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In this paper, a robust Linear quadratic regulator (LQR) of a NACA 0018 wing with a flap actuator is developed for stall flutter suppression. The nonlinear and switched set of equations of the aeroelastic model is detailed and conveniently expressed as a polytopic uncertain system. The model is then derived to obtain a Linear matrix inequalities (LMIs) formulation of the LQR problem in the presence of uncertainties. The problem is then solved and the arising solutions are presented.

Robust LQR control for stall flutter suppression: A polytopic approach 1. INTRODUCTION Over the year, improvements in aeronautical technologies, especially in terms of structure, have permitted to obtain more efficient and lighter designs. However, these structures are usually more flexible and are more sensitive to unforeseen aerodynamic conditions and aeroelastic instabilities. These instabilities, such as flutter, can be extremely destructive as the high altitude, long endurance prototype of flying wing Helios unfortunately experienced, see [START_REF] Noll | Investigation of the Helios prototype aircraft mishap volume i mishap report[END_REF]. For this reason, these phenomena have been widely studied over the past decades to obtain a better comprehension of these interactions as it can be found in [START_REF] Mccroskey | Dynamic stall experiments on oscillating airfoils[END_REF]; [START_REF] Dimitriadis | Bifurcation behavior of airfoil undergoing stall flutter oscillations in low-speed wind tunnel[END_REF]; [START_REF] Razak | Flutter and stall flutter of a rectangular wing in a wind tunnel[END_REF] among many others.

Two different types of flutter have been identified which are known as classical flutter and stall flutter.

• Classical flutter is an unstable mode of the wing involving coupled oscillations of pitch and plunge resulting from the coupling between the structural mode and aerodynamic loads. Classical flutter is well represented by a linear fluid-structural model, and has therefore been readily integrated into a variety of controls approaches.

• Stall flutter results from a coupling between the nonlinear and unsteady process of Dynamic stall, where the flow alternatively separates from the wing and reattaches, and the torsional mode of the wing. This phenomenon leads to the apparition of oscillations, limited in amplitude, known as Limit cycle oscillations (LCO). Stall flutter can be experienced with only one degree of freedom, and primarily relies upon the coupling with unsteady vorticity generation and convection in the flow. Details can be found in [START_REF] Fagley | Cyberphysical flexible wing for aeroelastic investigations of stall and classical flutter[END_REF].

Modeling these nonlinear phenomena remains extremely challenging, especially including the dynamic stall. Numerous of models have been developed such as the different works in [START_REF] Leishman | Principles of Helicopter Aerodynamics with CD Extra[END_REF], [START_REF] Dat | Modèle phénomènologique de décrochage dynamique sur profil d'hélicoptère[END_REF]. Among them, two particular models are of interest. Based on [START_REF] Goman | State-space representation of aerodynamic characteristics of an aircraft at high angles of attack[END_REF], recent adaptation of the G-K model presented in the work by [START_REF] Williams | Modeling lift hysteresis with a modified Goman-Khrabrov model on pitching airfoils[END_REF] with only a few number of states and identified parameters adequately represents the dynamic stall behavior. This work, combined with the work of [START_REF] Truong | A 2-d dynamic stall model based on a hopf bifurcation[END_REF], accurately predicts the lift and moment coefficient during the pitching motion of a wing. The development of this model has been detailed in [START_REF] Niel | Reduced order modeling of a dynamically pitching naca 0018 airfoil[END_REF].

The aerodynamic model can then be coupled to the structural dynamics of the wing to obtain an nonlinear aeroelastic model which accurately describes LCO behavior present with stall flutter. In particular, stall flutter has been addressed in several works using active flow control.

In [START_REF] Li | Flow control and stability analysis of rotating wind turbine blade system[END_REF], a dynamic stall model for rotating blade is derived from Beddoes-Leishman. An adaptive controller is designed and simulated for various flutter conditions. In [START_REF] Prime | Linear-parameter-varying control of an improved three-degree-of-freedom aeroelastic model[END_REF], an LPV-LQR controller is synthesized to suppress the LCO from stall flutter. The resulting auto-scheduled controller displays marginal robustness to airspeed variations. In [START_REF] Haghighat | Robust stall flutter suppression using H 2 /H ∞ control[END_REF], a mixed norm H 2 \ H ∞ robust controller is designed. The model used is derived from the ONERA dynamic stall model in [START_REF] Dat | Modèle phénomènologique de décrochage dynamique sur profil d'hélicoptère[END_REF].

In this work, the problem of flutter suppression is addressed for a one degree of freedom pitching wing. In Section II , an aeroelastic model adapted from [START_REF] Williams | Modeling lift hysteresis with a modified Goman-Khrabrov model on pitching airfoils[END_REF] and [START_REF] Truong | A 2-d dynamic stall model based on a hopf bifurcation[END_REF] is described. The set of equations is then formulated as a polytopic uncertain system in Section III. After presenting some background on LQR formulation using Linear Matrix Inequalities (LMIs), Section IV presents a polytopic formulation of the problem. In section V, the problem is solved and simulated for a NACA 0018 wing in stall flutter conditions. Finally, remarks and conclusions are provided in the final section.

AEROELASTIC MODEL

In this section, the aeroelastic model of a pitching wing equipped with a trailing edge flap is presented. This one degree of freedom model will then be studied to address the phenomenon of stall flutter. As depicted on Fig. 1, the wing is pitching at the middle of the chord. In this figure, α represents the pitching angle, or angle of attack, β is the flap deflection angle, U is the freestream velocity. CG is the center of gravity. L corresponds to the lift, and M represents the pitching moment, conventionally positive for the nose pitching up. The coefficient of moment C M = 2M ρScU 2 is introduced where ρ S and c are the freestream density, the wing surface area and the chord of the wing, respectively.

α(t) U L(t) M(t)
The linearized equation of motion of the wing is given by:

I α α + C α α + K α α = M (1)
where with K α is the torsional stiffness, C α is the torsional damping and I α is the inertia around the center of rotation. M represents the total moment at the center of mid-chord and is split in three components such as

M = M w + M β + M ext (2)
where M w represents the aerodynamic moment produced by the wing, M β is the aerodynamic moment produced by the flap. M ext is the exterior moment which can eventually be applied. This can correspond for example to the torque produced by an electrical motor connected to the axis of rotation.

Dynamic hysteresis aerodynamic model

The model of the aerodynamic moment produced by the wing without actuation is adapted from [START_REF] Williams | Modeling lift hysteresis with a modified Goman-Khrabrov model on pitching airfoils[END_REF]. In this work, derived from [START_REF] Goman | State-space representation of aerodynamic characteristics of an aircraft at high angles of attack[END_REF], the lift or the moment coefficients are related to the dynamics of the location of the separation point, denoted

x s and such that

x s ∈ [0, 1].
(3) This point corresponds to the distance from the leading edge, normalized by the chord length, where the flow is separated from the wing. Thus, picking x s = 0 corresponds to a fully separated flow while x s = 1 represents a fully attached flow. The dynamic of this point follows a first order equation:

τ 1 ẋs = -x s + x s,0 (α -τ 2 α) (4)
where τ 1 and τ 2 are two constants and function x s,0 corresponds to the static separation point location, which can be modeled as a function of the angle α and its derivative α. The function x s,0 can be evaluated experimentally using quasi static data.

The moment produced by the wing is then given by ( 5).

M w = 1 2 ρU 2 Sc [2παη(x s ) + C M offset ] (5) 
where

η(x s ) = η 2 x s + η 1 (1 -x s ) (6) 
and where η 2 and η 1 represent respectively the slope of the moment coefficient for a fully attached and fully detached flow. C M offset is the offset value of moment coefficient. Remark 1. The control algorithm derived in this paper is designed by considering the situation where the freestream velocity U may vary in a certain allowable set, but can be approximated by an (unknown) constant parameter during the dynamic evolution. Then, the moment in (5) introduces a constant bias affecting dynamics (1), whose size depends on the constant C M offset and on the parameter U . When designing our controller we will focus on the unperturbed dynamics resulting from C M offset = 0, but it is clear that the developed results easily extend to the case of constant values of C M offset and U , because the corresponding effect is merely to shift the equilibrium point.

This model referenced as the GK model proves to be particularly convenient, using a small number of states and constants, and capturing particularly well the hysteresis loop which appears during the dynamic motions as presented on Fig. 2 for example.

Dynamic stall model

However, due to the vortex shedding that appears in the dynamic motion, specifically in the reattachment cycle, the previous model presents some inaccuracies, especially for rapid motion and/or at high angles of attack. For this reason, this model is extended, including the work in [START_REF] Truong | A 2-d dynamic stall model based on a hopf bifurcation[END_REF]. This work, based on Tobak's work on the Hopf bifurcation in [START_REF] Tobak | Nonlinear problems in flight dynamics involving aerodynamic bifurcations[END_REF], permits A

(x, x s ) =        - C α I α πρU 2 Sbη(x s ) -K α I α 0 ρU 2 Sb 2I α 1 0 0 0 w S D M (x) C α I α -E M (x) w S D M (x) πρU 2 Sbη(x s ) -K α I α w S β M (x) -w S w S + ρU 2 Sb 2I α 0 0 1 0        , B = 1 2 ρU 2 SbC M,β [1 0 -w S D M (x) 0] , C(x s ) = 0 2πη(x s ) 0 1 0 1 0 0 , F = [0 1 0 0] . (7) 
to predict the oscillatory behavior that can be experienced, especially on the down-stroke of the motion. In [START_REF] Truong | A 2-d dynamic stall model based on a hopf bifurcation[END_REF], the original model for the moment coefficient is split in a steady and unsteady parts such as:

C M = C Ms + C Mu , (8) 
where C Ms and C Mu represent respectively the steady and unsteady component of the moment coefficient. In this present work, the precedent formulation of the GK model is preferred to account for the steady component. The unsteady component follows the following simplified second order dynamic:

CMu = w S β M (α, α) ĊMu -w 2 S C Mu -E M (α, α)w S α -D M (α, α)w S α. ( 9 
)
where w s is a constant, and β M , E M and D M are a set of constant depending on α and α. Let define α s , the critical angle of attack and Ω up , the following set:

Ω up := Ω 1 up ∪ Ω 2 up where Ω 1 up = {(α, α) ∈ [-180, 180] × R, α ∈ [-α s , 0] , α < 0} Ω 2 up = {(α, α) ∈ [-180, 180] × R, α ∈ [0, α s ] , α > 0}
Then, we can now defined β M , E M and D M as a twovalued set of functions such as,

{D M , β M , E M } = {D M,1 , β M,1 , E M,1 } if (α, α) ∈ Ω up , {D M,2 = 0, β M,2 < 0, E M,2 = 0} elsewhere
where parameters D M,i , β M,i and E M,i , for i = 1, 2, are constant and known. The resulting aerodynamic equations for the moment produced by the wing can then be summarized as follows The resulting pitch oscillation is described as

         M w = 1 2 ρU 2 Sc [2παη(x s ) + C M offset + C Mu ] , CMu = w S β M (α, α) ĊMu -w 2 S C Mu -E M (α, α)w S α -D M (α, α)w S α, τ 1 ẋs = -x s + x s,0 (α, α).
α = α 0 + α 1 sin(kt + ),
where we define k = 2πf c U∞ = ωc 2U∞ the reduced frequency with ω = 2πf the angular frequency and t + = t tconv the time normalized by the convective time, t conv = c U . Figure 2 provides examples of the experimentation conducted. A good agreement between the model prediction and experimental results is observed. In particular, the model proposed by Williams successfully captures the hysteresis loop of the coefficient of moment but fails to capture any secondary frequencies due to vortex shedding. Alternatively, the model proposed in this paper reproduces in addition the oscillations during the down-stroke of the motion. More details of this model are provided in [START_REF] Niel | Reduced order modeling of a dynamically pitching naca 0018 airfoil[END_REF].

Actuator model

The moment produced by the trailing flap is defined by

M β = 1 2 ρU 2 ScC M,β β (11) 
where

• C M,β is a given and known constant,

• β is the flap deflection angle.

Note that the dynamics of the flap actuator is not considered in this work, similarly to [START_REF] Haghighat | Robust stall flutter suppression using H 2 /H ∞ control[END_REF].

Complete aeroelastic model

The resulting equations of the complete aeroelastic model of the wing are then given by Eq. ( 1), ( 10) and ( 11). The previous final set of equation can thus be formulated as the non linear system:

ẋ = A(x, x s )x + B(x)u τ 1 ẋs = -x s + x s,0 (x) y = C(x)x z = F x (12)
where the vector x ∈ R 4 is given by

x = [ α, α, ĊMu , C Mu ] , (13) 
and vector u (= β), y and z are the the control input, the output and the measurement vectors of the system. The matrices A, B, C and F are given in (7) (at the top of the previous page).

System ( 12) can be seen as a nonlinear switched system, for which a dedicated stability analysis needs to be provided.

In order to solve this problem, we will provide in the next section a polytopic model for system (12), for which such an analysis is easier.

POLYTOPIC MODELING

As mentioned above, system (12) presents some nonlinearities due to the products in the dynamics of the variable x s and also to bilinear terms appear with the function η(x s ) in the matrix A(x, x s ).

In order to simplify the model, we will rewrite system (12) as a uncertain polytopic system where uncertain parameters are given in the following description. η(x s ): First, in order to suppress the product α × η from the equation, let consider η introduced previously in equation ( 6). We note that η is a linear combination of the state variable x s . Since x s cannot be directly measured, it is reasonable to consider as an uncertainty to the system and use the fact that it lies in the interval

[0, 1]. Therefore parameter η verifies η ∈ [η 1 , η 2 ].
(14) or equivalently, there exists a scalar function

λ 1 ∈ [0, 1] such that η(x s ) = λ 1 η 1 + (1 -λ 1 )η 2 .
(15) E M , β M , D M : Secondly, instead of considering a pure switch of the sets of the constants {D M , β M , E M } in Eq.( 10), a linear variation is conveniently introduced depending on an additional parameter parameter. This technique has been successfully used in [START_REF] Olalla | Robust LQR control for pwm converters: an LMI approach[END_REF]. Therefore, there exists a function

λ 2 ∈ [0, 1] such that {D M , β M , E M } := λ 2 {D M,1 , β M,1 , E M,1 } +(1 -λ 2 ) {D M,2 , β M,2 , E M,2 } . (16) 
U 2 : Finally, matrices A and B also depend on uncertainties. Especially, the free stream velocity U can be considered as uncertain due to the possible gusts of wind that can be encountered during flight, or just because of the uncertainty in its measurement. Therefore, there exists a function λ 3 ∈ [0, 1] such that

U 2 = λ 3 U 2 1 + (1 -λ 3 )U 2 2 . ( 17 
)
Even though we assumed that U be constant (and unknown) during motion, and so that quantity λ 3 in (17), we consider a time-varying version of the uncertain vector

λ(t) = [λ 1 (t) λ 2 (t) λ 3 (t)] in [0 1] 3
, comprising the coefficients λ l , for any l = 1, 2, 3, which can vary with time and are not necessarily constant.

Based on this uncertain vector, and the relations in ( 15)-( 17), we can derive a polytopic uncertain model of system (12), corresponding to:

ẋ = 2 i,j,k=1 λ i 1 λ j 2 λ k 3 (A i,j,k x + B i,j,k u) = 2 i,j,k=1 µ ijk (A i,j,k x + B i,j,k u) y = 2 i,j,k=1 λ i 1 λ j 2 λ k 3 C i,j,k x = 2 i,j,k=1 µ ijk C i,j,k x z = F x (19) 
where λ 1 l = λ l (t) and λ 2 l = 1 -λ l (t), for l = 1, 2, 3, matrices A i,j,k , B i,j,k and C i,j,k are given in (18), at the top of the next page, and where we introduced the scalars µ ijk . These scalars, in particular, satisfy 2 i,j,k=1 µ ijk = 1, which reveals that the multiaffine dynamics (12) can be written as a convex combination of 2 3 = 8 linear timeinvariant models corresponding to all possible selections of i, j, k ∈ {0, 1} in (18)(see, e.g., (Belta et al., 2002, Prop. 2) for details).

LMI-BASED SELECTION OF AN LQR CONTROLLER

The polytopic model ( 19) derived in the previous section allows us to apply several different control strategies for the selection of input u = β, corresponding to the flap deflection angle in Figure 1.

For this preliminary work, we follow the same approach adopted in [START_REF] Olalla | Robust LQR control for pwm converters: an LMI approach[END_REF], which in turns is based on the LQR design formulation presented in [START_REF] Feron | Numerical methods for h 2 related problems[END_REF]. The objective of that formulation is to select input u in such a way to perform some convex optimization geared towards reducing the cost function

J = ∞ 0 (x Qx + u Ru)dt, ( 20 
)
where R is a positive definite matrix and Q is a positive semi-definite matrix that may be freely selected as long as (Q, A ijk ) is detectable for all selections of ijk.

Due to the nonlinear nature of the dynamics and the conservativity of the convex embedding in ( 19), it is hard to exactly solve the minimization of J in (20), nevertheless, one possible conservative approach that leads to reduced values of J is the one given in [START_REF] Olalla | Robust LQR control for pwm converters: an LMI approach[END_REF], which is

A i,j,k =        - C α I α πρU 2 k Sbη i -K α I α 0 ρU 2 k Sb 2I α 1 0 0 0 w S D M,j C α I α -E M,j w S D M,j πρU 2 k Sbη i -K α I α w S β M,j -w S w S + ρU 2 k Sb 2I α 0 0 1 0        , B i,j,k = 1 2 ρU 2 k SbC M,β [1 0 -w S D M,j 0] , C i,j,k = 0 2πη i 0 1 0 1 0 0 , F = [0 1 0 0] . (18) 
based on the solution to the following convex optimization problem: min

P,Y,X
TrQP + X, subject to: (21)

A i,j,k P + P A i,j,k + B i,j,k Y + Y B i,j,k + 1 < 0, ∀i, j, k X R 1 2 Y Y R 1 2 P > 0 P = P > 0.
The resulting LQR controller is given by u = -Kx, with K = Y P -1 .

SIMULATION RESULTS

Using Eq.( 21), a robust controller has been synthesized for the polytopic system (19) defined in Section 3, whose solutions include the solution of the nonlinear multiaffine dynamics ( 12). The values of the parameters of the considered model are listed in Table 1. The weighting matrices of the cost function are selected to ensure that the input vector remains limited in amplitude and a reasonable suppression of the stall flutter. The matrices used are consequently Q = diag {1, 1, 0.01, 0.01} and R = 50. The convex optimization in Eq.( 21), leading to the selection of gain K, is solved using the Robust control toolbox available in MATLAB. In particular, the resulting state feedback gain is: C M offset , in the simulation we consider a more realistic case of a nonzero value of C M offset (see Table 1). As expected, the different values of U considered in our three simulations, correspond to different equilibrium points reached by the closed loop.

K = [0.
The simulation results illustrate how the same feedback gain is capable of stabilizing that equilibrium point for the three different values of free stream velocities. The controller successfully suppresses the flutter phenomenon, which is visible in all three simulations, before the controller activation, which always occur at time t = 2s.

CONCLUSION

In this work, a robust LQR controller for stall flutter suppression is designed and computed for a pitching NACA 0018 wing. A non linear and switched aeroelastic model, accounting for the complex phenomenon of stall flutter, is presented and conveniently turned as a polytopic uncertain system. A polytopic and LMI formulation of an LQR problem is introduced. The problem is then solved using Matlab. Simulations using the designed controller are then computed. The results for different airspeeds are presented showing that the synthesized controller can successfully suppress the stall flutter initially present for the range of variation.

Further work could address the problem of rate or magnitude limitations of the actuator.
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Fig. 1 .

 1 Fig. 1. Model of the pitching equipped with a flap.

  (a) α 0 = 10 o , α 1 = 6 o , k = 0.2. (b) α 0 = 10 o , α 1 = 10 o , k = 0.1. (c) α 0 = 15 o , α 1 = 10 o , k = 0.1.

Fig. 2 .

 2 Fig. 2. Moment coefficients curve predictions and measures for various values of α 0 , α 1 (in degrees) and k.

  (10) Experiments have been conducted in the Subsonnic Wind Tunnel of Aeronautics Laboratory of the United States Air Force Academy at an elevation of 7, 000f t. The wind tunnel designed and built by FluiDyne Engineering, is a recirculating tunnel with a 0.91 m by 0.91 m by 1.83 m test section. The freestream velocity was U ∞ = 22.5m/s. This resulted in a Mach number of M = 0.068 and a chordbased Reynolds number Re c = 190.10 3 .The article used in the experimentation is a rectangular, finite span, NACA 0018 cross sectional wing with a chord of c = 0.15 m and a span of b = 0.45 m. The wing section oscillates about the mid chord by a circular spar attached to a DC brushless motor which dynamically pitches the wing section.

  Table1. Model parameters used in the simulation study.If η and {D M , β M , E M } values are bounded and known, we need to define the margin of uncertainty of the free stream velocity to ensure some robustness to this parameter. The nominal value selected is 20 m/s. We authorize some variation of ±2.5m/s which provides a variation range [U min , U max ] = [17.5 m/s, 22.5 m/s].

  Fig. 3. Angle of attack( o ) and flap deflection( o ) in function of the time(s) for U = 20 m/s. The controller is activated after 2 s.

Fig. 4 .

 4 Fig. 4. Angle of attack( o ) and flap deflection( o ) in function of the time(s) for U = 17.5 m/s. The controller is activated after 2 s.

Fig. 5 .

 5 Fig. 5. Angle of attack( o ) and flap deflection( o ) in function of the time(s) for U = 22.5 m/s. The controller is activated after 2 s.
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