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INTRODUCTION

Reset control systems are a special type of hybrid systems, in which the system state (or part of it) is reset at the instants it intersects some reset surface. When the reset is defined as a function of time one can consider the reset control system as an impulsive system. In the past decades, the importance of impulsive systems has been highlighted by many researchers due to the number of potential broad applications in various fields, such as control systems with communication constraints, sampled-data systems, mechanical systems [START_REF] Haddad | Impulsive and hybrid dynamical systems: stability, dissipativity, and control[END_REF]; [START_REF] Chen | Input-to-state stability and integral input-to-state stability of nonlinear impulsive systems with delays[END_REF]; [START_REF] Hespanha | Lyapunov conditions for input-to-state stability of impulsive systems[END_REF]; [START_REF] Naghshtabrizi | Exponential stability of impulsive systems with application to uncertain sampled-data systems[END_REF] and the monographs [START_REF] Bainov | Systems with impulse effect: Stability, theory and applications[END_REF] and [START_REF] Lakshmikantham | Theory of impulsive differential equations[END_REF]). In general, impulsive systems may be classified in (i) systems with impulses at fixed instants, (ii) systems with impulses at variable instants, and (iii) autonomous systems with impulse effects. Reset control systems are included in (iii) since they have a reset surface which does not depend on the time. Significant progress on the stability of impulsive dynamical systems has been made during the past 20 years, see Chen andZheng (2009c,a, 2011); [START_REF] Guan | Decentralized stabilization for impulsive large scale systems with delays[END_REF]; [START_REF] Khadra | Analyzing the robustness of impulsive synchronization coupled by linear delayed impulses[END_REF]; [START_REF] Liu | Stability criteria for impulsive systems with time delay and unstable system matrices[END_REF]; [START_REF] Wang | Exponential stability for impulsive delay differential equations by Razumikhin method[END_REF]; [START_REF] Yang | Stability analysis and design of impulsive control systems with time delay[END_REF]; [START_REF] Hetel | Stabilization of linear impulsive systems through a nearly-periodic reset[END_REF] and references therein. However, most of the research effort has been dedicated to cases (i) and (ii), and then many results are not directly applicable in the case of reset systems. presented in [START_REF] Baños | Delay-independent stability of reset control systems[END_REF], and extended to delay-dependent condition in [START_REF] Barreiro | Delay-dependent stability of reset control systems[END_REF]; [START_REF] Prieto | Delay-dependent stability of reset control systems with anticipative reset conditions[END_REF]. Quadratic stability of time-delay reset control systems with reset surface uncertainty was considered in [START_REF] Guo | Quadratic stability of reset control systems with delays[END_REF]. More recently the previous results have been extended to input-to-output stability in [START_REF] Mercader | H ∞ / H 2 analysis for time-delay reset control systems[END_REF], Mercader et al. (2013a). All these results are based on a generalization of the socalled H β condition (see [START_REF] Beker | Fundamental properties of reset control systems[END_REF]) for non delay reset control systems. The main idea is the existence of a Lyapunov-Krasovskii (LK) functional which must always decrease during the flow and must decrease or remain equal during the jumps. In general, this basic result may be conservative. In Davó and Baños (2013a) a less conservative result is obtained by allowing some bounded increments of the functional after the reset instants. Nevertheless, these sufficient conditions are still conservative. The conditions obtained are not able to guarantee asymptotic stability if the base system is not stable. This limitation of the approach comes from the fact that in general the reset action with state-dependent resetting law cannot be guaranteed, which means that the reset control system may evolve without reset action for some initial conditions, implying the stability of the base system.

In this work, we focus on the stability of a reset control system submitted to a single time-delay, and with a timedependent resetting law. In this case, the time between two consecutive reset instants is considered to be in a given interval. Therefore, the existence of an infinity number of reset actions for any initial condition is guaranteed. In contrast to the previous work, here the stability of the base system is not needed, and then less conservative results are expected. In spite of the fact that most of the results of impulsive systems may be applied, they are limited to a strict decrement of the LK functional during the impulse actions. Therefore, they cannot be applied to the setup of this paper, since the reset actions cannot affect the states of the process in a reset control system.

The main idea of this paper is the transformation of the reset control system into a sampled-data system, so that the latest stability results in the framework of sampleddata systems can be applied. This transformation can be directly made for a particular reset compensator which is called PI+CI [START_REF] Baños | Design of reset control systems: The PI-CI compensator[END_REF]). This compensator is a simple modification of a PI compensator, which includes a Clegg integrator (CI) in parallel. PI+CI has been shown to be effective in several control experiments of processes with time-delay [START_REF] Vidal | Reset compensation for temperature control: Experimental application on heat exchangers[END_REF]; [START_REF] Davó | Reset control of a liquid level process[END_REF]). In addition, the stability of the PI+CI has been analyzed in [START_REF] Vidal | Diseño de Sistemas de Control Reseteado: Aplicaciones en Control de Procesos[END_REF] for non delay processes. The reset control system composed by the PI+CI compensator can be modeled as a sampleddata system where the controlled process consists of a closed-loop system with internal time-delay. In this way, the results of [START_REF] Seuret | Stability analysis of networked control systems with asynchronous sampling and input delay[END_REF][START_REF] Seuret | A novel stability analysis of linear systems under asynchronous samplings[END_REF] are extended with a new LK functional [START_REF] Seuret | Hierarchy of LMI conditions for the stability analysis of time delay systems[END_REF]), and delay-dependent criterion is developed for the asymptotic stability.

Notation: Throughout the article, the sets R, R + , R n , R n×n and S n denote the sets of real numbers, nonnegative real numbers, the n-dimensional Euclidean space, n × n matrices and symmetric matrices, respectively. A column vector is denoted by x ∈ R n . Given two vectors x 1 and x 2 , we write (

x 1 , x 2 ) to denote [x 1 , x 2 ] . The notation |x| is the euclidean norm for x ∈ R n . C([a, b], R n ) stands for the set of continuous functions mapping [a, b] to R n , with the norm φ = max θ∈[a,b] |φ(θ)|.
The identity matrix and the zero matrix of adequate dimensions are denoted by I and 0, respectively. The notation P 0 for P ∈ S n means that P is positive definite. The set of positive definite matrices is denoted by S + n . For a matrix A ∈ R n×n , the notation He(A) refers to A + A .

PRELIMINARIES AND PROBLEM MOTIVATION

Consider a time-delay reset control system as shown in Fig. 1, given by the feedback interconnection of a linear and time invariant (LTI) system P and a PI+CI (both single-input-single-output). P is given by the state-space system

P : ẋp (t) = A p x p (t) + B p u p (t), y p (t) = C p x p (t), (1) 
where

x p ∈ R np and A p ∈ R np×np , B p ∈ R np×1 , C p ∈ R 1×np
. The PI+CI compensator is simply a parallel connection of a PI compensator and a Clegg integrator.

In the state-space, the PI+CI can be expressed by using a state x r = (x i , x ci ) ∈ R 2 , where x i is the integral term state, and x ci corresponds to the Clegg integrator state. Its state-space realization is given by

P I + CI :    ẋr (t) = B r u r (t), t / ∈ T , x r (t + ) = A ρ x r (t), t ∈ T , y r (t) = C r x r (t) + k p u r (t), (2) 
where t + = t + with → 0 + , and the matrices B r , C r , and A ρ are given by

B r = k i 0 , C r = [1 1] , A ρ = 1 0 -p r 0 . (3) 
In this work, we consider for simplicity that the connection between P and PI+CI is only affected by a time-delay h at the output of system P. The proposed approach can also be applied to obtain similar results when the timedelay is at the input of P. The autonomous closed-loop system (with zero exogenous signals, that is r = d = 0) is obtained by making the connections u p (t) = y r (t) and

u r (t) = -y p (t -h):      ẋ(t) = Ax(t) + A d x(t -h), t / ∈ T , x(t + ) = A R x(t), t ∈ T , y(t) = Cx(t -h), x(t) = φ(t), t ∈ [-h, 0], (4) 
where

x(t) = (x p (t), x r (t)) ∈ R n with n = n p + 2, φ ∈ C([-h, 0], R n )
is the initial condition function, and matrices A, A d , C, and A R are given by

A = A p B p C r 0 0 , A d = -k p B p C p 0 -B r C p 0 , C = [ C p 0 ] , A R = I 0 0 A ρ . (5) 
In some previous works [START_REF] Vidal | Diseño de Sistemas de Control Reseteado: Aplicaciones en Control de Procesos[END_REF]; [START_REF] Baños | Design of reset control systems: The PI-CI compensator[END_REF]), a PI+CI is proposed with a state-dependent resetting law, that is the reset is applied at time t in which (x(t), x(t -h)) ∈ M, for a given reset set M. In this work, the reset is applied at time t, which belongs to an infinite and strictly increasing sequence of reset times defined by T (φ) = (t 1 , t 2 , • • • ), which may depend on the initial condition. In addition, we assume that there exist two positive scalars 0

< T 1 ≤ T 2 such that T k = t k+1 - t k ∈ [T 1 , T 2 ] for any k > 0.
From the definition of the reset instants, it is clear that there exists a unique solution x(t, φ), or simply x(t), [START_REF] Baños | Reset Control Systems[END_REF] for a more detailed discussion about existence and uniqueness of solutions).

for t ∈ [-h, ∞) (see Section II of
Remark 1. Note that there are not stability results in the literature that can deal with time-delay reset control systems composed by a PI+CI (there are several results for reset control systems without time-delay, see e.g., [START_REF] Loquen | Piecewise quadratic lyapunov functions for linear control systems with first order reset elements[END_REF]; [START_REF] Baños | Reset times-dependent stability of reset control systems[END_REF]). The main reason is that the base system of (4)-( 5) is not asymptotically stable.

STABILITY ANALYSIS

In this section, the stability of the time-delay reset control system (4) is analyzed by using the framework of sampleddata systems (see, e.g., [START_REF] Fridman | Introduction to Time-Delay Systems: Analysis and Control[END_REF] and the references therein). The proposed approach consists in transforming the reset control system (4) into a linear system interconnected with a sample and hold device as shown in Fig. 2. Then the stability of the sampled-data system is analyzed by using the framework developped by [START_REF] Seuret | A novel stability analysis of linear systems under asynchronous samplings[END_REF]. However, in contrast to the literature, the plant considered in Fig. 2 consists of a closed-loop system with a time-delay, and hence previous results [START_REF] Seuret | Stability analysis of networked control systems with asynchronous sampling and input delay[END_REF][START_REF] Seuret | A novel stability analysis of linear systems under asynchronous samplings[END_REF]) cannot be applied directly.

Firstly, let us rewrite the original reset control system as a sampled-data system. Consider a continuous function χ(t) given by

χ(t) = x(t) -(A R -I) t k ∈[0,t) x(t k ), (6) 
where x(t) is the solution of the system (4), and t k are the reset instants. Noting that A R (A R -I) = 0, it is also satisfied the following equation

x(t) = χ(t) + (A R -I)χ(t k ) (7) with t ∈ (t k , t k+1 ]. Since A d (A R -I) = 0, using the differential equation of the base system, it is obtained χ(t) = ẋ(t) = Aχ(t) + A d χ(t -h) + A(A R -I)χ(t k ) (8)
for t ∈ (t k , t k+1 ]. Therefore, the reset control system can be transformed into the following sampled-data system with augmented state χ(t) = (x p (t), x i (t)):

χ(t) = Aχ(t) + A d χ(t -h) + Au(t), u(t) = (A R -I)χ(t k ), t ∈ (t k , t k+1 ], u(0) = x i (0) -x ci (0), (9) where matrices A, A d , A R are A = A p B p 0 0 , A d = -B p k p C p 0 -k i C p 0 , A R = I 0 0 1 -p r . ( 10 
)
Straightforwardly it is clear that the reset control system (4) is asymptotically stable if the above system is asymptotically stable, since states x p and x i are directly obtained from χ(t) and

x ci (t) = [0 • • • 0 1]χ(t) + u(t).
Let define, for all integer k, the function

χ k : [0, T k ] × [-h, 0] → R n such that for all τ ∈ [0, T k ] and all θ ∈ [-h, 0], χ k (τ, θ) = χ(s k + τ + θ).
The set K represents the set of functions defined by χ k as the set of continuous functions from [0, T k ] × [-h, 0] to R n .

Asymptotic stability analysis

Let us now present results on asymptotic stability of system ( 9)-( 10) allowing to conclude on the stability of the system (4)-( 5).

Proposition 1. Let V : C([-h, 0], R n ) → R + be a functional for which there exist real numbers 0

< µ 1 < µ 2 such that for all Ψ ∈ C([-h, 0], R n ) µ 1 |Ψ(0)| 2 ≤ V (Ψ) ≤ µ 2 Ψ 2 . ( 11 
)
The two following statements are equivalent:

(1) The increment of the functional V is strictly negative for all k ∈ N + and all

T k ∈ [T 1 , T 2 ] V (χ k (T k , •)) -V (χ k (0, •)) < 0. ( 12 
)
(2) There exists a continuous functional V : R × K → R, which satisfies for all k ∈ N + and all

T k ∈ [T 1 , T 2 ] V(T k , χ k ) = V(0, χ k ) ( 13 
)
and such that, for all k > 0 and all σ ∈ [0, T k ], the following inequality holds

Ẇ (σ, χ k ) = d dσ {V (χ k (σ, •)) + V(σ, χ k )} < 0. (14)
Moreover, if one of these statements is satisfied and there exist real numbers η 1 , η 2 ≥ 0 such that

V(0, χ k ) ≤ η 1 V (χ k (0, •)), (15) 
-η 2 V (χ k (0, •)) ≤ V(τ, χ k ) (16)
for all τ ∈ [0, T k ], then system ( 9) is asymptotically stable.

Proof. The equivalence between the two statements is proved in [START_REF] Seuret | Stability analysis of networked control systems with asynchronous sampling and input delay[END_REF]. On the other hand, integrating Ẇ with respect to σ over [0, τ ], we get

V (χ k (τ, •)) -V (χ k (0, •)) + V(τ, χ k ) -V(0, χ k ) < 0 (17)
with τ ≤ T k . By inequalities ( 15) and ( 16) it satisfies

V (χ k (τ, •)) < (1 + η 1 + η 2 )V (χ k (0, •)). ( 18 
)
The above condition and ( 12) guarantee that V (χ k (τ, •)) converges to zero as k goes infinity for τ ∈ [0, T k ]. Finally, condition (11) proves that the solution χ k tends asymptotically to the origin.

Remark 2. In comparison to [START_REF] Seuret | Stability analysis of networked control systems with asynchronous sampling and input delay[END_REF] and [START_REF] Seuret | A novel stability analysis of linear systems under asynchronous samplings[END_REF], the sampled-data system considered here is composed by a sampled plant with an internal time-delay (see Fig. 2). Therefore, stability conditions from [START_REF] Seuret | Stability analysis of networked control systems with asynchronous sampling and input delay[END_REF] and [START_REF] Seuret | A novel stability analysis of linear systems under asynchronous samplings[END_REF] cannot be used directly to prove the stability of the system. That is the reason why conditions ( 15) and ( 16) have been added. The objective of these conditions is to bound the increments of the functional V between the reset instants, and to guarantee the convergence of the bound to zero.

A delay-dependent asymptotic stability conditions for the time-delay reset control system ( 4) is now provided in the sequel. The following proposition is provided by the use of a Bessel-Legendre inequality developed in [START_REF] Seuret | Hierarchy of LMI conditions for the stability analysis of time delay systems[END_REF].

Proposition 2. The sampled-data system ( 9) is asymptotically stable for the given constant time-delay h, if for a given integer N ≥ 0 and scalars 0 < T 1 ≤ T 2 , there exist a matrix P ∈ S (N +1)n , matrices S, R, U , X 2 ∈ S + n , matrices

S 1 , X 1 ∈ S n , matrix S 2 ∈ R n and Y ∈ R (N +3
)n×n such that the LMIs P 0, N = 0,

P + 1 h diag{0, S N -1 } 0, N > 0, (19) Π 1 + T i N 2 X 1 N 2 + Π 2 ≺ 0, ( 20 
) Π 1 -T i N 2 X 1 N 2 T i Y -T i U ≺ 0, ( 21 
)
S 1 S 2 S 2 1 T 2 X 2 0 ( 22 
)
hold for all i ∈ {1, 2}, where the matrices are given in (24).

Proof. Consider the following LK functional

V (χ k (τ, •)) = χ k (τ )P χk (τ ) + 0 -h χ k (τ, s)Sχ k (τ, s)ds +h 0 -h 0 β χ k (τ, s)R χk (τ, s)dsdβ.
(24) This functional has been designed in [START_REF] Seuret | Hierarchy of LMI conditions for the stability analysis of time delay systems[END_REF] based on the sequence of Legendre polynomials, that we will denote in the sequel by L k . Indeed the functional requires the augmented state χk given by χk

(τ ) =          χ k (τ, 0) 0 -h L 0 (s)χ k (τ, s)ds . . . 0 -h L N -1 (s)χ k (τ, s)ds          (25)
if N > 0 and χk (τ ) = χ k (τ, 0) if N = 0. The timederivative of the augmented state χk is given by χk

= Hξ k (τ ), (26) 
where

ξ k (τ ) =              χ k (τ, 0) χ k (τ, -h) 1 h 0 -h L 0 (s)χ k (τ, s)ds . . . 1 h 0 -h L N -1 (s)χ k (τ, s)ds χ k (0, 0)              (27) if N > 0 and ξ k (τ ) = (χ k (τ, 0), χ k (τ, -h)) if N = 0.
The positivity of V is guaranteed by condition (19) along the trajectories of ( 9). The time-derivative of V and ( 26)

lead to V (χ k (τ, •)) = 2 χ k (τ )P χk (τ ) + χ k (τ, 0)Sχ k (τ, 0) -χ k (τ, -h)Sχ k (τ, -h) + h 2 χ k (τ, 0)R χk (τ, 0) -h 0 -h χ k s)R χk (τ, s)ds. (28) 
Note that χk (τ ) = Gξ k (τ ), then by equation ( 26), it yields

V (χ k (τ, •)) = ξ k (τ )Φξ k (τ ) -hI( χk (τ, •)) (29) with I( χk (τ, •)) = 0 -h χ k (τ, s)R χk (τ, s)ds. (30) 
Consider now an additional functional given by

V(τ, χ k ) = (T k -τ ) ζ k (τ )S 1 ζ k (τ ) + He(ζ k (τ )S 2 χ k (0, 0)) +(T k -τ ) τ 0 χ k (s, 0)U χk (s, 0)ds +τ (T k -τ )χ k (0, 0)X 1 χ k (0, 0) +χ k (0, 0)X 2 χ k (0, 0), (31) 
where ζ k (τ ) = χ k (τ, 0) -χ k (0, 0). This functional satisfies condition (13) since

V(T k , χ k ) = V(0, χ k ) = χ k (0, 0)X 2 χ k (0, 0) (32) 
From the above equation it is clear that condition ( 15) is also satisfied for some η 1 ≥ 0. Condition ( 22) and U > 0 guarantee that

τ (T k -τ )χ k (0, 0)X 1 χ k (0, 0) ≤ V(τ, χ k ) (33) N 1 = I n 0 n,n(N +1) N 2 = 0 n,n(N +1) I n N 12 = N 1 -N 2 SN = diag{S, -S, 0 (N +1)n } R N = diag{R, 3R, . . . , (2N + 1)R} S N = diag{S, 3S, . . . , (2N + 1)S} F = [A A d 0 n,nN A(A R -I)] G = I 0 n 0 n,nN 0 n 0 nN,n 0 nN,n hI nN 0 n H = F Γ (0) . . . Γ (N -1) Γ N = Γ (0) • • • Γ (N ) Φ = He G P H + SN +h 2 F RF Π 2 = F U F +He F S 1 N 12 +He F S 2 N 2 Π 1 = Φ -Γ N R N Γ N -N 12 S 1 N 12 -He N 2 S 2 N 2 + He (Y N 12 ) Γ(k) =    [I I 0 n ] , N = 0 I (-I) k+1 γ 0 k I . . . γ N -1 k I 0 n , N > 0 γ i k = -(2i + 1)(1 -(-1) k+i ), i ≤ k 0, i > k (24)
Therefore, there exists η 2 such that condition ( 16) is satisfied, since τ

(T k -τ ) is bounded for τ ∈ [0, T k ], T k ∈ [T 1 , T 2 ],
and the functional V satisfies condition (11).

Defining W = V + V, its time-derivative is given by

Ẇ(τ, χ k ) = ξ k (τ )Φξ k (τ ) -hI( χk (τ, •)) +(T k -τ )[ χ k (τ, 0)U χk (τ, 0) + He( χ k (τ, 0)S 1 ζ k (τ )) +He( χ k (τ, 0)S 2 χ k (0, 0))] -ζ k (τ )S 1 ζ k (τ ) +He(ζ k (τ )S 2 χ k (0, 0)) - τ 0 χ k (s, 0)U χk (s, 0)ds +(T k -2τ )χ k (0, 0)X 1 χ k (0, 0).
(34) The integral term I( χk (τ, •)) of the above equation is bounded by the following Bessel-Legendre inequality (see Corollary 4 in [START_REF] Seuret | Hierarchy of LMI conditions for the stability analysis of time delay systems[END_REF])

I( χk (τ, •)) ≥ 1 h ξ k (τ )   N j=0 (2j + 1)Γ N (j)RΓ N (j)   ξ k (τ ).
(35) On the other hand, the other integral term is bounded as follows (see [START_REF] Seuret | Stability analysis of networked control systems with asynchronous sampling and input delay[END_REF]):

- τ 0 χ k (s, 0)U χk (s, 0)ds ≤ 2ξ k (τ )Y ζ k (τ ) +τ ξ k (τ )Y U -1 Y ξ k (τ ). (36) Hence, the following inequality is obtained Ẇ(τ, χ k ) ≤ ξ k (τ )[Π 1 + (T k -τ )Π 2 +(T k -2τ )N 2 X 1 N 2 + τ Y U -1 Y ]ξ k (τ ). (37) 
Hence, if LMIs of Proposition 2 are satisfied, condition (37) is fulfilled, proving therefore inequality ( 14) and the stability of (9).

Remark 3. The interpretation of the bunch of LMIs in Proposition 2 is rather simple. First, the LMI (19) guarantees the positivity of the LK functional. The LMIs ( 20) and ( 21) concern with the negativity of Ẇ . In particular, (20) and ( 21) ensure Ẇ (0, χ k ) < 0 and Ẇ (T k , χ k ) < 0 for all k > 0, respectively. Then by convexity arguments, it is guaranteed Ẇ (σ, χ k ) < 0, σ ∈ [0, T k ]. Finally, the LMI ( 22) is necessary to fulfill condition (16) in Proposition 1, which guarantees the boundedness of the LK functional between the reset instants.

EXAMPLE

Consider the closed-loop system composed by the following system P P :

   ẋp (t) = 0.5 1 0 0 x p (t) + 1 1 u p (t), y p (t) = [ 1 0 ] x p (t) (38) 
and the PI+CI compensator defined in (2)-(3) with k p = 1, k i = 1, and p r = 0.99. The base closed-loop system is not asymptotically stable independently of the time-delay. However, the system can be stabilized by reset actions with a proper reset period. values of the parameter N . By simulation the system is unstable for h = 0.412, and the maximum obtained by Proposition 2 is 0.4079, showing the weak conservatism of the results. In addition, Fig. 3 shows all the possible reset periods for which Proposition 2 guarantees the stability of the system. It is also shown the maximum and minimum time-delay obtained by simulation for which the system is known to be unstable. In this case, there is not previous method which guarantees the stability of the system, since the base closed-loop system is unstable. On the other hand, let consider T 1 = 10 -6 for the case of asynchronous reset, then Fig. 4 shows the maximum T 2 for several values of the time-delay.

CONCLUSIONS

The paper provides a novel analysis of time-delay reset control systems under time-dependent resetting law. The reset control system considered is composed by a PI+CI compensator and a time-delay process. The proposed approach is based on new results for sampled-data systems. LMI conditions are derived to ensure the asymptotic stability by using a new LK functional based on Bessel-Legendre inequalities. An illustrative example shows the reduction of the conservatism compared with previous results, guaranteeing the stability of a time-delay reset control system with unstable base system.
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 2 Fig. 2. Sampled-data system setup.
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 4 Fig. 4. Example: Asynchronous reset (Prop. 2, N =3).
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 1 Table. 1 shows the maximum timedelay, the maximum and minimum reset period for several Example 1: Maximum time-delay, maximum and minimum reset period. Fig. 3. Example: Maximum and minimum reset period (Prop. 2, N =3). Stability proved for a reset period in the shaded area.
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