged at an angular resolution of 1° in the viewing hemisphere and are taken in the190

red (0.682 µm) and NIR (0.870 µm) bands.191

CAR data source was mainly from the early Smoke Clouds and Radiation-Brazil (SCAR-B)192

field campaign on August, 1995. Two kinds of data sets were collected from the well-defined193
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surfaces of cerrado and dense forest (Tsay et al., 1998), both measured in Brazil under nearly194

clear-sky conditions (http://car.gsfc.nasa.gov/data/index.php?mis_id=5&n=SCAR-B&l=h). The195

cerrado comprises a landscape-scale mosaic of four main vegetation types ranging from campo196

limpo grassland, through campo sujo and campo ralo with small (< 2m) sparse-to-medium197

density woody plants overlaying grassland, to cerrado sensu stricto with 20 30 t/ha of woody198

biomass. The dense forest data includes two flight data (i.e., CAR Flight #1689 and CAR Flight199

#1693). These two forest data captured distinct hotspot signatures in the red (CAR Flight #1689)200

and the NIR (CAR Flight #1693) bands, and are used in this study. The area of dense forest was201

covered by tall trees with a large canopy where the ground surface is invisible and had a202

relatively homogeneous surface. Details about these airborne CAR measurements are referred to203

Tsay et al. (1998).204

To compare these models being explored at a field scale, we also analyzed two high-quality205

multiangular field data sets reported in previous studies (e.g. Li et al., 2001; Strugnell et al., 2001;206

Huang & Jiao 2012; Jiao et al., 2014). These include soil multiangular measurements (Iron et al.,207

1992) acquired on a bare field located on a level alluvial plane within the United States208

Department of Agriculture Beltsville Agricultural Research Center, Beltsville, MD. The data209

were taken from full view angles and several solar illumination directions. A calibrated Barnes210

Model 12-1000 Modular Multiband Radiometer (MMR) with a 15° IFOV was used. Forest211

multiangular measurements (Deering et al., 1999) were also acquired with PARABOLA212

instrument with a 15° IFOV at a black spruce site that was mainly made up of old black spruce213

(picea mariana) with scattered emergent tamarack. The tree height was less than 10 m and the214
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total stem density was 8040 live stems/ha, with a basal area of 40 m2/ha. Canopy closure215

averaged about 55 %, and the leaf area index (LAI) measured by an LAI-2000 in spring 1994216

was 3.7 (Chen et al., 1997).217

3. Model and method218

3.1. RTLSR model219

The semi-empirical, kernel-driven, linear BRDF model is a linear combination of three220

basic scattering components: isotropic scattering, volumetric scattering, and geometric-optical221

(GO) scattering. This model adopted a general form (Roujean et al., 1992; Lucht et al., 2000):222

( , , , ) ( ) ( ) ( , , ) ( ) ( , , )v s iso vol vol v s geo geo v sR f f K f K (1)223

Where fiso( ), fvol( ) and fgeo( ) are the spectrally dependent model parameters. Kvol( v, s ) and224

Kgeo( v, s ) are kernel functions of view zenith v, illumination zenith s and relative azimuth225

and provide shapes for volumetric scattering and geometric-optical scattering BRDFs; fiso( )226

is a spectral constant for isotropic scattering; fvol( ) and fgeo( ) are spectral constants, i.e., model227

anisotropic parameters that weight the two BRDFs; R( v, s , ) is BRDF in waveband .228

Kgeo and Kvol have been derived from physical approximation of the radiative transfer at the229

surface. Kgeo is derived from the GO model (Li and Strahler, 1992; Roujean et al., 1992) and230

characterizes dome-shaped BRDF curves. It is a function that describes the shadowing and231

surface scattering from the canopy. The operational MODIS BRDF/Albedo algorithm adopted232

the LiSparseReciprocal kernel (KLSR) that was derived from a sparsely-vegetated canopy surface.233

''''' secseccos1
2

1
secsec,, svsvsvLSR OK (2)234

Notably, where O( v, s ) is overlap function of view and illumination shadows on the ground,235
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and hence the hotspot effect (i.e., the probability of seeing the sunlit background from the same236

gap) is included in this kernel. Further expressions and several intermediate variables are detailed237

to several papers (e.g., Wanner et al., 1995; Lucht et al., 2000).238

Notably, two ratios (h/b and b/r) for describing vegetation structure are used to parameterize239

overlap function in KLSR. Here, h is the mean height where a crown center is located, b is the240

mean vertical half axis of the modeled ellipsoid, and r is the mean horizontal radius. These two241

ratios are related to the hotspot effects in KLSR on vegetation canopy scale (Li and Strahler, 1992).242

The operational MODIS RTLSR algorithm adopts h/b=2 and b/r=1. In Figure 2 (top), red dashed243

curve is for h/b=2 and b/r=1.2, and magenta dashed curve is for h/b=2.5 and b/r=1. Figure 2244

demonstrates that, although these two ratios were in theory related to the general hotspot effect in245

KLSR, they do not seem to be very sensitive to the changes of hotspot effect at a reasonable range.246

Kvol is a similar function that describes the volumetric scattering component from canopy,247

based on an assumption of a single-scattering approximation of the radiative transfer (RT) theory248

by Ross (1981). The operational RTLSR model adopted RossThick kernel (KRT) derived from a249

homogenously layered canopy with a large leaf area index (LAI) (Wanner et al., 1995)250

4coscos

sincos
2

sv

RTK (3)251

This kernel characterizes bowl-shaped BRDF curves, but does not consider the correlation252

between illumination and observation processes for the observed hotspot. In theory, the253

probability of observing a sunlit component can be taken as the product of two probabilities: one254
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for the view line from the observer and the other for illumination beam from Sun. When the view255

line and an illumination beam coincide, the observer either sees the sunlit foliage or the sunlit256

background, while the shadows of foliage and background are hidden from the view. As a result,257

the correlation tends to be 1:1, as the illumination and view directions get closer.258

3.2. RTLSR hotspot correction259

To consider the correlation between the view and illumination processes, Maignan et al.260

(2004) corrected the KRT with a hotspot factor:261

4
/11

coscos

sincos
2 1

0

sv

RTMK (4)262

1

0/11 is a simplified hotspot factor derived by Bréon et al. (2002) from the theory on263

the calculation of an overlay function of the intersection of viewed and sunlit leaf areas (Jupp &264

Strahler, 1991). This hotspot factor was used to correct KRT, thereafter named KRTM. Here is265

phase angle, 0 is a characteristic angle in relation to the ratio of scattering element size and the266

canopy vertical density, which follows the range 0 =[1°,2°]. A 0 =1.5° has been suggested as a267

typical value representing a wide range of landscape conditions (Bréon et al., 2002; Maignan et268

al., 2004).269

Note that the KRTM value near the hotspot direction will double rapidly (as much as KRT) as270

the phase angle approaches 0°. To consider hotspot variability, we specified a 0 =3.0° for271

KRTM for a comparison with the standard 0 =1.5° (Figure 2). The results indicate that an increase272

in 0 can increase hotspot width, but diverge from KRT beyond the hotspot region compared273
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with KRTC. Therefore, we do not further examine the 0 influence on hotspot-fits in this study,274

rather than adopt 0 =1.5° as the most appropriate value. Here, the KRTM has a simplified feature275

whereby the variation in hotspot height and width is determined by phase angle .276

For volumetric scattering kernel (Kvol), it is frequently required to meet the empirical277

requirement of Kvol = 0 when both the viewing and illumination geometries point to nadir. This278

requirement aims to ensure that the isotropic parameter is physically reflectance for the model279

retrieval (Roujean et al., 1992). Conversely, using the Maignan method, the nadir-view and280

nadir-sun reflectance are specified as R(0,0,0, ) = fiso( ) + fvol( ) /4.281

Here, we introduce the modified exponential function of the hotspot kernel function to KRT,282

hereby termed the RossThickChen kernel (KRTC), which includes two free parameters283

characterizing hotspot variations (Chen and Cihlar, 1997):284

2
1

coscos

sincos
2

2

1
C

sv

RTC eCK (5)285

Where 2

11 CeC is the modified hotspot function. The two free parameters, C1 and C2, allow a286

large dynamic range of hotspot variation, and thus facilitate the analysis of the variation of287

hotspot height and width in fitting hotspot BRFs. For this retrieval, we also make an empirical288

adjustment to retain the isotropic BRDF model parameter, fiso, as the corresponding nadir-view289

and nadir-sun BRF.290

Originally, the KRTC hotspot function was derived from a theoretical expression that291

accounts for the hotspot effect for a forest stand, based on a geometric-optical model (Chen &292

Leblanc, 1997). In this specific scenario, C1, is linearly related to the difference between the293
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reflectances of the foliage and background at the wavelengths of interest (Chen & Cihlar, 1997).294

In deriving this hotspot kernel, Chen and Leblanc (1997) demonstrated that this modification had295

very similar shapes at within-crown and between-crown scales because the gap size is scaled by296

the gap depth. For plane parallel layers of leaves, the average gap depth is taken as the mean297

distance between two layers of leaves and is related to the leaf area density. In this hotspot298

function (KRTC), C1 is related to the magnitude of the hotspot peak, while C2 defines the half299

width of the hotspot in relation to the ratio of canopy height to the size of the predominant300

canopy structure. Notably for this study, to keep consistent with the original kernel form, the unit301

of C2 is radians in terms of Eq. (5), but it is converted into degrees in subsequent use to describe302

the hotspot width.303

Here, the KRTC kernel is empirically adjusted to meet KRTC = 0 for the nadir-view and304

nadir-sun geometries, which results in a downward shift of kernel shape (Figure 2, bottom). Note305

that this adjustment does not affect the fitting ability of this model since the kernel shape is306

retained. Figure 2 aligns KRTC with KRT and KRTM for a convenient comparison. The results307

indicate that KRTC coincides with KRT in the scattering direction beyond hotspot region, and308

adjusts the hotspot height and width by changing C1 and C2 (Figure 2 bottom). A larger C1 value309

also indicates a higher hotspot, while a larger C2 value indicates a wider hotspot.310

Figure 2 near here311

3.3. Hotspot parameter retrieval and analysis312

The inversion strategy for retrieving the three parameters of this linear BRDF model is to313

minimize the root mean square error (RMSE) between model predicted and observed BRFs. The314
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full-inversion is a simple matrix inversion that is independent of land surface types and is315

performed pixel by pixel using all high-quality measurements available. Details are referred to316

the papers (Roujean et al., 1992; Lucht et al., 2000; Shuai et al, 2008).317

To derive the C1 and C2 values, we calculated fit-RMSEs to minimize the318

model-observation fits using accumulated measurements in a close vicinity to the hotspot319

.320

3

),,,(),,,(
2

1

mod

n

RR
RMSE

n

j sv
el

sv
obs

(6)321

Where Robs ( v, s , ) and Rmodel ( v, s , ) are the model predicted and observed BRFs near322

the hotspot region in the viewing and solar geometries, v, s at wavelength , as in Equation323

(1). We derived the optimized C1 and C2 values from the least RMSEs using the iteration step324

size of 0.1 for C1 = [0.3,1.2] and C2 = [1.0°,6.0°]. This range of C1 and C2 can ensure realistic325

hotspot variations while optimizing processing time. Following this method, we retrieved the C1326

and C2 values for the entire POLDER database; including parameterizations by IGBP cover type327

and phenological phase, respectively. To derive the optimal hotspot parameter values, we328

constrain this model by accumulating all measurements near hotspot direction ( ) for these329

two parameter types, including all 15 IGBP classes, excluding and 2 phenological330

stages: (1) maturity and (2) dormancy.331

We then compared the model predicted and observed BRFs near hotspot direction by using332

scatterplots with regression lines. To display model-observation fits, we examined the model333

predicted and observed BRFs as a function of phase angle for the selected observations for334
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Evergreen Needleleaf Forest type (ENF) . Details on how335

to derive the shaded area (Figure 1, a) are provided in Appendix A. We also performed a336

comparison against finer resolution in-situ data. To analyze the sensitivity of the hotspot337

parameters to hotspot-fits in conjunction with the model parameters, we used simulated BRDF338

shapes generated from the airborne CAR data set.339

Finally, we examined the intrinsic albedos (i.e., White Sky Albedo (WSA) and Black Sky340

Albedo (BSA)) and clumping index (CI) retrievals between models. To retrieve CI values, we341

made use of the algorithm by Chen et al. (2005) and assigned a simplified geometry of 45° view342

zenith angles in both the backward- and forward- scattering directions for the corresponding343

principal plane hotspot and dark spot, respectively (Zhu et al. 2012). Such a simplification is344

somewhat different from Chen et al. (2005), which focused on locating the optimal view345

geometry to capture the dark spot. Since the three models are generally consistent in fitting346

observations outside of the hotspot region, this simplification would not affect the347

inter-comparison of CI retrievals between models.348

4. Results349

4.1. C1 and C2 values for POLDER350

In this section, we assess the performance of the two hotspot parameters, based on the351

underlying IGBP class and two vegetation phenological phases, based on a comparison of the352

model predicted hotspot BRFs with observed BRFs derived from the POLDER BRDF database.353

For this study, our analysis focuses on the RTCLSR and Maignan method.354
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4.1.1. Hotspot parameters in regard to surface type and phenology355

Figure 3 (top left) presents the globally optimized C1 and C2 values (RTCLSR_GLOB) for 6356

POLDER bands [490, 565, 670, 765, 865, and 1020nm]. These values indicate the variation357

trend of hotspot parameters for the available POLDER BRDF database. In general, the spectral358

variations of C1 and C2 present a highly negative correlation (R2 = 0.58). This indicates that a359

higher hotspot magnitude also tends to go with a narrower shaped hotspot, and vice versa. Figure360

3 (middle) presents the optimized C1 and C2 values derived for underlying IGBP classes in the361

red and NIR bands. Results indicate that the C1 values in the red band are larger than in the NIR362

for all IGBP classes; indicating that the hotspot height is relatively prominent in red band. This is363

due to the higher-level chlorophyll absorption of vegetation foliage in the red band, which364

strengthens the sunlit-shaded component contrast, and results in a more prominent reflectance365

anisotropy. The C1 values are significantly different between some IGBP classes; particularly in366

the red, and exhibits a high correlation between the red and the NIR (R2 = 0.62). This reveals that367

a higher hotspot in the red band is frequently accompanied by a higher hotspot in the NIR band.368

However, the C2 parameter presents a low correlation between the two bands (R2 = 0.21),369

indicating that hotspot width is not band-dependent for these BRDF data.370

Figure 3 (top right) shows the near-hotspot fit-RMSEs ( < 5°) between models in 6 bands.371

Results indicate that the fit-RMSEs are lower in the visible than in NIR and shortwave infrared372

(SWIR). As expected, the RTLSR model had the largest fit-RMSEs in the vicinity of hotspot373

direction. We also derived globally optimized fit-RMSEs (RTCLSR_GLOB) for the entire374

POLDER data and the IGBP-bounded fit-RMSEs (RTCLSR_IGBP). The absolute average375
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difference (AAD) of the fit-RMSEs (left ordinate) between Maignan and RTCLSR_IGBP models376

was 0.0023 per band, while the relative average difference (RAD) of fit-RMSEs (right ordinate)377

between these two models was ~20-30% in the blue, red and NIR bands [490, 670, 765nm]. This378

reveals that the RTCLSR model with the two free parameters can provide further improved379

hotspot-fits. Figure 3 (bottom) presents the fit-RMSEs for 15 IGBP classes between models in380

the red and NIR bands. Some improvements occur for several IGBP classes using the RTCLSR.381

The improvements seem more pronounced for forest than for herbaceous classes in the red band,382

while the opposite appeared to be the case in the NIR band.383

Figure 3 near here384

To examine the phenological response of C1 and C2 values for surface type, we used385

mid-high latitude (23.5 °) POLDER data in terms of the timing of Jun-Jul-Aug386

and Dec-Jan-Feb in Northern Hemisphere to represent maturity and dormancy seasons; using387

opposite time periods in the Southern Hemisphere. The C1 and C2 values were then retrieved for388

each IGBP class in the red and NIR bands. Figure 4 shows that vegetation cover tends to have389

larger C1 and C2 values in maturity, but less C1 and C2 values in dormancy in the red band. In the390

NIR band, vegetation cover mainly captures less C1 but larger C2 in maturity and larger C1 but391

less C2 in dormancy. Interestingly, these hotspot parameter values indicate that vegetation cover392

mainly captures a higher and wider hotspot in maturity, but a lower and narrower hotspot in393

dormancy in the red band. In the NIR band, vegetation cover mainly captures a lower but wider394

hotspot in maturity, and a higher and narrower hotspot in dormancy. Such hotspot behaviors395

should result from the leaf-on and leaf-off status in combination with spectral multiple scattering396
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effects within vegetation canopy in red and NIR bands. This provides direct evidence on the397

spectral variability of the hotspot effect with respect to vegetation phenology.398

As a comparison, Figure 4 (lower left) presents the average NDVI as a function of IGBP399

class in maturity and dormancy seasons. NDVI values are generally bigger in maturity than in400

dormancy for most IGBP classes. This indicates that the selected IGBP classes for this401

phenological analysis are mainly in a leaf-on and leaf-off stage, respectively. Notably, the NDVI402

values are very close for few classes (e.g. Shrubland, Woody Savannas and Urban), likely due to403

the lack of green foliage across classes. Figure 4 (lower right) presents the fit-RMSEs by the404

RTCLSR model for maturity and dormancy seasons in the red and NIR bands. The fit-RMSEs405

are chiefly higher in the NIR than in the red, but do not show significant differences between406

these two seasons. This comparison reveals that NDVI alone doesn t distinctly capture this type407

hotspot variation as was detailed by using two hotspot parameters.408

Figure 4 near here409

4.1.2. Hotspot BRFs410

The scatterplots in Figure 5 (top panel) show the agreement between model-predicted and411

observed hotspot BRFs in the red and NIR bands for the entire POLDER database. The412

correlations between the two are very high (R2 > ~0.90) in both the red and NIR bands. In the red413

band, the Maignan method slightly underestimates the hotspot BRF; particularly at a range of414

low reflectances (i.e., bias = -0.005 for BRFs < 0.1), but overestimates hotspot BRFs at a range415

of high reflectances (i.e., bias = 0.011 for . In the NIR band, the Maignan method416

overestimates hotspot BRFs by 0.014 units at a range of 3, and by 0.008 at range of417
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BRFs > 0.4. These biases are slightly corrected by using the RTCLSR model. Although the418

RTCLSR model with two free parameters fits the hotspot BRFs a little better than the Maignan419

method, the differences between them in fitting observed BRFs in the close proximity of hotspot420

were minor.421

To further examine these two models in fitting hotspot BRFs as a function of surface type,422

we selected four IGBP classes to reflect a forest, mixed, grass, and sparsely vegetated gradient423

representing different canopy physiognomies and structures. In the red band, the Maignan424

method tends to underestimate the hotspot BRFs by 0.014 units for425

class. The underestimation is reduced to 0.011 units for426

(WSa) class, and the model fits well (underestimates by 0.003) for GrL) class;427

but somewhat overestimates by 0.009 units for class.428

The relative average difference (RAD) between these two model reaches to 12% for ENF class.429

These biases are generally corrected by using the RTCLSR model (Figure 5). In the NIR band,430

the biases in reconstructing hotspot BRFs by Maignan method are -0.007 for ENF, 0.001 for431

WSa, -0.017 for GrL, and 0.018 for BSV. These biases are reduced to the range from -0.001 to432

-0.003 by using the RTCLSR model. This demonstrates that the RTCLSR model can provide433

further improvement for hotspot-fits for a subset of IGBP classes.434

Figure 5 near here435

To qualitatively compare the Maignan and RTCLSR models, Figure 6 presents model436

predicted and observed BRFs for the ENF class as a function of phase angle in the proximity of437

the principal plane in 6 bands. We only use the observations falling within the shaded area in438
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Figure 1 (a) to approximate the principal plane. Data sources are marked on each subplot with a439

SZA=44.89 recording the hotspot direction. The NDVI values can be directly derived from the440

data sources. The optimized C1 and C2 values for the ENF class in the corresponding bands are441

used for each data set. This figure shows that the Maignan method and the RTCLSR model442

generally capture the hotspot signatures very well for these POLDER data; however, Maignan443

method seems to overestimate the hotspot height and underestimate hotspot width in blue band,444

but somewhat underestimate hotspot width in other bands for this dataset. The RTCLSR model445

presents more flexibility for capturing the hotspot observations. This is one of the key features of446

the RTCLSR model; i.e., its ability to leverage the reciprocal nature of anisotropic reflectances to447

improve retrieval quality.448

Figure 6 near here449

4.2. Hotspot parameter values for one tile of MODIS hotspot data450

We retrieve two hotspot parameter values using one tile of MODIS hotspot data (h20v11)451

(Table 2). In general, C1 values are larger in lower reflectance, which indicates relatively452

prominent hotspot effects due to lack of multiple scatterings from vegetation cover, which shows453

a consistent variation tendency with two hotspot parameter values for POLDER data. C1 and C2454

values do not present significant differences between three major land cover types in this tile,455

dominated by savannas. However, the optimized C1 and C2 values present some differences in456

the corresponding bands between MODIS and POLDER, likely because MODIS hotspot data are457

derived only from one tile. From Figure 1 (d), we can also see that the BRDF shapes458

reconstructed using the Maignan (green curve) and RTCLSR models (black curve) in the NIR459
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band are very close except for the hotspot peak. The optimal C1=0.4 for 2,275 MODIS data sets460

in this tile characterizes a low hotspot height, compared with the Maignan method for this461

extreme example. Note that the MODIS has difficulty in acquiring sufficient hotspot signatures462

on a global scale. As such, analysis of potential scale inconsistencies between MODIS and463

POLDER was not comprehensively performed using current hotspot data.464

4.3. Results with in-situ and airborne data465

We used airborne CAR SCAR-B cerrado and forest measurements (Tsay et al, 1998), as466

well as two high-quality field BRDF data sets (Iron et al., 1992; Deering et al., 1999) to evaluate467

the RTCLSR approach. Measurements are limited in the proximity of the principal plane, and468

according to our sampling design (Figure 1, a). The469

CAR cerrado dataset was collected on a forest-grass vegetation system that is known for its470

distinct hotspot signature in the red and NIR bands. Dense forest covered by tall trees with a471

close canopy had two-flight measurements. For these data sets, we only make use of the band472

where the hotspot signature was the most prominent.473

Using CAR SCAR-B cerrado measurements, Figure 7 presents the model predicted and474

observed BRFs in the red and NIR bands (not shown for the RTLSR model). We provide three475

specific cases to identify the potential difference between these two methods. Figure 7 (a-b)476

present the optimalized C1 and C2 for the RTCLSR model for this specific data set. Figure 7 (c-d)477

use the C1 = 1.0 and C2 = 3° as default values because KRTC with the default C values captures a478

very close kernel shape with KRTM (Figure 2). Figure 7 (e-f) present two-model consistencies by479

adjusting two hotspot parameters of the RTCLSR model to approach to Maignan predicted480
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shapes for this specific data set (observations not shown). This comparison shows that the481

RTCLSR model with two free hotspot parameters can approach to Maignan method to a very482

great degree. Using CAR SCAR-B forest measurements, we compared the difference between483

the model-predicted and observed BRFs in the principal plane, and over the entire viewing484

geometries between two models (Figure 8). The difference in reconstructing the hotspot BRFs485

between these two models are distinctly exhibited over the entire viewing hemisphere. We486

further performed the statistical analysis for these two CAR datasets for BRFs near the hotspot487

hemisphere of VZA While488

these two approaches do not present difference for the entire CAR datasets, the significant489

improvement occurs in recreating hotspot signatures using the optimized hotspot parameters of490

the RTCLSR model for the RMSEs, biases and correlation coefficients (Figure 9).491

Figure 7, 8 and 9 near here492

Finally, we compared the RTLSR, RTCLSR, and Maignan models fits to the field493

measurements collected from soil and vegetation surface (Figure 10). A C1=0.4 and a C2=5.2° are494

the optimal values for the soil measurements in the red, and C1=1.3 (C2=10°) and C1=1.0495

(C2=8.0°) capture the best hotspot-fits for the black spruce (picea mariana) in the red and NIR496

bands. Results indicate a significant difference between the model-predicted hotspot BRFs for497

the soil and the black spruce surfaces. The RTCLSR model with a C1=1.0 reconstructs the498

hotspot height for the black spruce as same as Maignan method; but a C2=8.0° can characterize a499

wider hotspot for matching this measurement in the NIR band. The old back spruce captures a500

more prominent hotspot signature in the red than in the NIR. For the in-situ data, the fit-RMSEs501
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for the RTLSR, the Maignan and the RTCLSR are 0.0073, 0.0067 and 0.0058 in the red, and502

0.0530, 0.0515 and 0.0506 in the NIR, respectively. Since these models are consistent in fitting503

these measurements except for hotspot region, the difference in overall fit-RMSEs results from504

their hotspot effects.505

Figure 10 near here506

4.4. Sensitivity of hotspot parameters507

To examine the sensitivity of hotspot parameters to hotspot-fits, we provide the plots508

showing the fitting errors (color contour) as functions of C1 and C2 at each iteration for the entire509

POLDER sampled dataset in the red and the NIR bands (Figure 11, top). Results indicate that the510

C1 values are more sensitive to hotspot-fit than C2, because the fitting errors change more rapidly511

along C1 than C2. For a given C2, fitting errors present certain symmetry about C1 because large512

or small C1 values generate the comparable magnitude of fitting errors. The minimum RMSE513

occurs at the optimal C1 and C2 values (the white point). Similar results were found across IGBP514

classes.515

Since the BRDF sampling can have an effect on the sensitivity of model parameter516

retrievals for kernel-driven models (Lucht et al., 2000), we also examined the sensitivity of the517

two hotspot parameters to the model parameters. To do this, we evaluated the modeled hotspot518

reflectance as a function of C1 (taking C2 = 3° as the default value) for three sample sizes (i.e., 12,519

60 and 161 measurements) in principal plane. These BRDF observations are sampled from the520

airborne CAR cerrado measurements, which contained 29,160 BRF samples. In each case, 6521

uniformly-distributed observations in the vicinity of the hotspot region (i.e., 5°) were used,522
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and the rest of the observations outside of this hotspot region were randomly sampled.523

Figure 11 (bottom) presents the sensitivity of modeled hotspot reflectance as a function of524

C1 in the red band (C2 = 3°). This figure demonstrates that the BRDF sample sizes have a certain525

effect on the sensitivity of the C1 values to the modeled hotspot BRFs, since the hotspot BRFs as526

a function of C1 values presents varying slopes for these three cases of BRDF sample sizes. This527

leads to slightly varying C1 values, even when using identical hotspot observations for different528

total BRDF sample numbers. However, the variation range of the modeled BRFs as a function of529

C1 can effectively cover the observed hotspot peak (i.e. HS_BRF = 0.23). Result also indicate that530

the modeled hotspot BRFs, using the Maignan method, are sensitive to the total BRDF sample531

numbers in this examination; but with a slight overestimation of the hotspot BRFs. This is532

consistent with result shown for the NIR band when using MODIS, POLDER and CAR.533

This investigation demonstrates that the sensitivity of hotspot parameters is somewhat534

related to varying BRDF sample numbers, which in turn tend to have an effect on model535

parameter retrievals. This effect holds true even when using the same observations in the vicinity536

of the hotspot 5°). This implies that the model predicted hotspot BRFs using a537

set of optimalized prior C1 and C2 values in RTCLSR model (combining KLSR and KRTC) would538

be sensitive to the three model parameters (i.e., fiso, fgeo and fvol) to a certain extent that the539

adjustment of hotspot BRF dynamics by three model parameters is no longer effective. In such a540

situation, the two free hotspot parameters in RTCLSR model provide an improved capacity to541

capture more accurate hotspot signatures.542

Figure 10 near here543
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4.5. Influence on retrieval of intrinsic albedo and clumping index544

To evaluate the performance of the RTCLSR method for potential applications, we545

evaluated the retrieval of intrinsic albedos and clumping index (CI) from available POLDER and546

MODIS data. The BSA values were calculated for SZAs ranging from 0° to 75° at the interval of547

15°.In general, the intrinsic albedo retrievals between the RCLSR and RTCLSR models are in a548

very high correlation for both POLDER (R2 = ~ 1.0) and MODIS (R2 > ~0.9) data; with549

negligible biases (< ~0.0003 in red and < ~0.0006 in NIR), while the difference in CI values550

between models was rather significant (Table 1 and Figure 12). As compared with the RTCLSR551

model results, a major overestimation of CI values occurs with the RTLSR model, but a slight552

underestimation of CI values occurs with the Maignan method. This is attributed to the553

difference in reconstructing hotspot BRFs between models. Figure 12 exhibits the scatter plots554

between models for ~11,632 CI values for 15 IGBP classes in the NIR (Figure 12, a-b) and the555

red bands (Figure 12, c-d) using POLDER data. According to the CI inversion algorithm, the CI556

biases between models (despite a high correlation, R2 = ~0.9) result from biases in modeling557

hotspot BRFs. For most IGBP classes from POLDER data, about 20% of the relative average558

difference (RAD) in retrieving CIs occurs between the RTLSR model and the RTCLSR model,559

while about 10% of RAD occurs between the Maignan method and the RTCLSR in the NIR560

(Table 1). In the red band (Figure 12, c-d), the RAD in CI retrievals between the Maignan561

method and the RTCLSR model is generally small, while it still remains about 20% between the562

RTLSR and the RTCLSR. For the MODIS data, the RAD in CI retrievals arrive at about 6% and563

12% in the red and the NIR bands between the RTCLSR and the Maignan (Figure 12, e-f).564
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Notably, we use more measurements in CI estimates because we can, in theory, reconstruct the565

hotspot BRFs using two prior IGBP-based hotspot parameter values that are derived from the566

high-quality observations in Section 4.1.1. In addition, we merely compare the retrieved CI567

values between models following the objective of this paper. To extensively validate these CI568

estimates with ground measurements would require the expanded use of additional569

measurements beyond the ones used in this study.570

5. Conclusions and discussion571

In this study, we proposed a new method to correct the hotspot effects for the RTLSR model572

known for its use within the operational MODIS BRDF/Albedo product. The method makes use573

of the exponential function with two free parameters (C1 and C2) to characterize hotspot height574

and width. Our results indicate that, although the Maignan method with no free hotspot575

parameters characterizes the hotspot effect in a relatively high accuracy (particularly for576

POLDER), the RTCLSR model can provide a further improvement in hotspot-fits. This is mainly577

attributed to the two free hotspot parameters that can be adjusted to reach their optimal values for578

the near-hotspot measurements available. Further analysis of the two hotspot parameters using579

hotspot data reveals that the hotspot signatures are somewhat related to surface type and580

vegetation phenology for available POLDER data. We found that the hotspot height (C1) value is581

bigger in the red band than in the NIR band for most vegetation types, indicating a more582

prominent hotspot in the red band possibly due to the strong chlorophyll absorption of vegetation583

foliage.584

The RTCLSR model is quite consistent with the other two models in the intrinsic albedos585
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retrievals, but is somewhat different in CI retrievals through the use of the inversion algorithm of586

Chen et al. (2005). This reveals that the albedo retrievals using the RTCLSR would be consistent587

with the archived albedo product using the routine RTLSR algorithm; however, the RTCLSR588

model would provide more accurate hotspot signatures that may lead to an improved589

understanding of vegetation biophysical parameter retrievals in relation to hotspot BRFs. A590

similar analysis of the RTCLSR with the MODIS hotspot data, airborne CAR data and field591

measurements reveals the broad adaptability of this new method for different spatial resolutions;592

however, further investigation into the scale issue of hotspot effect using the RTCLSR model is593

still a challenge mainly due to the lack of sufficient hotspot data at different spatial resolutions.594

Investigation into the sensitivity of these two hotspot parameters shows that C1 is more sensitive595

to hotspot-fits than C2. The total BRDF sampling design can also play a role on the sensitivity of596

the hotspot parameters to hotspot-fits, because the total sample numbers (even having a good597

distribution) can have an effect on the model parameter retrievals, in particular the sparse BRDF598

sampling cases typified by the MODIS retrieval.599

The original design of the kernel-driven linear Ross-Li BRDF model comprised a collection600

of kernels for different scenarios of land surface types. Thus, kernel functions are derived from601

different assumptions for vegetation canopy structures, and view and illumination geometries.602

These assumptions may result in differences in modeling the radiation field (Wanner et al., 1995)603

especially in the hotspot direction (Huang & Jiao et al., 2012). Methodologically, the exponential604

approximation of this hotspot kernel function may also be used to correct the other volumetric605

scattering kernel (i.e., RossThin), because this exponential hotspot function makes use of two606
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free parameters (C1 and C2) to fit hotspot signatures, rather than use surface biophysical607

parameters as inputs to drive a theoretical hotspot model. The exponential function form is608

rooted in gap probability theory and has been one of major contributions to hotspot modeling609

(Qin et al., 1995). The corrected volumetric kernel can be combined with various geometric610

optical kernels for potential applications. However, the use of multi-kernel combination models611

would require recalibration of the C1 and C2 parameters.612

In the situation where hotspot signatures are not available, the C1 and C2 values would need613

to be estimated on an a priori basis for it to initialize an RTCLSR model inversion. This has been614

attempted by fitting the hotspot data of several spatial resolutions via two means. Globally615

optimized C1 and C2 values can characterize the overall accuracy of the hotspot effect for certain616

satellite hotspot data, while variable-related optimized C1 and C2 values can help explore hotspot617

variation as a function of some underlying variables such as surface type and vegetation618

phenology. We found that a prior C1 =1 and C2 = 3° provide a stable initialized value in the619

RTCLSR model that is comparable in performance to the Maignan method.620

Because the hotspot effect is very sensitive to the phase angle between the view and621

illumination in the retro-solar direction (Bréon et al. 2002), its analysis for remote sensing622

applications requires a very high geometric accuracy. This implies that it is especially difficult to623

capture accurate hotspot observations in field measurements due to the shadows of the624

goniometer and sensors that must have a small enough IFOV (e.g., . Use of the field625

measurements with an IFOV= 15° in this study aims to stress that the reciprocal nature allows626

the RTCLSR model to acquire hotspot-fits with the least RMSEs for this data set. However, with627
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two free hotspot parameters determined a priori by using enough hotspot data, this new method628

provides an improved understanding of the hotspot effect, and thus has potentials for certain629

ecological applications in regard to the hotspot BRFs for complex heterogeneous environments.630

631
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6. Appendix A632

The shaded area in Figure 1 (a) contains four parts. As the 1st constraint, all observations falling633

within the phase angle having the radius of R should be included in set A. Here, R634

but R can be adjusted properly for different hotspot data.635

RA636

To select the observed BRFs close to principal plane (PP) for visually comparing with modeled637

BRFs in PP, we define the distance, H, which is perpendicular to the principal plane, as the 2nd
638

constraint. Obviously, a less H value can select observations in the shaded area to get closer to PP.639

This generates set B as follows. Here, H H640

irborne CAR and field data.641

| sin |v HB642

As the 3rd constraint, we should consider that, in a 2-D plot that exhibits the observed BRFs in643

approximate PP, spurious visualizations, particularly in the proximity of hotspot direction in PP,644

possibly result from some observed BRFs that are not actually near hotspot region in PP, e.g., a645

H646

taking Sun as the center (Figure 1, a) to be exhibited as near-hotspot BRFs in PP. To remove647

these observations in 2-D plots that present observed and modeled BRFs in approximately PP648

(e.g., Figure 1, d), we define an intersection angle ( ) between PP line and the line passing649

through Sun (Figure 1, a), and derive set C and set D as follows. Here,650

these hotspot data used in this study.651
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Finally, the shaded area in Figure 1 (a) can be derived by implementing set operation for four654

sets above:655

A B C D656

657
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665

Table 1. Statistics of the clumping index values retrieved by three models666

Class Number
RTLSR Maignan RTCLSR (RTLSR- RTCLSR)

/ RTCLSR (%)

(Maignan-RTCLSR)

/RTCLSR (%)Mean Std. Mean Std. Mean Std.

ENF 793 0.57 0.04 0.49 0.03 0.51 0.04 13.09 4.32

EBF 898 0.76 0.08 0.56 0.06 0.64 0.07 19.02 11.85

DNF 219 0.66 0.02 0.57 0.02 0.59 0.02 10.54 4.29

DBF 682 0.80 0.06 0.63 0.05 0.67 0.05 19.59 6.89

MiF 690 0.76 0.10 0.57 0.08 0.63 0.09 21.55 9.02

CSh 549 0.77 0.08 0.58 0.06 0.63 0.07 22.83 7.22

OSh 1247 0.86 0.10 0.68 0.10 0.74 0.10 16.31 8.68

Wsa 1035 0.83 0.06 0.62 0.06 0.68 0.06 22.49 8.32

Sav 734 0.87 0.06 0.67 0.06 0.74 0.06 17.64 10.11

GrL 1075 0.88 0.09 0.68 0.10 0.76 0.10 16.21 9.56

Pwe 21 0.95 0.06 0.65 0.05 0.77 0.05 22.29 15.68

CrL 960 0.89 0.07 0.67 0.06 0.75 0.06 19.55 10.48

Ubu 835 0.84 0.06 0.65 0.06 0.72 0.06 17.20 10.13

CNVM 727 0.89 0.06 0.66 0.05 0.75 0.05 19.00 10.94

BSV 1167 0.99 0.16 0.85 0.19 0.92 0.17 8.00 7.44

667

668

669

Table 2. The globally optimized C1 and C2 values derived from one 10 × 10 tile (h20v11) of MODIS670

surface reflectance products (MOD09 and MYD09) in 7 reflected solar bands671

Band

(nm)

Band1

(620-670)

Band2

(841-876)

Band3

(459-479)

Band4

(545-565)

Band5

(1230-1250)

Band6

(1628-1652)

Band7

(2105-2155)

C1 0.7 0.4 0.7 0.7 0.6 0.7 0.7

C2 (°) 5.2 4.5 5.2 5.2 3.5 5.2 5.2

672

673

674
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675

Figure Captions676

Figure 1. (a) The method to select observations near principal plane and in the proximity of hotspot677

direction to be showed in 2-D plots, its formulation is detailed to appendix A; (b) spatial distribution of678

view and sun geometries for a typical POLDER data set, i.e., IGBP_01_200609brdf_ndvi08. 0824_1671,679

and (c) for a typical MODIS data set in h20v11 for savanna; (d) the observed and modeled BRFs using680

Maignan method, and RTCLSR model with C1=0.4, and C2=4.5° as a function of phase angle for this681

MODIS data in the NIR. A minus sign is assigned to the phase angle when cosv s682

Figure 2. LiSparseReciprocal kernel (KLSR) at SZA of 15°, 30°, 45° and 60° (top) and three volumetric683

kernels in PP (bottom). In the top subplot, the red and magenta dashed curves around the red solid curve684

are from different h/b and b/r ratios in KLSR. The red solid curve is for the operational KLSR that adopts685

h/b=2 and b/r=1; red dashed curve is for h/b=2 and b/r=1.2; magenta dashed curve is for h/b=2.5 and686

b/r=1. In the bottom subplot, three volumetric kernels are for the operational RossThick kernel (KRT,687

black curve), the Maignan kernel (KRTM with green solid curve for 0 = 1.5° and green dashed curve for 0688

= 3.0°), and RossThickChen kernel (KRTC) with C1=1 and C2=3° (red dashed curve). The upwardly-shifted689

KRTC with C1=1 and C2=3° (red solid curve), C1=1 and C2=5° (blue dashed curve), and C1=0.6 and C2=3°690

(magenta dashed curve) for a SZA=30° is aligned with the KRT and KRTM for a convenient comparison.691

Figure 3. The globally optimized C1 and C2 values, and the fit-RMSEs derived from the entire POLDER692

BRDF data in 6 bands (top); the C1 and C2 values (middle) and the correponding fit-RMSEs (bottom) for693

underlying IGBP class. The dashed lines (top right) present the relative fit-RMSEs (right ordinate)694

between Maignan method and RTCLSR model. 16 IGBP classes are Evergreen Needleleaf forest (ENF),695
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Evergreen Broadleaf Forest (EBF), Deciduous Needleleaf Forest (DBF), Deciduous Broadleaf Forest696

(DBF), Mixed Forest (MiF), Closed Shrublands (CSh), Open Shrublands (OSh), Woody Savannas (WSa),697

Savannas (Sav), Grasslands (GrL), Permanent Wetlands (PWe), Croplands (CrL), Urban and Build-up698

(UBu), Cropland/Natural Vegetation Mosaic (CNVM), Barren or Sparsely Vegetated (BSV). Snow and699

Ice (SI) is excluded from this study because of its strong forward scattering.700

Figure 4. Two hotspot parameters (top) as a function of IGBP class in terms of the timing of Jun-Jul-Aug/701

Dec-Jan-Feb in the northern hemisphere to represent maturity and dormancy season, respectively702

(opposite in southern hemisphere) in the red and the NIR bands. The corresponding average NDVI and703

fit-RMSEs (bottom) are presented as a comparison.704

Figure 5. Comparison of the model predicted and observed hotspot BRFs for the entire POLDER BRDF705

data (upper panel), and two IGBP classes for ENF and WSa (lower panel) in the red band.706

Figure 6. POLDER observatoins (red points) and the reconstructed BRDF shapes by Maignan (green)707

and RTCLSR model (black) in 6 bands for the ENF as a function of phase angle in terms of the sampling708

design (i.e., Figure 1, a)709

Figure 7. Comparison of Maignan with RTCLSR model using CAR/SCAR-B cerrado measurements in710

principle plane in the red and the NIR bands. We elaborate on the differecnes between these two models711

in terms of three cases: (a) and (b) show RTCLSR with the optimal C1 and C2 in case 1; (c) and (d) show712

RTCLSR using C1 =1 and C2 =3° as default values in case 2; (e) and (f) adjust RTCLSR model to713

approach to Maignan result for deriving the opitimal C1 and C2 values in case 3.714

Figure 8. Using CAR SCAR-B forests to examine the difference between model predicted and observed715

BRFs in PP (top) and the difference between RTCLSR and Maignan over the entire viewing hemisphere716



39

(bottom) using Flight # 1689 in the red (c) and using Flight # 1693 in the NIR (d).717

Figure 9. Scatterplots showing the difference between modeled and observed BRFs near the hotspot718

, using CAR Flight #719

1689 in the red band (a, b) and CAR Flight # 1693 in the NIR band (c, d)720

Figure 10. Comparison of field soil measurements (top) and field old black spruce measurements (bottom)721

with three models722

Figure 11. The fitting errors as functions of C1 and C2 for the entire POLDER data in the red (left) and in723

the NIR (right), and the white points on the contour plots represent the least fit-RMSEs with the optimal724

C1 and C2 values; the modeled hotspot reflectance as a function of C1 (given C2 = 3°) using CAR data to725

simulate three BRDF sample sizes (12, 60 and 161 samples) in the red band (bottom).726

Figure 12. Comparison of CI retrievals between models using POLDER data in the NIR band (top) and in727

the red band (middle), as well as using MODIS data (bottom) in the red and the in NIR bands. The dashed728

and solid lines represent the one-to-one lines and the fitted lines, respectively.729

730

731
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732

733

Figure 1. (a) the method to select observations near principal plane and in the proximity of hotspot734

direction to be showed in 2-D plots, its formulation is detailed to appendix A; (b) spatial distribution of735

view and sun geometries for a typical POLDER data set, i.e., IGBP_01_200609brdf_ndvi08. 0824_1671;736

(c) for a typical MODIS data set in h20v11 for savanna; (d) the observed and modeled BRFs using737

Maignan method, and RTCLSR model with C1=0.4, and C2=4.5° as a function of phase angle for this738

MODIS data in the NIR. A minus sign is assigned to the phase angle when cosv s739

740

a b

c d
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741

742
743

Figure 2. LiSparseReciprocal kernel (KLSR) at SZA of 15°, 30°, 45° and 60° (top) and three volumetric744

kernels in PP (bottom). Details are expounded in figure captions745

746
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747

748

749

Figure 3. The globally optimized C1 and C2 values, and the fit-RMSEs derived from the entire POLDER750

BRDF data in 6 bands (top); the C1 and C2 values (middle) and the correponding fit-RMSEs (bottom) for751

underlying IGBP class. The dashed lines (top right) present the relative fit-RMSEs (right ordinate)752

between Maignan method and RTCLSR model.753

754
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755

756

Figure 4. Two hotspot parameters (top) as a function of IGBP class in terms of the timing of757

Jun-Jul-Aug/Dec-Jan-Feb in the northern hemisphere to represent maturity and dormancy season,758

respectively (opposite in southern hemisphere) in the red and the NIR bands. The corresponding average759

NDVI and fit-RMSEs (bottom) are presented as a comparison.760

761
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762

Figure 5. Comparison of the model predicted and observed BRFs for the entire POLDER BRDF data and763

two IGBP classes, i.e., ENF and WSa in the red band.764

765
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766

767

768
769

Figure 6. POLDER observatoins (red points) and the reconstructed BRDF shapes by Maignan (green)770

and RTCLSR model (black) in 6 bands for the ENF class as a function of phase angle771

772
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773

774

775
776

Figure 7. Comparison of Maignan with RTCLSR model using CAR/SCAR-B cerrado measurements in777

principle plane in the red and the NIR bands. Details were expounded in figure captions.778

779
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780

781

Figure 8. Using CAR SCAR-B forests to examine the difference between model predicted and observed782

BRFs in PP (top) and the difference between RTCLSR and Maignan over the entire viewing hemisphere783

(bottom) using Flight # 1689 in the red (c) and using Flight # 1693 in the NIR (d).784

785

a b

c d



48

786

787

Figure 9. Scatterplots showing the difference between modeled and observed BRFs near the hotspot788

) , using CAR Flight #789

1689 in the red band (a, b) and CAR Flight # 1693 in the NIR band (c, d)790

791

a b

c d
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792

793

794
795

Figure 10. Comparison of field soil measurements (top) and field old black spruce measurements796

(bottom) with three models797

798
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799

800

Figure 11. The fitting errors as functions of C1 and C2 for the entire POLDER data in the red (left) and in801

the NIR (right), and the white points on the contour plots represent the least fit-RMSEs with the optimal802

C1 and C2 values; the modeled hotspot reflectance as a function of C1 (given C2 = 3°) using CAR data to803

simulate three BRDF sample sizes (12, 60 and 161 samples) in the red band (bottom).804

805

(0.7, 3.2) (0.6, 3.3)
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806

807

808

Figure 12. Comparison of CI retrievals between models using POLDER data in the NIR band (top) and in809

the red band (middle), as well as using MODIS data (bottom) in the red and the in NIR bands. The dashed810

and solid lines represent the one-to-one lines and the fitted lines, respectively.811

812



52

References813

Bicheron, P., & Leroy, M. (2000). Bidirectional reflectance distribution function signatures of major814

biomes observed from space. J. Geophys. Res., 105, 26669-26681.815

Bacour, C. and Bréon, F.M. (2005) Variability of land Surface BRDFs. Remote Sensing Environment. 98,816

80-95.817

Bréon, F. M., Maignan, F., Leroy, M., & Grant, I. (2002). Analysis of hot spot directional signatures818

measured from space. Journal of Geophy-sical Research , 107(16), 4282 4296.819

Bréon, F.M. and the Cnes PARASOL Team, PARASOL Level-1 Product Data Format and User Manual,820

Issue 1, Revision 1, May, 26th 2005 (www55).821

Bréon, F. M., Fédèle, E.,Maignan, F., & Lacaze, R. (2007). A database of directional reflectance signature822

(GLC2000) with an analysis tool. A-Train Symposium. Lille.823

Chen, J. M., Rich, P. M., Gower, S. T., Norman, J. M., & Plummer, S. (1997). Leaf area index of boreal824

forests: Theory, techniques, and measurements. Journal of Geophysical Research-Atmospheres, 102,825

29429 29443.826

Chen, J. M., Pavlic, G., Brown, L., Cihlar, J., Leblanc, S. G., White, H. P., et al. (2002). Validation of827

Canada-wide leaf area index maps using ground measurements and high and moderate resolution828

satellite imagery. Remote Sensing of Environment, 80, 165 184.829

Chen, J.M., Menges, C.H., & Leblanc, S.G. (2005). Global mapping of foliage clumping index using830

multi-angular satellite data. Remote Sensing of Environment, 97, 447-457.831

Chen, J. M., & Leblanc, S. G. (1997). A four-scale bidirectional reflectance model based on canopy832

architecture.IEEE Transactions on Geoscience and Remote Sensing, 35, 1316 1337.833

Chen, J. M., & Cihlar, J. (1997). A hotspot function in a simple bidirectional reflectance model for834

satellite applications .Journal of Geophysical Research-Atmospheres, 102 , 25907 25913.835

Chen, J. M., Rich, P. M., Gower, T. S., Norman, J. M., and Plummer, S. (1997), Leaf area index of boreal836

forests: theory, techniques and measurements. J. Geophys. Res. 102: 29,429 29,443.837

Chopping, M., Moisen, G.G., Su, L.H., Laliberte, A., Rango, A., Martonchik, J.V., et al. (2008). Large area838

mapping of southwestern forest crown cover, canopy height, and biomass using the NASA839

Multiangle Imaging Spectro-Radiometer. Remote Sensing of Environment, 112, 2051-2063.840

De Colstoun, B.E.C., & Walthall, C.L. (2006). Improving global scale land cover classifications with841

multi-directional POLDER data and a decision tree classifier. Remote Sensing of Environment, 100,842

474-485.843

Deering, D.W., Eck, T.F., & Banerjee, B. (1999). Characterization of the Reflectance Anisotropy of Three844

Boreal Forest Canopies in Spring Summer. Remote Sensing of Environment, 67, 205-229.845

Friedl, M.A., McIver, D.K., Hodges, J.C.F., Zhang, X.Y., Muchoney, D., Strahler, A.H., et al. (2002).846

Global land cover mapping from MODIS: algorithms and early results. Remote Sensing of847

Environment, 83, 168-182.848



53

Friedl, M.A., Sulla-Menashe, D., Tan, B., Schneider, A., Ramankutty, N., Sibley, A., et al. (2010). MODIS849

Collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote850

Sensing of Environment, 114, 168-182.851

Geiger, B., Franchistéguy, L., Carrer, D. andRoujean, J.-L. (2005). Land Surface Analysis Satellite852

Application Facility (LSA-SAF) Product User Manual (PUM) on Albedo. Eumetsat, pp. 41.853

Gatebe, C. K., King, M. D., Platnick, S., Arnold, G. T., Vermote, E. F., & Schmid, B. (2003). Airborne854

spectral measurements of surface-atmosphere anisotropy for several surfaces and ecosystems over855

southern Africa.Journal of Geophysical Research, 108 (D13).856

Gatebe, C.K., Butler, J.J., Cooper, J.W., Kowalewski, M., & King, M.D. (2007). Characterization of857

errors in the use of integrating-sphere systems in the calibration of scanning radiometers. Applied858

Optics, 46, 7640-7651859

Hautecoeur, O., & Leroy, M. M. (1998). Surface bidirectio nal refl ectance distribution function observed860

at global scale by POLDER/ADEOS. Geophysical Research Letters, 25, 4197 4200.861

Hill, M. J., Román, M. O., Schaaf, C. B., Hutley, L., Brannstrom, C., Etter, A., Hanan, N. P. (2011).862

Characterizing vegetation cover in global savannas with an annual foliage clumping index derived863

from the MODIS BRDF product, Remote Sensing of Environment, 115 (8): 2008-2024.864

He, L., Chen, J. M., Pisek, J., Schaaf, C. B., Strahler, A. H. (2012). Global clumping index map derived865

from the MODIS BRDF product, Remote Sensing of Environment, 119, 118-130.866

Huang, X., Jiao, Z., Dong, Y., Zhang, H., & Li, X. (2013). Analysis of BRDF and Albedo Retrieved by867

Kernel-Driven Models Using Field Measurements. IEEE JOURNAL OF SELECTED TOPICS IN868

APPLIED EARTH OBSERVATIONS AND REMOTE SENSING. 6 (1): 149-161.869

Irons, J.R., Campbell, G.S., Norman, J.M., Graham, D.W., & Kovalick, W.M. (1992). Prediction and870

measurement of soil bidirectional reflectance. Ieee Transactions on Geoscience and Remote Sensing,871

30, 249-260.872

Jiao, Z., Woodcock, C., Schaaf, C.B., Tan, B., Liu, J., Gao, F., et al. (2011). Improving MODIS land cover873

classification by combining MODIS spectral and angular signatures in a Canadian boreal forest.874

Canadian Journal of Remote Sensing, 37(2), 184-203.875

Jiao, Z., & Li, X. (2012). Effects of multiple view angles on the classification of forward-modeled876

MODIS reflectance. Canadian Journal of Remote Sensing, 38 (4), 461-474.877

Jiao, Z., Zhang, H, Li, X. (2012a). To derive a prior database of archetypal BRDF shapes from ground878

measurements using anisotropic flat index (AFX). Geoscience and Remote Sensing Symposium879

(IGARSS), 2012 IEEE International. 6753-6756, 22-27 July, Munich, Germany.880

Jiao, Z., Hill, M., Schaaf, B. C., Zhang, H., Wang, Z. ,Li, X. (2014). An Anisotropic Flat Index (AFX) to881

derive BRDF Archetypes from MODIS, Remote Sensing of Environment, 141: 168 187.882

Jiao, Z., Zhang, H., Dong, Y., Liu, Q., Xiao, Q., Li, X. (2015). An algorithm for retrieval of surface albedo883

from small view-angle airborne observations through the use of BRDF archetypes as prior884

knowledge. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS885



54

AND REMOTE SENSING, DOI: 10.1109/JSTARS.2015.2414925, accepted.886

Justice, C.O., Román, M.O., Csiszar, I., Vermote, E., Wolfe, R., Hook, S.J., Friedl, M., Wang, Z., Schaaf, C.,887

Miura, T., Tschudi, M., Riggs, G., Hall, D.K., Lyapustin, A., Devadiga, S., Davidson, C., & Masuoka, E.888

(2013). Land and Cryosphere Products from Suomi NPP VIIRS: Overview and Status. Journal of889

Geophysical Research-Atmospheres, 118, 1-13, doi:10.1002/jgrd.50771890

Jupp, D. L., and A. H. Strahler, A hot spot model for leaf canopies, Remote Sens. Environ. , 38 , 193 210,891

1991.892

King, M. D., Menzel, W. P., Grant, P. S., Myers, J. S., Arnold, G. T., Platnick, S. E., et al. (1996). Airborne893

scanning spectrometer for remote sensing of cloud, aerosol, water vapor and surface properties.894

Journal of Atmospheric and Oceanic Technology, 13, 777 794.895

Kuusk, A. (1991). The hotspot effect in plant canopy reflectance, in Photon-Vegetation Interactions.896

Applications in Optical Remote Sensing and Plant Ecology (R. B. Myneni and J. Ross, Eds.),897

Springer-Verlag, Berlin, pp. 139-159.898

Li, X., Gao F, Wang J D and Strahler A H. (2001). A priori knowledge accumulation and its application to899

linear BRDF model inversion. Journal of Geophysics Research, 106(D11): 11925-11935.900

Li, X., & Strahler, A.H. (1992). Geometric-optical bidirectional reflectance modeling of the discrete901

crown vegetation canopy: effect of crown shape and mutual shadowing. Ieee Transactions on902

Geoscience and Remote Sensing, 30, 276-292.903

Li, Z., Cihlar, J., Zheng, X., Moreau, L. and Ly, H. (1996). The bidirectional effects of AVHRR904

1322.905

Litvinov, P, Hasekamp, O., Cairns, B. (2011). Models for surface reflection of radiance and polarized906

radiance: Comparison with airborne multi-angle photopolarimetric measurements and implications907

for modeling top-of-atmosphere measurements. Remote Sensing of Environment, 115, 781 792.908

Leroy, M., & Roujean, J.L. (1994). Sun and view angle corrections on reflectances derived from909

NOAA/AVHRR data. IEEE Transactions on Geoscience and Remote Sensing, 32, 684-697.910

Lucht W, Schaaf C B and Strahler A H. 2000. An algorithm for the retrieval of albedo from space using911

semiempirical BRDF models. IEEE Transactions on Geoscience and Remote Sensing, 38(2):912

977-998 .913

Maignan, F., Bréon, F.M. and Lacaze, R. (2004). Bidirectional reflectance of Earth targets: evaluation of914

analytical mode ls using a large set of sp aceborne measurements with emphasis with the hot spot,915

Remote Sens. Environ., 90, 210-220.916

Qin, W. & Goel, N. (1995). An evaluation of hotspot models for vegetation canopies, Remote Sensing917

Reviews, 13 (1-2), 121-159.918

Qin, W., and Jupp, D.L.B. (1993). An analytical and computationally efficient reflectance model for leaf919

canopies, Agric. Meteorol., 66, 31-64.920

Qin, W., and Xiang, Y. (1994). On the Hotspot Effect of Leaf Canopies: Modeling Study and Influence of921

Leaf Shape. Remote Sensing of Environment, 50, 95 106.922



55

Roujean, J.-L., Leroy, M., & Deschamps, P.-Y. (1992). A Bidirectional Reflectance Model of the Earth's923

Surface for the Correction of Remote Sensing Data. J. Geophys. Res., 97, 20455-20468.924

Roujean, J.-L. (2000). A Parametric Hot Spot Model for Optical Remote Sensing Applications. Remote925

Sensing of Environment, 71, 197-206.926

Ross, J.K. (1981). The Radiation Regime and Architecture of Plant Stands. Norwell, MA: Dr. W. Junk,927

392 pp.928

Román, M. O., C. B. Schaaf, P. Lewis, F. Gao, G. P. Anderson, J. L. Privette, A. H. Strahler, C. E.929

Woodcock, and M. Barnsley (2010), Assessing the coupling between surface albedo derived from930

MODIS and the fraction of diffuse skylight over spatially-characterized landscapes, Remote Sensing931

of Environment, 114(4), 738-760, doi:10.1016/j.rse.2009.11.014.932

Román, M. O., C. K. Gatebe, C. B. Schaaf, R. Poudyal, Z. Wang, King, M. D. (2011). Variability in933

surface BRDF at different spatial scales (30 m - 500 m) ov er a mixed agricultural landscape as934

retrieved from airborne and satellite spectral measurements, Remote Sensing of Environment, 115,935

2184-2203, 2011.936

Sellers, P. J., Los, S. O., & Tucker, C. J. (1994). A global 1- 1- NDVI data set for climate studies. Part 2:937

The generation of global fields of terrestrial biophysical parameters from the NDVI. International938

Journal of Remote Sensing, 11, 95 111.939

Schaaf, C.B., Gao, F., Strahler, A.H., Lucht, W., Li, X., Tsang, T., et al. (2002). First operational BRDF,940

albedo nadir reflectance products from MODIS. Remote Sensing of Environment, 83, 135-148.941

Strugnell, N., W. Lucht, and Schaaf, C. (2001). A global albedo data set derived from AVHRR data for use942

in climate simula tions, Geophys. Res. Let., 28, 191-194.943

Shuai, Y., Schaaf, C.B., Strahler, A.H., Liu, J., & Jiao, Z. (2008). Quality assessment of BRDF/albedo944

retrievals in MODIS operational system. Geophysical Research Letters, 35, L05407945

Tsay, S.C., King, M.D., Arnold, G.T., & Li, J.Y. (1998). Airborne spectral measurements of surface946

anisotropy during SCAR-B. Journal of Geophysical Research-Atmospheres, 103, 31943-31953.947

Van Leeuwan, W. and Roujean, J.-L. (2002). Land surface albedo from the synergistic use of polar (EPS)948

and geo-stationary (MSG) obser ving systems an assessment of physical uncertainties, Remote Sens.949

Environ., 81, no2-3, 273-289, 2002.950

Wang, Z., Schaaf, C.B., Lewis, P., Knyazikhin, Y., Schull, M.A., Strahler, A.H., et al. (2011). Retrieval of951

canopy height using moderate-resolution imaging spectroradiometer (MODIS) data. Remote Sensing952

of Environment, 115, 1595-1601.953

Wang, Y.,A. Lyapustin, J.L. Privette, R.B. Cook, S.K. SanthanaVannan, E.F.Vermote, Schaaf, C. (2010).954

Assessment of biases in MODIS surface reflectance due to Lambertian approximation, Remote955

Sensing of Environment, 114,2791-2801.956

Wanner, W., Li, X., & Strahler, A.H. (1995). On the derivation of kernels for kernel-driven models of957

bidirectional reflectance. J. Geophys. Res., 100, 21077-21089.958

959



56

Landmass Retrieved From the MODIS BRDF Parameters Product, IEEE Transactions on960

Geoscience and Remote Sensing, 50 (6), 2122-2137.961

Zhang, X., M.A. Friedl, C.B. Schaaf, A. H. Strahler, J.C.F. Hodges, F. Gao, B. C. Reed, and A. Huete962

(2003). Monitoring vegetation phenology using MODIS, Remote Sensing of Environment, 84,963

471-475.964

965


