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Abstract: This paper presents an architecture for agent-based distributed state estimation
of linear plants with distributed outputs. The estimation structure is based on an orthogonal
decomposition of the local observable/unobservable subspaces associated to each set of locally
accessible outputs. The design of the observers can be carried out in a distributed way, which
might open the door to scalable designs when the number of agent grows. The proposed
architecture is developed for a two-agents network, where we establish stability results for the
error dynamics, but comments are given about the generalization to larger networks. Simulations
are provided to illustrate the estimation scheme in such broader cases.
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1. INTRODUCTION

When considering large-scale plants, such as factories,
water irrigation channels or solar fields, the problem of
state estimation becomes harder to solve than in small-
size systems. The fact that the information from these
systems is collected by many individual agents deployed
in geographically remote locations complicates the design
of estimators. Furthermore, these agents require to com-
municate with each other to achieve system-wide goals,
which incurs in problems derived from network topology
as well as communication drawbacks: delays, quantization,
limited bandwidth, etc.

The problem of distributed state estimation has been tack-
led from different perspectives. Perhaps, the most well-
known approach is the distributed Kalman filter, with very
well-referenced results, as for instance the works of Olfati-
Saber (2007, 2009). Most of the proposed distributed
Kalman filter algorithms are based on a two-step strategy:
first, a certain level of consensus between neighbors is
reached, and, second, the distributed filters contribute to
the stabilization of the observation errors. In Alriksson and
Rantzer (2006), consensus and filtering work at the same
rate, while local filter gains are chosen as a solution of
a simple Riccati equation. The design of consensus gains
requires to iteratively solve optimization problems off-line.
In Carli et al. (2008), it is proven for a very simple system
that when the number of iterations of the consensus steps
is finite, the optimal gain differs from the one computed
assuming that the consensus is reached.

⋆ Research partially supported by grant DPI2013-44135-R funded
by MCyT, by grant TEC2016-80242-P funded by AEI/FEDER, by
grant OptHySYS funded by the University of Trento, and by grant
PowerLyap funded by CaRiTRo.

Consensus is also used in the works of Ugrinovskii (see
Ugrinovskii (2011), Ugrinovskii (2013), and Wu et al.
(2015)), in which the author proposes iterative, distributed
LMI-based designs of H∞ filters, and in Acikmese et al.
(2014), where the consensus and the measurement pro-
cesses work at different rates. A similar framework is used
in Shen et al. (2010) for the case of possible data dropouts.
Both in Acikmese et al. (2014) and Shen et al. (2010), the
observer gains are synthesized by means of LMI problems,
which may be computationally hard to solve for large scale
systems.

A different approach for the same problem is presented
by Cattivelli and Sayed (2010b) and Cattivelli and Sayed
(2010a), where a distributed estimation algorithm is pro-
posed based on a sequence of Kalman iterations and data-
aggregation. A moving horizon approach for the estimation
of large-scale plants is studied in Farina et al. (2010),
where the gains are computed by solving constrained op-
timization problems at each sampling time. Another line
of research deals with low-communication observers, such
as the one in Ribeiro et al. (2006) with one-bit messages,
or reduced-order algorithms Orihuela et al. (2013).

From the point of view of information and communica-
tion topology, works on this topic typically consider the
situation in which none of the agents is able to estimate
the state of the system without collaborating with others,
which implies that the so-called local observability does
not hold. However, global observability is assumed, this
meaning that all the agents have enough information to
observe the state of the system if they exchange their local
information across the network.

This paper proposes a novel structure for agent-based
estimators based on an orthogonal decomposition of the



local observable/unobservable subspaces. Each agent uses
the system outputs locally measured to correct the local
estimation errors in its observable subspace. Furthermore,
information received from neighboring agents is projected
onto its unobservable subspace, enabling then to estimate
the whole state of the system. The separation principle
that stems from the proposed structure allows the designer
to tune the poles of the observable dynamics by designing
local Luenberger-like observers. Then, the dynamics of
the locally unobservable states are stabilized through
consensus gains.

The proposed architecture has several positive features.
First of all, the main goal of the paper is to move towards
a distributed design of the observers, contrary to previous
works from the authors of this note published in Orihuela
et al. (2013), Millán et al. (2012), Millán et al. (2015),
or by many others in the context of distributed estima-
tion such as Alriksson and Rantzer (2006) or Ugrinovskii
(2011), where the main bottleneck is that the observers
must be designed altogether in a single centralized step.
A distributed design scales better when the number of
agents grows, and provides an adaptable observation struc-
ture that can adjust itself dynamically when the network
topology or the measured outputs change.

The second interesting feature comes from the fact that
the design method developed here provides freedom to
tune the dynamics of the observation errors. In other
previously mentioned works, as Olfati-Saber (2007) or
Carli et al. (2008), a proportional relation is imposed
between the gains that weight the corrections based on
the measurements and on the information received from
the neighboring agents.

This paper constitutes a preliminary work, considering a
network with only two connected agents. The authors in-
tention is to illustrate the core of the proposed formulation,
setting up a solid mathematical basis to move forward
to the next step: an estimation and control algorithm
distributedly designed and implemented. As it has been
shown in Millán et al. (2013); Orihuela et al. (2015, 2016),
the joint problem of estimation and control for large-scale
plants is very costly when the design of the controllers and
observers is carried out in a centralized way.

The paper is organized as follows. Section 2 introduces
some notation and mathematical preliminaries. The prob-
lem is formally stated in Section 3. The main results,
concerning the design of the observers and the stability of
the observation error dynamics, are presented in Section 4.
A simulation example is given in Section 6. Finally, the
main conclusions are drawn in Section 7.

2. NOTATION AND PRELIMINARIES

Consider a discrete-time linear autonomous system in the
following state-space representation:

x+ = Ax, (1)

y = Cx, (2)

where x ∈ R
n is the state of the system, y ∈ R

m, with
m > 1, is a vector containing all measured outputs of the
overall system, and A ∈ R

n×n and C ∈ R
m×n are known

dynamic and output matrices, respectively.

For system (1)-(2), it is well known that it is possible to
find a coordinate transformation matrix, T ∈ R

n×n, such
that under the change of variables ξ = Tx, system (1)-(2)
can be transformed into the observability staircase form:

ξ+ =

[
ξ+ō
ξ+o

]

= TAT⊤ξ =

[

Aō Ã
0 Ao

]

ξ,

y = CT⊤ξ(k) = [0 C̃]

[
ξō
ξo

]

,
(3)

where T−1 = T⊤ holds. In (3), ξō ∈ R
nō are the

nō unobservable components of the overall state ξ, and
pair (C̃, Ao) is observable and refers to the remaining
component ξo ∈ R

no of ξ.

Let us write the coordinate transformation matrix T as
T = [Vō Vo]

⊤, where Vō ∈ R
n×nō is composed by

nō column vectors in R
n which form an orthonormal

basis of the unobservable subspace of system (1)-(2).
Correspondingly, Vo ∈ R

n×no is some orthonormal basis
of its orthogonal complement. Both bases are orthonormal
and mutually orthogonal. For simplicity of exposition, we
will denote by “unobservable subspace” the image space
of Vō and by “observable subspace” the image space of Vo,
even though this is a slight abuse of notation. From the
above stated orthogonality, the following equations hold:

V ⊤
ō Vō = Inō

, V ⊤
o Vo = Ino

,
V ⊤
ō Vo = 0nō×no

, V ⊤
o Vō = 0no×nō

.
(4)

3. PROBLEM FORMULATION

Let us consider the problem of state estimation for a multi-
output autonomous linear system observed by two agents
indexed by subscripts 1 and 2. The system is described by
the following equations:

x+ = Ax, (5)

y1 = C1x, (6)

y2 = C2x, (7)

where x ∈ R
n is the state of the system, and agents 1 and 2

have access to generally distinct system outputs y1 ∈ R
m1

and y2 ∈ R
m2 , respectively.

System (5)-(7) is not necessarily stable, nor it is assumed
that either agent 1 or 2 can locally observe the system
state from its measured outputs. Thus, it is not required
that pairs (C1, A) and (C2, A) are observable. However,
the following assumption involving collective observability
will be needed:

Assumption 1. System (5)-(7) is collectively observable.
That is, pair (C,A) is observable, where C := [C⊤

1 C⊤
2 ]⊤.

Remark 1. Assumption 1 corresponds to requiring that
agents 1 and 2 can locally observe a sufficient number of
linearly independent system modes. In particular, denot-
ing by no,k the dimension of the observable subspace from
(Ck, A), for each k ∈ {1, 2}, Assumption 1 implies that
no,1 + no,2 ≥ n.

This paper aims at proposing a new type of consensus-
based observer wherein each agent computes (and ex-
changes information about) a local estimate of the overall
state x, in such a way that:



i) The local estimates of both agents tend exponentially
to the actual plant state.

ii) The observers implemented in each agent can be de-
signed in a distributed fashion. That is, each agent can
design its own observer independently.

4. STRUCTURE OF THE PROPOSED OBSERVER

As explained in the previous section, the state of system
(5) must be estimated by two agents that measure, at each
sampling time k ∈ Z, the system outputs (6) and (7), and
share information about their respective estimates x̂1(k)
and x̂2(k).

The following observer structure is proposed, for (i, j) ∈
{(1, 2), (2, 1)}:

x̂+

i = Ax̂i + Vo,iLi(yi − ŷi) + Vō,iui(x̂i, x̂j),
ŷi = Cix̂i

(8)

where x̂i is the state estimation carried out by agent i,
ŷi is the corresponding estimate of the plant output yi,
and Vo,i and Vō,i form the orthogonal basis defined in
Section 2, which satisfy (4). Finally, Li and ui(x̂i, x̂j) are,
respectively, a local observer gain, and a consensus-based
correction, both of them to be designed.

The observation structure proposed in (8) decomposes the
observer dynamics in three different terms:

• The first one, Ax̂i, is the classical model-based open-
loop prediction.

• The second term, containing Li(yi − ŷi), is a local
Luenberger-like output injection term, intended to
correct the previous prediction with the difference
between the locally measured and predicted outputs,
yi and ŷi. It is worth noting that this term is pre-
multiplied by Vo,i, which implies that the elements
in the correction vector Li(yi − ŷi) are actually used
as weights to perform linear combinations of the
column vectors forming Vo,i. Thus, these corrections
only affect the observable subspace of agent i, which
makes full sense, as the locally available output yi
only contains information about this subspace. 1

• Lastly, consider the correction term ui(x̂i, x̂j), to be
designed. This last term corrects the estimates x̂i

with information received from agent j. Since it is
multiplied by Vō,i, this information impacts the local
unobservable subspace of agent i.

5. OBSERVERS DESIGN

In this section, a method to design the observers in
(8) for system (5)-(7) is proposed. The design method
satisfies objectives i) and ii) defined in Section 3. First,
the structure of the consensus-based correction terms
ui(x̂i, x̂j) in (8) is chosen as follows:

ui(x̂i, x̂j) := NijV
⊤
o,j(x̂j − x̂i), (9)

1 In Luenberger observers and Kalman filters, this correction only
affects the observable subspace as well. Even though this is not com-
monly explicitly indicated in classical observers, using the coordinate
transformation matrix T described in Section 2, the resulting gain L

can always be rewritten as
[
0 L

⊤
o

]⊤
, only affecting the observable

subspace.

where N12 and N21 are gains to be designed. Then, the
transformations in (3) are made for each agent i, which
makes it possible to obtain the corresponding Ao,i, Aō,i,

C̃i,Vo,i, and Vō,i. Finally, the observer gains are designed
to fulfill the following property (see Proposition 1 below
for the feasibility of this property).

Property 1. The local observation gains Li, Lj and the
consensus gains Nij , Nji are designed in such a way that,
for (i, j) ∈ {(1, 2), (2, 1)}, matrices

[

Ao,i − LiC̃i

]

and
[
Aō,i −NijV

⊤
o,jVō,i

]
, (10)

are both Schur stable.

Based on this property, the following result can be stated.

Theorem 1. Consider plant (5) observed by two agents,
1 and 2, that can measure local outputs (6) and (7),
respectively, and that implement local observers (8)-(9). If
the observer gains satisfy Property 1, then the estimates of
both agents tend exponentially to the actual plant state.
In particular, defining the observation errors e1 := x̂1 − x,
e2 := x̂2−x, the origin of the corresponding error dynamics
is globally exponentially stable.

Proof. Let us write the dynamics of the observation errors
(e1, e2). According to equations (5)-(8), it corresponds to:

e+i = Ax−Ax̂i − Vo,iLiCi(x − x̂i)− Vō,iui

= (A− Vo,iLiCi)ei − Vō,iui,

where, for brevity, ui(x̂i, x̂j) in (9) has been denoted as ui.

Next, consider the transformation in Section 2 to write
the estimation error of agent i in its local observability
staircase form:

εi :=

[
εō,i
εo,i

]

:= Tiei :=

[
V ⊤
ō,i

V ⊤
o,i

]

ei, (11)

where εō,i = V ⊤
ō,iei and εo,i(k) = V ⊤

o,iei are, respectively,
the unobservable and observable modes of the estimation
error for agent i. Under this transformation, the dynamics
of the observation error can be written as:

ε+i = Ti(A− Vo,iLiCi)T
⊤
i εi − TiVō,iui

= (TiAT
⊤
i − TiVo,iLiCiT

⊤
i )εi − TiVō,iui

= (TiAT
⊤
i −

[
V ⊤
ō,i

V ⊤
o,i

]

Vo,iLi[0 C̃i])εi − TiVō,iui

=

[
Aō,i Ãi

0 Ao,i − LiC̃i

]

εi −

[
V ⊤
ō,i

V ⊤
o,i

]

Vō,iui

=

[
Aō,i Ãi

0 Ao,i − LiC̃i

]

εi −

[
I
0

]

ui, (12)

where it has been used that CiT
⊤
i = [0 C̃i], V

⊤
ō,iVō,i =

Inō,i
, and V ⊤

o,iVō,i = 0no,i×nō,i
(see Section 2 for details),

and where matrix Ãi denotes some “don’t care” matrix
appearing in the error dynamics.

It is worth pointing out that, according to (12), the
proposed structure for the estimators decomposes the
influence of the observation gain Li, which only affects
the errors in the locally observable modes εo,i, from the
influence of the consensus term ui, which has an effect
on the locally unobservable modes εō,i. In particular,
dynamics (12) reveals a cascaded structure of the error



dynamics, where subsystem (εo,1, εo,2) drives subsystem
(εō,1, εō,2). From Property 1, it follows that the upper
dynamics (εo,1, εo,2) is globally exponentially stable. Then,
from cascaded results of linear systems (the cascade of two
exponentially stable LTI systems is globally exponentially
stable), to prove the result it is enough to show exponential
stability of the following lower subsystem:

ε+ō,i = Aō,iεō,i − ui, i ∈ {1, 2}, (13)

arising from (12) evaluated with (εo,1, εo,2) = (0, 0).
By substituting (9) in (13), we obtain for each (i, j) ∈
{(1, 2), (2, 1)}:

ε+ō,i = Aō,iεō,i −NijV
⊤
o,j(x̂j − x̂i)

= Aō,iεō,i −NijV
⊤
o,j(ei − ej)

= Aō,iεō,i −NijV
⊤
o,j(Vō,iεō,i − Vō,jεō,j)

= (Aō,i −NijV
⊤
o,jVō,i)εō,i,

(14)

where it has been used that Vō,j and Vo,j are orthogonal
(from (4)). From Property 1, we obtain that (14) is
exponentially stable, thus completing the proof. ♦

It is well-known that, once a system has been transformed
into its observability staircase form, it is always possible to
find an observer Li to stabilize the observable dynamics.
However, it remains to be shown that, under the assump-
tion of collective observability (Assumption 1), it is always
possible to find consensus gains Nij satisfying Property 1.
This is proven in the next feasibility result.

Proposition 1. Under Assumption 1, Property 1 is always
feasible. Therefore, there exist local Luenberger gains Li,
i ∈ {1, 2}, such that the left matrix in (10) is Schur stable,
and there exist consensus gains Nij , (i, j) ∈ {(1, 2), (2, 1)},
such that the right matrix in (10) is Schur stable.

Proof. The existence of the gains Li is straightforward
from the observability of pair (C̃i, Ao,i) in the observable
decomposition (3).

To prove the existence of gains Nij stabilizing the right
matrix in (10), for each (i, j) ∈ {(1, 2), (2, 1)}, it is enough
to show that under Assumption 1, pair (V ⊤

o,jVō,i, Aō,i) is
observable, which is a sufficient condition for the stabiliz-
ability of (14) through the consensus gain Nij .

First, from the Popov-Belevitch-Hautus test (see, e.g.,
(Hespanha, 2009, Thm 15.9)) system (14) is observable
if and only if

rank

[
Aō,i − λI
V ⊤
o,jVō,i

]

= nō,i, ∀λ ∈ σ(Aō,i). (15)

To establish (15), we introduce the matrix Vo,ij :=
[Vo,j Vo,i] and we note that:

V ⊤
o,ijVō,i =

[
V ⊤
o,jVō,i

V ⊤
o,iVō,i

]

=

[

V ⊤
o,jVō,i

0

]

.

Therefore we complete the proof by proving the rank
condition:

rank(V ⊤
o,ijVō,i) = rank(V ⊤

o,jVō,i) = nō,i, (16)

which clearly implies (15).

To show (16), note that, according to Assumption 1,
rank(Vo,ij) = n, because Vo,ij contains the basis of
both the observable subspaces from outputs y1 and y2.
Therefore, it is possible to find a selection matrix Sij such
that

Mi := Vo,ijSij := Vo,ij

[
Sij 0
0 Ino,i

]

= [Vo,jSij Vō,i] ∈ R
n×n

is nonsingular. Consider then:

rank
(
M−⊤

i S
⊤

ijV
⊤
o,ij

︸ ︷︷ ︸

=M⊤

i

Vō,i

)
= rank

(
Vō,i

)
= nō,i,

which, using rank(AB) ≤ min{rank(A), rank(B)}, clearly
implies that rank

(
V ⊤
o,jVō,i

)
≥ nō,i. However, following the

same reasoning again, we get rank
(
V ⊤
o,jVō,i

)
≤ nō,i, thus

establishing (16) and completing the proof. ♦

6. SIMULATION EXAMPLES

In this section, two simulation examples are presented in
order to show the effectiveness of the proposed observers.

Example 1. Aiming at a straightforward interpretation
of the proposed technique, we choose a simple system
with only three states. The first state, x1, has an unstable
dynamic and it is decoupled from the last two states,
x2 and x3, which correspond to a pair of conjugated
imaginary poles:

[
x1

x2

x3

]+

=

[
1.05 0 0
0 0.9954 −0.08757
0 0.1248 0.9945

] [
x1

x2

x3

]

The two agents, 1 and 2, have access to plant outputs
y1 = x1 and y2 = x3, respectively. It is clear from the
chosen system structure that agent 1 can locally observe
the first state, while agent 2 can locally observe x2 and
x3. However, neither of them can estimate the whole plant
state without communicating with the other.

The basis vectors of the observable and unobservable
subspaces of agents 1 and 2 can be easily obtained as:

agent 1: Vo,1 =

[
1
0
0

]

, Vō,1 =

[
0 0
1 0
0 1

]

,

agent 2: Vo,2 =

[
0 0
1 0
0 1

]

, Vō,2 =

[
1
0
0

]

.

For this system, it is also straightforward to see that
V ⊤
o,1Vō,1 = 0 and V ⊤

o,2Vo,2 = 0 hold.

Following the proposed design method, the local and con-
sensus observers are synthesized to stabilize the corre-
sponding matrices in Theorem 1. This can be performed
individually for each agent, for instant through pole place-
ment methods. The stabilizing solution used in the simu-
lations is given by:

Agent 1: L1 = 0.2423, N12 =

[
0.1248 0.1464
0.1069 −0.0876

]

,

Agent 2: L2 =

[
0.7853
0.7073

]

, N21 = 0.2035.

i = 1, j = 2 i = 2, j = 1

eig
([

Ao,i − LiC̃i

])

0.8077

[
0.7696
0.5130

]

eig
([
Aō,i −NijV

⊤
o,jVō,i

])
[
0.8481
0.8850

]

0.8465
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Fig. 1. Example 1. Evolution of the plant states and
estimates of Agent 1 (in dashed lines).
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Fig. 2. Example 1. Evolution of the plant states and
estimations of Agent 2 (in dashed lines).

Figures 1 and 2 show the estimation performance of
both agents. It can be seen that each agent is able
to estimate the overall plant states using the designed
observation structure. In the simulations, the estimates of
each agent are randomly initialized, and the measurements
are affected by random noises in order to check the
robustness of the observers.

Example 2. Consider the following system:





x1

x2

x3

x4






+

=






0.95 0 0 0
0 0.9954 −0.08757 0
0 0.1248 0.9945 0
0 0 0 1.0015











x1

x2

x3

x4




 .

The system is observed by a set of agents with the
network topology defined in Figure 3. Now, each agent
receives information from more than one neighbour, so the
proposed architecture cannot be directly applied. However,
it is possible to use a direct extension in such a way that
the estimated states are computed as:

x̂+

i = Ax̂i + Vo,iLi(yi − ŷi) + Vō,i

∑

j∈Ni

NijV
⊤
o,j(x̂j − x̂i),

ŷi = Cix̂i

whereNi denotes the neighborhood of the agent i. This ad-
ditive structure incorporates information from every agent
belonging to the neighbourhood, provided that collective
observability is fulfilled. As it is shown in the simulations,

1
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3
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7

y1 = x1

y2 = x2

y3 = x4

y4 = x1

y5 = x3

y6 = x1

y7 = x4

Fig. 3. Network topology in Example 2. The output of
the agents are: y1 = x1, y2 = x2, y3 = x4, y4 = x1,
y5 = x3, y6 = x1 and y7 = x4.
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Fig. 4. Example 2. Evolution of the plant states and
estimations of agent 2 (in dashed lines).

the observers are able to estimate the system states, even
though Property 1 is not satisfied for each pair of agents.

Figure 4 shows the estimates of agent 2, who has 4
neighbours (most favourable case), and Figure 5 shows
the estimates of agent 5, with only two neighbours. In
both cases, the agents are able to observe the states of the
plant with a good estimation performance.

This last example encourages the authors to work towards
an estimation structure for plants in which a large number
of agents are connected in arbitrary topologies, in pursuing
equivalent feasibility and stability results as the ones
presented for two agents. However, in the general case,
the problem of building the observable subspaces without
global information remains open.

7. CONCLUSIONS

A novel structure for agent-based distributed estimation
has been presented. By decomposing observation errors
in locally observable and unobservable subspaces, a dis-
tributed design method for the observers has been devel-
oped. It has been shown that, for a pair of agents and under
mild assumptions, involving collective observability of the
system, it is always possible to carry out a distributed de-
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Fig. 5. Example 2. Evolution of the plant states and
estimations of agent 5 (in dashed lines).

sign of the observers. This work establishes a preliminary
result and the mathematical basis to move forward to more
complex problems, considering multiple agents, arbitrary
communication topologies, and control.
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