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Abstract

We consider piecewise Chebyshevian splines, in the sense of splines with pieces taken from
any different five-dimensional Extended Chebyshev spaces, and with connection matrices at the
knots. In this large context we establish necessary and sufficient conditions for the existence
of totally positive refinable B-spline bases. These conditions are applied in many important
special cases, e.g., symmetric cardinal geometrically continuous quartic B-spline, parametrically
continuous mixed L-splines. The great variety of the illustrations provided proves the richness
of this class of splines and its interest for design.
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1 Introduction

The usefulness of Extended Chebyshev spaces and Chebyshevian splines ( i.e., splines with all pieces
taken from the same Extended Chebyshev space and with parametric continuity conditions at the
knots) for design is beyond question. It is due to the great variety of shape parameters this class
of spaces provides. The relevance of considering spaces of splines whose pieces are taken from
different Extended Chebyshev spaces no longer needs to be demonstrated either. Such spaces are
expected to enhance the shape possibilities, but to be of interest for design they must ensure the
presence of totally positive refinable B-spline bases. To increase the chances to obtain such bases,
a wise precaution consists in allowing the continuity between consecutive pieces to be controlled by
connection matrices. In short, we then refer to such splines as piecewise Chebyshevian splines.

In the case where the section-spaces are defined by means of systems of weight functions, the
continuity conditions can be expressed via the associated generalised derivatives rather than via the
ordinary derivatives. If so, the total positivity of the corresponding connection matrices is sufficient
to guarantee the presence of a B-spline basis. This was first proved by P.J. Barry in [4], where
he extended similar results previously obtained by several authors for geometrically continuous
polynomial splines [17, 15, 16].

An alternative approach of piecewise Chebyshevian splines, based on blossoming, was developed
with a view to replacing sufficient conditions by necessary and sufficient conditions. The existence
of blossoms was proved to be the exact property that piecewise Chebyshevian spline spaces should
satisfy. This existence is indeed equivalent to the existence of refinable B-spline bases [29, 33].
Moreover, the properties of blossoms permit the development of the classical design algorithms



and guarantee the total positivity of these bases [29, 28, 32, 33]. The avantages of the blossoming
approach concerning the amplitude of the possible shape effects was indisputably demonstrated with
four-dimensional section-spaces in [30]. Unfortunately, in higher dimensions, Barry’s total positivity
assumption on the connection matrices has long remained the only practical way to guarantee
existence of blossoms. Nevertheless, to apply it, a non-trivial preliminary step consists in determining
systems of weight functions associated to the given section-spaces. In [35], a remarkably simple
theoretical description of the complete class of all piecewise Chebyshevian splines which can be used
for design – that is, which possess blossoms –, was eventually achieved. It can be summarised as
follows: on each interval, take any possible system of weight functions, and at each knot, connect
the left and right selected generalised derivatives via identity matrices. This provides us with the
complete class in question. A piecewise Chebyshevian spline space being given, with connection
conditions expressed in terms of the ordinary derivatives, the previous simple recipe naturally results
in a constructive way to answer the question: can we design with this space or not? This is made
possible by the fact that we know how to obtain all possible generalised derivatives which can be
associated with a given Extended Chebyshev space on a closed bounded interval [34]. Being able to
answer the previous question is not only important for geometric design, but it also gives access to
spline interpolation [39], approximation by Schoenberg-type operators [38], multiresolution analysis
[24], along with applications in various domains, e.g., isogeometric analysis.

The purpose of the present article is to derive from the theoretical results mentioned above
practical necessary and sufficient conditions for the most general piecewise Chebyshevian spline
spaces with five-dimensional section-spaces to be good for design (see the exact definition in Section
2). Our main motivation is the fact that dimension five permits many more interesting shapes
than dimension four (see, for instance [9]). The conditions in question are established in Section
4, Theorem 4.1, which is our main result. Already briefly mentioned above, the crucial results on
which Theorem 4.1 relies are reminded in a more precise way in Section 2. They are completed in
Section 3 by technical preliminaries on a recursive construction of Bernstein-type bases in connection
with generalised differentiation. Practical aspects are addressed in Section 5, e.g., how to guarantee
symmetry preservation. In the remaining sections, we examine several interesting situations to
illustrate Theorem 4.1. In practice we have to drastically reduce the number of shape parameters
on which the spline space depends (coming from the section-spaces and/or from the connection
matrices) and Theorem 4.1 enables us to find the exact region where to choose the parameters. We
successively consider: the symmetric cardinal case in Section 6, with special emphasis on symmetric
(geometrically continuous) cardinal quartic B-splines; parametrically continuous mixed L-splines in
Section 7, the effect of locally introducing connection matrices of certain kinds in Section 8, and
finally piecewise Müntz spaces in Section 9. Concluding comments are presented in Section 10.

2 Background

This section aims at recalling the crucial results which the present work relies on. Our overview will
be as brief as possible. For further acquaintance with Extended Chebyshev spaces, see, for instance,
[45, 43, 31, 32, 28, 34], with Chebyshevian splines, see [45, 43, 5, 8], with piecewise Chebyshevian
splines, see [4, 29, 28, 40, 41, 33, 35].

2.1 Extended Chebyshev spaces

We start with a concise presentation of Extended Chebyshev spaces and two main associated tools:
bases of the Bernstein-type and generalised derivatives.
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2.1.1 Extended Chebyshev spaces, Bernstein bases, and blossoms

Let I be a real interval with a non-empty interior and let E ⊂ Cn(I) be an (n + 1)-dimensional
linear space. Then, E is a W-space on I if the Wronskian of any basis of E does not vanish on I. It
is an Extented Chebyshev space (for short, EC-space) on I if any non-zero function F ∈ E vanishes
at most n times in I, multiplicities included up to (n+1). An EC-space on I is a W-space on I, the
converse is not true.

As classical examples, all null spaces of linear differential operators of order (n+1) with constant
coefficients of which the characteristic polynomials have only real roots are (n+1)-dimensional EC-
space on I = IR. It is well known that when the characteristic polynomial has at least one non-real
root, then the null space – which is a W-space on IR – is not an EC-space on the whole of IR, but
only on sufficiently small intervals (at least on any interval of length less than π/a, where a denotes
the greatest imaginary part of all non-real roots of the characteristic polynomial).

Blossoms and Bernstein type bases are intrinsically connected with EC-spaces. These links,
essential for geometric design, are recalled below.

Theorem 2.1. [28], [31] Given any (n+1)-dimensional space E ⊂ Cn(I), supposed to be a W-space
on I and to contain constants, the following properties are equivalent:

(i) blossoms exist in E;

(ii) E possesses a Bernstein basis relative to any (c, d) ∈ I2, c < d;

(iii) the space DE := {DF := F ′ | F ∈ E} is an (n-dimensional) EC-space on I;

(iv) the space DE possesses a Bernstein-like basis relative to any (c, d) ∈ I2, c < d;

Furthermore, if (i) is satisfied, then it is possible to develop all the classical geometric design algo-
rithms in E, and the Bernstein basis relative to any (c, d) is the optimal normalised totally positive
basis in the restriction of E to [c, d].

Let us now briefly explain the various tools involved in Theorem 2.1. Given any c, d ∈ I, c < d,
we say that a sequence (V0, . . . , Vn) of functions in Cn(I) is a Bernstein-like basis relative to (c, d)
if, for each k = 0, . . . , n, Vk vanishes exactly k times at c, and exactly (n − k) times at d, and is
positive on ]c, d[. Such a Bernstein-like basis is said to be a Bernstein basis relative to (c, d) if it is
normalised, i.e., if it satisfies

∑n
i=0 Vi = 1I, where 1I denotes the constant function 1I(x) := 1 for all

x ∈ I.
When they exist, blossoms are geometrical objects defined by means of intersections of osculating

flats. For the exact definition, see [43], [31], [32]. When E possesses blossoms, each function F ∈ E

is associated with a function f : In → IR (its blossom) satisfying three fundamental properties: it
is symmetric on In, it gives F by restriction to the diagonal of In, and it is pseudoaffine in each
variable, [31], [32], which extends the classical affinity in each variable of polynomial blossoms [?].
The latter three properties permit the development of all the classical geometric design algorithms,
in particular of de Casteljau-type evaluation algorithms. The fact that these algorithms are corner
cutting on the concerned intervals guarantees the total positivity of the corresponding Bernstein
bases on these intervals (concerning total positivity and shape preservation, see [28], and also [18],
[?]). This brief reminder highly justifies the following terminology:

Definition 2.2. Given a W-space E on I, assumed to contain constants, we say that E is good for
design when blossoms exist in E.

As a consequence of Theorem 2.1, a W-space on I which is good for design is an EC-space on I.
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Remark 2.3. Suppose that E is good for design. One key point in the proof of Theorem 2.1 is the
fundamental link between Bernstein bases in E and Bernstein-like bases in DE [31]. We describe
it below, for it will be crucial in the reminder of the present work. Given any a, b ∈ I, a < b, let
(B0, . . . , Bn) be the Bernstein basis relative to (a, b) in the EC-space. Consider the functions

B⋆i :=

n∑

k=i

Bi = 1I−

i−1∑

k=0

Bi, i = 0, . . . , n, (1)

so that, in particular,

B⋆0 = 1I, B⋆n = Bn, Bi = B⋆i −B
⋆
i+1 for i = 0, . . . , n, (2)

with the convention that B⋆n+1 = 0. It is easily seen that the sequence (V0, . . . , Vn−1) defined by

Vi := DB⋆i+1 =

n∑

k=i+1

DBk = −

i∑

k=0

DBk, i = 0, . . . , n− 1, (3)

is a Bernstein-like basis relative to (a, b) in the space DE. Moreover, expansions in that basis can
easily be derived from expansions in the Bernstein basis. Indeed, given any real numbers α0, . . . , αn

U :=

n∑

i=0

αiBi =⇒ DU :=

n−1∑

i=0

(αi+1 − αi)Vi.

2.1.2 EC-spaces and generalised derivatives

A sequence (w0, . . . , wn) is said to be a system of weight functions on I if, for i = 0, . . . , n, the
function wi is positive and Cn−i on the interval I. With such a system it is classical to associate a
sequence L0, . . . , Ln of linear differential operators on Cn(I) obtained by alternating division by a
weight function and ordinary differentiation as follows:

L0F :=
F

w0
, LiF :=

DLi−1F

wi
, i = 1, . . . , n. (4)

For each i 6 n, the operator Li is of order i. These operators L0, . . . , Ln are often referred to
as the generalised derivatives associated with the system (w0, . . . , wn). The space E composed
of all functions F ∈ Cn(I) for which the last generalised derivative LnF is constant on I is an
(n + 1)-dimensional EC-space on I. This well-known fact is due to the class of all EC-spaces
on a given interval being closed under integration and multiplication by sufficiently differentiable
non-vanishing functions. The (n + 1)-dimensional EC-space E in question is called the EC-space
associated with the system (w0, . . . , wn). We denote it as E = EC(w0, . . . , wn). Take I = IR, and
wi = 1I for i = 0, . . . , n. Then, the associated generalised derivatives L0, . . . , Ln are simply the
ordinary derivatives D0 = Id, D,D2, . . . , Dn, and the space EC(w0, . . . , wn) is thus the polynomial
space Pn.

Observe that, without any requirement on the interval I, it is not at all guaranteed that a given
(n+ 1)-dimensional EC-space on I can be associated with a system of weight functions on I.

Theorem 2.4. [43], [31] Suppose that the interval I is closed and bounded. Then, if E is an
(n+ 1)-dimensional EC-space on I, there exist systems (w0, . . . , wn) of weight functions on I such
that E = EC(w0, . . . , wn).

As a consequence of Definition 2.2 and of Theorems 2.4 and 2.1, we can state:
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Corollary 2.5. Suppose that the interval I is closed and bounded. Then, an (n+1)-dimensional
W-space E on I is good for design if and only if there exist systems (w1, . . . , wn) of weight functions
on I such that E = EC(1I, w1, . . . , wn).

The construction of all systems of weight functions associated with a given EC-space on a closed
bounded interval was achieved in [34]. They are obtained by iterating the theorem below, based on
Theorem 2.1, and on the properties of blossoms. This is one of the key results on which the present
work relies.

Theorem 2.6. [34] Let E be an (n+1)-dimensional EC-space on a given closed bounded interval

[a, b], a < b. Then, given any w0 ∈ E, the following properties are equivalent

(i) all coordinates of w0 in a given Bernstein-like basis relative to (a, b) are positive;

(ii) w0 is positive on [a, b] and, setting L0V := V/w0 for all functions V defined on I, the W-space
L0E is good for design ( i.e., DL0E is an EC-space on I).

Remark 2.7. Theorem 2.6 describes the transformation of any EC-space E on [a, b], a < b, into an EC-
space good for design on [a, b] of the same dimension, out of division by a convenient positive function.
We recall here how this transformation operates on bases. Let (V0, . . . , Vn) be any Bernstein-like
basis relative to (a, b) in E. Let w0 ∈ E be defined by w0 :=

∑
i=0 αi Vi, where α0, . . . , αn. are

positive. Division by w0 yields

1I =

n∑

i=0

Bi, where Bi :=
αi Vi
w0

for i = 0, . . . , n.

Clearly, the functions B0, . . . , Bn form the Bernstein basis relative to (a, b) in the space L0E.

Remark 2.8. Given any non-trivial real interval J , let L0, . . . , Ln be the generalised derivatives on
Cn(J) associated with a given system (w0, . . . , wn) of weight functions on J . The recursive definition
(4) yields a lower triangular matrix functional matrix Γp(w0, . . . , wn; .) defined on the interval J such
that

(
F ′(x), . . . , F (n)(x)

)T
= Γn(w0, . . . , wn;x)

(
L0F (x), . . . , LnF (x)

)T
, 1 6 p 6 n, x ∈ J. (5)

The formal expression of this matrix is independent of J , and we will therefore keep a standard
notation on all intervals. For details, see [37]. For instance, the diagonal of Γn(w0, . . . , wn; .) is

equal to (w0, w0w1, . . . ,
∏n
i=0 wi), while its first column is

(
w0, w0

′, . . . , w0
(n)
)T

.

2.2 Piecewise Chebyshevian splines

Throughout the article we shall consider a fixed bi-infinite sequence of knots tk, k ∈ ZZ, with
tk < tk+1 for all k. Each tk is allocated a multiplicity mk, with

0 6 mk 6 n for all k ∈ ZZ,
∑

i60

mi =
∑

i>0

mi = +∞. (6)

The extended knot-vector K :=
(
tk

[mk]
)
k∈ZZ

formed by the knots repeated with their multiplicities
can then be written as a bi-infinite sequence

K =
(
ξℓ
)
ℓ∈ZZ

, with ξℓ 6 ξℓ+1 and ξℓ < ξℓ+n for all ℓ ∈ ZZ. (7)

To define a spline space we additionally consider:
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– a bi-infinite sequence of section spaces Ek, k ∈ ZZ: each Ek is an (n+1)-dimensional EC-space good
for design on [tk, tk+1] ( i.e., it contains constants and the n-dimensional space DEk is an EC-space
on [tk, tk+1]);

– a bi-infinite sequence of connection matrices Mk, k ∈ ZZ: each Mk is a lower triangular matrix of
order (n−mk) with positive diagonal entries.

A piecewise Chebyshevian spline based on these data is a continuous function S :] infk tk, supk tk[→ IR
meeting the following requirements:

1- for each k ∈ ZZ, there exists a function Fk ∈ Ek which coincides with S on the interval [tk, tk+1];

2- S satisfies the connection conditions:

(
S′(t+k ), . . . , S

(n−mk)(tk
+)
)T

=Mk

(
S′(t−k ) . . . , S

(n−mk)(tk
−)
)T
, k ∈ ZZ. (8)

Subsequently we denote by S the set all such splines. This space contains constants. Moreover,
splines in S are geometrically continuous in the sense of continuity of the left/right Frenet frames
of order three and of the first two left/right curvatures at each knot, which is usually referred to as
F 3 continuity. A short spline version of Theorem 2.1 can be stated as follows. A more complete one
can be found in [35].

Theorem 2.9. [29], [33] For the piecewise Chebyshevian spline space S defined above, the following
three properties are equivalent:

(i) blossoms exist in S;

(ii) S possesses a B-spline basis, and so does any spline space obtained from S by knot insertion;

(iii) the space DS possesses B-spline-like bases, and so does any spline space obtained from DS by
knot insertion.

Furthermore, if (i) is satisfied, then it is possible to develop all the classical geometric design algo-
rithms for splines in S, and its B-spline basis is totally positive.

When blossoms exist in S, they are as earlier defined in a geometrical way by means of inter-
sections of osculating flats, and they satisfy the same three fundamental properties. However, the
major difference is that, in the spline framework, the natural domain of definition of blossoms is a
restricted set of n-tuples An(K) ⊂] infk tk, supk tk[

n, said to be admissible with respect to the knot-
vector K. An n-tuple (x1, . . . , xn) ∈] infk tk, supk tk[

n is admissible if, for each k ∈ ZZ such that
min(x1, . . . , xn) < tk < max(x1, . . . , xn), the knot tk appears at least mk times in the sequence
(x1, . . . , xn).

A sequence Nℓ ∈ S, ℓ ∈ ZZ, is a B-spline basis if it meets the usual requirements below:

– support property: for each ℓ ∈ ZZ, Nℓ has support [ξℓ, ξℓ+n+1];

– positivity property: for each ℓ ∈ ZZ, Nℓ is positive on ]ξℓ, ξℓ+n+1[;

– normalisation property:
∑

ℓ∈ZZNℓ(x) = 1 for all x ∈] infk tk, supk tk[;

– endpoint property: for each ℓ ∈ ZZ, Nℓ vanishes exactly (n−s+1) times at ξℓ and exactly (n−s′+1)
at ξℓ+n+1, where s := ♯{j > ℓ | ξj = ξℓ} and s

′ := ♯{j 6 ℓ+ n+ 1 | ξj = ξℓ+n+1}.

Splines in the space DS may fail to be continuous at some knots. However, a B-spline-like basis in
DS is defined in a similar way simply replacing n by n− 1 and omitting the normalisation property.
Theorem 2.9 justifies the following definition.

Definition 2.10. The piecewise Chebyshevian spline space S is said to be good for design when
blossoms exist in it.
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For each k, select any system (wk1 , . . . , w
k
n) of weight functions on [tk, tk+1] so that DEk =

EC(wk1 , . . . , w
k
n). Let Lk0 , L

k
1 , . . . , L

k
n denote the generalised derivatives on Cn([tk, tk+1]) associated

with the system (1Ik, w
k
1 , . . . , w

k
n) via (4). Then, the connection conditions (8) can be expressed by

means of these generalised derivatives as follows:

(
Lk1S(t

+
k ), . . . , L

k
n−mk

S(tk
+)
)T

=Mk

(
Lk−1
1 S(t−k ), . . . , L

k−1
n−mk

S(tk
+)
)T
, k ∈ ZZ, (9)

where, due to (5), the matrix Mk (lower triangular matrix of order (n−mk) with positive diagonal
entries), is given by:

Mk := Γn−mk

(
wk1 , . . . , w

k
n−mk

; t+k
)−1

Mk Γn−mk

(
wk−1

1 , . . . , wk−1
n−mk

; t−k
)
. (10)

We conclude this section with the second key result on which the present work relies. Obtained
by iterating the spline version of Theorem 2.6, it provides us with a beautiful and simple theoretical
characterisation of existence of blossoms.

Theorem 2.11. [35] The following two statements are equivalent:

(i) the PW-spline space S is good for design;

(ii) among all bi-infinite sequences (wk1 , . . . , w
k
n), k ∈ ZZ, — where, for each k, (wk1 , . . . , w

k
n) is a

system of weight functions on [tk, tk+1] ensuring that DEk = EC(wk1 , . . . , w
k
n),— one can find

one such that, for each k ∈ ZZ, the matrix Rk involved in the connection conditions (9) is the
identity matrix of order (n−mk).

Remark 2.12. According to (10), condition (ii) in Theorem 2.11 is equivalent to the existence of a bi-
infinite sequence of systems of weight functions (wk1 , . . . , w

k
n), k ∈ ZZ, so that DEk = EC(wk1 , . . . , w

k
n)

and
Γn−mk

(
wk1 , . . . , w

k
n−mk

; t+k
)
=Mk Γn−mk

(
wk−1

1 , . . . , wk−1
n−mk

; t−k
)
, k ∈ ZZ. (11)

3 Technical preliminaries

It the present section we develop technical results necessary to establish our main result in next
section. They concern the search for systems of weight functions associated with a given EC-space
(here of dimension four) as iterated application of Theorem 2.6.

Throughout the section, the interval [a, b], a < b, is given and E ⊂ C4([a, b]) is a five-dimensional
EC-space which is good for design on [a, b]. In other words E contains constants, and the space DE

is a (four-dimensional) EC-space on [a, b].
Let us start with a system (w1, w2, w3, w4) of weight functions on [a, b] such that

E = EC(1I, w1, w2, w3, w4), i.e., DE = (w1, w2, w3, w4).

Let L0, . . . , L4 denote the generalised derivatives associated with (1I, w1, w2, w3, w4). Being obtained
by iteration of Theorem 2.6, the system (w1, w2, w3, w4) is completely specified by a total amount of
ten positive coefficients, namely the positive coordinates of the four functions w1, w2, w3, w4 in given
Bernstein-like bases successively of DE, of DL1E, of DL2E, and finally of DL3E. As explained in
Remarks 2.3 and 2.7, all such bases can be deduced from one selected Bernstein-like basis of the
space DE. The arguments we are developing below are valid in any dimension. However, of course,
the greater the dimension is, the more difficult the computations are.

Here, we are actually interested only in (w1, w2, w3), and more precisely in the fact that, according
to (5),

(F ′(x), F ′′(x), F ′′′(x))
T
= Γ(w1, w2, w3;x) (L1F (x), L2F (x), L3F (x))

T
, x ∈ [a, b],
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for all F ∈ E, with

Γ(w1, w2, w3; .) =



w1 0 0
w1

′ w1w2 0
w1

′′ 2w1
′w2 + w1w2

′ w1w2w3.


 .

We will give more details on the construction of (w1, w2, w3), so as to achieve an explicit expression
of Γ(w1, w2, w3; a) and Γ(w1, w2, w3; b) in terms of the positive coefficients mentioned above.

Since DE is an EC-space on [a, b], we can define four functions Vi, i = 0, . . . , 3, as the unique
solutions in DE of the following four Hermite interpolation problems:

V0(a) = 1, V0(b) = V0
′(b) = V0

′′(b) = 0,
V1(a) = 0, V1

′(a) = 1, V1(b) = V1
′(b) = 0,

V2(a) = V2
′(a) = 0, V2(b) = 0, V2

′(b) = −1,
V3(a) = V3

′(a) = V3
′′(a) = 0, V3(a) = 1.

(12)

Clearly, (V0, V1, V2, V3) is a Bernstein-like basis of DE relative to (a, b). From now on we will omit
“relative to (a, b)” since we will only consider Bernstein and Bernstein-like bases relative to (a, b).

Applying Theorem 2.6, we know that the positive function w1 can be expanded in the Bernstein-
like basis (V0, V1, V2, V3) as

w1 =

3∑

i=0

αiVi, with positive α0, α1, α2, α3. (13)

According to Theorem 2.6, the four-dimensional EC-space L1E is good for design on [a, b] and from
Remark 2.7, its Bernstein basis (B0, B1, B2, B3) is obtained as follows

Bi :=
αiVi
w1

for i = 0, . . . , 3. (14)

The three-dimensional spaceDL1E is thus an EC-space on [a, b]. As a Bernstein-like basis (V 0, V 1, V 2)
of DL1E, we can take (see Remark 2.3)

V i := D




3∑

j=i+1

Bj


 = −D




i∑

j=0

Bj


 , i = 0, 1, 2. (15)

Applying again Theorem 2.6, the positive function w2 ∈ DL1E can be expanded as

w2 =

2∑

i=0

βiV i, with positive β0, β1, β2. (16)

Remark 2.7 shows that the sequence (B0, B1, B2) defined by

Bi :=
βiV i
w2

for i = 0, . . . , 2. (17)

is the Bernstein basis of the three-dimensional EC-space L2E which is good for design on [a, b]. The
last step we need to describe is as follows:

w3 =

1∑

i=0

γiV i, with positive γ0, γ1, (18)
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where (V 0, V 1) denotes the following Bernstein-like basis of the two-dimensional spaceDL2E, known
to be an EC-space on [a, b]

V 0 := DB1 +DB2 = −DB0, V 1 := DB2 = −DB0 −DB1. (19)

Via (13), (16), (18), the matricial function Γ(w1, w2, w3; .) thus depends on the nine positive coeffi-
cients α0, α1, α2, α3, β0, β1, β2, γ0, γ1. Let us have a look at what happens at the endpoints of the
interval [a, b]. With this aim in mind, we must introduce some notations concerning the derivatives
of higher order of the Bernstein-like basis (12). To be consistent with the next subsection, below
the upper signs +,− indicate that we are dealing with a = a+ and b = b−, respectively.

A+ :=−V0
′(a), B+ := V0

′′(a), A− := V3
′(b), B− := V3

′′(b),
D+ := V1

′′(a), C− := V1
′′(b), C+ := V2

′′(a), D− := V2
′′(b).

(20)

Remark 3.1. Due to (12), the positivity of the two functions V1, V2 on ]a, b[ ensures that

C+ > 0, C− > 0. (21)

All other coefficients introduced in (20) are a priori of any non-strict sign.

Remark 3.2. Assume that the space DE is closed under reflection through (a+ b)/2. Then,

V0(x) = V3(a+ b − x), V1(x) = V2(a+ b− x), for all x ∈ [a, b].

This yields
A+ = A−, B+ = B−, C+ = C−,

which justifies the choice for the notations introduced in 20.

On account of how the Bernstein-like basis (V0, . . . , V3) is defined in (12), and of the notations
introduced in (20), we have

w1(a) = α0V0(a) = α0,
w1

′(a) = α0V0
′(a) + α1V1

′(a) = −A+α0 + α1,
w1

′′(a) = α0V0
′′(a) + α1V1

′′(a) + α2V2
′′(a) = B+α0 +D+α1 + C+α2,

(22)

and
w1(b) = α3V3(b) = α3,
w1

′(b) = α2V2
′(b) + α3V3

′(b) = −α2 + A−α3

w1
′′(b) = α1V1

′′(b) + α2V2
′′(b) + α3V3

′′(b) = C−α1 +D−α2 +B−α3

(23)

The values at a, b of the function w2 and of its first derivative similarly involve those of the Bernstein-
like basis (V 0, V 1, V 2) which can themselves be calculated from those of (V0, . . . , V3) via (15) and
(22), (23). This gives

w2(a) = β0V 0(a) = β0
α1

α0
, w2(b) = β2V 2(b) = β2

α2

α3

w2
′(a) = β0V 0

′
(a) + β1V 1

′
(a) = −β0

α1

α0

[
2
α1

α0
− C+α2

α1
− (2A+ +D+)

]
+ β1C

+α2

α0
,

w2
′(b) = β2V 2

′
(b) + β3V 3

′
(b) = β2

α2

α3

[
2
α2

α3
− C−α1

α2
− (2A− +D−)

]
− β1C

−α1

α3

(24)

Finally, from (18) and (19) we can also derive that

w3(a) = γ0
β1
β0

α2

α1
C+, w3(b) = γ1

β1
β2

α1

α2
C− (25)
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Gathering all previous relations leads to:

Γ(w1, w2, w3; a) =



α0 0 0
−A+α0+α1 α1β0 0
B+α0+D

+α1+C
+α2 β0(C

+α2+D
+α1)+C

+β1α2 C+α2β1γ0


 ,

Γ(w1, w2, w3; b) =



α3 0 0
−α2+A

−α3 α2β2 0
C−α1+D

−α2+B
−α3 β2(−C

−α1−D
−α2)−C

−β1α1 C−α1β1γ1


 .

(26)

4 Quartic-like piecewise Chebyshevian splines

In this section, we consider the space S of piecewise Chebyshevian splines described in Subsection
2.3, with now n = 4 and simple knots, the connection matrices being given by

Mk =



ak 0 0
bk ck 0
dk ek fk


 , with ak, ck, fk > 0 for all k ∈ ZZ. (27)

For each k ∈ ZZ, in the EC-spaceDEk we denote by (V k0 , V
k
1 , V

k
2 , V

k
3 ) the Bernstein-like basis defined

by conditions (12), in which (a, b) is replaced by (tk, tk+1). Moreover, for each k ∈ ZZ, we use the
lower index k for all the notations similar to (20) concerning the knot tk, that is,

A−
k := V k−1

3

′
(tk), B−

k := V k−1
3

′′
(tk), A+

k :=−V k0
′
(tk), B+

k := V k0
′′
(tk),

C−
k := V k−1

1

′′
(tk), D−

k := V k−1
2

′′
(tk), D+

k := V k1
′′
(tk), C+

k := V k2
′′
(tk).

(28)

With these notations, we can state our main result in Theorem 4.1 below as a consequence of our
theoretical characterisation given in Theorem 2.11.

Theorem 4.1. The space S of all piecewise Chebyshevian splines with connection matrices (27)
described above is good for design if and only if the connection matrices satisfy the following condi-
tions:

B̃k > 0, D̃k > 0, C+
k C

−
k+1B̃kB̃k+1fk+1 < D̃k(B̃k+1Ẽk+1 − ck+1D̃k+1) for all k ∈ ZZ, (29)

where, for each k ∈ ZZ, the numbers B̃k, Ẽk, D̃k are defined by

B̃k := bk + akA
+
k + ckA

−
k ,

Ẽk := ek − ckD
+
k − fkD

−
k ,

D̃k := dk + ekA
−
k − bkD

+
k + ak(−B

+
k −D

+
k A

+
k )− ckD

+
k A

−
k + fkB

−
k .

(30)

Proof. We know that the spline space S is good for design if and only if it possible to find, for each
k ∈ ZZ, a system (wk1 , w

k
2 , w

k
3 , w

k
4 ) of weight functions on [tk, tk+1], so as to ensure the following two

properties for each k ∈ ZZ:

DEk = EC(wk1 , w
k
2 , w

k
3 , w

k
4 ), (31)

Γ(wk1 , w
k
2 , w

k
3 ; tk) =Mk .Γ(w

k−1
1 , wk−12 , wk−13 ; tk). (32)

The analysis carried out in the previous section shows that the search for a system (wk1 , w
k
2 , w

k
3 , w

k
4 )

of weight functions on [tk, tk+1] ensuring (31) is equivalent to the search for ten positive coefficients
αk0 , α

k
1 , α

k
2 , α

k
3 , β

k
0 , β

k
1 , β

k
2 , γ

k
0 , γ

k
1 , δ

k
0 , starting from the Bernstein basis (V k0 , V

k
1 , V

k
2 , V

k
3 ) of DEk rela-

tive to (tk, tk+1). For any given k, using (26), relation (32) can be regarded as a system in the nine
unknowns αk0 , α

k
1 , α

k
2 , α

k
3 , β

k
0 , β

k
1 , β

k
2 , γ

k
0 , γ

k
1 , with the nine numbers concerning the previous interval

as parameters. The proof can thus be split into two parts:
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Part 1: For a given integer k, can we solve “positively” (32)? That is, can we find necessary
and sufficient conditions involving given nine positive parameters αk−1

0 , αk−1
1 , αk−1

2 , αk−1
3 ,

βk−1
0 , βk−1

1 , βk−1
2 , γk−1

0 , γk−1
1 and the six entries of the connection matrix Mk, leading to

positive αk0 , α
k
1 , α

k
2 , α

k
3 , β

k
0 , β

k
1 , β2, γ

k
0 , γ

k
1 via (32)?

Part 2: Can we globally solve positively all systems (32)? That is, can we make all necessary and
sufficient conditions provided by Part 1 globally compatible?

The proof of Theorem 4.1 will be completed after considering these points successively in Propositions
4.2 and 4.3 below.

Let us select any k ∈ ZZ. From (26), one can see that the equality (32) can equivalently be
replaced by the six following equations:

αk0 = akα
k−1
3 , (33)

αk1 −A
+
k α

k
0 = bkα

k−1
3 + ck(A

−
k α

k−1
3 − αk−12 ), (34)

B+
k α

k
0 +D+

k α
k
1 + C+

k α
k
2 = dkα

k−1
3 + ek(A

−
k α

k−1
3 − αk−12 ) + fk(B

−
k α

k−1
3 +D−

k α
k−1
2 + C−

k α
k−1
1 ), (35)

αk1β
k
0 = ckα

k−1
2 βk−12 , (36)

βk0 (C
+
k α

k
2+D

+
k α

k
1)+C

+
k β

k
1α

k
2 = ekα

k−1
2 βk−12 +fk

[
βk−12 (−D−

k α
k−1
2 − C−

k α
k−1
1 )− C−

k β
k−1
1 αk−11

]
. (37)

C+
k α

k
2β

k
1 γ

k
0 = fkC

−
k α

k−1
1 βk−11 γk−11 , (38)

Proposition 4.2 below addresses the “positive resolution” of the system formed by the latter six
equations.

Proposition 4.2. An integer k ∈ ZZ being given, let αk−11 , αk−12 , αk−13 , βk−11 , βk−12 , γk−10 be any given
positive numbers. Then, there exist positive numbers αk0 , α

k
1 , α

k
2 , β

k
0 , β

k
1 , γ

k
0 , such that all six

equalities (33) to (37) hold if and only if the following two properties below are satisfied:

(1) the quantities introduced in (30) fulfill the conditions below

B̃k > 0, D̃k > 0, B̃kẼk − ckD̃k > 0; (39)

(2) the given positive coefficients are chosen so that

αk−1
2 >

C−
k B̃kfkα

k−1
1

B̃kẼk − ckD̃k

, αk−1
3 >

αk−1
2 Ẽk − C

−
k fkα

k−1
1

D̃k

,

βk−1
2 >

C−
k fkα

k−1
1 βk−1

1

[
B̃kα

k−1
3 − ckα

k−1
2

]

αk−1
3

[
αk−1
2 (B̃kẼk − ckD̃k)− C

−
k B̃kfkα

k−1
1

] .
(40)

Moreover, when (39) and (40) hold, the positive numbers αk0 , α
k
1 , α

k
2 , β

k
0 , β

k
1 , γ

k
0 are unique.

Proof. The various arguments of the proof will constantly involve not only the positivity of the six
given numbers αk−11 , . . . , γk−10 , but also the positivity of the diagonal entries ak, ck, fk (see (27)) and
of C−

k , C
+
k (see (20) and (21)). The reader should keep this in mind, for we will omit mentioning it

at each step. Besides, αk0 , α
k
1 , α

k
2 are uniquely determined by (33), (34), (35), successively. In case

αk1 , α
k
2 are both positive, then βk0 and βk1 are uniquely determined by (36) and (37), respectively,

and βk0 itself is positive. Finally, if βk1 too is positive, then γk0 is uniquely determined by (38) and it
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is positive. Whence the claimed uniqueness of a possible positive solution, along with the fact that
we only have to care about the positivity of αk1 , α

k
2 , and β

k
1 .

Observe that, on account of (33) and (36), the three equalities (34), (35), and (37) can be replaced
by

αk1 = αk−13 B̃k − ckα
k−1
2 , (41)

C+
k α

k
2 = αk−13 D̃k − α

k−1
2 Ẽk + C−

k fkα
k−1
1 . (42)

C+
k α

k
2β

k
1 = βk−12 (αk−12 Ẽk − C

−
k fkα

k−1
1 )− C−

k fkα
k−1
1 βk−11 − C+

k α
k
2β

k
0 . (43)

• Let us first assume that the numbers αk1 , α
k
2 and βk1 generated by (33)–(37) are positive. From

(41) we can then successively derive that

B̃k > 0, αk−13 >
ckα

k−1
2

B̃k
.

Similarly, (43) implies

βk−12 (αk−12 Ẽk − C
−
k fkα

k−1
1 ) = C+

k α
k
2β

k
1 + C−

k fkα
k−1
1 βk−11 + C+

k α
k
2β

k
0 ,

from which we can conclude that

αk−12 Ẽk − C
−
k fkα

k−1
1 > 0.

On this account, (42) successively proves that

D̃k > 0, αk−13 >
αk−12 Ẽk − C

−
k fkα

k−1
1

D̃k

.

Now, taking account of (36), (41), and (42), multiplication of both sides of the equality (43) by
the positive number αk1 transforms it as follows:

C+
k α

k
1α

k
2β

k
1 = αk−12 βk−12 (αk1Ẽk − C

+
k ckα

k
2)− C

−
k fkα

k−1
1 αk1(β

k−1
1 + βk−12 ),

= αk−13 βk−12

[
αk−12 (B̃kẼk − ckD̃k)− C

−
k B̃kfkα

k−1
1

]
− C−

k fkα
k−1
1 βk−11

[
B̃kα

k−1
3 − ckα

k−1
2

]
.

(44)

From (44) and from the positivity of B̃kα
k−1
3 − ckα

k−1
2 (= αk1), the following two inequalities readily

follow

B̃kẼk − ckD̃k > 0, αk−1
2 >

C−
k B̃kfkα

k−1
1

B̃kẼk − ckD̃k

. (45)

Finally, (44) and (45) clearly prove the second line of (40).

• Conversely, we now assume that conditions (39) and (40) are fulfilled. From D̃k being positive

and from the second inequality in (40) we can derive that αk2 > 0. From the quantity B̃kẼk − ckD̃k

being positive, the first inequality in (40) can be reformulated as

B̃k

(
αk−1
2 Ẽk − C

−
k fkα

k−1
1

)
> αk−1

2 ckD̃k.

Due to the positivity of B̃k and D̃k, this yields

αk−1
2 ck

B̃k
<
αk−1
2 Ẽk − C

−
k fkα

k−1
1

D̃k

.
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From the second inequality in (40) and (41) we can conclude that αk1 > 0. We can thus replace (43)
by (44) in the system (33)–(37). Now, taking account of the first and last inequalities in (40), (44)
proves the positivity of the product αk1α

k
2β

k
1 , hence we can say that βk1 > 0.

Proposition 4.2 corresponds to Part 1 of the proof of Theorem 4.1. We are now concerned with
Part 2. As a matter of fact, solving this part consists in making compatible all requirements (40)
obtained when k ranges over ZZ. It is essential to be aware that a requirement on either αk−1

3 or
βk−1
2 is not a problem because none of these two coefficients is involved in the connection conditions

at any knot tj , j 6 k − 1. By contrast, αk−1
2 is indeed concerned with the connection conditions

at the knot tk−1. Accordingly, only ensuring the first inequality in (40) may be problematic. This
justifies the following proposition.

Proposition 4.3. The data being the same as in Proposition 4.2, we assume that conditions (39)
and (40) hold. Moreover, µ is a given positive number. Then the positive numbers αk1 , α

k
2 produced

by the equations (33)–(37) satisfy
αk2 > µαk1 , (46)

if and only if we have both

µC+
k B̃k < D̃k and αk−13 > K :=

αk−12 (Ẽk − µckC
+
k )− C

−
k α

k−1
1 fk

D̃k − µC
+
k B̃k

. (47)

Moreover, this number K satisfies

K >
αk−1
2 Ẽk − C

−
k fkα

k−1
1

D̃k

. (48)

Proof. Let us write condition (46) as C+
k α

k
2 > C+

k µα
k
1 . On account of (41) and (42) it holds if and

only if
αk−13 (D̃k − µC

+
k B̃k) > αk−12 (Ẽk − µckC

+
k )− C

−
k α

k−1
1 fk. (49)

Accordingly, in order to prove that the two conditions contained in (47) are necessary and sufficient

for (46) to be satisfied, we simply have to prove that (49) implies that the quantity D̃k − µC
+
k B̃k is

positive. Now, after multiplication of both sides of (49) by the positive number B̃k and reordering
the various terms, we obtain the equivalent inequality

(
D̃k − µC

+
k B̃k

)(
αk−13 B̃k − α

k−1
2 ck

)
> αk−12

(
ẼkB̃k − ckD̃k

)
− C−

k fkα
k−1
1 B̃k. (50)

Due to (41), the left-hand side is equal to αk1
(
D̃k − µC

+
k B̃k

)
. The right-hand side is positive due to

(39) and (40). Given that αk1 > 0, we can thus say that D̃k − µC
+
k B̃k > 0.

To complete the proof of Proposition 4.3, we simply mention that (48) can be deduced from the
right-hand side of (50) being positive. This is left to the reader.

End of the proof of Theorem 4.1: From the previous two propositions we can draw the following
two conclusions:

1- For a given integer k, there is no problem to solve positively the system (33)–(37) with the
additional demand (46). We simply have to

• add the requirement µC+
k B̃k < D̃k to all conditions (39) concerning the matrix Mk;

• replace the requirement on αk−13 obtained in (40) by the stronger one αk−13 > L, where L is defined
in (47).
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2- We recall that αk−13 is not concerned by the connection conditions at any knot preceding tk.
Accordingly, via Proposition 4.2, globally solving positively all systems (33)–(37) , k ∈ ZZ, consists
in solving separately each system (33)–(37) corresponding to a given k ∈ ZZ, with the additional
requirement that

αk2 > µkα
k
1 , with µk :=

C−
k+1B̃k+1fk+1

B̃k+1Ẽk+1 − ck+1D̃k+1

.

Our previous comments show that this global positive resolution is possible if and only if all condi-
tions (39) are satisfied for all k ∈ ZZ, along with the additional ones

µkC
+
k B̃k < D̃k, k ∈ ZZ.

These additional inequalities provide us with the rightmost condition claimed in (29) of Theorem
4.1. Apart from this, if we compare (39) with (29) of Theorem 4.1, we can observe that the positivity

of all quantities B̃kẼk−ckD̃k is missing in (29). Indeed, the positivity of all B̃k’s, and the rightmost

requirement in (29) make the two conditions “D̃k > 0 for all k ∈ ZZ” and “B̃kẼk − ckD̃k > 0 for all
k ∈ ZZ” redundant. We can thus keep only either of them. The proof of Theorem 4.1 is complete.

To conclude this section, let us mention that the necessary and sufficient conditions Theorem 4.1
were already obtained for geometrically continuous quartic splines in [36]. Nevertheless, the question
of exploiting them for obtaining interesting shapes was not at all considered there.

5 Practical issues

To address some practical issues in the spline space S it will be useful to introduce the following
additional quantities:

∆̃k := B̃kẼk − ckD̃k, Γ̃k := D̃k∆̃k+1 − C
+
k C

−
k+1B̃kB̃k+1fk+1, k ∈ ZZ. (51)

5.1 The B-spline basis

Throughout the present subsection we assume that the spline space S is good for design. According
to (29), this is equivalent to assuming that all quantities B̃k, D̃k, Γ̃k, k ∈ ZZ, are positive. Moreover

it implies that Ẽk, ∆̃k are positive too for all k ∈ ZZ.

Proposition 5.1. Assume that the spline space S is good for design. The B-spline basis Nj, j ∈ ZZ,
is given by

Nj(x) =

∫ x
tj
Qj(t)dt

∫ tj+4

tj
Qj(t)dt

−

∫ x
tj+1

Qj+1(t)dt
∫ tj+5

tj+1
Qj+1(t)dt

, j ∈ ZZ, (52)

where, Qj, j ∈ ZZ, is any B-spline-like basis in the space DS. For instance, for each j ∈ ZZ, the
B-spline-like Qj ∈ DS with support [tj , tj+4], can be taken as
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Qj(x) =





C+
j+1Γ̃j+2V

j
3 (x) for x ∈ [tj , t

−
j+1],

aj+1C
+
j+1Γ̃j+2V

j+1
0 (x) + B̃j+1C

+
j+1Γ̃j+2V

j+1
1 (x) + D̃j+1Γ̃j+2V

j+1
2 (x)

+
Γ̃j+1∆̃j+3 + cj+2D̃j+1Γ̃j+2

B̃j+2

V j+1
3 (x) for x ∈ [t+j+1, t

−
j+2],

aj+2
Γ̃j+1∆̃j+3 + cj+2D̃j+1Γ̃j+2

B̃j+2

V j+2
0 (x) + Γ̃j+1∆̃j+3V

j+2
1 (x)

+fj+3B̃j+3C
−
j+3Γ̃j+1V

j+2
2 (x) + cj+3fj+3C

−
j+3Γ̃j+1V

j+2
3 (x) for x ∈ [t+j+2, t

−
j+3],

aj+3cj+3fj+3C
−
j+3Γ̃j+1V

j+3
0 (x) for x ∈ [t+j+3, tj+4].

(53)

Proof. It is well known that the B-spline basis is given by (52) where Qj, j ∈ ZZ, is any B-spline-like
basis in the spline space. It is worthwhile insisting that the presence of connection matrices may
prevent the splines in DS to be continuous at the knots. Therefore, without additional assumptions,
a spline in W ∈ DS can only defined separately on each [t+k , t

−
k+1]. Expand it in the local Bernstein-

like bases (V k0 , V
k
1 , V

k
2 , V

k
3 ) introduced before (28) as

W (x) =

3∑

i=0

αki V
k
i (x), x ∈ [t+k , t

−
k+1], k ∈ ZZ.

The relations between the coefficients α of two consecutive intervals have already been obtained in
(41), (42), and (43). With the notations introduced in (30) and (51) they can be summarised as
follows:



αk0
αk1
αk2


 =




ak 0 0

B̃k −ck 0

D̃k

C+
k

−
Ẽk

C+
k

C−
k

C+
k

fk






αk−1
3

αk−1
2

αk−1
1


 , k ∈ ZZ, (54)

or, equivalently, as:



αk−1
3

αk−1
2

αk−1
1


 =




1

ak
0 0

B̃k
akck

−
1

ck
0

∆̃k

akckfkC
−
k

−
Ẽk

ckfkC
−
k

C+
k

C−
k

1

fk






αk0
αk1
αk2


 , k ∈ ZZ. (55)

Up to multiplication by a positive constant, the B-spline-likeM0 which is zero on any [t+k , t
−
k+1] such

that k /∈ {0, 1, 2, 3} is determined by the following conditions

α0
0 = α0

1 = α0
2 = 0 < α0

3, α3
0 > α3

1 = α3
2 = α3

3 = 0.

Requiring for instance that α3
0 = a3c3f3C

−
3 , by application of (54) with k = 1 and (55) with k = 3,

we obtain

α1
0 = a1α

0
3, α1

1 = B̃1α
0
3, α1

2 =
D̃1

C+
1

α0
3; α2

3 = c3f3C
−
3 , α2

2 = B̃3f3C
−
3 , α2

1 = ∆̃3. (56)
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Comparison between the values of α2
1 and α2

2 in the right part of (56) with those obtained from the
left part of (56) via (54) yields

α0
3 =

C+
1 Γ̃2

Γ̃1

, α1
3 =

∆̃3Γ̃1 + c2D̃1Γ̃2

Γ̃1B̃2

,

which aventually yields (53).

5.2 Symmetry issues

Preserving the shape of the data, that is, the shape of any given control polygon, is a crucial issue
in CAGD. It is therefore quite natural to try to preserve the symmetry of the data, in the sense
that a control polygon presenting symmetry properties should lead to a parametric curve presenting
the same symmetry properties. With this purpose in mind, assume for a while that the curve is not
defined piecewisely. In that case preserving symmetry requires the use of an EC-space possessing
symmetric Bernstein bases. Polynomial spaces are the most classical examples of such spaces, but
more generally we can use kernels of differential operators with constant coefficients properties
and even / odd characteristic polynomials. Clearly not all EC-spaces are of this type. Let us
now consider spline curves. Even if we limit ourselves to symmetric spaces, the useful presence of
connection matrices is likely to destroy symmetry. How can we ensure preservation of the symmetry
of the data is the issue we address in the present section.

Given a real number X0, we denote by ϑ : IR→ IR the reflection through X0, that is

ϑ(x) := 2X0 − x, x ∈ IR .

A linear space E of functions defined on [a, b], a < b, being given, we denote by
←−
E the image of E

through ϑ, that is, the set of all functions

x 7→ F ◦ ϑ−1(x), x ∈ [ϑ(b), ϑ(a)], F ∈ E.

Lemma 5.2. Given t0 < t1 < t2, for i = 0, 1, let Ei be an (n + 1)-dimensional EC-space good

for design on [ti, ti+1]. Denote by
(
t0, t1, t2

)
the sequence

(
ϑ(t2), ϑ(t1), ϑ(t0)

)
, and by E0 :=

←−
E 1,

E1 :=
←−
E 0. Assume that two functions F0 ∈ E0 and F1 ∈ E1 satisfy

(
F1

′(t1), . . . , F1
(p)(t1)

)T
=M

(
F0

′(t1), . . . , F0
(p)(t1)

)T
,

for some integer p 6 n. Then, the functions F 0 := F1 ◦ ϑ, F 1 := F0 ◦ ϑ satisfy

(
F 1

′
(t1), . . . , F 1

(p)
(t1)
)T

=M
(
F 0

′
(t1), . . . , F 0

(p)
(t1)

)T
,

where the entry in the i-th row and j-th column of M is the (j, i) minor of the matrix M .

Proof. It can easily be checked that
M = ∆ M−1∆,

where ∆ denotes the diagonal matrix
(
−1, (−1)2, . . . , (−1)p

)
.

Lemma 5.3. The spline space S is invariant under the reflection ϑ if and only the following three
properties are satisfied

(i) there exists an integer q ∈ ZZ such that one of the two situations below hold

either X0 = tq and tq+k = ϑ(tq−k) for all k ∈ ZZ; (57)

or X0 =
tq + tq+1

2
and tq+k+1 = ϑ(tq−k) for all k ∈ ZZ; (58)
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(ii) for any two integers p, j ∈ ZZ such that tp = ϑ(tj) we have Ep =
←−
E j−1;

(iii) for any integer j ∈ ZZ, the connection matrix Mp at tp = ϑ(tj) is given

Mp =




1

aj
0 0

bj
ajcj

1

cj
0

bjej − cjdj
ajcjfj

ej
cjfj

1

fj



. (59)

Moreover when (i) and (ii) hold, condition (59) is equivalent to the following one:

(iv) for any integer p, j ∈ ZZ such that tp = ϑ(tj)

ap =
1

aj
, cp =

1

cj
, fp =

1

fj
, B̃p =

B̃j
ajcj

, Ẽp =
Ẽj
cjfj

, D̃p =
∆̃j

ajcjfj
. (60)

Proof. With the help of Lemma 5.2, the first part is elementary and is left to the reader. Assuming

that both properties (i) and (ii) hold true, the Bernstein-like basis in Ep =
←−
E j−1 is obtained as

V pi (x) = V j−1
3−i ◦ ϑ

−1(x), x ∈ [tp, tp+1], i = 0, . . . , 3.

This yields

A−
p := A+

j , B−
k := B+

j , A+
p := A−

j , B+
p := B−

j ,

C−
p := C+

j , D−
p := D+

j , C+
p := C−

j , D+
p := D−

j .
(61)

The equivalence between (iii) and (iv) readily follows.

Remark 5.4. Suppose that (i) and (ii) of Lemma 5.3 hold. Then, we also have

∆̃p =
D̃j

ajcjfj
and Γ̃p =

Γ̃j−1

aj−1cj−1fj−1ajcjfj
for any p, j such that tp = ϑ(tj). (62)

Remark 5.5. Let us successively consider each of the two cases (57) and (58).

• Suppose that we are in the situation (57). Then, applying formula (59) with tq = ϑ(tq) yields
aq = cq = fq = 1, dq =

1
2bqeq. The spline space S is good for design if and only if

B̃k, D̃k > 0 for all k 6 q, Γ̃k > 0 for all k 6 q − 1. (63)

• Suppose that we are in the situation (58). Since tq = ϑ(tq+1), in particular the space Eq itself is

invariant under ϑ, that is Eq =
←−
E q. The spline space S is now be good for design if and only all

conditions (63) are satisfied, plus Γ̃q > 0. Given that, with Cq := C+
q = C−

q+1,

Γ̃q =
1

aqcqfq

(
D̃ 2
q − Cq

2B̃ 2
q

)
, (64)

the additional condition Γ̃q > 0 reduces to D̃q − CqB̃q > 0.

From the previous subsection and Lemma 5.3 we can derive:
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Lemma 5.6. Assume the spline space S to be invariant under some reflection ϑ and to be good for
design. Then the B-spline basis is invariant under ϑ, in the sense that, for all j ∈ ZZ,

Nj = N2q−j−5 ◦ ϑ in case (57), Nj = N2q−j−4 ◦ ϑ in case (58).

To conclude this subsection, assume that all connection matrices are the same, that is,

Mk =



α 0 0
β γ 0
δ ε ϕ


 for all k ∈ ZZ. (65)

Then, the following result readily follows from Lemma 5.3.

Lemma 5.7. Assume that the two conditions (i) and (ii) of Lemma 5.3 hold, along with (65). Then,
the spline space S is invariant under the reflection ϑ if and only if

α = γ = ϕ = 1, δ =
βε

2
. (66)

Remark 5.8. Under the assumption (65), that the spline space S is invariant under the reflection ϑ
does not guarantee that it is good for design.

5.3 Splines with prescribed section-spaces

In this subsection, we assume that the sequence of knots T is given, along with the bi-infinite sequence
of section-spaces Ek, k ∈ ZZ, where Ek is an EC-space good for design on [tk, tk+1]. The piecewise
Chebyshevian spline space S depends only on the bi-infinite sequence Mk, k ∈ ZZ, of connection
matrices. A natural question arises: is it always possible to find such a bi-infinite sequence so as to
ensuring that S will be good for design, and how to easily obtain all possibilities?

The answer is positive and we can even build infinitely many such spline spaces good for design.
For the rest of this section we assume that the positive diagonal entries ak, ck, fk, k ∈ ZZ, have been
selected once and for all. In this situation, the only parameters which the spline space S depends
on, are the three bi-infinite sequences of non-diagonal entries bk, dk, ek, k ∈ ZZ, and we have to make
sure that we select them so as to ensure that S will be good for design. For instance, we can proceed
as explained below. Start by selecting any three bi-infinite sequences of positive numbers

D̃k, ∆̃k, Γ̃k, k ∈ ZZ,

with
0 < Γ̃k < D̃k∆̃k+1, k ∈ ZZ. (67)

Given any positive B̃k0 , where k0 ∈ ZZ is any integer, step by step, compute the positive numbers

B̃k, k ∈ ZZ, as follows:

B̃k+1 :=
D̃k∆̃k+1 − Γ̃k

C+
k C

−
k+1fk+1B̃k

, k > k0; B̃k−1 :=
D̃k−1∆̃k − Γ̃k−1

C+
k−1C

−
k fkB̃k

, k 6 k0. (68)

Then, introduce the bi-infinite sequence

Ẽk :=
∆̃k + ckD̃k

B̃k
, k ∈ ZZ. (69)
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Last, define the non-diagonal entries of the connection matrices as follows:

bk := B̃k − akA
+
k − ckA

−
k , ek := Ẽk + ckD

+
k + fkD

−
k ,

dk := D̃k − ekA
−
k +D+

k B̃k + akB
+
k − fkB

−
k , k ∈ ZZ.

(70)

Theorem 4.1 guarantees that the corresponding spline space S will automatically be good for design.
As a matter of fact, the expression (53) of the B-spline-like basis in DS makes it obvious that

the last step (70) is not necessary to obtain all splines in S. It can therefore be interesting to view

the positive numbers D̃k, ∆̃k, Γ̃k, k ∈ ZZ, as alternative parameters defining S. They can even be
used as shape parameters, rather than bk, dk, ek, k ∈ ZZ. This will be illustrated in some the next
sections, depending on the situations and motivations.

If the spline S is assumed to preserve symmetry, then, similarly, from the discussion in the
previous subsection, we can take D̃k, ∆̃k, k 6 q; Γ̃k, k 6 q − 1 or k 6 q, as possible positive shape
parameters.

6 Symmetric cardinal (geometrically continuous) piecewise

Chebyshevian B-splines

Throughout this section we consider regularly spaced simple knots tk = kh, k ∈ ZZ, with h > 0. The
geometrically continuous splines investigated here are the closest to the ordinary cardinal quartic
splines in so far as the B-splines are obtained by translation of a symmetric B-splineN0, with support
[t0, t5].

6.1 The results

In order to be able to modify the knot spacing, we have to start with the null space E = kerL of a
linear differential operator L of order five

L := D5 + γ2D
3 + γ0D, (71)

where γ0, γ2 are any real numbers. The space E contains the constants. In Table 1, we recall the
nine different families in the class C of all such spaces E, depending on the roots of the characteristic
polynomial

p(x) := x4 + γ2x
2 + γ0 (72)

associated with DE = ker(D4 + γ2D
2 + γ0Id), as investigated in view of design in [9].

There exists a number ℓL ∈]0,+∞] such that E is an EC-space good for design on [0, h] ( i.e.,
DE is an EC-space on [0, h]) if and only if h < ℓL. We refer to it as the critical length for design of
the space E. Let us recall that this critical length for design can be expressed with the help of the
unique function τ satisfying

τ (4) + γ2τ
′′ + γ0τ = 0, τ(0) = τ ′(0) = τ ′′(0) = 0, τ ′′′(0) = 1. (73)

We then have [13, 9]
ℓL = min(Zτ , Zη), where η :=W (τ, τ ′). (74)

In (74),W (τ, τ ′) stands for the Wronskian of the two functions τ, τ ′, and Zτ , Zη for the first zeroes of
τ and η on ]0,+∞[, if any. We can then split the class C into two subclasses C1 and C2, corresponding
to ℓL = +∞ and ℓL < +∞. As is well known, the subclass C1 ( i.e., E is an EC-space good for design
on the whole of IR) is characterised by the fact that the characteristic polynomial (72) has only real
roots (cases 1, 2, 6, 7, which we will refer to as the real cases).
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Case p(x) a basis of E
1 (x2 − a2)(x2 − b2), a, b > 0, a 6= b 1, cosh(ax), sinh(ax), cosh(bx), sinh(bx)
2 (x2 − a2)x2, a > 0 1, x, x2, cosh(ax), sinh(ax)
3 (x2 − a2)(x2 + b2), a, b > 0 1, cosh(ax), sinh(ax), cos(bx), sin(bx)
4 x2(x2 + b2), b > 0 1, x, x2, cos(bx), sin(bx)
5 (x2 + a2)(x2 + b2), a, b > 0, a 6= b 1, cos(ax), sin(ax), cos(bx), sin(bx)
6 (x2 − a2)2, a > 0 1, cosh(ax), sinh(ax), x cosh(ax), x sinh(ax)
7 x4 1, x, x2, x3, x4

8 (x2 + b2)2, b > 0 1, cos(bx), sin(bx), x cos(bx), x sin(bx)
9 x4 + 2(b2 − a2)x2 + (a2 + b2)2, a, b > 0 1, cosh(ax) cos(bx), cosh(ax) sin(bx),

sinh(ax) cos(bx), sinh(ax) sin(bx)

Table 1: The class C of all spaces E = kerL

Subsequently we assume that h < ℓL. For each k, the section-space Ek is the restriction of E
to [tk, tk+1] = [kh, (k + 1)h], and it is therefore an EC-space good for design on [tk, tk+1]. For each
k ∈ ZZ, the Bernstein-like basis (V k0 , V

k
1 , V

k
2 , V k3 ) in DEk is obtained by translation of the restrictions

to [t0, t1] = [0, h] of the Bernstein-like basis (V0, V1, V2, V3) relative to (0, h) in DE defined by the
conditions

V3(0) = V3
′(0) = V3

′′(0) = 0, V3(h) = 1,

V2(0) = V2
′(0) = 0, V2(h) = 0, V2

′(h) = −1,

V0 := V3(h− .), V1 := V2(h− .).

We can therefore drop all indices in (28), for

A−
k = A+

k = A := V3
′(h), B−

k = B+
k = B := V3

′′(h),

C−
k = C+

k = C := V2
′′(0), D−

k = D+
k = D := V2

′′(h), k ∈ ZZ.

Let us recall that the quantities A,B,C,D depend on at most three parameters: the length h, and
at most two parameters involved in the space E (see Table 1).

Conditions (i) and (ii) of Lemma 5.3 being satisfied with any integer q and both (57) and (58),
in order to be in the cardinal symmetric situation it is necessary and sufficient to choose connection
matrices of the form (see Lemma 5.7)

Mk :=M :=



1 0 0
β 1 0
βε

2
ε 1


 for all k ∈ ZZ. (75)

Denote by S(L;M ;h) the corresponding space of geometrically continuous L-splines. It depends
on the parameters h, β, ε, and of course of L. Splines in S(L;M ;h) are F 3 in the usual sense of
continuity of the Frenet frames of order three and of the first two curvatures. Due to the cardinal
situation, the quantities B̃k, Ẽk, D̃k, Γ̃k, ∆̃k introduced in (30) and (51) are independent of k.
Subsequently, we can therefore drop the indices. We thus have

B̃ = β + 2A, Ẽ = ε− 2D, (76)

Due to the symmetry of the space E, the entry βε/2 implies that

D̃ = ∆̃ =
B̃Ẽ

2
. (77)
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Accordingly,

Γ̃ = D̃∆̃− C2B̃ =
B̃2

4

(
Ẽ − 2C

)(
Ẽ + 2C

)
. (78)

On account of (77) and of the positivity of C, conditions (29) reduce to

B̃ > 0, Ẽ > 2C. (79)

Due to (76), we can thus state:

Theorem 6.1. Given h < ℓ, the spline space S(L;M ;h) is good for design if and only if the two
conditions below are satisfied

β > −2A, ε > 2(C +D). (80)

Assume that conditions (80) are satisfied. Then, from (53), we can see that, as a (symmetric)
B-spline-like Q0 ∈ DS(L;M ;h), with support [0, 4h], we can take

Q0(x) =





V3(x) for x ∈ [0, h],

V0(x− h) + B̂ V1(x− h) +
1
2 B̂Ê V2(x− h) + Ê V3(x − h) for x ∈ [h, 2h],

Ê V0(x− 2h) + 1
2 B̂Ê V1(x− 2h) + B̂ V2(x− 2h) + V3(x− 2h) for x ∈ [2h, 3h],

V0(x− 3h) for x ∈ [3h, 4h],
(81)

where

B̂ := B̃ > 0, Ê :=
Ẽ

C
> 2.

It should be observed that the two numbers B̂, Ê, depend not only on the matrix M (that is, on the
parameters β, ε), but also of L (that is, on the parameters defining E, see Table 1), and on h. The
B-spline N0 ∈ S(L;M ;h) with support [0, 5h] is then obtained as

N0(x) =

∫ x
0
Q0(t)dt−

∫ x
h
Q0(t− h)dt∫ 4h

0 Q0(t)dt
, x ∈ IR . (82)

With a view to analyzing the shape effects it is convenient to revisit Proposition 52 as follows.

Theorem 6.2. The operator L in (71) being given, let ℓL be the critical length for design of the

space E = kerL. Take any positive number h < ℓL. Then, for any two parameters B̂ > 0 and Ê > 2,
the set composed of all functions S of the form

S(x) :=
∑

j∈ZZ

ajN0(x− jh), x ∈ IR,

where the aj’s are any real numbers, and where N0 is defined by (82) and (81), is the spline space
S(L;M ;h), the matrix M in (65) being obtained with

β := B̂ − 2A, ε := CÊ + 2D. (83)

Moreover the spline space S(L;M ;h) is good for design. Conversely, any spline space S(L;M ;h)
which is good for design is of the form described above.

In other words, the two parameters B̂, Ê can be taken as shape parameters instead of β, ε. For fixed
B̂, Ê, the corresponding entries β, ε of M depend on both L and h.
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Figure 1: The symmetric C2, F 3, quartic B-spline N0 given by (82), (81), and (84), with B̂ = 6 ( i.e.,

β = 0). From left to right Ê = 2.01; 4 (usual quartic B-spline); 10; 100.

Figure 2: C2, F 3 quartic spline curves with B̂ = 6 and, from left to right Ê = 2.01; 4; 10; 100.
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Figure 3: The symmetric C1, F 3, quartic B-spline N0, with B̂ = 0.01. From left to right Ê = 2.01; 4; 10;
100.

Figure 4: C1, F 3 quartic spline curves with B̂ = 0.01 and, from left to right, Ê = 2.01; 4; 10; 100.
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Figure 5: The symmetric C1, F 3, quartic B-spline N0, with Ê = 4, and from left to right B̂ = 0, 01;
6; 10; 100.

Figure 6: C1, F 3 quartic spline curves with Ê = 4 and, from left to right, B̂ = 0, 01; 6; 10; 100.
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Figure 7: The symmetric C1, G3, quartic B-spline N0 given by (??), (??), (84), and (86), obtained with,

from left to right, B̂ = 4.67; 6 (usual quartic B-spline); 10; 100.

Figure 8: C1, G3, quartic spline curves with, from left to right, B̂ = 4.67; 6; 10; 100.
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6.2 Cardinal symmetric geometrically continuous polynomial B-splines

In this subsection we apply Theorem 6.2 in the case where E = P4 is the space of all quartic
polynomials on IR, thus corresponding to γ0 = γ2 = 0 in (71). We put special emphasis on illustrating
this case which is the closest to the classical quartic splines, and which already permits many
interesting shape effects.

Since no parameter is provided by the space P4, the spline space S(D5,M, h) depends on the
only two free parameters β, ε defining the matrix M in (65) and on h. Being interested in spline
design, without loss of generality we can assume that h = 1. Indeed, this does not reduce the class
of parametric spline curves we can create. The B-spline N0 is given by (82) and (81) with

V3(x) = x3, V2(x) = x2 − x3, x ∈ IR, (84)

and, therefore A = 3, C = 2, D = −4. Rather than β, ε, we can say that S depends on the two free
parameters B̂ > 0, Ê > 2, with

B̂ = β + 6 > 0, Ê =
ε+ 8

2
> 2. (85)

Special requirements on the regularity of the curves can easily be translated into requirements on
B̂ > 0, Ê > 2 via (85). For instance C2 splines are obtained for B̂ = 6, while the ordinary C3

quartic splines are obtained for B̂ = 6 and Ê = 4.
The illustrations provided (Figs. 1—8) show only some of the possible shape effects produced by

these two parameters. In Figs. 1 and 2, we take B̂ = 6, and we show the effect of increasing Ê from
2+ to +∞, respectively on the C2 B-spline N0 and one a parametric C2 spline curve with prescribed
control points. For comparison, similar illustrations are presented in Figs. 3 and 4, but now with
B̂ = 0.01. In both cases we observe that increasing the values of Ê pushes the curve towards the
control polygon, however in a different way. For B̂ = 0.01, for Ê → +∞ we somehow obtain “C1

piecewise affine curves”!
In the present context, G3 splines correspond to ε = 3β. Equivalently, due to (85)

splines in S are G3 ⇔ Ê =
3

2
B̂ − 5. (86)

When (86) holds, the spline space depends on the only parameter B̂ which is now required to satisfy

B̂ > 14
3 in order to ensure (80). Corresponding illustrations can be found in Figs. 7 and 8.

6.3 Other cardinal symmetric geometrically continuous B-splines

In this subsection, E = kerL is any of the spaces indicated in Table 1 other than the quartic space
P4. We could of course provide illustrations similar to Figs. 1—8 in each case, the only difference
being that the effects of the two parameters B̂, Ê investigated in the previous subsection would be
combined with those permitted by the parameter(s) on which the space E depends [9]. Instead,
we prefer to more precisely point out the differences between the two subclasses C1 and C2 of the
class C, which respectively correspond to the real cases (Cases 1; 2; 6; 7) for which all roots of the
characteristic polynomial (72) are real) and to the non-real ones (Cases 3; 4; 5; 8; 9).

With this in mind, we need to mention that the special case of parametrically continuous splines
( i.e., the matrix M in (75) is the identity matrix I3) was already addressed in [10], where the
following results was obtained.

Theorem 6.3. The differential operator L in (71) and a positive h being given, with h < ℓL, the
following properties are equivalent:
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(i) the space S(L; I3;h) of all C
3 L-splines is a piecewise Chebyshevian spline space good for design;

(ii) A > 0, and C +D < 0;

(iii) the knot spacing satisfies

τ ′(h) > 0, ψ(h) < 0, where ψ(h) := η′(h) + τ(h). (87)

(iv) the knot spacing satisfies h <
π

µL
, where µL denotes the maximum of the imaginary parts of

all roots of the characteristic polynomial p in (72).

Observe that the equivalence between (i) and (ii) is simply Theorem 6.1 with β = ε = 0. The reader
is referred to [10] for all details, in particular concerning the quantities A,B,C, . . . which can be
expressed in terms of the functions τ and η introduced in (73) and (74). For instance, we have

A =
τ ′(h)

τ(h)
, C +D = −

ψ(h)

η(h)
,

which explains why (ii) can be replaced by (iii).

Remark 6.4. It is important to comment on Theorem 6.3 with a view to compare the real and the
non-real cases. Given a space E = kerL in the class C, and given any positive h, from (74), we know
that the assumption h < ℓL can be replaced by

h < min(Zτ , Zη). (88)

The three requirements h < ℓL, A > 0, C +D < 0 together can thus be condensed into the single
one below:

h < min(Zτ ′ , Zψ). (89)

From Theorem 6.1 (or Theorem 6.2) we know that condition (88) is the necessary and sufficient
condition for the existence of infinitely many connection matrices M of the form (75) for which the
space S(L;M ;h) of all associated cardinal geometrically continuous L-splines will be good for design.
The stronger requirement (89) is the necessary and sufficient condition for the identity matrix I3 to
be one among these infinitely many possible matrices.

Let us first assume that we are in any of the real cases. From (iv) of Theorem 6.3 we can deduce
that the spline space S(L; I3;h) is good for design whatever the positive number h. As a matter of
fact, in that case, this is a well-known fact since the space E is an EC-space good for design on the
whole of IR: indeed, whatever h > 0, the space S(L; I3;h) is a Chebyshevian spline space. From (ii)
we can also express this as follows: min(Zτ ′ , Zψ) = +∞, that is, whatever h > 0, we have A > 0
and C +D < 0.

By contrast, in any non-real case, condition (89) is always strictly stronger than (89), which
means that we can obtain cardinal geometrically continuous refinable B-spline bases without the
two conditions A > 0 and C +D < 0 being satisfied. This will be illustrated in the example below.

Example 6.5. Here we assume that E = kerL belongs to Case 9, and therefore L depends on two
positive parameters a, b. Then, Zη = Zψ = +∞, and Zτ ′ = π

b
[9, 10]. On the other hand, we know

that ℓL = Zτ <
3π
2b . From now on, we require that h = 1. Let us first determine the set Ω composed

of all pairs (a, b) of positive numbers such that ℓL > 1. From the expression of τ recalled in Table 2
(see next section), it is easily seen that, for (a, b) to belong to Ω, it is necessary that b < x0, where
x0 is characterised

π < x0 <
3π

2
, tanx0 = x0.

Besides, when b < x0, two different situations have to be considered.
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Figure 9: C3 cardinal splines with all sections taken from the same space of Case 9, and with h = 1,
and b = 3. From left to right: a = 0.1; 1; 2; 6.

Figure 10: Geometrically continuous cardinal splines with all sections taken from the same space of
Case 9, and with B̂ = 0.01, Ê = 100. From left to right: b = 3, a = 2; b = 3.2, a = 2; b = 4, a = 3.4,
and b = 4.49, a = 0.21

1) First assume that b 6 π: then, for each a > 0 we have (a, b) ∈ Ω.

2) We now assume that π < b < x0. Then,

(a, b) ∈ Ω ⇔
1

a
tanh a >

1

b
tan b. (90)

For each pair (a, b) ∈ Ω, there exist infinitely many different matricesM in (75) such that the spline
space S(L;M ; 1) is good for design. However only when b < π, the identity matrix I3 is one of these
matrices. We can even state that only for b < π we can obtain C2 splines good for design. Recall
that when a → +∞, the C3 spline curve converges to the control polygon, all the more efficiently
as b is closer to π−, see [10]. The variations in shape for increasing values of a are shown in Fig. 9
with b = 3.

Two numbers B̂ > 0, Ê > 2 being given, the spline curve obtained via Theorem 6.2 evolves in
a continuous way as (a, b) ranges over Ω. This continuity can be seen in Fig. 10. The effects of the

two parameters B̂ > 0, Ê > 2 (addressed for geometrically continuous polynomial splines in the
previous subsection) can be combined with those of the two parameters a, b. For instance, the values

B̂ = 0.01 and Ê = 100 help the spline curve approach the control polygon for smaller values of a
than in the C3 cases (compare the case b = 3, a = 2 in Figs. 9 and 10). For higher values of a, the

introduction of B̂ = 0.01, Ê = 100 does not change the curve. Our final comment concern the case
b > π. As b get closer to x0 (located in ]4.4934, 4.4935[), condition (90) requires a to be closer and
closer to 0. For instance, take b = 4. Then the upper bound for a making condition (90) valid is
located in ]3.447, 3.448[, while for b = 4.49, it lies in ]0.214, 0.215[. This explains the values a = 3, 4
and a = 0.21 taken in the right two pictures of Fig. 10 to show the limit curves.
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7 Parametrically continuous mixed L-splines

As already mentioned, in [10] we investigated parametrically continuous splines with simple equis-
paced knots and with all sections taken from the same given space of the class C. We could point
out both the efficiency of some parameters in producing shape variations and also the great variety
of possible shapes. A natural question arises: is it possible to increase this variety by designing with
splines mixing several spaces of the class C, while preserving the C3 nature of the splines? This is
the question addressed in the present section.

Though we are no longer within the cardinal case, we can take advantage of the invariance under
reflection / translation within the class C. Subsequently, we consider that the space S of C3 splines
is defined by pairs (E, h), where E = kerL belongs to the class C, and where 0 < h < ℓL. That the
section-space Ek is attached to the pair (E, h) means both that tk+1 − tk = h and that Ek is the
restriction of E to [tk, tk+1]. Then, the corresponding numbers introduced in (28) satisfy A+

k = A−
k+1,

B+
k = B−

k+1, C
+
k = C−

k+1, D
+
k = D−

k+1, and they are the same for all section-spaces attached to
(E, h). Subsequently, we will denote them by A,B,C,D, for all sections attached to (E, h). We will
similarly use A∗, B∗, C∗, D∗ for all sections attached to another pair (E∗, h∗), and so forth. The

quantity B̃k in (30), which depends on the two section-spaces Ek−1,Ek will be denoted as B̃(E,E),

B̃(E,E∗), B̃(E∗,E), B̃(E∗,E∗), depending on the case, and similar notations will be used for D̃k, ∆̃k.
In the latter notations, we have omitted h, h∗, . . . for the sake of simplicity. According to a similar
convention, the quantity Γ̃k, which depends on the three consecutive section-spaces Ek−1,Ek,Ek+1,

will be denoted as Γ̃(E,E,E), or Γ̃(E,E,E∗), and so forth.

With the previous notations, the following interesting result can be derived from Theorem 4.1.

Theorem 7.1. Given a family F of pairs (E, h), where E = kerL is a space in the class C and
where 0 < h < ℓL, the following properties are equivalent:

(i) all spaces S of C3 piecewise Chebyshevian splines obtained by mixing any pairs of the family
F are good for design;

(ii) any pair (E, h) ∈ F satisfies (ii) of Theorem 6.3, and any two pairs (E, h), (E∗, h∗) in the
family F satisfy

C +D <
B∗ −B

A∗ +A
< −(C∗ +D∗). (91)

Proof. The necessary and sufficient conditions (29) concern at most three consecutive section-spaces.
Using the notations introduced above, condition (i) is thus satisfied if and only if any three pairs
(E, h), (E∗, h∗), (E∗∗, h∗∗) in the family F satisfy

B̃(E,E) > 0, D̃(E,E) > 0, Γ̃(E,E,E) > 0,

B̃(E,E∗) > 0, D̃(E,E∗) > 0, Γ̃(E,E,E∗) > 0, Γ̃(E,E∗,E) > 0, Γ̃(E,E∗,E∗) > 0,

Γ̃(E,E∗,E∗∗) > 0.

(92)

The first line in (92) corresponds to the necessary and sufficient condition for the space S to be good
for design when all sections are attached to the same pair (E, h), and was recalled in Theorem 6.3.
Without loss of generality, we can thus directly assume that each pair (E, h) ∈ F satisfies A > 0,
C +D < 0. The various quantities in the second line of (92) can be expressed as follows:

B̃(E,E∗) = A+A∗ = B̃(E∗,E),

D̃(E,E∗) = B −B∗ −D∗B̃(E,E∗) = ∆̃(E∗,E),

Γ̃(E,E∗,E∗) = D̃(E,E∗)D̃(E∗,E∗)− C∗2B̃(E,E∗)B̃(E∗,E∗) = Γ̃(E∗,E∗,E),

Γ̃(E,E∗,E) = D̃(E,E∗)
2
− C∗2B̃(E,E∗)

2
.

(93)
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In particular, all quantities B̃(E,E∗) are automatically positive. Accordingly, the last line in (93)

shows that all quantities D̃(E,E∗) and Γ̃(E,E∗,E) are positive if and only if

D̃(E,E∗) > C∗B̃(E,E∗) for any two pairs (E, h), (E∗, h∗) in F . (94)

Suppose that (94) holds true. Given that

Γ̃(E,E∗,E∗∗) = D̃(E,E∗)D̃(E∗∗,E∗)− C∗2B̃(E,E∗)B̃(E∗,E∗∗), (95)

a double application of (94) proves the positivity of all quantities Γ̃(E,E∗,E∗), and, therefore, of all

Γ̃(E,E,E∗), and Γ̃(E,E∗,E∗) as special cases.
In other words, the positivity of all other quantities in (92) reduces to (94). Taking account of

the first two lines in (93), in (94) the inequality D̃(E,E∗) > C∗B̃(E,E∗) can be replaced by

B∗ −B

A∗ +A
< −(C∗ +D∗).

Exchanging the roles of E and E
∗ yields the equivalence between (i) and (ii).

In order to obtain practical conditions, we have to express the inequalities (91) in terms of the
functions τ, η, ψ, introduced in (73), (74), and (87), concerning both pairs (E, h) and (E∗, h∗). To
distinguish between them, subsequently, we denote by τ∗, η∗, ψ∗ those concerning E

∗.

Lemma 7.2. Given any two spaces E = kerL and E
∗ = kerL∗ of the class C, and any positive

h < ℓL, h
∗ < ℓL∗, assume that A+A∗ > 0. Then, we have

B∗ −B

A∗ +A
− (C +D) = τ(h)

[
−ψ(h)τ∗′(h∗)− η(h)τ∗′′(h∗)

]
+ τ∗(h∗)K(h)

−η(h)
[
τ∗′(h∗)τ(h) + τ∗(h∗)τ ′(h)

] , (96)

with
K(h) := τ ′′(h)2 − τ ′(h)

[
1 + τ ′′′(h)

]
. (97)

Proof. Since A = τ ′(h)/τ(h) and B = τ ′′(h)/τ(h), and similar relations for A∗, B∗, we have

B∗ −B

A∗ +A
− (C +D) =

τ∗′′(h∗)τ(h) − τ∗(h∗)τ ′′(h)

τ∗′(h∗)τ(h) + τ∗(h∗)τ ′(h)
+
ψ(h)

η(h)

=
τ(h)

[
−ψ(h)τ∗′(h∗)− η(h)τ∗′′(h∗)

]
+ τ∗(h∗)

[
η(h)τ ′′(h)− ψ(h)τ ′(h)

]

−η(h)
[
τ∗′(h∗)τ(h) + τ∗(h∗)τ ′(h)

] .

Since
η(h) = τ(h)τ ′′(h)− τ ′(h)

2
, ψ(h) = τ(h)(τ ′′′(h) + 1)− τ ′(h)τ ′′(h),

we obtain the claimed equality (96).

Thanks to Lemma 7.2, we can state:

Proposition 7.3. The property (i) of Theorem 7.1 is satisfied if and only if the following two
requirements are simultaneously fulfilled:

(a) for any pair (E, h) ∈ F , h < min (Zτ ′ , Zψ);

(b) for any two pairs (E, h) and (E∗, h∗) in F ,

−ψ(h)τ∗′(h∗)− η(h)τ∗′′(h∗) + τ∗(h∗)K(h) > 0. (98)
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Proof. For point (a) see Remark 6.4. When (a) holds true, we know that η(h) < 0, and that τ(h),
τ ′(h), τ∗(h∗), and τ∗′(h∗) are all positive. In particular, the denominator in (96) is positive. The

positivity of
B∗ −B

A∗ +A
− (C +D) is therefore equivalent to (98).

Besides, from Lemma 7.2 it is straightforward to derive the following sufficient positivity condi-
tion.

Lemma 7.4. Given any two spaces E = kerL and E
∗ = kerL∗ of the class C, and any positive h, h∗

such that h < π/µL, h
∗ < π/µL∗, we can state that

if τ∗′′(h∗) > 0 and K(h) > 0, then
B∗ −B

A∗ +A
− (C +D) > 0. (99)

Proof. Under the requirements h < π/µL, h
∗ < π/µL∗ , not only do we know that we know that

τ(h), τ∗(h∗) are positive, and that η(h) < 0, but also that ψ(h) < 0. Accordingly, the implication
(99) follows from (96).

Case τ(x) K(x)

1
a sinh(bx)− b sinh(ax)

ab(b2 − a2)

[
b(cosh(bx) + 1)(cosh(ax)− 1)− a sinh(ax) sinh(bx)

]2

(b2 − a2)2(cosh(bx) + 1)(cosh(ax)− 1)

2
sinh(ax)− ax

a3
0

3
b sinh(ax)− a sin(bx)

ab(a2 + b2)

[
b(1 + cos(bx))(1 − cosh(ax)) + a sinh(ax) sin(bx)

]2

(a2 + b2)2(1 + cos(bx))(1 − cosh(ax))

4
bx− sin(bx)

b3
0

5
b sin(ax)− a sin(bx)

ab(b2 − a2)

[
b(1 + cos(bx))(1 − cos(ax))− a sin(ax) sin(bx)

]2

(b2 − a2)2(1 + cos(bx))(1 − cos(ax))

6
ax cosh(ax)− sinh(ax)

2a3
(sinh(ax)− ax)2

4a2

7
x3

3
0

8
sin(bx)− bx cos(bx)

2b3
(bx− sin(bx))2

4b2

9
a cosh(ax) sin(bx)− b sinh(ax) cos(bx)

2ab(a2 + b2)

(b sinh(ax) − a sin(bx))2

4a2b2

Tableau 2: The functions τ and K, see (73) and (97), respectively.

Proposition 7.5. Let F be composed of all pairs (E, h) such that either the space E belongs to
the real cases ( i.e., Cases 1, 2, 6, 7) and h is any positive number, or E belongs to Case 4 and
0 < h < π

b
. Then, all possible spaces of C3 splines obtained by mixing pairs of the family F are

piecewise Chebyshevian spline spaces good for design.

Proof. From Table 2 we can see that any pair (E, h) in F satisfies K(h) > 0 for all h > 0. In all
real cases we also have τ ′′(x) > 0 for all positive x. In Case 4, τ ′′(x) = sin(bx)/b is positive for
x ∈]0, π/b[. The claim follows from Lemma 7.4, Proposition 7.3 and Theorem 7.1.

Remark 7.6. Piecewise exponential spline spaces ( i.e., spaces of parametrically continuous splines
with sections taken from any different kernels of linear differential operators all of the same orders,
with constant coefficients and only real roots for their characteristic polynomials) were considered in
[23] (see special cases in [20, 21, 7]). We obtained there both a sufficient and a necessary condition for
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Figure 11: Examples of C3 splines with sections taken from Case 2 (a = 10), Case 4 (b = 3.1415),
Case 6 (a = 10), and Case 7, as indicated on the control polygons. See Example 7.8.

such spline spaces to be good for design, but no necessary and sufficient condition, except concerning
very specific cases. Proposition 7.5 induces that, with order five even characteristic polynomials (72)
and with only positive multiplicities, piecewise exponential spline spaces are always good for design,
whatever the knots may be. We conjecture that this result extends to any order.

Remark 7.7. Can we similarly use any of the remaining spaces in Table 1 to build parametrically
continuous mixed L-splines? From Table 2, we can see that Case 3 behaves differently from the
all the other non-real cases: indeed, the corresponding function K is negative on ]0,+∞[, while it
is non-negative in all other cases. This is why we first exclude Case 3. Given any pair (E, h) of
the family F in Proposition 7.5, and any pair (E∗, h∗), where E

∗ is taken from Cases 5, 8, 9, with
h∗ < π

µL∗
, Lemma 7.4 ensures that the right inequality in (91) is satisfied. As for the left one,

Lemma 7.4 tells us that it will be satisfied too if we additionally require that τ∗′′(h∗) > 0. In other
words, Proposition 7.5 remains valid when F is composed of pairs (E, h) where E can also be taken
from Cases 5, 8, and 9, provided that we then require that h < Zψ and h 6 Zτ ′′ . Nevertheless this
requirement is only a sufficient condition, and it may unduly limit the possible shape effects.

Below we illustrate Proposition 7.5 as well as Remark 7.7. Beforehand, it should be observed
that, for each k, the interval [tk, tk+1] is the central interval of the support [tk−2, tk+3] of the B-spline
Nk−2. This is why this interval will be represented by the pole Pk−2. A positive integer m 6 9 in
front of a pole Pk therefore indicates that the section-space Ek+2 is taken from Case m in class C.
All spline curves presented subsequently preserve symmetry, and this is why the integers are placed
symmetrically along the control polygons. In all our illustrations, we deal with equispaced simple

knots tk = k for all k. As a general principle, our illustrations are mainly intended to show limit
shape effects, corresponding to limit values of the parameters involved in the corresponding splines,
thus giving the readers an idea about the amplitude of the possible shape effects.

Example 7.8. Let us first illustrate Proposition 7.5. In [10] we observed that, in spite of its
additional parameter, Case 1 does not significantly provide more shapes than Case 6. This is why
we limit ourselves to C3 splines with sections taken from Cases 2, 6, 7, 4. On the other hand, it is
interesting to replace the quadric space P4 by another space only if this space provides shapes which
are sufficiently different from E = P4. In this respect, it is not worthwhile using small values of the
positive parameter a involved either in E

∗ (Case 2) or in E
∗∗ (Case 6), for the corresponding curves

are closed to quadric curves. By contrast, for big values of the positive parameter a, the spaces E∗

and E
∗∗ behave as the polynomial spaces P2 and P0, respectively. For instance, for a = 10, visually

speaking there is hardly any difference between splines with all sections taken from Case 2, and
quadratic splines. Still the first ones are C3 while the others are only C1. Similarly for a = 10, C3

splines with all sections from Case 6 visually coincide with the control polygons. The value a = 10 is
thus taken as the limit value a = +∞ in the few illustrations presented in Fig. 11, while b = 3.1415
corresponds to the limit value for Case 4 for similar reasons. The reader can easily imagine the
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variations in shape as the couple (a; b) of parameters goes from (0+; 0+) (curve coinciding visually
with the quadric spline) up to the limit (10; 3.1415) used in Fig. 11. The richness of this example is
of course increased by changing the parameters independently for the three cases 2, 4, 6.

Example 7.9. Here, we consider a pair (E∗, h∗), where E
∗ comes from case 8. To ensure (iv) of

Theorem 6.3, we first assume that h∗ < π. As observed in Remark 7.7, we can include such a pair
in the family F while maintaining the results of Proposition 7.5 provided that τ∗′′(1) > 0. From
Table 2, we can derive that 2bτ∗′′(1) = sin(b) + b cos(b). The first positive zero b0 of τ∗′′(1) as a
function of b is located in ]2.02, 2.03[. Unfortunately, bounding above b by b0 prevents us to benefit
from the limit effects of C3 splines with sections taken from E

∗, obtained when the parameter b
approaches π−. Suppose that we want to mix E

∗ only with E = P4. Consider the corresponding
double inequality (91). From Lemma 7.4 we know that the right one is always satisfied. Accordingly,
in order to always obtain good for design splines, it is necessary and sufficient to ensure that

B∗ − 6

A∗ + 3
> −2,

or, as well, that B∗ + 2A∗ > 0, that is,

2b
[
τ∗′′(1) + 2τ∗′(1)

]
= 3 sin b+ b cos b > 0.

The only zero b∗0 of the quantity in the left-hand side of the previous inequality as a function of b on
]0, π[ lies in ]2.4556, 2.4557[. This new upper bound b∗0 already allows for stronger shape variations
than b0. The interest of this bound is that it easily permits an interactive selection of the sections
where to replace P4 by E

∗. Oppositely, for a given configuration, it may be possible to go beyond
b∗0. Illustrations are given in Fig. 12. In all four pictures, the red curve corresponds to the value
b = 2.4556 = b∗−0 for all sections from Case 8. In the two middle curves, this is an exact bound, since
the two sequences (E,E∗,E), (E∗,E,E∗) are encountered in the corresponding configurations (see
Proof of Theorem 7.1). In the leftmost picture, we never find the sequence (E∗,E,E∗). Therefore
we do not have to require the left inequality in (7.1) to be valid. However, it is necessary to replace
it by the weaker requirement concerning the sequence (E,E,E∗). It can be checked that

Γ̃(E,E,E∗) > 0 ⇔
B∗ −B

A∗ +A
>

C2 −D2

−D
.

With E = P4, the latter condition can be written B∗ + 3A∗ + 3 > 0, or, equivalently,

τ∗′′(1) + 3τ∗′(1) + 3τ∗(1) > 0. (100)

The resulting upper bound b̃∗0 lies in ]2.773; 2.774[. In the rightmost picture, in theory we have to

additionally take account of the condition A+A∗ > 0, but this is satisfied whenever b < b̃∗0. In both

configurations, the blue curves correspond to b = b̃∗−0 = 2.773.

Example 7.10. Let us do the same with E
∗ taken from Case 9, thus depending on the two positive

parameters a, b, and we assume that b < π. Then,

2ab
[
τ∗′′(1) + 2τ∗′(1)

]
= (a cosha+ 2 sinha) sin b+ b sinh a cos b. (101)

Clearly, if b 6
π
2 , this quantity is positive for all values of a. However, again it is interesting to

build splines mixing P4 and E
∗ only if the shapes permitted by E

∗ sufficiently differ from the shapes
provided by P4. We know that this occurs in particular for “big” values of a, all the more efficiently
as b is closer to the limit π−. The problem is that, when b is really close to π−, for τ ′′(1) + 2τ(1)
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Figure 12: C3 spline curves mixing Case 8 and quadrics (Case 7) as indicated on the control polygons.
Blue curves: b = 2.773 (the tauter ones); red curves: b = 2.4556. See comments in Example 7.9.

Figure 13: C3 spline curves mixing Case 9 and quadrics (Case 7) as indicated on the control polygons.
For Case 9, everywhere b = 2.8. Blue curves: a = 2.82 (the furthest from the control polygons at
the tail); red curves (the closest to the control polygon at the tail): a = 5.876; black curves: a = 11.
See comments in Example 7.10.

Figure 14: C3 spline curves mixing Case 3 (with b = 2.5 and a = 5.331) and quadrics (Case 7) as
indicated on the control polygons. See comments in Example 7.11.

Figure 15: C3 spline curves mixing Cases 3/4 and quadrics. From left to right: b = 3.2 (Case 4);
b = 3.2 and a = 2.3 (Case 3); b = 4.057 (Case 4); b = 4.057 and a = 0.041 (Case 3). See comments
in Example 7.12.
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to be positive, it will be necessary to take really big values of a, which is not reasonable in practice.
As a good compromise, take b = 2.8. This is sufficiently close to π to permit significative tension
effects, and sufficiently away from π to not require unreasonable values for a. Indeed, for b = 2.8,
the only zero a0 of the right-hand side of (101) as a function of a on ]0,+∞[ lies in ]5.875; 5.8576[.
In Fig. 13, we have taken the same four configurations as in Fig. 12, simply replacing Case 8 by
Case 9. Everywhere the red curves are obtained for a = a+0 = 5.8576. For the same reasons as in
Example 7.9, they correspond to exact lower bounds for the two middle curves, but not for the two
others. For the leftmost picture, the lower bound a∗0 resulting from the weaker condition (100) lies
in ]2.819; 2.82[. Since for b = 2.8, A + A∗ is always positive, this is also the lower bound for the
rightmost picture. This bound yields the two limit blue spline curves. Finally in all pictures, the
black curves are the limit curves for a→ +∞, obtained for a = 11.

Example 7.11. We now want to similarly mix E = P4 with the space E
∗ from Case 3 which

depends on two positive parameters a, b too, with b < π. Contrary to Case 8 and 9, it is now the
left inequality in (91) which is satisfied for all values of a. Therefore, all spline spaces mixing E and
E
∗ are good for design if and only if the right inequality in (91) holds. The problem is that this

condition does not provide a lower bound for a but an upper one, thus preventing us to benefit from
the shape effects obtained when a→ +∞. Besides, this upper bound is all the smaller as b is closer
to π−. To obtain a reasonably high upper limit, take b = 2.5. In that case, the upper limit a0 is
located in ]5.331; 5.332[. The corresponding limit curves are shown in Fig. 14 with a = a−0 = 5.331.
Comparison between Figs. 13 and 14 confirms that Cases 9 and 3 produce “opposite ” shape effects,
as was observed in [10].

Example 7.12. For a complete understanding of C3 mixed L-splines, it is worthwhile addressing
the following question. Can we get rid of the limit required by (a) of Proposition 7.3 to obtain good
for design C3 splines mixing a non-real case E

∗ with E = P4? Here, with h = h∗ = 1, and with
all non-real cases used in our illustrations so far, can we take b > π? This is why we now focus
on rightmost configuration in Figs. 12–14 (the only one which does not contain three consecutive
section-spaces obtained from E

∗). In Case 8, as well as in Case 9, it can easily be checked that the
positivity condition (100) requires b < π. Oppositely, in Case 3, this condition is always satisfied for
0 < b < 2π. As a matter of fact, the same holds true for Case 4 which is the limit of Case 3 when
a → 0+. In these two cases, assuming that b > π, the conditions for the space S to be good for
design come from the rightmost inequality in (91). In Case 4, from (96) and Table 2, this condition
is equivalent to

b4 [ψ∗(1) + 2η∗(1)] = b2(cos(b) + 1) + 4(cos(b)− 1) < 0.

The good for design upper bound b0 is thus located in ]4.0575, 4.0576[. In Case 3, the upper bound
b∗0 for b to make it possible to find positive values of a satisfying the right part of (91) is obtained by
solving the corresponding limit inequality (96) when a→ 0+. One can check that b∗0 ∈]4.0576, 4.06[.
Given b < b∗0, the upper bound a∗0 for a is all the closer to zero as b is closer to b∗0. In Fig. 15, we
present two curves produced by Case 4 for b = 3.2 and b = 4.057, and for these two values of b,
the limit curves produced by Case 3, with a = a−0 , that is, a = 2.3 and a = 0.041, respectively. No
visual difference can be detected between the two curves on the right.

8 L-splines: local shape effects via connection matrices

In this section we consider again geometrically continuous polynomial splines as in Subsection 6.2,
but this time in the non-cardinal case. A control polygon being given, we would like to analyse
the shape effects which can be produced by the insertion of connection matrices, depending on the
places where they are inserted, and of the matrices themselves. Out of necessity, we will present
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Figure 16: Good for design regions in the plane (ε; δ). Left: Examples 8.1 and Example 8.3, second
configuration, with the points P := (−4; 0), Q := (0;−12), R := (0; 12). Right: Example 8.3, first
configuration, with the points P := (−6; 0), Q := (0;−18), R := (0; 18)

Figure 17: Symmetric C2, F 3 quartic splines with connection matrixM♥ at all knots indicated by a
♥ on the leftmost control polygon, andM♦ at all the symmetric knots, see (102). From left to right,
the pair (ε; δ) is equal to Q∞ := (75;−236) ; Q := (0;−11.99) ; R := (0; 11.99) ; R∞ := (75; 236), see
left region in Fig.16. See comments in Example 8.1.

very little among all possibilities. The guiding line to select the few examples investigated below
follows two principles: limit the number of shape parameters to handle, and preserve the symmetry
of the control polygons. Moreover, in each of the examples addressed, we put special emphasis on
the limit shapes.

A given knot tk is the middle of the interval [tk−3, tk+3] obtained as the union of the supports
of the two consecutive B-splines Nk−3, Nk−2. This is why tk will be represented by the segment
[Pk−3, Pk−2] of the control polygon. In all examples, we will consider a given connection matrixM♥,
and we will indicate on the leftmost control polygon of a given line of pictures all the knots where
the connection matrix is M♥. To preserve symmetry, at the symmetric knot(s), we will implicitly
insert the connection matrix M♦ deduced from M♥ according to (59). At all other knots, if any,
the splines will be assumed to be C3.

With simple knots at the integers, all our illustrations will indeed concern polynomial splines —
that is, no additional parameters come from the section-spaces. Still, without more difficulty the
good for design regions in the space of parameters will be determined with all section-spaces taken
from one single space in the class C, and with any constant knot spacing h.
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Example 8.1. In this example, the connection matrix M♥ and its “symmetric” matrix M♦ are
given by

M♥ :=



1 0 0
0 1 0
δ ε 1


 , M♦ :=




1 0 0
0 1 0
−δ ε 1


 , (102)

where δ, ε are any real numbers. We take the connection matrixM♥ everywhere above the symmetry
line of the control polygon, and M♦ everywhere under it. The splines are thus C2 everywhere. All

B̃k’s being equal to B̃ := 2A, their positivity is ensured if and only if A > 0, and we assume that
this is satisfied. With obvious notations, we have two values for the D̃k’s, ∆̃k’s, namely

D̃♥ = δ +Aε−DB̃ = ∆̃♦, D̃♦ = −δ +Aε−DB̃ = ∆̃♥ (103)

Finally we have four different values for the Γ̃k’s, that is, on account of (103),

Γ̃♥,♦ = (D̃♥)
2 − C2 B̃2, Γ̃♦,♥ = (D̃♦)

2 − C2 B̃2,

Γ̃♥,♥ = D̃♥D̃♦ − C
2 B̃2 = Γ̃♦,♦.

(104)

The positivity of D̃♥, D̃♦, Γ̃♥,♦, Γ̃♦,♥, and Γ̃♥,♥, is obtained if and only if

D̃♥ > C B̃ and D̃♦ > C B̃. (105)

The spline space S depends on the two free parameters D̃♥, D̃♦, both ranging over ]CB̃,+∞[=
]2AC,+∞[. We could analyse the variations in shape relative to these two parameters on the “good
for design” region ]2AC,+∞[×]2AC,+∞[. However, we assume that studying the variations relative
to the parameters δ, ε will be less surprising to readers, and we therefore translate the good for design
conditions (105) into

−A
[
ε− 2(C +D)

]
< δ < A

[
ε− 2(C +D)

]
, (106)

which implies in particular that ε− 2(C +D) must be positive.
Let us illustrate these conditions in the polynomial case with tk = k for all k. According to

(106), the corresponding “good for design” region D of the plane (ε; δ) can be described by the
double inequation −3(ε + 4) < δ < 3(ε + 4). It is represented in Fig. 16, left. In Fig. 17 we show
the limit curves when ε → +∞ on the two boundary lines δ = −2.99(ε + 4) (point Q∞) and
δ = 2.99(ε + 4) (point R∞), visually obtained for ε = 75. It is interesting to see what happens
for ε = 0, in which case the parameter δ ranges over the interval ] − 12, 12[ (points close to the
boundary points Q and R shown in Fig. 16, left, for which we keep the same notations). We give no
illustrations on δ = 0, for this corresponds to the C2 splines of the cardinal case already shown in
Fig. 2. In particular, we can therefore see the shape evolutions along the boundary. The pictures in
Fig. 16 clearly point out the symmetry between positive and negative values of the parameter δ.

Example 8.2. In this example, as well as in the following ones, we assume that all connection
matrices are the identity matrix, except at a few places. In particular, in all situations considered,
we have at least two consecutive knots where the splines are C3. Accordingly, the two conditions
A > 0, C +D < 0, are necessary for the spline space to be good for design. This is why we directly
assume them to be satisfied, so that we only have to consider the good for design conditions involving
at least one matrix different from the identity.

In our first example, we replace the identity matrix (denoted here by I) by the matrix M♥

defined in (102) at one knot above the symmetry line, and therefore by the matrix M♦ in (102) at

the symmetric knot. As previously, the quantities B̃k are all equal to B̃ = 2A, and, depending on
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Figure 18: Example 8.2, with the matrix M♥ in (102), and good for design region in the plane
(ε; δ) shown in Fig. 16, left. From left to right, parameters at P∞ = (75; 0), P = (−3.99; 0),
Q = (0;−11.99), and R∞ = (75; 236).

Figure 19: Example 8.2, with good for design region in the plane (ε; δ) shown in Fig. 16, right. From
left to right, parameters at P = (−5.99; 0), P∞ = (75; 0), Q = (0;−17.99), and R = (0; 17.99).

the knot considered, we have three possibilities for the D̃k’s, denoted as D̃ = −DB̃ = −2AD, and
D̃♥, D̃♦ as in (103). To find the good for design conditions, we have to consider two different cases.

• The matrices M♥ and M♦ are not consecutive. Then, we find somewhere the sequence of conse-

cutive connection matrices (I,M♥, I). The corresponding quantities Γ̃k of which we have to consider
the positivity are (with obvious notations)

Γ̃I,♥ = D̃D̃♦ − C
2B̃2, Γ̃♥,I = D̃D̃♥ − C

2B̃2.

In the present situation, all good for design conditions reduce to

D̃♥ >
C2 B̃2

D̃
, D̃♦ >

C2 B̃2

D̃
, (107)

that is

−A

[
ε+

2
(
D2 − C2

)

−D

]
< δ < A

[
ε+

2
(
D2 − C2

)

−D

]
. (108)

For polynomial splines with simple knots at the integers, condition (107) gives −3(ε + 6) < δ <
3(ε + 6). This example is illustrated in Fig. 19 with parameters (ε; δ) close to the points P,Q,R
indicated in Fig. 16, right, located on the boundary of the good for design region. We simply slightly
move these points to be inside the good for design region. Nevertheless we keep the same notation
for the modified points. With the additional point P∞, we can see the variations in shape along the
axes and also along the boundary.

• The matrices M♥ and M♦ are consecutive. This means that we have to consider the positivity
conditions resulting form the sequence of connection matrices (M♦,M♥, I), which amounts to en-

suring the positivity of Γ̃♥,I as in the previous case, along with that of the quantity Γ̃♦,♥ expressed
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Figure 20: Good for design regions in Example 8.3, depending on the way we place the matrices
M♥ and M♦ given in (110) at the mouth and tail. Red hyperbola: (β + 3)(ε + 3) + 9 = 0; red
line: 2β + 3ε + 12 = 0, with on it the points P := (−6; 0), R := (−2.4;−2.4), Q := (0;−4), and
T := (1.5;−5). Blue hyperbola: (β+3)(ε+2)+ 6 = 0; blue line: β+ ε+6 = 0, with on it the point
S := (−1;−5).

in (104). The good for design conditions are thus

D̃♥ >
C2 B̃2

D̃
, D̃♦ > C B̃. (109)

Note that the left condition in (109) is a special case of (64). In our illustrations, we have taken
twice the matrix M♦ above the symmetry line, which means that we encounter the two sequences
(M♦,M♥, I) and (M♥,M♦, I). The good for design conditions are therefore the cumulation of (109)
and of the similar inequalities obtained after exchanging M♥ and M♦. Since C + D < 0, it is
sufficient to keep the right inequality in (107) and its analogue, which gives the same good for design
conditions (105) — or (106) — as in Example 8.1.

For polynomial splines, the good for design region is described by −3(ε+ 4) < δ < 3(ε+ 4), see
Fig. 16, left. Illustrations are presented in Fig. 18, for “limit” points of the parameters in the plane
(ε; δ). For instance, here too the point R∞ = (75; 236), already used in Example 8.1, corresponds
to a visual limit along the upper part of the boundary.

Example 8.3. The situation is similar to the previous one, but with different matrices, again
corresponding to each other under symmetry, namely

M♥ :=



1 0 0
β 1 0
0 ε 1


 , M♦ =




1 0 0
β 1 0
βε ε 1


 , (110)
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for which we will see that the good for design region in the plane (β; ε) is of a different nature. We
take the opportunity of this example to emphasise the importance of the order in which we encounter
the successive matrices at the possibly different places. In order not to multiply the illustrations we
focus on two consecutive matrices different from the identity both around the mouth and the tail.
With obvious notations again, we have

B̃♥ = B̃♦ = β + 2A, D̃♥ = εA−DB̃♥ = ∆̃♦, D̃♦ = βε+ D̃♥ = ∆̃♥.

We first have to require that B̃♥ be positive. Assuming that this is true, as usual the conditions

ensuring all good for design conditions will follow from the positivity conditions of the specific Γ̃k
encountered, among the following ones:

Γ̃♥,♦ = (D̃♥)
2 − C2 (B̃♥)

2, Γ̃♦,♥ = (D̃♦)
2 − C2 (B̃♥)

2,

Γ̃♥,I = Γ̃I,♦ = D̃D̃♥ − C
2 B̃B̃♥, Γ̃I,♥ = Γ̃♦,I = D̃D̃♦ − C

2 B̃B̃♥,
(111)

• In the first situation (see the leftmost control polygons in Figs. 21—24) the positivity conditions

concern only Γ̃♥,♦ and Γ̃♦,I , that is, D̃♥ > CB̃♥ and D̃♦ > C2B̃B̃♥/D̃. They can respectively be
written as follows

εA− (C +D)β − 2A(C +D) > 0,
(
β +A

)(
ε+

D2 − C2

−D

)
+
A(D2 − C2)

−D
> 0 (112)

In the plane (β; ε), the good for design region is thus a region containing the origin which is limited
by the two branches of an hyperbola, and by the line εA − (C +D)β − 2A(C +D) = 0. Observe

that the condition B̃♥ > 0 is automatically ensured by the requirements (112).
In the polynomial spline case, the good for design region is defined by the two inequations

3ε+ 2β + 12 > 0, (β + 3)(ε+ 3) + 9 > 0.

It is shown in Fig. 20, where the complementary of this good for design region in the plane (β; ε) is
shaded with (red) horizontal hatching.

• Oppositely, in the second situation (middle-left control polygons in all Figs. 21—24), the positivity

conditions concern Γ̃♦,♥ and Γ̃I,♦, that is, D̃♦ > CB̃♥ and D̃♥ > C2B̃B̃♥/D̃. The good for design
region is defined by the two inequations obtained by adding the quantity βε to the left-hand side
of the first inequation in (112) and subtracting it to the left-hand side of the second inequation in
(112).This gives

(
β +A

)(
ε− (C +D)

)
−A(C +D) > 0, εA+ b

D2 − C2

−D
+

2A(D2 − C2)

−D
> 0, (113)

In the polynomial spline case, we obtain

(β + 3)(ε+ 2) + 6 > 0, ε+ β + 6 > 0.

In the plane (β; ε) the complementary region is shaded with (blue) vertical hatching.

• In the third and fourth situation (the two control polygons on the right in Figs. 21—24) we have to
take into account the four quantities, which means the two inequations in (112) along with the two
in (113). The good for design region is obtained by intersecting the two regions previously obtained
and it can be represented by

εA− (C +D)β − 2A(C +D) > 0,
(
β +A

)(
ε− (C +D)

)
−A(C +D) > 0, (114)
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Figure 21: Example 8.3: quadric splines depending on the knots indicated by a ♥, where the
connection matrixM♥ in (110) is inserted, with the connection matrixM♦ in (110) at the symmetric
knots. Here, in the plane (β; ε), parameters at P∞ := (−3; 75) (see Fig. 20).

Figure 22: Same as in Fig. 21, with now parameters at S∞ := (75;−2), see Fig. 20.

Figure 23: Same as in Fig. 21, with now parameters at R∞ := (500; 500), see Fig. 20.

Figure 24: Same as in Fig. 21, with now parameters at R := (−2.39;−2.39), see Fig. 20.
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Figure 25: Example 8.3. In the plane (β; ε), from left to right, parameters at P := (−5.99; 0) and Q :=
(0;−3.99) (for which M♥ = M♦), and at the two points S = (−1;−4.99) (outside the blue vertically hatched
region) and T = (1.5;−4.99) (outside the red horizontally hatched region). See Fig. ??

that is, for polynomial splines,

3ε+ 2β + 12 > 0, (β + 3)(ε+ 2) + 6 > 0.

• To illustrate these results, we first select four points of the good for design region corresponding

to (114) in the plane (β; ε), namely, three points “at infinity”: P∞ on the vertical asymptote, S∞

on the horizontal asymptote, R∞ on the diagonal, and finally, a point close to the intersection point
R = (−2.4;−2.4) of the diagonal and of the line point 3ε + 2β + 12 = 0 that we also denote by
R. At the two points P := (−6; 0) and Q := (0;−4), the two matrices M♥ and M♦ are equal,
see Fig. 25, left (and also the second curve in Fig. 18), which completes the variations along the
boundary segment [P,Q]. Finally we also show the curves corresponding respectively to (112) and
(113) “at” the points T (first configuration) and S (second configuration).

Example 8.4. Our last example will be the simplest case whereM♥ =M♦ is the connection matrix
M defined in (75) that we already used in the symmetric cardinal case. It is worthwhile considering
this case for comparison with the cardinal situation. As usual an heart in front of a segment of the
control polygon indicates the presence of the matrix M at the corresponding knot and implicitly at
the symmetric segment. As in Example 8.2 we consider two subcases:

• The knots where we insert M are consecutive: then, the good for design conditions are the same
as in the cardinal case, that is

β + 2A > 0, ε− 2(C +D) > 0.

This is illustrated in Fig. 26 for polynomial splines, under the conditions β + 6 > 0 and ε+ 4 > 0.

• The knots where we insert M are not consecutive. The arguments already developed show that
the good for design region is characterised by

β + 2A > 0, ε+
2
(
D2 − C2

)

−D
> 0.

that is, in our illustrations in Fig. 27, under the conditions β + 6 > 0 and ε+ 6 > 0. Here we show
the shape changes along the diagonal and along the boundary ε = −6, which corresponds to the
most significant variations.

9 Geometrically continuous Piecewise Müntz splines

So far in our illustrations, symmetry properties were inherent in all section-spaces. Nevertheless,
such properties are necessary neither to produce interesting shape effects nor to guarantee symmetry
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Figure 26: Example 8.4. Good for design region: (β; ε) ∈]− 6,+∞[×]− 4,+∞[. From left to right,
(β, ε) = (−5.99;−3.99) ; (−5.99; 10000) ; (100;−3.99) ; (15; 15). Ex4TL

Figure 27: Example 8.4. Good for design region: (β; ε) ∈] − 6,+∞[×]− 6,+∞[. Left : ε = β = -
5.99 (central red curve) ; -5 ; -4 ; -2 ; 5 (black limit curve). Right: ε = −5.99, β = −5.99 (central
red curve) ; -5 ; -3 : 0 ; 10 ; 75 (black limit curve).

preservation by the spline curves. This is the first point that we want to illustrate in the present
short section, via a class of geometrically continuous piecewise Müntz spaces which already proved
to provide interesting shape effects [27, 30, ?, 2, 1, 3]. Our second concern is to provide a first insight
into the already mentioned possibility of using quantities involved in the necessary and sufficient
conditions for a piecewise Chebyshevian spline space to be good for design as shape parameters
rather than the entries of the connection matrices.

Assume that the bi-infinite sequence of simple knots tk, k ∈ ZZ, is given, along with the bi-
infinite sequence Ek, k ∈ ZZ, of EC-section-spaces good for design in their intervals. As explained in
Subsection ?? we know that the good for design spline space S can be completely determined, for
instance, by the choice of two free bi-infinite sequences of positive numbers D̃k, ∆̃k, and a third one,
Γ̃k, k ∈ ZZ, meeting the requirement (67). In order to reduce the number of parameters, we first
assume that we are dealing with C1 and F 3 splines as we did in all illustrations (unit diagonals).

It is also rather natural to consider the special case where we require that D̃k = ∆̃k for all k. This
occurs if and only if

D̃k =
B̃kẼk
2

for all k ∈ ZZ. (115)

Conversely, if we select any positive parameters B̃k, Ẽk, k ∈ ZZ, and then define the bi-infinite
sequence D̃k, k ∈ ZZ, as in (115), how to make sure that the corresponding spline space S will be
good for design? The answer is given in the lemma below.

Lemma 9.1. Assume that all matrices have unit diagonals and that (115) holds. Then, the splines
space S is good for design if and only if

ẼkẼk+1 > 4C+
k C

−
k+1 for all k ∈ ZZ. (116)
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Proof. Under our assumptions, we have ∆̃k = D̃k for all k. Accordingly, for each integer k

Γ̃k =
B̃kẼk
2

B̃k+1Ẽk+1

2
− C+

k C
−
k+1B̃kB̃k+1 = B̃kB̃k+1

(
ẼkẼk+1

4
− C+

k C
−
k+1

)
, k ∈ ZZ.

Whence the claimed result.

Note that the situation examined in Lemma 9.1 has already been encountered twice, first in the
symmetric cardinal case (Section ??), second in the non-cardinal case in Example 8.4.

Let us apply the previous result to a class of geometrically continuous piecewise Müntz spline
spaces that we define below. From now on, we assume that tk = k for all k. To define the section-
spaces, we consider a given bi-infinite sequence of positive numbers pk, k ∈ ZZ. Two situations are
then to be considered:

• If pk = pk+1, then Ek is the restriction to [tk, tk+1] = [k, k + 1] of the polynomial space P4, and
in DEk, as usual we use the Bernstein-like basis

V ki (x) = Vi(x− tk), i = 0, . . . , 3, (117)

where

V0(x) = (1− x)3, V1(x) = x(1− x)2, V2(x) = x2(1 − x), V3(x) = x3, x ∈ [0, 1]. (118)

• If pk 6= pk+1, then, up to the affine change of variable ϑk : [tk, tk+1]→ [min(pk, pk+1),max(pk, pk+1)]
such that ϑk(ti) = pi for i = k, k+1 — that is, ϑk(x) := pk+(pk+1−pk)(x−k) — the space Ek is
spanned by the the four functions 1, xℓ+1, xℓ+2, xℓ+3, xℓ+4, where ℓ is a given positive integer. This
is indeed an EC-space good for design on [tk, tk+1], see [25, 27]. In that case, the Bernstein-like
basis (28) in DEk is given by

V k0 (x) =

(
ϑk(x)

pk

)ℓ (
pk+1 − ϑk(x)

pk+1 − pk

)3

,

V k1 (x) =

(
ϑk(x)

pk

)ℓ (
pk+1 − ϑk(x)

pk+1 − pk

)2 (
ϑk(x) − pk
pk+1 − pk

)
,

V k2 (x) =

(
ϑk(x)

pk+1

)ℓ (
pk+1 − ϑk(x)

pk+1 − pk

) (
ϑk(x) − pk
pk+1 − pk

)2

,

V k3 (x) =

(
ϑk(x)

pk+1

)ℓ (
ϑk(x) − pk
pk+1 − pk

)3

.

(119)

Accordingly, in both cases, at each knot tk, the numbers introduced in (28) are as follows:

A−
k =

ℓ(pk − pk−1)

pk
+ 3, B−

k =
ℓ(ℓ− 1)(pk − pk−1)

2

pk2
+ 6

ℓ(pk − pk−1)

pk
+ 6,

C−
k = 2

(
pk
pk−1

)ℓ
, D−

k = −2
ℓ(pk − pk−1)

pk
− 4,

A+
k = −

ℓ(pk+1 − pk)

pk
+ 3, B+

k =
ℓ(ℓ− 1)(pk+1 − pk)

2

pk2
− 6

ℓ(pk+1 − pk)

pk
+ 6,

C+
k = 2

(
pk
pk+1

)ℓ
, D+

k = 2
ℓ(pk+1 − pk)

pk
− 4.

(120)
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In particular, independently of the parameters ℓ, and of the pk’s, and of the we thus have

C+
k C

−
k+1 = 4 for all k ∈ ZZ.

Thanks to Lemma 9.1, we can thus state:

Proposition 9.2. The space of geometrically continuous piecewise Müntz spline defined above is
good for design if and only if

ẼkẼk+1 > 16 for all k ∈ ZZ. (121)

In this situation, the shape parameters are the positive numbers B̃k, Ẽk, the ratios pk+1/pk,
k ∈ ZZ, which are not equal to one (see [27, 30, ?]), along with the positive integer ℓ. In theory,
without more difficult we could even allow this integer to depend on the intervals. However, to
permit a useful handling of the shape effects we rather have to reduce the number of parameters.
This is why here, not only do we keep the same ℓ everywhere, but we even assume that the numbers
B̃k, Ẽk, are independent of k. We can therefore drop the indices. Then, the B-spline-like Mj with
support [j, j + 4] in the space DS can be taken as

Mj(x) =





(pj+1)
ℓV j3 (x) if x ∈ [j, j + 1],

(pj+1)
ℓV j+1

0 (x) + (pj+1)
ℓB̂V j+1

1 (x) + (pj+2)
ℓ 1
2 B̂ÊV

j+1
2 (x) + (pj+2)

ℓÊV j+1
3 (x)

if x ∈ [j + 1, j + 2],

(pj+2)
ℓÊV j+2

0 (x) + (pj+2)
ℓ 1
2 B̂ÊV

j+2
1 (x) + (pj+3)

ℓB̂V j+2
2 (x) + (pj+3)

ℓV j+2
3 (x)

if x ∈ [j + 2, j + 3],

(pj+3)
ℓV j+3

0 (x) if x ∈ [j + 3, j + 4],

,

(122)

where, with notations similar to the cardinal case, B̂ := B̃, and Ê := Ẽ/2. Moreover, according to

(121), we must require that Ê > 2. We would like to draw the reader’s attention to the fact that
the resulting connection matrices are not the same at all knots, since their entries are obtained via
(70) and (120). To illustrate such splines, we replace quadric section-spaces by Müntz spaces only
at very few places. In other words, almost all positive numbers pk are equal to one. In each figure,
a circle on a segment of the control polygon indicates that pk = p 6= 1 at the knot represented
by this segment. In practice we use the two values p = 10 and p = 100. To additionally reduce
the number of parameters, we assume that Ê = 3

2 B̂ − 5 as in Figs. 7 and 8. Accordingly, for each
integer k such that the two consecutive sections Ek−1, Ek are quadric spaces — that is, whenever
pk−1 = pk = pk+1 —, splines in S are G3 at the knot tk. They are only F 3 at the remaining knots.
Observe that symmetry preservation is obtained by allocating the same value for pk at symmetric
knots. In all our examples, we take ℓ = 3, though it would also be interesting to vary the value of
ℓ. In Fig. 28 the values used for B̂ are exactly the same as those in Fig. 8 for comparison. Finally,
in Fig. 29 we limit ourselves to the two values B̂ = 10 and B̂ = 100. Moving the two circles all
around the control polygon gives a good understanding of the shape effects which can be obtained.
On account of how the section-spaces are defined, it should be observed that the number of section-
spaces which are not obtained by restriction of P4 is either two (circles placed consecutively: first
and last line in Fig. 29) or four (all other situations, including Fig. 28).
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Figure 28: Examples of C1, F 3 piecewise Müntz splines with pk = 1 everywhere except “at” the
knots indicated with a circle where pk = 10 (up) or pk = 100 (down), and with ℓ = 3. From left to

right B̂ := 4.67; 6; 10; 100, for comparison with Fig. ??.

10 Concluding comments

This work was mainly intended to enlighten the following points.

1- Necessary and sufficient conditions permit to take better advantage of the shape effects provided
both by the section-spaces and the connection matrices. Moreover, these conditions naturally lead
to new types of shape parameters.

2- In dimension five even more than in dimension four, the infinite number of possibilities makes
it compulsory to restrict the number of parameters to very few. Even under such restrictions, we
obtain an impressive variety of shape variations. The examples developed in this manuscript can
help to select an appropriate easy-to-handle framework in view of a given expected improvement
in the spline curves produced. As an instance, the class of parametrically continuous mixed L-
splines considered here is especially rich due to the five-dimensional context with enables us to mix
trigonometric and hyperbolic functions inside given section-spaces.

3- By comparison with the cubic-like context, the proof of Theorem 4.1 gives good intuition of the
difficulty to similarly achieve necessary and sufficient conditions in higher dimensions. This suggests
that it might be useful to develop a numerical approach to apply the beautiful theoretical charac-
terisation of all good for design splines reminded in Section 2 (Theorem 2.11) in any dimensions.

4- Nevertheless, if higher dimensions are needed, the richness of the present context can be efficiently
exploited using splines obtained by (repeated) integration. For instance, through Proposition 7.5
this provides access to examples of splines visually identical to some so-called multi-degree splines
(see, e.g., [46, 47]), with more regularity.
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