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Robust stability for delayed port-Hamiltonian systems
using improved Wirtinger-based inequality*

Said Aoue$, Warody Lombardi, Damien Eberartiand Alexandre Seurét

Abstract— This paper addresses robust stability issues of is weak. In [14], the stability of a class of time-delay Hamil
interconnected port-Hamiltonian systems with polytopic ncer-  tonian systems was investigated while some new results on
tainty and time-varying delay. On the basis of a Lyapunov-  generalized Hamiltonian realization were proposed. The st
Krasovskii functional and the Wirtinger’s inequality (kno wn to bilit diti f the int ted t-Hamiltonisys-
be less conservative than the popular Jensen’s inequalityye ity Con ions o e_'n erconnec? por am_' onisys
show the improvements of the newly proposed criterion with te€ms using the negative feedback interconnection have been
respect to other existing ones. The stability analysis is deed  studied using Lyapounov-Krasovskii candidates, congaic
based on a delay independent criterion. A classical nonlie  from the Hamiltonian [9]. By means of a modified Lyapunov-
example taken from the literature illustrates the relevane of Krasovskii candidate and adding equality constraintssa le
the results. . L . o

conservative condition is given in [15]. The generalizatid
these results is given in [4], where the delays are assumed
to be unknown time-varying functions. Notice that all these

Modeling complex nonlinear systems can be tackled by msults are based on Jensen inequality to establish thiitgtab
network representation of energy exchanges between interiterion.
connected subsystems. This is the underlying idea of port-
Hamiltonian systems (PHSs) [12]. A fundamental property ogt
this class of systems concerns theamposability: intercon-
nection of PHSs results in a PHS where the overall ener
equals the sum of the subsystems energies. PHSs are

I. INTRODUCTION

In contrast with the literature, we investigate the robust

ability of the interconnected port-Hamiltonian systemith
olytopic uncertainty using the recently appeared Wiking

%sed integral inequality [11]. The main advantage remains

She fact that th L K Kii
known to satisfy gpassive equality, which is employed to © fact that one can Use the same -yapunov-iarasovsx

lud wability by picking th ‘ fioTet functional, without any additional constraints. We willosth
conclude on stability by picking eenergy(_s orage) WL that this inequality also allows the derivation of delay-

r&tependent stability conditions for delayed port-Hamiibon

) . A systems. The sufficient condition is expressed in terms of

interconnected system is no longer Hamiltonian and theereefol_,vIIS and is shown to be less conservative than other

the seel§ of other L.Yap“”OY candidates is mandatory. methods based on Jensen inequality. Then, the criterion is
Classically, stability of t|me—d(_alay systems s _addressegdapted to the robust stability analysis of polytopic syste

from a state space representation. The dynamics includgs . case, we will provide a delay-independent stability

the pres%rjlj[ and tlhe_pgst hlsLorﬂ/ of _the _trajecto_rles 3SIW%| ndition. To conclude, a numerical example is processed to
[10]. Stability analysis is a cha enging issue since delaygy, v the relevance of the proposed method.
may cause unstable closed-loop behavior [7]. _ . .

Current efforts have been made to achieve robust stability The paper is organized as follows: section Il recalls
for time-delay systems [2], firstly deriving delay-indepent the class of port-Hamiltonian systems and the feedback
conditions [6], [8] and secondly delay-dependent condiio interconnection property. Delay interconnection of PHSs
[1], [5], [13], in the form of a feasibility problem under iS presented section Ill. In Section 1V, a delay-dependent
Linear Matrix Inequalities (LMI) constraints. stability condition is introduced and robust stability it

To the best of the authors’ knowledge, the literature rePolytopic system is derived. The particular case of delay-
garding the stability of time-delay port-Hamiltonian systs  independent stability conditions is also treated in the

section V. A numerical example is studied in Section VI
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when introducing delay in the interconnection structuhe: t



Il. PORT-HAMILTONIAN FRAMEWORK statex;, and (up,y2) the port variables of systerh, with

, L . statex,, one can consider the feedback interconnection:
Let us first recall some properties inherent in the port

Hamiltonian formulation of dynamical systems. U _ 0 Iy (4)
1) | 0 Y2 ’
A. Port-Hamiltonian systems as drawn in Fig. 1.
Throughout the paper, we shall consider nonlinpant-
Hamiltonian systems with dissipation, whose dynamics are Uz s Y1
described by the following equations [12]: 1
x= (I(X) — R(x)) [OxH]; + G(X)u,

2) 1

® {2, @
wherex € R" is the state (or Hamiltonian variables) vector s
and J(x) is a skew-symmetric matrix called treructure \7) 2 up

matrix. Note thatJ(x) is full rank and satisfies)(x) +
J(x)T = 0. R(x) is the positive semi-definite damping matrix Fig. 1. Feedback interconnection of two port-Hamiltonigstems.
(R(x) =R(x)T > 0). The matrixG(x) € R™™ represents the

input force matrix ands(x)u denotes the generalized forces Then, the dynamics of the interconnected syste is

resulting from the control inputsl € R™ y € R™ is the written as: T

system output. The output vectpfor this class of systems is E [Xl] - [Jl - F§1 _Glez} [[Dlel]t}
imposed by the input vector field(x). Also, we say thay is ot X2_ GGy R—Re| [[DeHal| (5)
conjugate tau. To simplify the calculations in this paper, we < X =(J-R)[0xH],

consider that the matrices R and G are constant. Remind where

that [OxH]; denotes the gradient ¢f with respect tax and
considered at time. X = [Xl} L T= { I —Gleg] R= [Rl 0] _
Computing the time variation off along trajectories of 2 G2y 2 0 R
(1) and integrating fronp to t >ty leads to the following The total energyH of 23, equals the sum of the subsystems
energy balance equation: energies,i.ee H = Hy + Hy, J gather the skew-symmetric
part andR the damping part. It is then easy to see that the

't 't . . . . ! .
H(X(t)) =H(x(to))+ | y' (S)u(s)ds— / [OxH]I R[OxH]sds. derivative of H along the trajectories of (5) is given by:
to .

fo
d dXx;
o @ Y <DXHt,—t>:—DXHJRDXHt§o, ©)
From the dissipative theory frameworkd is a storage dt dt
function andy’u is a supply rate with unit power. Hence, showing thats, is stable since, using the same argument as
sinceH is bounded from below, system (1) is said to beyreviously,# is a Lyapunov candidate. Asymptotic stability
passive as it is dissipative w.r.t the supply ragéu. Equation s achieved wheneveR > 0.
(2) also reads as follows: the amount of energy of the systemFor the sake of clarifying the main idea and simplifying
at timet equals the amount of energy at tiadncreased by - the presentation, we only detail here the full interconioect
the energy supplied through the port variables (positieely case. However, partial interconnection, which means that a
negatively) and decreased by the dissipated energy. Heéncesubset of port variables are constrained by interconnectio
is worth noting that stability of the unforced system (1) camprocesses in the same way.
be immediately analyzed by takim$jas Lyapunov candidate,  Unfortunately, in most cases, this interconnection wilt no
sinceR> 0 and (2) reduces tbl < 0, then the system (1) is be perfectly achieved as in (4). In [9] and [15], the authors

asymptotically stable in the sense of Lyapunov. showed that the structure and the stability properties of
. o the interconnected systems, obtained with negative feskdba
B. Interconnection of port-Hamiltonian systems interconnection between two port-Hamiltonian systems, ca

Consider now two port-Hamiltonian systems given by: be affected by the presence of time-delays. Therefore, the
stability analysis can be assessed by the application of the

sy - ] %= —R)[OxHi) +Gui, 3) Lyapunov-Krasovskii theorem, as we will show latter on in
yi =Gy [OxgHil; , this article.
It is well-known that port-Hamiltonian systems asempos- I1l. PROBLEM FORMULATION AND PRELIMINARIES
able, i.e. by considering two port-Hamiltonian systerbg Contrarily to the interconnection case described in (4),

and 2, their interconnection through power-conserving  time-varying delays must be taken into account in a more

structure yields a dynamical systey, which again is (egjistic framework. The feedback interconnection became
a port-Hamiltonian system: the Hamiltonian framework is [[u] 0 —1] [yadne,
1t]_[ —H th(t‘|

preserved under interconnection.

7
By denoting(uz,y1) the port variables of syster;, with U]t I 0| |Yalt-ne )



[ug]t Remark 1: As mentioned in [11], the authors clearly

@— 21 showed that the tem%}—an 0Qp presented in Lemma 1
Vo)t refers exactly to Jensen’s inequality, and the second term

Delayh(t) 52-Q1 QQ, is non-negative definite. Thus it is clear that

vl Wirtinger’s inequality encompasses Jensen’s inequality.
1t—h(t
% © IV. MAIN RESULT

[Uz]t In this section, we consider the stability problem of

the interconnected port-Hamiltonian system (9) with time-
varying delay. By introducing the same Lyapunov-Krasovski

functions as [15] and using the Wirtinger’s inequality eest

as itis shown in Fig 2. In (7}(t) represents the time-varying of the Jensen’s Inequality, we can establish the stability
delay, which is assumed to satisfy the following conditiongheorems provided in the following subsection.

O<h(t)y<hy and O<h(t)<d<1, (8) A Delay-dependent stability analysis

Theorem 1. The delayed interconnected port-Hamiltonian
system (9) is asymptotically stable for any time-varying
delayh(t) satisfying (8), if there exist matricé8 >0, S >0
and Q > 0 of appropriate dimensions such that the following

Fig. 2. Feedback interconnection of two PHSs with time-vayydelay.

wherehy is the maximum delay. By using the delayed inter-
connection (7), the interconnected port-Hamiltonian exyst
takes the following form:

dx] [h-R 0 ][[OgHl, LMI holds:
dt [Xz] [ 0 Jz—Rz} |:[|:|X2H2]t:| S Z12 Za3
0 -GG} [Dlel]tfh(t) == [ £z 323] <0 (12)
+ {GzGI 0 } [DXZHZ]th(I)] I
_ where
= X=(T-R)Uati+ MUxHing - © Z1=-R+S-40+(J-R)Ta(J-R)
The previous equation no longer preserves the port- +PD Hi (T —R)+ (T —R)TORH{ P

Hamiltonian structure because of the time varying delay.
Indeed the energy balance equation of (9) becomes: Z12= M 20+ PURH M+ (T —R) aM
dH: 9 Z13= 6Q Z3=6Q, Z33=-120
dt -0 Ht RDXHt"’DXHt MDXHt ht) s (10) 22_ (1 d)S 4Q+MTGM

and this relation clearly shows that energy balance of the a= h2 02 ”H,t QD

total Hamiltonian? in the presence of time-varying delays Proof: The following Lyapunov-Krasovskii functional
is not sufficient to conclude on stability of the intercontegc  is chosen as candidate for the system (9):

system (9). Actually the last term of (10) has to be taken into £) = Vi (t t t 13
account in the stability analysis. Hence, our objectivehis t V() =N Va0 +Va(), (13)
design of a new Hamiltonian, which must be chosen in thehere

sense of Lyapunov-Krasovskii in order to account for the Vi(t) = Ht+Dx”H,tT7’ O Hy (14)
delay. i

In contrast with the literature where stability conditions V»(t) = / DXHTS OxHsds, (15)
of (9) derives from Jensen’s inequality [9], [15], the prase
work proposes some new sufficient delay-dependent ro- ), ) — M/ XHT Q d (DXH )drds,
bust stability conditions for interconnected PHSs based on hum Jt+s dT
Wirtinger’s integral inequality [11]. The benefits of such (16)

research directions comes from the reduction of consemati  Along the trajectories of (9), the derivative of the functio
compared with the usual Jensen inequality. The Wirtinger’s; is given by:

inequality is recalled in the following lemma. (1) = —Ou TR 00T MO
Lemma 1: [11] For a given symmetric positive definite it XHtT ;Ht:—' XHfr/VZl XHtTfhm
nx nmatrix @ > 0 and any differentiable functioh: [a, b] — +UxH PURHy &+ & O He P Uaty
R", the following inequality holds _ DXHtT{ R4 PIEH (T —R)
s 1 [Q] [@ 07[Q
where +OxH{ {ZM+POZH M} OxHye g

+ DX}Htfh(t) {%MT MT DXHt PT} UxHe .

2 b
Qozf(b)—f(a),lef(b)+f(a)—m'/a f(s)ds an



The time derivative o), leads to: B. Robust delay-dependent stability analysis

This section aims at extending the stability conditionsrfro

oo ; o ;
Vo(t) = DaHy SOxHs — (1= (1) Dae Ay SO Hreny Theorem 1 to the case of robust stability. Indeed, one may

< DX’HtTSDXHt —(1-d) DXHtTfh(t)SDX’Ht,h(t) . consider interconnected port-Hamiltonian systems (9)estib
(18) to uncertainties in the model. Indeed the Hessian matrix
Finally, the time derivative ol is : 0% H in (9) might be uncertain in some application. In the
. . . following we will assume that the uncertainties are embedde
Va(t) =XO3ZH hg Q03 H X in some polytopic representation, which are expressed as
t o d ™ ~d follows:
_hM/ o (Dx?s) Qg (Oxtts)ds 2 S o (2 ()
t—hy DX’?L[t = Z AJ (DXH'[) ) (22)
j=1

_ {DXHtT (T -R)" + DXHLWMT} x

where
o x { (7 = R) DaH + MOxHy_n } )
t o d d Aj=1, 0<A;<1, j=12,...,N. 23
—hM/t & (OxHS) Q5 (HxHs)ds, J; . ) : (23)
—fm
(19) _
where the parameter = h2, 03 H{ Q03 Hs. The matrices(D%c}tt)(J> represent the vertices of the poly-

The next step consists in applying the Wirtinger-basefpP€ Which contains the Hessian and are assumed to be
integral inequality stated in Lemma 1. The last term of th§nNown. These matrices may also depend on the state vari-

the previous equation satisfies the following inequality ~ @Ples, as it will be shown in the numerical example. In such
a situation, the following result holds:

Theorem 2: The delayed interconnected port-Hamiltonian

t d d [ [ inti i
_h'\"/t —(DXHQ)Q—(DXHS)dSS system (9) with polytopic uncertainties (22) is robustly

—hy dt dt asymptotically stable for any time-varying deléwt) sat-
—ET) Q 0 £) isfying (8), if there exist matrice® >0,S >0 andQ >0
* 309 ’ with appropriated dimensions, such that the following LMI

holds:
where the augmented vecté(t) is given by _() =) =
=11 12 =13

OxHe — OxHi =) = = = j =
£0- O 20| ) 2| <0 o i=1N @
DaHe + OxHine) — my '/tih(t) OxHsds * * =33

here
Thanks to this definition, the derivative of the Lyapunov—W

Krasovskii termV; can be upper bounded as follows: E(ljl) =—-R+S+ (j—R)Ta(J)(j_R)
~40+P (@) (7-R)
+(T-R)" (OaH)V P

=) = SM-20+P (ThH) " M

Vaft) = {OxH (T -R)T+OxH] o MT} x
a x { (j— R) O Hi +MDX/Ht7h(t)}

Q0 |
& [* 39} £). +(T-R)TaIM
(20) Z13=6Q, Tp3=6Q, Ig3=-120
Combining (17), (18) and the inequality (20), the time _‘(11.‘;’ TR "
derivative of the global energy (13) can be upper bounded Zp=—(1-d)S-49+ M aV M
as follows: al) =h, (DngtT)(” Q (Dgﬂ-lt)“)
T
UxH UxH
, DX;([ ! Dx;-(l ‘ Proof: The proof of this theorem follows the one of
V()= L[ t=ho) = L[ t=h(t) <0, Theorem 1 and uses, in addition, the Schur complement to
W/t " OxHsds W/t " OxHsds the term depending oo in order to prove convexity with
—h) J=h() (21) respectto the polytopic uncertainties. [ ]

where the matrixz is given in (12).

Consequently, if there exists a solution to the LMI problem
(12), then the interconnected port-Hamiltonian systemig9) As a by-product of Theorem 1, the constant delay case is
asymptotically stable for all time varying deldyt), which  derived. Consider an integhr> 0 such thah(t) = h for any
satisfies condition (8). m timet. It follows

V. DISCUSSION



Corollary 1: The time-constant delay interconnected syst; =y (feedback interconnection as in Fig 1), leading to the
tem (9) is asymptotically stable if there exists the reaport-Hamiltonian closed-loop dynamics

i —_ QT —_pT i nxn .
matricesS =S' >0 andP =P"' >0 in R™" such that: g 0 1 07 [sin(@)
T T2 p|=|-1 -D - p (30)
r= { * rzz} <0, (25) 3 0 1 0] [OgHc
where The control issue is to stabilize the closed-loop system at

the point(q.,0,¢,). The idea is to make use of a dynamical
Mi=-R+S+POGH (T —R)+ (T —R) OZH P invariant called Casimir function and to construct a Lyapun
1 2 function based on the interconnected energy and Casimir
F2= §M +PUYH M function as follows

Ha(a,p,&) =H(a,p) +Hc(§) +C(a,p,&).  (31)

This stability condition is delay-independent and the proo  This methodology and this example in particular has been
fO”OWS from the preViOUS theorem. ThIS result can be easilgxtensive|y reported in [3]' where it has been shown that
checked if we take the functiong(t) andVx(t) in (13) as  the desired stability objectives are obtained by the faithgy

Lyapunov-Krasovskii candidates. choices of controller Hamiltonian and Casimir function:
Note that, due to the conservatism of this method, the

2
ideal caseh(t) = 0 cannot be directly recovered from (12).  Hc(§) = 3B (E —&— %Si”(Q)) :

However, it can be seen thab(t) =0, V3(t) =0 and the 1 1. 2
interconnected dynamics (9) can be reduced to the delay- C(@P.¢) = 3K (@—0.— (£ - &) —sina.))"
free case, which is stable, by using the Lyapounov functioghere 8 andk are constant parameters satisfying

V(t) = Vi(t) (with P = 0), which corresponds to the global
energy of the system. cogq.)+k >0 and Bcoga.)+kcogq.)+ Bk >0.

The stability condition proposed in (12) can be extendegle further add damping in the system of the fofn=
to other interconnections, such as feedback intercororecti —Z0¢He with 2> 0.

with two different delays. This can be motivated by the fact Now assume that there is a delay in communication

that the time that information takes to achieve its destmat petween the plant and the controller which satisfies (8). The

is different “on each side” with respect to the controlleénisT  nterconnected system with delay then writes

will not be presented here but in further researches. )
Another important case to be discussed is the linear port- |9 0 0 17 [[HgHd]

Hamiltonian system one, wheH has the quadratic form . =|-1 -D 0 [OpHal,

H=3XTQX. It is important to note that the stability 3 [DEHd]t

(32)

=3

0 0 -z

condition of the delayed interconnection remains the same [OgHg] (33)
as (12) by replacing the gradient with: 000 9 i)
y rep g g : ~lo o - [OpHale_n
OxHi=Q%, Q=07 >0. (26) 0 1 0] |[OeHal;_pg
VI. EXAMPLE The stability condition also requires computing the Hes-

_ ) sian of the Lyapunov function of the system without delay,
Let us consider now an example corresponding to given by [9]:

damped pendulum. Its dynamics is described by a port-

Hamiltonian system , cogq)+K 0 —K
[q] _ [ _01 _1D} {sm(q)] N m U and y=p. (27) K 0 B+K
P P In order to satisfy the LMI (12) for the (delay-free) system
with energy function we choose&K =2 andf3 = 3. We further choos& =z=1.
In this example, the Hessian matrix (34) depends on the
H(g,p) = :_2Lp2+(1_co5(q))’ (28) nonlinear term cdg) which can only take values in the

interval [—1,1]. Theorem 2, ensures stability of the delayed
whereD = 0.1 is the positive constant damping. Note thapendulum system (33) for several values of the upper bounds

(0,0) is an equilibrium of (27). of the delay function and of its time derivative. A compariso
We consider a controller in port-Hamiltonian form givenbetween the stability conditions provided in [9] and the®ne
by provided in the present article are reported in Table I. From

é: Ue and yo=OgH, (29 Table I, one can see that the sufficient conditions for the

stability problem proposed in this paper is less consemwati
with energyH. to be designed. The system and the controllghan the results in [9]. Note that the stability conditions
are interconnected in a power-preserving wey: —yc and derived in [15] cannot be satisfied for this example.



| d [ 0 [ 02 ] 04 ] 06 ] 08 ] 09 [ 099]
9] 0.052 | 0.044 | 0.035| 0.026 | 0.015| 0.008 -
Theo.1 || 0.361 | 0.337 | 0.315| 0.292 | 0.269 | 0.258 | 0.248
TABLE |

THE MAXIMAL DELAYS hy FOR VARIOUS VALUES OFd € [0,1) FOR THE

This article provides a novel stability analysis for deldye
port-Hamiltonian systems. The novelty of the approacleseli

DELAYED PENDULUM (33).

VII. CONCLUSION

(4]

(5]

(6]

(7]
(8]

on the use of the Wirtinger-based integral inequality. Suffi [°]
cient stability conditions are derived in terms of a fedgipi
problem of an LMI constraint. Robust stability conditions

have also been established for delayed interconnected pditl
Hamiltonian system with polytopic-type uncertainties.eTh ,,
advantage of the proposed method lies in the reduction of the
conservatism with respect to the existing solutions from thl13]

literature, as we have illustrated in our numerical example

(1]

(2]

(3]
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