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Abstract: This work presents results on the stability of time-delay reset control systems under
time-dependent resetting conditions. The stability of a reset control system composed by a time-
delay process and a proportional and integrative plus Clegg integrator (PI+CI) compensator is
tackled by using the framework of sampled-data systems. It leads to sufficient stability conditions
expressed in terms of LMIs (Linear Matrix Inequality), that depend explicitly on the reset times.
In contrast to previous results, the proposed conditions allow to guarantee the stability of reset
systems with unstable base system.
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1. INTRODUCTION

Reset control systems are a special type of hybrid systems,
in which the system state (or part of it) is reset at the
instants it intersects some reset surface. When the reset
is defined as a function of time one can consider the reset
control system as an impulsive system. In the past decades,
the importance of impulsive systems has been highlighted
by many researchers due to the number of potential broad
applications in various fields, such as control systems
with communication constraints, sampled-data systems,
mechanical systems (Haddad et al. (2006); Chen and
Zheng (2009b); Hespanha et al. (2008); Naghshtabrizi
et al. (2008) and the monographs Bainov and Simeonov
(1989) and Lakshmikantham et al. (1989)). In general,
impulsive systems may be classified in (i) systems with
impulses at fixed instants, (ii) systems with impulses
at variable instants, and (iii) autonomous systems with
impulse effects. Reset control systems are included in (iii)
since they have a reset surface which does not depend on
the time. Significant progress on the stability of impulsive
dynamical systems has been made during the past 20
years, see Chen and Zheng (2009c,a, 2011); Guan (1999);
Khadra et al. (2009); Liu et al. (2007); Wang and Liu
(2005); Yang and Xu (2007); Hetel et al. (2013) and
references therein. However, most of the research effort has
been dedicated to cases (i) and (ii), and then many results
are not directly applicable in the case of reset systems.

Recently different results on the stability of time-delay re-
set control systems have been developed for the zero cross-
ing reset condition. A delay-independent condition was
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presented in Baños and Barreiro (2009), and extended to
delay-dependent condition in Barreiro and Baños (2010);
Prieto et al. (2012). Quadratic stability of time-delay reset
control systems with reset surface uncertainty was consid-
ered in Guo and Xie (2012). More recently the previous
results have been extended to input-to-output stability
in Mercader et al. (2013b), Mercader et al. (2013a). All
these results are based on a generalization of the so-
called Hβ condition (see Beker et al. (2004)) for non delay
reset control systems. The main idea is the existence of a
Lyapunov-Krasovskii (LK) functional which must always
decrease during the flow and must decrease or remain equal
during the jumps. In general, this basic result may be con-
servative. In Davó and Baños (2013a) a less conservative
result is obtained by allowing some bounded increments of
the functional after the reset instants. Nevertheless, these
sufficient conditions are still conservative. The conditions
obtained are not able to guarantee asymptotic stability if
the base system is not stable. This limitation of the ap-
proach comes from the fact that in general the reset action
with state-dependent resetting law cannot be guaranteed,
which means that the reset control system may evolve
without reset action for some initial conditions, implying
the stability of the base system.

In this work, we focus on the stability of a reset control
system submitted to a single time-delay, and with a time-
dependent resetting law. In this case, the time between two
consecutive reset instants is considered to be in a given
interval. Therefore, the existence of an infinity number
of reset actions for any initial condition is guaranteed. In
contrast to the previous work, here the stability of the base
system is not needed, and then less conservative results are
expected. In spite of the fact that most of the results of
impulsive systems may be applied, they are limited to a
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Fig. 1. Reset control system setup.

strict decrement of the LK functional during the impulse
actions. Therefore, they cannot be applied to the setup of
this paper, since the reset actions cannot affect the states
of the process in a reset control system.

The main idea of this paper is the transformation of the
reset control system into a sampled-data system, so that
the latest stability results in the framework of sampled-
data systems can be applied. This transformation can be
directly made for a particular reset compensator which
is called PI+CI (Baños and Vidal (2012)). This compen-
sator is a simple modification of a PI compensator, which
includes a Clegg integrator (CI) in parallel. PI+CI has
been shown to be effective in several control experiments
of processes with time-delay (Vidal and Baños (2012);
Davó and Baños (2013b)). In addition, the stability of
the PI+CI has been analyzed in Vidal (2009) for non
delay processes. The reset control system composed by
the PI+CI compensator can be modeled as a sampled-
data system where the controlled process consists of a
closed-loop system with internal time-delay. In this way,
the results of Seuret (2011, 2012) are extended with a
new LK functional (Seuret and Gouaisbaut (2014)), and
delay-dependent criterion is developed for the asymptotic
stability.

Notation: Throughout the article, the sets R, R+, Rn,
Rn×n and Sn denote the sets of real numbers, nonnegative
real numbers, the n-dimensional Euclidean space, n × n
matrices and symmetric matrices, respectively. A column
vector is denoted by x ∈ Rn. Given two vectors x1 and x2,
we write (x1,x2) to denote [x>1 ,x

>
2 ]>. The notation |x| is

the euclidean norm for x ∈ Rn. C([a, b],Rn) stands for the
set of continuous functions mapping [a, b] to Rn, with the
norm ‖φ‖ = maxθ∈[a,b]|φ(θ)|. The identity matrix and the
zero matrix of adequate dimensions are denoted by I and
0, respectively. The notation P � 0 for P ∈ Sn means that
P is positive definite. The set of positive definite matrices
is denoted by S+n . For a matrix A ∈ Rn×n, the notation
He(A) refers to A+A>.

2. PRELIMINARIES AND PROBLEM MOTIVATION

Consider a time-delay reset control system as shown in
Fig. 1, given by the feedback interconnection of a linear
and time invariant (LTI) system P and a PI+CI (both
single-input-single-output). P is given by the state-space
system

P :

{
ẋp(t) = Apxp(t) +Bpup(t),
yp(t) = Cpxp(t),

(1)

where xp ∈ Rnp and Ap ∈ Rnp×np , Bp ∈ Rnp×1,
Cp ∈ R1×np . The PI+CI compensator is simply a parallel
connection of a PI compensator and a Clegg integrator.
In the state-space, the PI+CI can be expressed by using
a state xr = (xi, xci) ∈ R2, where xi is the integral term

state, and xci corresponds to the Clegg integrator state.
Its state-space realization is given by

PI + CI :

 ẋr(t) = Brur(t), t /∈ T ,
xr(t

+) = Aρxr(t), t ∈ T ,
yr(t) = Crxr(t) + kpur(t),

(2)

where t+ = t + ε with ε → 0+, and the matrices Br, Cr,
and Aρ are given by

Br =

[
ki
0

]
, Cr = [1 1] , Aρ =

[
1 0
−pr 0

]
. (3)

In this work, we consider for simplicity that the connection
between P and PI+CI is only affected by a time-delay h
at the output of system P. The proposed approach can
also be applied to obtain similar results when the time-
delay is at the input of P. The autonomous closed-loop
system (with zero exogenous signals, that is r = d = 0)
is obtained by making the connections up(t) = yr(t) and
ur(t) = −yp(t− h):

ẋ(t) = Ax(t) +Adx(t− h), t /∈ T ,
x(t+) = ARx(t), t ∈ T ,
y(t) = Cx(t− h),
x(t) = φ(t), t ∈ [−h, 0],

(4)

where x(t) = (xp(t),xr(t)) ∈ Rn with n = np + 2,
φ ∈ C([−h, 0],Rn) is the initial condition function, and
matrices A, Ad, C, and AR are given by

A =

[
Ap BpCr
0 0

]
, Ad =

[
−kpBpCp 0
−BrCp 0

]
,

C = [Cp 0 ] , AR =

[
I 0
0 Aρ

]
.

(5)

In some previous works (Vidal (2009); Baños and Vidal
(2012)), a PI+CI is proposed with a state-dependent
resetting law, that is the reset is applied at time t in
which (x(t),x(t − h)) ∈ M, for a given reset set M. In
this work, the reset is applied at time t, which belongs to
an infinite and strictly increasing sequence of reset times
defined by T (φ) = (t1, t2, · · · ), which may depend on the
initial condition. In addition, we assume that there exist
two positive scalars 0 < T1 ≤ T2 such that Tk = tk+1 −
tk ∈ [T1, T2] for any k > 0.

From the definition of the reset instants, it is clear that
there exists a unique solution x(t, φ), or simply x(t),
for t ∈ [−h,∞) (see Section II of Baños and Barreiro
(2012) for a more detailed discussion about existence and
uniqueness of solutions).

Remark 1. Note that there are not stability results in
the literature that can deal with time-delay reset control
systems composed by a PI+CI (there are several results for
reset control systems without time-delay, see e.g., Loquen
et al. (2010); Baños et al. (2011)). The main reason is that
the base system of (4)-(5) is not asymptotically stable.

3. STABILITY ANALYSIS

In this section, the stability of the time-delay reset control
system (4) is analyzed by using the framework of sampled-
data systems (see, e.g., Fridman (2014) and the references
therein). The proposed approach consists in transforming
the reset control system (4) into a linear system inter-
connected with a sample and hold device as shown in
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Fig. 2. Sampled-data system setup.

Fig. 2. Then the stability of the sampled-data system is
analyzed by using the framework developped by Seuret
(2012). However, in contrast to the literature, the plant
considered in Fig. 2 consists of a closed-loop system with
a time-delay, and hence previous results (Seuret (2011,
2012)) cannot be applied directly.

Firstly, let us rewrite the original reset control system as a
sampled-data system. Consider a continuous function χ(t)
given by

χ(t) = x(t)− (AR − I)
∑

tk∈[0,t)

x(tk), (6)

where x(t) is the solution of the system (4), and tk are
the reset instants. Noting that AR(AR − I) = 0, it is also
satisfied the following equation

x(t) = χ(t) + (AR − I)χ(tk) (7)

with t ∈ (tk, tk+1]. Since Ad(AR − I) = 0, using the
differential equation of the base system, it is obtained

χ̇(t) = ẋ(t) = Aχ(t) +Adχ(t− h) +A(AR − I)χ(tk) (8)

for t ∈ (tk, tk+1]. Therefore, the reset control system can be
transformed into the following sampled-data system with
augmented state χ(t) = (xp(t), xi(t)):{

χ̇(t) = Aχ(t) +Adχ(t− h) +Au(t),
u(t) = (AR − I)χ(tk), t ∈ (tk, tk+1],
u(0) = xi(0)− xci(0),

(9)
where matrices A, Ad, AR are

A =

[
Ap Bp
0 0

]
, Ad =

[
−BpkpCp 0
−kiCp 0

]
,

AR =

[
I 0
0 1− pr

]
.

(10)

Straightforwardly it is clear that the reset control system
(4) is asymptotically stable if the above system is asymp-
totically stable, since states xp and xi are directly obtained
from χ(t) and xci(t) = [0 · · · 0 1]χ(t) + u(t).

Let define, for all integer k, the function χk : [0, Tk] ×
[−h, 0] → Rn such that for all τ ∈ [0, Tk] and all θ ∈
[−h, 0], χk(τ, θ) = χ(sk + τ + θ). The set K represents
the set of functions defined by χk as the set of continuous
functions from [0, Tk]× [−h, 0] to Rn.

3.1 Asymptotic stability analysis

Let us now present results on asymptotic stability of sys-
tem (9)-(10) allowing to conclude on the stability of the
system (4)-(5).

Proposition 1. Let V : C([−h, 0],Rn) → R+ be a func-
tional for which there exist real numbers 0 < µ1 < µ2

such that for all Ψ ∈ C([−h, 0],Rn)

µ1|Ψ(0)|2 ≤ V (Ψ) ≤ µ2‖Ψ‖2. (11)

The two following statements are equivalent:

(1) The increment of the functional V is strictly negative
for all k ∈ N+ and all Tk ∈ [T1, T2]

V (χk(Tk, ·))− V (χk(0, ·)) < 0. (12)

(2) There exists a continuous functional V : R×K→ R,
which satisfies for all k ∈ N+ and all Tk ∈ [T1, T2]

V(Tk, χk) = V(0, χk) (13)

and such that, for all k > 0 and all σ ∈ [0, Tk], the
following inequality holds

Ẇ (σ, χk) =
d

dσ
{V (χk(σ, ·)) + V(σ, χk)} < 0. (14)

Moreover, if one of these statements is satisfied and there
exist real numbers η1, η2 ≥ 0 such that

V(0, χk) ≤ η1V (χk(0, ·)), (15)

−η2V (χk(0, ·)) ≤ V(τ, χk) (16)

for all τ ∈ [0, Tk], then system (9) is asymptotically stable.

Proof. The equivalence between the two statements is
proved in Seuret (2011). On the other hand, integrating

Ẇ with respect to σ over [0, τ ], we get

V (χk(τ, ·))− V (χk(0, ·)) + V(τ, χk)− V(0, χk) < 0 (17)

with τ ≤ Tk. By inequalities (15) and (16) it satisfies

V (χk(τ, ·)) < (1 + η1 + η2)V (χk(0, ·)). (18)

The above condition and (12) guarantee that V (χk(τ, ·))
converges to zero as k goes infinity for τ ∈ [0, Tk].
Finally, condition (11) proves that the solution χk tends
asymptotically to the origin.

Remark 2. In comparison to Seuret (2011) and Seuret
(2012), the sampled-data system considered here is com-
posed by a sampled plant with an internal time-delay (see
Fig. 2). Therefore, stability conditions from Seuret (2011)
and Seuret (2012) cannot be used directly to prove the
stability of the system. That is the reason why conditions
(15) and (16) have been added. The objective of these
conditions is to bound the increments of the functional V
between the reset instants, and to guarantee the conver-
gence of the bound to zero.

A delay-dependent asymptotic stability conditions for the
time-delay reset control system (4) is now provided in the
sequel. The following proposition is provided by the use
of a Bessel-Legendre inequality developed in Seuret and
Gouaisbaut (2014).

Proposition 2. The sampled-data system (9) is asymptoti-
cally stable for the given constant time-delay h, if for a
given integer N ≥ 0 and scalars 0 < T1 ≤ T2, there exist a
matrix P ∈ S(N+1)n, matrices S, R, U , X2 ∈ S+n , matrices



S1, X1 ∈ Sn, matrix S2 ∈ Rn and Y ∈ R(N+3)n×n such
that the LMIs

{
P � 0, N = 0,

P +
1

h
diag{0, SN−1} � 0, N > 0,

(19)

Π1 + Ti
(
N>2 X1N2 + Π2

)
≺ 0, (20)

[
Π1 − TiN>2 X1N2 TiY

? −TiU

]
≺ 0, (21)

[
S1 S2

S>2
1

T2
X2

]
� 0 (22)

hold for all i ∈ {1, 2}, where the matrices are given in (24).

Proof. Consider the following LK functional

V (χk(τ, ·)) = χ̃>k (τ)Pχ̃k(τ) +

∫ 0

−h
χ>k (τ, s)Sχk(τ, s)ds

+h

∫ 0

−h

∫ 0

β

χ̇>k (τ, s)Rχ̇k(τ, s)dsdβ.

(24)
This functional has been designed in Seuret and Gouais-
baut (2014) based on the sequence of Legendre polyno-
mials, that we will denote in the sequel by Lk. Indeed the
functional requires the augmented state χ̃k given by

χ̃k(τ) =



χk(τ, 0)∫ 0

−h
L0(s)χk(τ, s)ds

...∫ 0

−h
LN−1(s)χk(τ, s)ds


(25)

if N > 0 and χ̃k(τ) = χk(τ, 0) if N = 0. The time-
derivative of the augmented state χ̃k is given by

˙̃χk = Hξk(τ), (26)

where

ξk(τ) =



χk(τ, 0)
χk(τ,−h)

1

h

∫ 0

−h
L0(s)χk(τ, s)ds

...
1

h

∫ 0

−h
LN−1(s)χk(τ, s)ds

χk(0, 0)


(27)

if N > 0 and ξk(τ) = (χk(τ, 0), χk(τ,−h)) if N = 0.

The positivity of V is guaranteed by condition (19) along
the trajectories of (9). The time-derivative of V and (26)
lead to

V̇ (χk(τ, ·)) = 2χ̃>k (τ)P ˙̃χk(τ) + χ>k (τ, 0)Sχk(τ, 0)

−χ>k (τ,−h)Sχk(τ,−h) + h2χ̇>k (τ, 0)Rχ̇k(τ, 0)

−h
∫ 0

−h
χ̇>k (τ, s)Rχ̇k(τ, s)ds.

(28)

Note that χ̃k(τ) = Gξk(τ), then by equation (26), it yields

V̇ (χk(τ, ·)) = ξ>k (τ)Φξk(τ)− hI(χ̇k(τ, ·)) (29)

with

I(χ̇k(τ, ·)) =

∫ 0

−h
χ̇>k (τ, s)Rχ̇k(τ, s)ds. (30)

Consider now an additional functional given by

V(τ, χk) = (Tk − τ)
[
ζ>k (τ)S1ζk(τ)

+ He(ζ>k (τ)S2χk(0, 0))
]

+(Tk − τ)

∫ τ

0

χ̇>k (s, 0)Uχ̇k(s, 0)ds

+τ(Tk − τ)χ>k (0, 0)X1χk(0, 0)

+χ>k (0, 0)X2χk(0, 0),

(31)

where ζk(τ) = χk(τ, 0)− χk(0, 0). This functional satisfies
condition (13) since

V(Tk, χk) = V(0, χk) = χ>k (0, 0)X2χk(0, 0) (32)

From the above equation it is clear that condition (15) is
also satisfied for some η1 ≥ 0. Condition (22) and U > 0
guarantee that

τ(Tk − τ)χ>k (0, 0)X1χk(0, 0) ≤ V(τ, χk) (33)

N1 =
[
In 0n,n(N+1)

]
N2 =

[
0n,n(N+1) In

]
N12 = N1 −N2

S̃N = diag{S,−S, 0(N+1)n} RN = diag{R, 3R, . . . , (2N + 1)R} SN = diag{S, 3S, . . . , (2N + 1)S}

F = [A Ad 0n,nN A(AR − I)] G =

[
I 0n 0n,nN 0n

0nN,n 0nN,n hInN 0n

]
H =

[
F> Γ>(0) . . . Γ>(N − 1)

]
ΓN =

[
Γ>(0) · · · Γ>(N)

]>
Φ = He

(
G>PH

)
+S̃N +h2F>RF Π2 = F>UF+He

(
F>S1N12

)
+He

(
F>S2N2

)
Π1 = Φ− Γ>NRNΓN −N>12S1N12 −He

(
N>2 S2N2

)
+He (Y N12)

Γ(k) =

 [I I 0n] , N = 0[
I (−I)k+1 γ0kI . . . γN−1k I 0n

]
, N > 0

γik =

{
−(2i+ 1)(1− (−1)k+i), i ≤ k
0, i > k

(24)



Therefore, there exists η2 such that condition (16) is
satisfied, since τ(Tk − τ) is bounded for τ ∈ [0, Tk],
Tk ∈ [T1, T2], and the functional V satisfies condition (11).

Defining W = V + V, its time-derivative is given by

Ẇ(τ, χk) = ξ>k (τ)Φξk(τ)− hI(χ̇k(τ, ·))
+(Tk − τ)[χ̇>k (τ, 0)Uχ̇k(τ, 0) +He(χ̇>k (τ, 0)S1ζk(τ))

+He(χ̇>k (τ, 0)S2χk(0, 0))]− ζ>k (τ)S1ζk(τ)

+He(ζ>k (τ)S2χk(0, 0))−
∫ τ

0

χ̇>k (s, 0)Uχ̇k(s, 0)ds

+(Tk − 2τ)χ>k (0, 0)X1χk(0, 0).

(34)
The integral term I(χ̇k(τ, ·)) of the above equation is
bounded by the following Bessel-Legendre inequality (see
Corollary 4 in Seuret and Gouaisbaut (2014))

I(χ̇k(τ, ·)) ≥ 1

h
ξk(τ)>

 N∑
j=0

(2j + 1)Γ>N (j)RΓN (j)

 ξk(τ).

(35)
On the other hand, the other integral term is bounded as
follows (see Seuret (2011)):

−
∫ τ

0

χ̇>k (s, 0)Uχ̇k(s, 0)ds ≤ 2ξ>k (τ)Y ζk(τ)

+τξ>k (τ)Y U−1Y >ξk(τ).

(36)

Hence, the following inequality is obtained

Ẇ(τ, χk) ≤ ξ>k (τ)[Π1 + (Tk − τ)Π2

+(Tk − 2τ)N>2 X1N2 + τY U−1Y >]ξk(τ).
(37)

Hence, if LMIs of Proposition 2 are satisfied, condition
(37) is fulfilled, proving therefore inequality (14) and the
stability of (9).

Remark 3. The interpretation of the bunch of LMIs in
Proposition 2 is rather simple. First, the LMI (19) gua-
rantees the positivity of the LK functional. The LMIs (20)

and (21) concern with the negativity of Ẇ . In particular,

(20) and (21) ensure Ẇ (0, χk) < 0 and Ẇ (Tk, χk) < 0 for
all k > 0, respectively. Then by convexity arguments, it
is guaranteed Ẇ (σ, χk) < 0, σ ∈ [0, Tk]. Finally, the LMI
(22) is necessary to fulfill condition (16) in Proposition 1,
which guarantees the boundedness of the LK functional
between the reset instants.

4. EXAMPLE

Consider the closed-loop system composed by the following
system P

P :

 ẋp(t) =

[
0.5 1
0 0

]
xp(t) +

[
1
1

]
up(t),

yp(t) = [ 1 0 ] xp(t)
(38)

and the PI+CI compensator defined in (2)-(3) with kp = 1,
ki = 1, and pr = 0.99. The base closed-loop system is
not asymptotically stable independently of the time-delay.
However, the system can be stabilized by reset actions with
a proper reset period. Table. 1 shows the maximum time-
delay, the maximum and minimum reset period for several

N 0 1 2 3 5

Max. h 0.3613 0.406 0.4079 0.4079 0.4079

Max. T 0.3039 0.2802 0.2393 0.2405 0.2405

Min. T 0.2670 0.1669 0.2052 0.2050 0.2041

Table 1. Example 1: Maximum time-delay,
maximum and minimum reset period.
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Fig. 3. Example: Maximum and minimum reset period
(Prop. 2, N=3). Stability proved for a reset period
in the shaded area.
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Fig. 4. Example: Asynchronous reset (Prop. 2, N=3).

values of the parameter N . By simulation the system is
unstable for h = 0.412, and the maximum obtained by
Proposition 2 is 0.4079, showing the weak conservatism of
the results. In addition, Fig. 3 shows all the possible reset
periods for which Proposition 2 guarantees the stability of
the system. It is also shown the maximum and minimum
time-delay obtained by simulation for which the system is
known to be unstable. In this case, there is not previous
method which guarantees the stability of the system, since
the base closed-loop system is unstable. On the other hand,
let consider T1 = 10−6 for the case of asynchronous reset,
then Fig. 4 shows the maximum T2 for several values of
the time-delay.

5. CONCLUSIONS

The paper provides a novel analysis of time-delay reset
control systems under time-dependent resetting law. The



reset control system considered is composed by a PI+CI
compensator and a time-delay process. The proposed ap-
proach is based on new results for sampled-data systems.
LMI conditions are derived to ensure the asymptotic sta-
bility by using a new LK functional based on Bessel-
Legendre inequalities. An illustrative example shows the
reduction of the conservatism compared with previous
results, guaranteeing the stability of a time-delay reset
control system with unstable base system.
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