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Abstract: In this paper, a robust Linear quadratic regulator (LQR) of a NACA 0018 wing
with a flap actuator is developed for stall flutter suppression. The nonlinear and switched set of
equations of the aeroelastic model is detailed and conveniently expressed as a polytopic uncertain
system. The model is then derived to obtain a Linear matrix inequalities (LMIs) formulation of
the LQR problem in the presence of uncertainties. The problem is then solved and the arising
solutions are presented.
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inequalities

1. INTRODUCTION

Over the year, improvements in aeronautical technolo-
gies, especially in terms of structure, have permitted to
obtain more efficient and lighter designs. However, these
structures are usually more flexible and are more sensi-
tive to unforeseen aerodynamic conditions and aeroelastic
instabilities. These instabilities, such as flutter, can be
extremely destructive as the high altitude, long endurance
prototype of flying wing Helios unfortunately experienced,
see Noll et al. (2004). For this reason, these phenomena
have been widely studied over the past decades to obtain
a better comprehension of these interactions as it can
be found in McCroskey et al. (1976); Dimitriadis and Li
(2009); Razak et al. (2011) among many others.

Two different types of flutter have been identified which
are known as classical flutter and stall flutter.

• Classical flutter is an unstable mode of the wing
involving coupled oscillations of pitch and plunge
resulting from the coupling between the structural
mode and aerodynamic loads. Classical flutter is well
represented by a linear fluid-structural model, and
has therefore been readily integrated into a variety of
controls approaches.

? This material is based on research sponsored by the US Air Force
Academy under agreement number FA7000-13-2-0002 and FA7000-
13-2-0009. The authors would like to acknowledge funding from Dr.
Douglas Smith through the Air Force Office of Scientific Research
Flow Control and Interaction portfolio. The grant of computer
resources by the DoD HPCMO is gratefully acknowledged. The views
and conclusions contained herein are those of the authors and should
not be interpreted as necessarily representing the official policies or
endorsements, either expressed or implied, of the French and US Air
Force Academies or the French and U.S. Governments.

• Stall flutter results from a coupling between the non-
linear and unsteady process of Dynamic stall, where
the flow alternatively separates from the wing and
reattaches, and the torsional mode of the wing. This
phenomenon leads to the apparition of oscillations,
limited in amplitude, known as Limit cycle oscilla-
tions (LCO). Stall flutter can be experienced with
only one degree of freedom, and primarily relies upon
the coupling with unsteady vorticity generation and
convection in the flow. Details can be found in Fagley
et al. (2016).

Modeling these nonlinear phenomena remains extremely
challenging, especially including the dynamic stall. Nu-
merous of models have been developed such as the different
works in Leishman (2006), (Dat et al., 1979). Among them,
two particular models are of interest. Based on Goman
and Khrabrov (1994), recent adaptation of the G-K model
presented in the work by Williams et al. (2015) with
only a few number of states and identified parameters
adequately represents the dynamic stall behavior. This
work, combined with the work of Truong in Truong (1993),
accurately predicts the lift and moment coefficient during
the pitching motion of a wing. The development of this
model has been detailed in Niel et al. (2017).

The aerodynamic model can then be coupled to the struc-
tural dynamics of the wing to obtain an nonlinear aeroe-
lastic model which accurately describes LCO behavior
present with stall flutter. In particular, stall flutter has
been addressed in several works using active flow control.
In Li et al. (2016), a dynamic stall model for rotating blade
is derived from Beddoes-Leishman. An adaptive controller
is designed and simulated for various flutter conditions.
In Prime et al. (2010), an LPV-LQR controller is synthe-
sized to suppress the LCO from stall flutter. The resulting



auto-scheduled controller displays marginal robustness to
airspeed variations. In Haghighat et al. (2014), a mixed
norm H2 \ H∞ robust controller is designed. The model
used is derived from the ONERA dynamic stall model in
(Dat et al., 1979).

In this work, the problem of flutter suppression is ad-
dressed for a one degree of freedom pitching wing. In
Section II , an aeroelastic model adapted from Williams
et al. (2015) and Truong (1993) is described. The set of
equations is then formulated as a polytopic uncertain sys-
tem in Section III. After presenting some background on
LQR formulation using Linear Matrix Inequalities (LMIs),
Section IV presents a polytopic formulation of the prob-
lem. In section V, the problem is solved and simulated
for a NACA 0018 wing in stall flutter conditions. Finally,
remarks and conclusions are provided in the final section.

2. AEROELASTIC MODEL

In this section, the aeroelastic model of a pitching wing
equipped with a trailing edge flap is presented. This one
degree of freedom model will then be studied to address
the phenomenon of stall flutter.
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Fig. 1. Model of the pitching equipped with a flap.

As depicted on Fig.1, the wing is pitching at the middle of
the chord. In this figure, α represents the pitching angle,
or angle of attack, β is the flap deflection angle, U is
the freestream velocity. CG is the center of gravity. L
corresponds to the lift, and M represents the pitching
moment, conventionally positive for the nose pitching up.
The coefficient of moment CM = 2M

ρScU2 is introduced

where ρ S and c are the freestream density, the wing
surface area and the chord of the wing, respectively.

The linearized equation of motion of the wing is given by:

Iαα̈+ Cαα̇+Kαα =M (1)

where with Kα is the torsional stiffness, Cα is the tor-
sional damping and Iα is the inertia around the center of
rotation. M represents the total moment at the center of
mid-chord and is split in three components such as

M =Mw +Mβ +Mext (2)

whereMw represents the aerodynamic moment produced
by the wing,Mβ is the aerodynamic moment produced by
the flap.Mext is the exterior moment which can eventually
be applied. This can correspond for example to the torque

produced by an electrical motor connected to the axis of
rotation.

2.1 Dynamic hysteresis aerodynamic model

The model of the aerodynamic moment produced by the
wing without actuation is adapted from Williams et al.
(2015). In this work, derived from Goman and Khrabrov
(1994), the lift or the moment coefficients are related to the
dynamics of the location of the separation point, denoted
xs and such that

xs ∈ [0, 1]. (3)

This point corresponds to the distance from the leading
edge, normalized by the chord length, where the flow is
separated from the wing. Thus, picking xs = 0 corresponds
to a fully separated flow while xs = 1 represents a fully
attached flow. The dynamic of this point follows a first
order equation:

τ1ẋs = −xs + xs,0(α− τ2α̇) (4)

where τ1 and τ2 are two constants and function xs,0 corre-
sponds to the static separation point location, which can
be modeled as a function of the angle α and its derivative
α̇. The function xs,0 can be evaluated experimentally using
quasi static data.

The moment produced by the wing is then given by (5).

Mw =
1

2
ρU2Sc [2παη(xs) + CMoffset] (5)

where
η(xs) = η2xs + η1(1− xs) (6)

and where η2 and η1 represent respectively the slope of the
moment coefficient for a fully attached and fully detached
flow. CMoffset is the offset value of moment coefficient.

Remark 1. The control algorithm derived in this paper is
designed by considering the situation where the freestream
velocity U may vary in a certain allowable set, but can
be approximated by an (unknown) constant parameter
during the dynamic evolution. Then, the moment in (5)
introduces a constant bias affecting dynamics (1), whose
size depends on the constant CMoffset and on the param-
eter U . When designing our controller we will focus on
the unperturbed dynamics resulting from CMoffset = 0,
but it is clear that the developed results easily extend
to the case of constant values of CMoffset and U , because
the corresponding effect is merely to shift the equilibrium
point.

This model referenced as the GK model proves to be
particularly convenient, using a small number of states
and constants, and capturing particularly well the hys-
teresis loop which appears during the dynamic motions as
presented on Fig. 2 for example.

2.2 Dynamic stall model

However, due to the vortex shedding that appears in the
dynamic motion, specifically in the reattachment cycle,
the previous model presents some inaccuracies, especially
for rapid motion and/or at high angles of attack. For
this reason, this model is extended, including the work in
Truong (1993). This work, based on Tobak’s work on the
Hopf bifurcation in Tobak and Chapman (1985), permits



(a) α0 = 10o, α1 = 6o, k = 0.2. (b) α0 = 10o, α1 = 10o, k = 0.1. (c) α0 = 15o, α1 = 10o, k = 0.1.

Fig. 2. Moment coefficients curve predictions and measures for various values of α0, α1 (in degrees) and k.

A(x, xs) =


−Cα
Iα

πρU2Sbη(xs)−Kα

Iα
0

ρU2Sb

2Iα
1 0 0 0

wS

(
DM (x)

Cα
Iα
− EM (x)

)
wSDM (x)

(
πρU2Sbη(xs)−Kα

Iα

)
wSβM (x) −wS

(
wS +

ρU2Sb

2Iα

)
0 0 1 0

 ,

B =
1

2
ρU2SbCM,β [1 0 −wSDM (x) 0]

′
, C(xs) =

[
0 2πη(xs) 0 1
0 1 0 0

]
, F = [0 1 0 0] .

(7)

to predict the oscillatory behavior that can be experienced,
especially on the down-stroke of the motion. In Truong
(1993), the original model for the moment coefficient is
split in a steady and unsteady parts such as:

CM = CMs
+ CMu

, (8)

where CMs
and CMu

represent respectively the steady
and unsteady component of the moment coefficient. In
this present work, the precedent formulation of the GK
model is preferred to account for the steady component.
The unsteady component follows the following simplified
second order dynamic:

C̈Mu
= wSβM (α, α̇)ĊMu

− w2
SCMu

−EM (α, α̇)wSα̇−DM (α, α̇)wSα̈.
(9)

where ws is a constant, and βM , EM and DM are a set of
constant depending on α and α̇. Let define αs, the critical
angle of attack and Ωup, the following set:

Ωup := Ω1
up ∪ Ω2

up

where

Ω1
up = {(α, α̇) ∈ [−180, 180]× R, α ∈ [−αs, 0] , α̇ < 0}

Ω2
up = {(α, α̇) ∈ [−180, 180]× R, α ∈ [0, αs] , α̇ > 0}

Then, we can now defined βM , EM and DM as a two-
valued set of functions such as,

{DM , βM , EM} ={
{DM,1, βM,1, EM,1} if (α, α̇) ∈ Ωup,
{DM,2 = 0, βM,2 < 0, EM,2 = 0} elsewhere

where parameters DM,i, βM,i and EM,i, for i = 1, 2, are
constant and known. The resulting aerodynamic equations
for the moment produced by the wing can then be sum-
marized as follows

Mw =
1

2
ρU2Sc [2παη(xs) + CMoffset + CMu

] ,

C̈Mu
= wSβM (α, α̇)ĊMu

− w2
SCMu

−EM (α, α̇)wSα̇−DM (α, α̇)wSα̈,
τ1ẋs = −xs + xs,0(α, α̇).

(10)

Experiments have been conducted in the Subsonnic Wind
Tunnel of Aeronautics Laboratory of the United States
Air Force Academy at an elevation of 7, 000ft. The wind
tunnel designed and built by FluiDyne Engineering, is a
recirculating tunnel with a 0.91 m by 0.91 m by 1.83 m test
section. The freestream velocity was U∞ = 22.5m/s. This
resulted in a Mach number of M = 0.068 and a chord-
based Reynolds number Rec = 190.103.

The article used in the experimentation is a rectangular,
finite span, NACA 0018 cross sectional wing with a chord
of c = 0.15 m and a span of b = 0.45 m. The wing section
oscillates about the mid chord by a circular spar attached
to a DC brushless motor which dynamically pitches the
wing section.

The resulting pitch oscillation is described as

α = α0 + α1sin(kt+),

where we define k = 2πfc
U∞

= ωc
2U∞

the reduced frequency

with ω = 2πf the angular frequency and t+ = t
tconv

the
time normalized by the convective time, tconv = c

U .

Figure 2 provides examples of the experimentation con-
ducted. A good agreement between the model prediction
and experimental results is observed. In particular, the
model proposed by Williams successfully captures the
hysteresis loop of the coefficient of moment but fails to
capture any secondary frequencies due to vortex shedding.
Alternatively, the model proposed in this paper reproduces
in addition the oscillations during the down-stroke of the
motion. More details of this model are provided in Niel
et al. (2017).

2.3 Actuator model

The moment produced by the trailing flap is defined by

Mβ =
1

2
ρU2ScCM,ββ (11)



where

• CM,β is a given and known constant,
• β is the flap deflection angle.

Note that the dynamics of the flap actuator is not consid-
ered in this work, similarly to Haghighat et al. (2014).

2.4 Complete aeroelastic model

The resulting equations of the complete aeroelastic model
of the wing are then given by Eq. (1), (10) and (11). The
previous final set of equation can thus be formulated as
the non linear system:

ẋ = A(x, xs)x+B(x)u
τ1ẋs = −xs + xs,0(x)

y = C(x)x
z = Fx

(12)

where the vector x ∈ R4 is given by

x = [ α̇, α, ĊMu
, CMu

]′, (13)

and vector u (= β), y and z are the the control input, the
output and the measurement vectors of the system. The
matrices A, B, C and F are given in (7) (at the top of the
previous page).

System (12) can be seen as a nonlinear switched system, for
which a dedicated stability analysis needs to be provided.
In order to solve this problem, we will provide in the next
section a polytopic model for system (12), for which such
an analysis is easier.

3. POLYTOPIC MODELING

As mentioned above, system (12) presents some nonlinear-
ities due to the products in the dynamics of the variable xs
and also to bilinear terms appear with the function η(xs)
in the matrix A(x, xs).

In order to simplify the model, we will rewrite system
(12) as a uncertain polytopic system where uncertain
parameters are given in the following description.

η(xs): First, in order to suppress the product α× η from
the equation, let consider η introduced previously in
equation (6). We note that η is a linear combination
of the state variable xs. Since xs cannot be directly
measured, it is reasonable to consider as an uncertainty
to the system and use the fact that it lies in the interval
[0, 1]. Therefore parameter η verifies

η ∈ [η1, η2]. (14)

or equivalently, there exists a scalar function λ1 ∈ [0, 1]
such that

η(xs) = λ1η1 + (1− λ1)η2. (15)

EM , βM , DM : Secondly, instead of considering a pure
switch of the sets of the constants {DM , βM , EM} in
Eq.(10), a linear variation is conveniently introduced
depending on an additional parameter parameter. This
technique has been successfully used in Olalla et al.
(2009). Therefore, there exists a function λ2 ∈ [0, 1] such
that
{DM , βM , EM} := λ2 {DM,1, βM,1, EM,1}

+(1− λ2) {DM,2, βM,2, EM,2} .
(16)

U2: Finally, matrices A and B also depend on uncer-
tainties. Especially, the free stream velocity U can be
considered as uncertain due to the possible gusts of wind
that can be encountered during flight, or just because
of the uncertainty in its measurement. Therefore, there
exists a function λ3 ∈ [0, 1] such that

U2 = λ3U
2
1 + (1− λ3)U2

2 . (17)

Even though we assumed that U be constant (and un-
known) during motion, and so that quantity λ3 in (17),
we consider a time-varying version of the uncertain vector
λ(t) = [λ1(t) λ2(t) λ3(t)]′ in [0 1]3, comprising the coeffi-
cients λl, for any l = 1, 2, 3, which can vary with time and
are not necessarily constant.

Based on this uncertain vector, and the relations in (15)–
(17), we can derive a polytopic uncertain model of system
(12), corresponding to:

ẋ =

2∑
i,j,k=1

λi1λ
j
2λ
k
3 (Ai,j,kx+Bi,j,ku)

=

2∑
i,j,k=1

µijk (Ai,j,kx+Bi,j,ku)

y =

2∑
i,j,k=1

λi1λ
j
2λ
k
3Ci,j,kx =

2∑
i,j,k=1

µijkCi,j,kx

z = Fx

(19)

where λ1
l = λl(t) and λ2

l = 1 − λl(t), for l = 1, 2, 3,
matrices Ai,j,k, Bi,j,k and Ci,j,k are given in (18), at the
top of the next page, and where we introduced the scalars
µijk. These scalars, in particular, satisfy

∑2
i,j,k=1 µijk = 1,

which reveals that the multiaffine dynamics (12) can be
written as a convex combination of 23 = 8 linear time-
invariant models corresponding to all possible selections of
i, j, k ∈ {0, 1} in (18)(see, e.g., (Belta et al., 2002, Prop.
2) for details).

4. LMI-BASED SELECTION OF AN LQR
CONTROLLER

The polytopic model (19) derived in the previous section
allows us to apply several different control strategies for
the selection of input u = β, corresponding to the flap
deflection angle in Figure 1.

For this preliminary work, we follow the same approach
adopted in Olalla et al. (2009), which in turns is based
on the LQR design formulation presented in Feron et al.
(1992). The objective of that formulation is to select input
u in such a way to perform some convex optimization
geared towards reducing the cost function

J =

∫ ∞
0

(x′Qx+ u′Ru)dt, (20)

where R is a positive definite matrix and Q is a positive
semi-definite matrix that may be freely selected as long as
(Q,Aijk) is detectable for all selections of ijk.

Due to the nonlinear nature of the dynamics and the
conservativity of the convex embedding in (19), it is hard
to exactly solve the minimization of J in (20), nevertheless,
one possible conservative approach that leads to reduced
values of J is the one given in Olalla et al. (2009), which is



Ai,j,k =


−Cα
Iα

πρU2
kSbηi −Kα

Iα
0

ρU2
kSb

2Iα
1 0 0 0

wS

(
DM,j

Cα
Iα
− EM,j

)
wSDM,j

(
πρU2

kSbηi −Kα

Iα

)
wSβM,j −wS

(
wS +

ρU2
kSb

2Iα

)
0 0 1 0

 ,

Bi,j,k =
1

2
ρU2

kSbCM,β [1 0 −wSDM,j 0]
′
, Ci,j,k =

[
0 2πηi 0 1
0 1 0 0

]
, F = [0 1 0 0] .

(18)

based on the solution to the following convex optimization
problem:

min
P,Y,X

TrQP +X, subject to: (21)

Ai,j,kP + PA′i,j,k +Bi,j,kY + Y ′B′i,j,k + 1 < 0, ∀i, j, k[
X R

1
2Y

Y ′R
1
2 P

]
> 0 P = P ′ > 0.

The resulting LQR controller is given by u = −Kx, with
K = Y P−1.

5. SIMULATION RESULTS

Using Eq.(21), a robust controller has been synthesized
for the polytopic system (19) defined in Section 3, whose
solutions include the solution of the nonlinear multiaffine
dynamics (12). The values of the parameters of the con-
sidered model are listed in Table 1.

Parameter Value Parameter Value

Iα 0.0037 Nm/rad/s2 S 0.0675 m2

Cα 0.072 Nm/rad/s ρ 0.9 kg/m3

Kα 2.78 Nm/rad CM,β 1
b 0.45 m η1 0.0294
c 0.15 m η2 0.2558

D+
M 0.0455 β+

M 0.0015

E+
M −0.0217 β−

M −1.5

Table 1. Model parameters used in the simula-
tion study.

If η and {DM , βM , EM} values are bounded and known, we
need to define the margin of uncertainty of the free stream
velocity to ensure some robustness to this parameter. The
nominal value selected is 20 m/s. We authorize some
variation of ±2.5m/s which provides a variation range
[Umin, Umax] = [17.5 m/s, 22.5 m/s].

The weighting matrices of the cost function are selected to
ensure that the input vector remains limited in amplitude
and a reasonable suppression of the stall flutter. The
matrices used are consequently Q = diag {1, 1, 0.01, 0.01}
and R = 50. The convex optimization in Eq.(21), leading
to the selection of gain K, is solved using the Robust
control toolbox available in MATLAB. In particular, the
resulting state feedback gain is:

K = [0.1427 2.977 − 0.0021 − 0.151]

The controller is then tested using the simulation model.
To initiate the phenomenon of stall flutter, an angle of
attack of 10o is set as initial condition. The results for 3
different airspeeds are presented in Figures 3–5. As already
observed in Remark 1, while the controller design was per-
formed without the presence of the external disturbance

Fig. 3. Angle of attack(o) and flap deflection(o) in function
of the time(s) for U = 20 m/s. The controller is
activated after 2 s.

Fig. 4. Angle of attack(o) and flap deflection(o) in function
of the time(s) for U = 17.5 m/s. The controller is
activated after 2 s.



Fig. 5. Angle of attack(o) and flap deflection(o) in function
of the time(s) for U = 22.5 m/s. The controller is
activated after 2 s.

CMoffset, in the simulation we consider a more realistic case
of a nonzero value of CMoffset (see Table 1). As expected,
the different values of U considered in our three simula-
tions, correspond to different equilibrium points reached
by the closed loop.

The simulation results illustrate how the same feedback
gain is capable of stabilizing that equilibrium point for
the three different values of free stream velocities. The
controller successfully suppresses the flutter phenomenon,
which is visible in all three simulations, before the con-
troller activation, which always occur at time t = 2s.

6. CONCLUSION

In this work, a robust LQR controller for stall flutter sup-
pression is designed and computed for a pitching NACA
0018 wing. A non linear and switched aeroelastic model,
accounting for the complex phenomenon of stall flutter, is
presented and conveniently turned as a polytopic uncer-
tain system. A polytopic and LMI formulation of an LQR
problem is introduced. The problem is then solved using
Matlab. Simulations using the designed controller are then
computed. The results for different airspeeds are presented
showing that the synthesized controller can successfully
suppress the stall flutter initially present for the range of
variation.

Further work could address the problem of rate or magni-
tude limitations of the actuator.
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