

Fingerprinting and tracing the sources of soils and sediments: Earth and ocean science, geoarchaeological, forensic, and human health applications

P.N. Owens, W.H. Blake, L. Gaspar, D. Gateuille, A.J. Koiter, D.A. Lobb, E.L. Petticrew, D.G. Reiffarth, H.G. Smith, J.C. Woodward

▶ To cite this version:

P.N. Owens, W.H. Blake, L. Gaspar, D. Gateuille, A.J. Koiter, et al.. Fingerprinting and tracing the sources of soils and sediments: Earth and ocean science, geoarchaeological, forensic, and human health applications. Earth-Science Reviews, 2016, 162, pp.1 - 23. 10.1016/j.earscirev.2016.08.012 . hal-01587440

HAL Id: hal-01587440 https://hal.science/hal-01587440

Submitted on 28 Jun 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

- 1 Fingerprinting and tracing the sources of soils and sediments: earth and ocean sciences,
- 2 geoarchaeological, forensic, and human health applications
- P.N. Owens^{a*}, W.H. Blake^b, L. Gaspar^{a, c}, D. Gateuille^{a, d}, A.J. Koiter^e, D.A. Lobb^f, E.L. Petticrew^g, D.
 Raiffarth^e, H.G. Smith^h, J.C. Woodwardⁱ
- 5 ^aEnvironmental Science Program and Quesnel River Research Centre, University of Northern British
- 6 Columbia, Prince George, British Columbia, V2K 4Z9, Canada
- 7 ^bSchool of Geography, Earth and Environmental Sciences, University of Plymouth, Plymouth, PL4 8AA, UK
- 8 ^cSoil and Water Department, Estación Experimental de Aula Dei (EEAD-CSIC), Spain
- 9 ^dLaboratoire des Sciences du Climat et de l'Environnement (LSCE), Unité Mixte de Recherche 8212 (CEA-
- 10 CNRS-UVSQ/IPSL), LSCE, Bât. 12 Domaine du CNRS Avenue de la Terrasse, 91190 Gif-sur-Yvette, France
- ¹¹ ^eNatural Resources and Environmental Studies Institute, University of Northern British Columbia, Prince
- 12 George, British Columbia, V2K 4Z9, Canada
- ¹³ ^fDepartment of Soil Science, University of Manitoba, Winnipeg, Manitoba, Canada
- ^gGeography Program and Quesnel River Research Centre, University of Northern British Columbia, Prince
- 15 George, British Columbia, V2K 4Z9, Canada
- ¹⁶ ^hSchool of Environmental Sciences, University of Liverpool, Liverpool, L69 7ZT, UK
- ¹⁷ ⁱSchool of Environment, Education and Development, University of Manchester, Manchester, UK
- 18
- 19 *Corresponding author: Philip N. Owens; Philip.owens@unbc.ca
- 20
- 21 Published in Earth Science Reviews November 2016
- 22 (Accepted 26 August 2016; Available online 03 September 2016)
- 23
- 24
- 25

26	Contents
27	
28	1- Background and history
29	2- The sediment source fingerprinting approach
30	3- Earth and ocean sciences applications
31	3.1- Agricultural landscapes
32	3.1.1-Inorganic tracers: identification of erosion processes
33	3.1.2- Organic tracers: identification of contributions from different land uses
34	3.2- Forested landscapes
35	3.2.1- Deforestation and forest harvesting
36	3.2.2- Wildfires
37	3.3- Urban landscapes
38	3.4- Estuarine and coastal landscapes
39	3.5 - Oceanic environments and sedimentary basins
40	4- Archaeological and geoarchaeological applications
41	4.1- Fine-grained sediments as raw materials and sourcing clays for pottery
42	4.2- Sediment sources and archaeological site formation
43	5- Forensic applications
44	6- Human health applications: fingerprinting airborne particles
45	7- Methodological considerations and recommendations
46	7.1- Collection of soil and sediment samples
47	7.2- Selection of appropriate fingerprint properties
48	7.3- Laboratory analysis and data reporting
49	7.4- Particle size and organic matter correction factors
50	7.5- Conservative behaviour of soil and sediment properties
51	7.6- Statistical and unmixing model approaches and incorporation of uncertainties
52	7.7- Linking source fingerprinting to sediment budgets
53	8- Conclusion and perspective
54	
55	
55	
56	
57	
58	

59 Abstract

60 Fine-grained sediment is perhaps the most widespread and pervasive contaminant in aquatic systems 61 reflecting its role in influencing the quality of the water (e.g., turbidity, vector of chemicals and other 62 pollutants) and its detrimental effect on infrastructure (e.g., dams, turbines) and aquatic habitats (e.g., 63 salmonid spawning grounds) through sedimentation. Determining the sources of fine-grained sediment 64 thus represents an important requirement for watershed and coastal management, as well as for 65 understanding landscape and oceanic evolution. Sediment source fingerprinting utilises the diagnostic 66 physical, chemical and biological properties (i.e., tracers) of source materials to enable samples of 67 collected sediment to be apportioned to these sources. This review examines the development of the 68 technique within the earth and ocean sciences, focusing mainly on agricultural landscapes. However, the 69 development of new tracers, such as compound-specific stable isotopes, has allowed the technique to be 70 applied in a growing number of environmental settings including forested (including wildfire-impacted 71 forests), urban and estuarine/coastal settings. This review also describes other applications of the 72 fingerprinting approach such as geoarchaeological (e.g., archaeological site formation), forensic (e.g., 73 identifying the sources of soil/sediment particles in criminal investigations) and human health (e.g., 74 identifying the sources of airborne particulate matter, PM_{2.5}) applications. Identifying commonalities in 75 methods and approaches between environments and disciplines should foster collaboration and the 76 exchange of ideas. Furthermore, refinement of the sediment source fingerprinting technique requires 77 that several methodological issues be addressed. These methodological issues range from the initial 78 sampling design through to the interpretation of the final apportionment results. This review also 79 identifies and assesses these methodological concerns.

80

- 81 Keywords: sediment sources; sediment fingerprinting; tracing; sediment properties; fine-grained
- 82 sediment; sediment provenance

83

84 1. Background and history

85 In recent decades, there has been a rapid growth in the number of studies that have utilized tracing and 86 fingerprinting approaches to investigate the movement of soils and fine sediments in terrestrial and 87 aquatic systems (Koiter et al., 2013a; Walling, 2013; Mabit et al., 2014). This growth is due to the fact 88 that these techniques are able to provide essential information on soil and sediment dynamics that can 89 be used to understand the evolution of landscapes (e.g., Belmont et al., 2007) and assist in river basin 90 management and river restoration (e.g., Owens, 2005, 2008; Evans et al., 2006; Minella et al., 2008, 91 2014; Walling and Collins, 2008; Gellis and Walling, 2011). In these contexts, the source tracing and 92 fingerprinting techniques have often been part of wider sediment budget investigations (Gellis and Walling, 2011), as the source tracing and fingerprinting techniques alone are sometimes too broad (e.g., 93 94 topsoil is dominant over channel banks) to enable exact sources (e.g., specific fields, or channel bank 95 reaches) to be determined. Thus, broad classifications of sediment source types can make it difficult to 96 precisely target management strategies intended to control sediment problems. . In addition, most 97 sediment source tracing and fingerprinting results are relative (i.e., expressed as percentages), and 98 sediment transport data are often required to convert values into actual sediment fluxes associated with 99 the sources (e.g., Walling and Woodward, 1995; Smith et al., 2011). Source tracing and fingerprinting 100 techniques used in concert with information on sediment transport and sediment budgeting can offer 101 powerful insights into how landscapes behave and can provide important information on 102 geomorphological processes, which, in turn, can be used to guide river basin and coastal management. 103 Mukundan et al. (2012), for example, have demonstrated how sediment source fingerprinting can be 104 used as a management tool for developing total maximum daily loads (TMDLs) of sediment as part of the 105 TMDL program in the USA.

106 Early source tracing and fingerprinting studies (e.g., Klages and Hsieh, 1975; Wall and Wilding, 1976) 107 were typically qualitative in nature and concerned with establishing the spatial (e.g., geological) sources 108 of contemporary suspended sediment. These were followed by studies that were more quantitative, 109 again with emphasis on the sources of contemporary sediment (e.g., Peart and Walling, 1986; Walling et 110 al., 1993, 1999; Collins et al., 1997a). Recent developments have seen the technique expanded to include 111 further applications (i.e., new landscape types and research questions, see sections below) and used to 112 determine historical changes in sediment sources using floodplain (e.g., Collins et al., 1997b; Owens and 113 Walling, 2002a; Walling et al., 2003), check dam (e.g., Chen et al., 2016) and lake and reservoir (e.g., 114 Foster and Walling, 1994; Ben Slimane et al., 2013; Pulley et al., 2015) deposits; for a review see D'Haen et al. (2012). The last decade or so has seen an expansion of the types of properties used as tracers and 115 116 the use of more rigorous statistical approaches and numerical unmixing models.

117 While there are similarities between approaches concerned with the tracing and fingerprinting of soil 118 and sediment particles in the landscape, there are also some fundamental differences. One useful 119 distinction between the two approaches is that in the case of "tracing" (or "sediment tracing") studies 120 the tracers are pre-selected; in many cases they are applied artificially (e.g., rare-earth elements or 121 fluorescent tracers; Liu et al., 2016). The selection is based on an understanding of the behaviour of that 122 tracer (e.g. fallout radionuclides) and its ability to answer the research questions being investigated. In 123 the case of "source fingerprinting" (or "sediment fingerprinting") studies initially it is unclear what 124 tracers will be selected as fingerprints and samples are analysed for a range of potential tracers and 125 statistical methods are used to identify those that are able to discriminate sources.

126 The term "source tracing" is a hybrid term often used to refer to the use of tracer properties to identify 127 the source of sediments. Thus, the terms "source tracing" and "source fingerprinting" are often used 128 interchangeably to mean the use of the properties of soils and sediments to infer their origins; for

simplicity, in this review we mainly use the term sediment source fingerprinting.

130 While there have been numerous recent reviews of the sediment source fingerprinting approach (e.g., 131 Walling 2005, 2013; Gellis and Walling, 2011; Mukundan et al., 2012; Guzman et al., 2013; Haddadchi et 132 al., 2013) most of these are concerned with specific aspects of individual approaches and their 133 application. Thus, Walling (2005) provides an overview of the approach using case study examples from 134 primarily agricultural river basins in the UK. Haddadchi et al. (2013) focus on reviewing sediment tracers 135 and mixing models. The reviews by Gellis and Walling (2011) and Mukundan et al. (2012) are mainly 136 concerned with how sediment source fingerprinting approaches can be used as river basin management 137 and restoration tools, while Guzman et al. (2013) focus on the provision of information on soil erosion 138 and redistribution at the scale of hillslopes and small watersheds. Few publications have considered the 139 wider-ranging potential of the approach, especially for applications beyond fluvial geomorphology and 140 landscape evolution. Given the documented increase in the use of sediment source fingerprinting (i.e., 141 Koiter et al., 2013a; Walling 2013), it seems timely to review the applications to date, especially beyond 142 studies focussing on agricultural landscapes, and to consider the wider relevance of the approach in 143 other settings, such as coastal and oceanic, and other uses, such as forensic and human health. A key 144 objective of this review is to encourage interdisciplinary collaboration (i.e. between earth sciences, 145 ocean sciences, hydrology, geomorphology, soil science, atmospheric science, health sciences, 146 archaeology, chemistry, biology) amongst those who use soil and sediment source fingerprinting 147 techniques in disctinctive, but complementary, ways. 148 It is also pertinent to address some of the research needs to allow the technique to reach its full 149 potential in these new areas, especially given recent developments, such as addressing the non-

150 conservative behaviour of sediment tracer properties (e.g., Parsons and Foster, 2011; Koiter et al., 2013a;

151 Pulley et al., 2015; Sherriff et al., 2015) and concerns over the impact of correction factors to account for

differences in particle size and organic matter content (e.g., Smith and Blake, 2014; Kraushaar et al.,

153 2015; Smith et al., 2015). Many would argue that the approach is at a key stage in its development, and

that the research community needs to develop some fundamental principles for its application.

155 This review: (i) describes the basic principles of sediment source fingerprinting; (ii) synthesises many of

the applications of sediment source fingerprinting; and (iii) considers important research needs.

157 2. The sediment source fingerprinting approach

158 There are numerous soil and sediment properties that can be used to discriminate between the potential 159 sources of the sediment within a river basin or coastal/oceanic environment. This section provides a brief overview of these properties; for comprehensive reviews see Foster and Lees (2000), Collins and Walling 160 161 (2004), Guzman et al. (2013) and Haddadchi et al. (2013). Many of the main fingerprinting properties are 162 shown in Figure 1 and include physical characteristics (e.g., sediment size, shape, colour), geochemical 163 properties (e.g., trace metals), fallout radionuclides (e.g., ⁷Be, ¹³⁷Cs, unsupported ²¹⁰Pb), mineral 164 magnetic properties (e.g., magnetic susceptibility and isothermal remanence), and organic properties 165 (e.g., compound-specific stable isotopes, microbial communities, pollen). These fingerprint properties 166 have been used individually (e.g., colour; Martinez-Carreras et al., 2010; Brosinsky et al., 2014), within 167 property groups (e.g., fallout radionuclides; Owens et al., 2012; Evrard et al., 2016) or in combination as 168 part of a composite fingerprinting approach (e.g., geochemical, mineral magnetic and fallout 169 radionuclides; Walling and Woodward, 1995; Collins et al., 1997a; Walling et al., 1999) to infer sediment 170 sources.

171

172

173

Fig. 1. Properties of earth materials that may be used to date and trace sediment sources (from: Fosterand Lees, 2000).

176

177 The basic principle behind sediment source fingerprinting is that the sediment properties (e.g., trace

178 element concentrations, radionuclide activities) will reflect their origins. For example, fallout

179 radionuclides label surface soils and thus high activity concentrations in a sediment sample suggests that

180 the sediment was derived from surface soils (i.e., topsoil) as opposed to subsoil material which would be

181 expected to have lower activities (Owens et al., 1996; Wallbrink et al., 1998). Similarly, a sediment 182 sample rich in organic carbon would suggest that it was derived from undisturbed surface soils (e.g., 183 forest, pasture) as opposed to cultivated landscapes or channel bank material (Gellis and Noe, 2013). In 184 most cases, a direct link has been made between the fingerprint properties in the target sediment and 185 those of potential source materials. This assumes that the property used as a fingerprint exhibits a 186 conservative behaviour between source and sink, and that any alterations or transformations are either 187 negligible or can be quantified (Belmont et al., 2014). It is well known, for example, that the particle size 188 distribution of sediment changes as it moves through the landscape (e.g., Walling, 1983; Koiter et al., 189 2015), and this can influence the concentrations of certain properties, in which case an allowance needs 190 to be made for such changes. In the case of particle size effects, this can be achieved through restricting 191 analysis to a certain size fraction (e.g., $< 63 \,\mu$ m) or by using correction factors. However, the use of 192 corrections factors needs to be exercised with caution (Koiter et al., 2013a; Smith and Blake, 2014), and 193 is discussed later (i.e. section 7.4).

194 The identification of source locations from sediment properties can be achieved both qualitatively and 195 quantitatively. Examples of the former include simple bi-plots of property concentrations for sources and 196 sediments. For example, in the case of plots of ¹³⁷Cs versus unsupported ²¹⁰Pb activity, samples from a 197 particular sediment source are required to cluster and to cluster in a different domain space compared to 198 other potential sources (Walling and Woodward, 1992). The relative location of sediment samples on the 199 same plot can be used to infer likely source(s). Thus, in the example shown in Figure 2, the 200 concentrations of ¹³⁷Cs and unsupported ²¹⁰Pb in surface soils are significantly higher than those for 201 subsoil/channel bank samples, and the equivalent concentrations for sediment samples fall within the 202 cluster for subsoil/channel bank, thus suggesting that this is the dominant source of sediment in these 203 two watersheds in British Columbia, Canada (Owens et al., 2012).

Fig. 2. Bi-plot of ¹³⁷Cs and unsupported ²¹⁰Pb activity concentrations for source materials (surface soil and subsoil/channel bank material) and fine-grained sediment samples collected from burnt (Fishtrap Creek, F) and unburnt (Jamieson Creek, J) watersheds in British Columbia, Canada. The plot illustrates the distinction between surface soils and subsoil/channel bank material in both catchments. The sediment samples are enclosed in the envelope (bottom left) (modified from: Owens et al., 2012).

212

213

204

205

214 Quantitative source identification is typically achieved through the use of statistical procedures to select 215 fingerprints and the use of multivariate unmixing models to apportion the contribution from each 216 sediment source; sections 7.4 to 7.6 consider these aspects in greater detail. This quantitative approach 217 tends to involve assessment of the uncertainty associated with the results (e.g., via Monte Carlo 218 simulation). The estimation of uncertainty is crucial as it provides a measure of confidence in the results 219 (Rowan et al., 2000). Such information should incorporate the variability associated with all aspects of 220 the fingerprinting approach, including field sampling, laboratory analysis and the application of the 221 unmixing model; values of uncertainty based on only one or two of these aspects are likely to be 222 misleading. Understanding, quantifying and reporting these sources of uncertainty - and their 223 implications – needs to be addressed much more comprehensively by the scientific community (Smith et 224 al., 2015).

225

3. Earth and ocean sciences applications

227 3.1 Agricultural landscapes

228 To date, the majority of sediment source fingerprinting studies have been undertaken in agricultural 229 landscapes reflecting the widespread occurrence of agriculture and also concerns associated with soil 230 erosion and off-site effects. Typically, studies have aimed to quantify the relative contribution of 231 agricultural fields to the total sediment budget and to compare such contributions to the sediment 232 delivered from other areas of the basin (e.g., forests, river banks, road ditches, urban areas). The 233 contributions from several case studies, summarized in Table 1, represent only a small fraction of 234 sediment source fingerprinting studies in agricultural watersheds but they highlight the value of the 235 sediment source apportionment approaches. Considering the large range of values estimated for the 236 contribution of agricultural topsoil (i.e., 1-97%), studies prior to and after the implementation of

237 management practices appear relevant in order to focus on problematic areas and to follow the post-238 change trajectory of sediment dynamics. The great variability of the contributions also highlights the 239 necessity to consider factors other than land cover, which can include agricultural practices, drainage 240 network, slope, weather and antecedent conditions, as these can also influence soil erosion rates. In 241 order to quantify soil erosion rates and to more precisely define the severely eroded areas, it is often 242 necessary to combine sediment source fingerprinting techniques with sediment mass balance estimates. 243 For example, Smith et al. (2014) showed that the increase in the arable area from ~6 % to 36 % for the 244 River Tamar basin (920 km²) in the south-west of the UK over the period 1990-2007 led to a rise in 245 hillslope sediment yield from 8.8 to 32 kt year⁻¹ while the contribution from the erosion of channel banks 246 remained almost constant.

247 Most studies have used inorganic tracing properties (e.g., fallout radionuclides and geochemistry), but 248 recently organic tracers have also been utilised to provide a more comprehensive and detailed 249 assessment of sediment movement and sources.

250

251 **3.1.1** Inorganic tracers: identification of erosion processes

252 The information provided by sediment source fingerprinting studies can be improved by combining 253 several tracer properties that have originated as a result of different processes (e.g., due to weathering 254 of bedrock, atmospheric fallout, or land-use). For example, Gruszowski et al. (2003) used mineral magnetic, geochemical and radionuclide signatures to highlight the role of road ditches as a conveyer of 255 256 30 % of sediment eroded from agricultural topsoils in a watershed in the UK. Determining these 257 preferential pathways also helps to prevent counterproductive management practices. For example, 258 subsurface drain installation in agricultural watersheds has often been considered as an efficient way 259 ofpreventing erosion by increasing water infiltration rates in soils. Fingerprinting studies in contrasting

watersheds in England, Australia and France (e.g., Russell et al., 2001; Wilkinson et al., 2013; Foucher et
al., 2015) have demonstrated that large amounts of fine sediment were derived from eroded sub-surface
soils, as the subsurface drainage altered the hydrology of the watershed. Similarly, Walling et al. (2002)
reported that between 30 % and 60 % of eroded sediment was transferred through subsurface drains in
two small agricultural watersheds in the midlands of the UK.

265 Sediment source fingerprinting studies have also revealed temporal changes in sediment contributions 266 from different parts of agricultural watersheds, which suggest that there is seasonality in certain erosion 267 processes. For example, recent studies (e.g., Gellis and Noe, 2013; Lamba et al., 2015a) have shown that 268 freeze-thaw processes are likely to increase the contribution of bank erosion in agricultural watersheds. 269 Fingerprinting studies have also revealed unexpected effects of changes in agricultural practices from a 270 management perspective. For example, Minella et al. (2008) reported that the decrease of erosion rates 271 in cropland areas in a watershed in Brazil resulted in an increase in erosion of the channel banks due to 272 changes in the transport capacity and competence of channel flows.

273 In addition to providing useful information on sediment origins in agricultural watersheds, fingerprinting 274 approaches can also be used to investigate the contribution of sediment-associated nutrients (e.g., 275 nitrogen and phosphorus) and contaminants (e.g., metals, polychlorinated biphenyls) related to 276 agricultural activities (e.g., Walling et al., 2008). Therefore, sediment-associated phosphorus deposited 277 in rivers or lakes can be traced back to cropland or pasture erosion; alternatively, a higher contribution of 278 banks can lead to a dilution of particulate phosphorus by less phosphorus-rich sediment (Lamba et al., 279 2015b). Nutrient concentrations can also be used as tracers for sediment source fingerprinting (e.g., Ben 280 Slimane et al., 2013), however, the inclusion of such fingerprints are controversial due to the potential of non-conservative behaviour during transport (Koiter et al., 2013a). 281

282 To illustrate more fully the potential application of inorganic sediment fingerprinting properties for 283 identifying sediment sources in an agricultural watershed, we present findings for the South Tobacco 284 Creek watershed in Manitoba, Canada.. The downstream impacts of sediments and associated 285 contaminants, phosphorus in particular, in this watershed required that sources of sediment be 286 determined and appropriate management practices be developed and implemented. The watershed has 287 an area of ~75 km² and the creek flows east, from the glacial till landscape of the Prairie Pothole Region, 288 over the Cretaceous shale bedrock of the Manitoba Escarpment, across the glaciolacustrine plain of the 289 Red River Valley. The predominant land use is agriculture, largely conventionally cultivated annual crop 290 production. Over several years, samples of suspended and channel-stored fine-grained sediment were 291 collected along the length of the main channel. Potential source materials, including stream bank, 292 bedrock, riparian soil and field soils were collected in association with each sediment sampling location.

293 Koiter et al. (2013b) used geochemical and radionuclide fingerprinting properties to establish the relative 294 contributions of sediment sources. The suspended sediments in the uppermost reaches were dominated 295 by topsoil sources (64 %–85 %), whereas the suspended sediments exported farther downstream had a 296 higher proportion of sediment coming from streambank (32 %–51 %) and shale bedrock (29 %–40 %) 297 sources. This switch in the dominant sources of sediment between the headwaters and the watershed outlet were due to: (i) changes in sediment storage and connectivity; (ii) a transition in the dominant 298 299 erosion processes from topsoil to streambank erosion; and (iii) the incision of the stream channel 300 through the shale bedrock as it crosses the Manitoba Escarpment. Additional work by Barthod et al. 301 (2015), using colour parameters (i.e., reflectance spectrometry, VIS-NIR) as fingerprint properties, 302 supported the findings of Koiter at al. (2013b) and showed colour to be an effective tracer of sediment 303 (Figure 3). Following these studies, there has been a shift from soil conservation practices that minimize 304 soil losses by water erosion to management practices that manage the runoff. Although inorganic tracers 305 have proved successful in fingerprinting sediment sources, more spatially detailed investigations are

306 needed as the broad sediment sources identified have limited utility in making management decisions.

307 The use of organic tracers, such as compound-specific stable isotopes, may allow for the identification of

308 more detailed sediment sources (e.g., crop specific) to be identified.

309

Fig. 3. Box and whisker plots showing the relative contributions of potential sources to suspended
sediment collected from monitoring stations in the agricultural South Tobacco Creek watershed,
Manitoba, Canada. Source 1: topsoil from agricultural fields, riparian areas, and forest valley walls;
source 2: stream bank materials above an escarpment; source 3: stream bank materials within and
below an escarpment; and source 4: outcrop shale materials. The lower and upper hinges correspond to
the first and the third quartiles, respectively. The whiskers are created using the Tukey method. Potential
outliers are plotted as crosses (from: Barthod et al., 2015).

318

319 **3.1.2** Organic tracers: identification of contributions from different land uses

320 There has been considerable interest in developing organic tracers for use as sediment source 321 fingerprints (e.g., Granger et al., 2007). Early studies (e.g. Brown, 1985) demonstrated the use of pollen 322 and spores to establish the sources of suspended sediment. Other studies have demonstrated the use of 323 stable isotopes of carbon (C) and nitrogen (N) to infer sources of fine-grained sediment (McConnachie 324 and Petticrew, 2006; Fox and Papanicolaou, 2007; Schindler Wildhaber et al., 2012; Laceby et al., 2015a). 325 Recent developments include: the use of the natural and artificially-applied DNA-markers (e.g., Mahler 326 et al., 1998; Granger et al., 2007) associated with contrasting source materials; and the use of plant-327 associated fatty-acids and compound-specific stable isotopes (e.g., Reiffarth et al., 2016). Other studies 328 (e.g., Zhang et al., 2016) have also demonstrated the potential of using microbial communities to identify 329 sediment derived from different land use activities.

Plant-derived organic tracers (referred to as biomarkers hereafter) can complement more established inorganic tracers such as fallout radionuclides and geochemical properties. Whereas some traditional tracing techniques may cover large areas of a watershed without exhibiting a high degree of variability, biomarkers reflect input from the vegetation on the surface by deposition onto the soil and entrapment within the sediment. The high recalcitrance and low biodegradability of certain fatty acids (FAs), as well as their relatively high abundance, suggests they offer considerable potential as sediment tracers.

Plants produce FAs that are structurally indistinguishable; for example, all roots produce C22:0 and C24:0
FAs (Pollard et al., 2008; Wiesenberg et al., 2012). Differentiating the source of the FAs based solely on
vegetation type may be accomplished by examining the carbon isotopic signature of a particular FA.
Carbon isotope values reflect the ratio of ¹³C:¹²C, and are often reported using the delta scale (δ¹³C). The
delta value is reported relative to a commonly used standard for that particular element (e.g., ViennaPee Dee Belemnite for carbon); values are either negative or positive relative to the standard, which is

defined as no shift. Maize and wheat, for example, are C4 and C3 plants, respectively, and, due to the differing methods of CO₂ fixation, should exhibit significant differences between their leaf and root FA δ^{13} C values (O'Leary, 1988). Average δ^{13} C values for C4 and C3 plants bulk ($^{13}C_{bulk}$) tissue have been reported as -13‰ and -27 ‰, respectively (Glaser, 2005), with FAs further depleted in 13 C, relative to the bulk tissue, by approximately 6-8 ‰ (Ruess and Chamberlain, 2010).

Several researchers (e.g., Gibbs, 2008; Blake et al., 2012; Hancock and Revill, 2013; Cooper et al., 2015; Alewell et al., 2016) have investigated the use of FA biomarkers for soil and sediment tracing. Specifically, the carbon isotope signatures of FAs found in the soil were used, together with ¹³C_{bulk} for soil and sediment, and total organic carbon (TOC), to apportion sediment sources in small watersheds. For the purpose of sediment source fingerprinting, the analysis to determine the isotopic signature of individual organic compounds has been referred to as compound-specific stable isotope (CSSI) analyses; the term CSSI has been adopted by the International Atomic Energy Agency (IAEA) in this context.

354 To illustrate the application of CSSIs, Blake et al. (2012) investigated a small agricultural watershed (1.45 355 km^{-2}) in the UK, where the climate is temperate. The sampling site consisted of permanent pasture, ley 356 pasture, maize stubble, winter wheat and woodland. Blake et al. (2012) used CSSI data to determine the 357 sources of sediment at the stream outlet for the watershed after a period of heavy rainfall, and 358 compared the CSSI-based estimated yields from each source to ones calculated based on geochemical 359 data. They found that the geochemical data overestimated the contribution of cultivated topsoil to the 360 watershed sediment yield during the event as compared to the estimates provided by the CSSI-based 361 tracers. The geochemical-based overestimate was attributed to the ley pasture in the watershed, which 362 constituted a significant portion of the area in the watershed and had been previously cultivated. The ley 363 pasture would have a geochemical fingerprint similar to other cultivated fields, and therefore, the two 364 sources would be indistinguishable by geochemical fingerprinting means. Using an unmixing model

(IsoSource; see section 7.6 for more information on unmixing models) and CSSIs, Blake et al. (2012)
determined that the major sediment contribution at the watershed outlet came from pasture sources,
which represent ~65 % of the watershed area. The results indicated the potential usefulness of the CSSI
technique as a sediment source fingerprinting tool, albeit in a small agricultural watershed.

The use of CSSIs as a sediment source fingerprinting tool is still in its infancy. Early results suggest that CSSIs of FAs may help differentiate crop-specific sediment sources and thus complement information derived from more conventional, inorganic tracing properties. More research is needed to address the concerns raised by Blake et al. (2012), Alewell et al. (2016) and others, including sources of variability associated with environmental processes, field sampling and laboratory preparation and analysis (Reiffarth et al., 2016).

375

376 3.2 Forested landscapes

377 3.2.1 Deforestation and forest harvesting

378 Soil disturbance by forest harvesting operations have been widely observed to increase the sediment 379 loads of receiving streams and river networks (e.g., Leeks and Marks, 1997; Douglas et al., 1999; Stott 380 and Mount, 2004; Walling, 2006; Kreutzweiser et al., 2009). In this context, sediment tracing and 381 fingerprinting approaches are of value in identifying sediment sources and hence the processes leading 382 to increased sediment load to inform Best Management Practices (BMPs) (Wallbrink and Croke, 2002). 383 Soil surface disturbances by forestry operations are wide ranging in spatial scale and impact but 384 generally include the direct impact of forestry operations themselves on soil structure, as well as the 385 construction of: (i) temporary log processing areas; (ii) skid tracks along which logs are hauled for 386 processing; and (iii) local and regional road networks (Douglas et al., 1999; Motha et al., 2003). While the skid track and road infrastructure is considered to be the major factor in generating sediment and
delivering it to the stream system, it can be difficult to assess the additional role of tree harvest
operations using conventional monitoring approaches (Motha et al., 2003). Tracer applications have
utilised fallout radionuclide budgeting approaches and sediment source fingerprinting to address this
issue – in a similar way to those studies in agricultural landscapes described above (i.e., section 3.1) –
and some examples are reviewed below.

393 Wallbrink et al. (2002) adopted a fallout radionuclide tracer budget approach to explore sources of 394 erosion, rates of sediment transport and storage, and losses from the system. The tracer budget approach was based on fallout ¹³⁷Cs distribution across the landscape with a particular challenge of 395 396 overcoming spatial heterogeneity in fallout due to interception by the forest canopy and leaf litter 397 distribution on the soil surface. A landscape element (or unit) approach was adopted with defined units 398 of: (i) log landing areas; (ii) skid tracks; (iii) general forest harvesting areas; and (iv) filter strips that were 399 retained for wildlife and riparian protection. Once the areal extent of each unit was defined, a large 400 number of soil cores were collected and bulked together in groups of 10 to be counted as a single 401 sample. In this way, the mean inventory of the reference site and each landscape unit could be obtained 402 with an appropriate quantification of standard error to estimate the net losses and gains between 403 landscape units. The budget showed that the skid tracks generated the greatest losses of soil but a large 404 proportion of the mobilised material was captured by the filter strips and retention banks plus the 405 general harvest area, where infiltration capacity reduced overland flow. The results demonstrate the 406 value of adopting a landscape budget approach to sediment source assessment.

The shorter-lived fallout radionuclide ⁷Be has also been used effectively by Schuller et al. (2006) to
quantify net soil losses and retention by buffer features following forest harvest operations. The study
was based around a single heavy rainfall event and the fallout radionuclide-based data were compared to

soil loss estimated using erosion pins with close agreement. The key challenge noted by the study was
ensuring that the distribution of ⁷Be prior to the event was spatially uniform, especially considering the
legacy of prior erosion events, which led to the development of a methodological refinement to apply
⁷Be over extended time periods (Walling et al., 2009).

414 The importance of forest roads has also been explored using the geochemical properties of sediment 415 (Motha et al., 2003) and colour tracers of sediment source (Erkine, 2013). Motha et al. (2003) utilised a 416 geochemical fingerprinting approach to distinguish material derived from the harvested soil surface and 417 roads in logged watersheds of south-eastern Australia. They utilised a chemical index of alteration (CIA) 418 to describe the degree of weathering of alumina-silicate minerals. The approach allowed discrimination 419 of highly weathered surface materials from moderately weathered gravel road surfaces. In addition, 420 fallout radionuclides were used to discriminate surface versus subsurface soils. Enrichment ratios for 421 grain size and organic matter were applied to the source data based on quantified relationships between 422 the target tracer properties and these two factors. The results showed that while the undisturbed forest 423 dominated the sediment load of the receiving streams due to 93 % catchment coverage, the disturbed 424 areas, and in particular the roads, made a disproportionately large contribution given their aerial extent. 425 Others have adopted a similar geochemical approach to determine the contribution of material 426 mobilised by logging operations in tropical rainforest watersheds of Malaysian Borneo. Here, the x-ray 427 fluorescence (XRF) geochemistry of a lateral channel bench deposit (cf., Hughes et al., 2010) was used alongside an unsupported ²¹⁰Pb-based record of accretion (Walsh et al., 2011). While the timing of peaks 428 429 in accretion coincided with the known history of logging within the watershed, in particular in the steep 430 headwaters, a shift in the geochemical signal indicated a greater contribution from less weathered (i.e., 431 deep sourced) material. This was linked to incision of skid trails and temporary logging roads plus 432 increased landslide events after logging operations during extreme rainfall events (Douglas et al., 1999).

While there are fewer examples of sediment source fingerprinting applications in forested watersheds compared to agricultural systems, the results of work to date consistently highlight the important role of tracks and roads as sediment sources in forested watersheds, information that would be difficult to obtain and contextualise against slope erosion through monitoring programs alone.

437 **3.2.2 Wildfires**

438 Post-wildfire sediment source fingerprinting studies have focused largely on quantifying contributions 439 from hillslope surface and channel bank (subsurface) sources of fine sediment using fallout radionuclide tracers (Table 2; also see review by Smith et al., 2013). These studies have employed ¹³⁷Cs and 440 unsupported ²¹⁰Pb for source discrimination because of the pronounced differences in activity 441 442 concentrations of these radionuclides with soil depth in forest environments (Wallbrink and Murray, 443 1996; Blake et al., 2009; Owens et al., 2012; also see Fig. 2). Recent work has also used additional radionuclides such as ^{239,240}Pu to discriminate hillslope and channel sources of fine sediment transported 444 445 by post-fire debris flows (Smith et al., 2012). In burnt forest environments, fallout radionuclides provide 446 the most useful tracer properties for watershed-scale source discrimination, and may be very effectively 447 coupled with process measurements and monitoring (Smith et al., 2013). For example, suspended 448 sediment flux measurements combined with tracer-based estimates of proportional source contributions 449 allow for calculation of source-specific sediment yields (Smith et al., 2011). Such information is important 450 for interpreting post-fire changes in proportional source contributions to sediment exports associated 451 with vegetation and soil recovery.

The discrimination of spatial sources according to burnt and unburnt areas or based on areas burnt at different severities has received less attention. Previous studies have examined the potential for geochemical (Blake et al., 2006a), mineral magnetic (Blake et al., 2006c) and organic compounds (Oros et al., 2002) to discriminate burn-defined spatial sources, but did not attempt to estimate source 456 contributions to downstream sediment fluxes. To date, only Stone et al. (2014) have sought to 457 quantitatively apportion sediment contributions from spatial sources defined according to unburnt, 458 burnt only, and burnt and salvage logged sub-basins. However, this study did not identify any 459 environmental basis for why the selected geochemical tracer properties might discriminate these 460 sources. Difficulties may arise due to natural and burn-related variability affecting the basis for source 461 discrimination. Geochemical and fallout radionuclide tracer concentrations may increase in burnt soils 462 due to the loss of soil organic mass and with inputs of ash from burnt vegetation or decrease due to 463 vaporisation losses during soil heating (Johansen et al., 2003; Blake et al., 2006a, 2006c; Owens et al., 464 2006, 2012; Perreault et al., 2012). Mineral magnetic properties can be enhanced in surface soils by 465 burning (Longworth et al., 1979; Clement et al., 2011), while heating and post-fire leaching and bio-466 transformations contribute to changes in organic compounds in burnt surface soils (Oros et al., 2002). 467 Where the ash content of soil accounts for most of the difference in geochemical or fallout radionuclide 468 concentrations between soils burnt at different severities and unburnt areas, the requirement for 469 conservative behaviour of these tracer properties during transport is unlikely to hold. This reflects the 470 potential for density-related differences in the transport behaviour of ash and mineral soil, resulting in 471 the modification of surface soil tracer signatures during downstream transfer. Magnetic properties show 472 the greatest potential for burnt soil spatial source discrimination because burn-related changes are 473 associated with the mineral component of surface soils (Blake et al., 2006b).

The forested highlands of south-eastern Australia have been the focus of most source tracing and
fingerprinting work following wildfires. Studies were situated in the Blue Mountains in New South Wales
and the forested uplands in north-eastern Victoria, both regions subject to severe wildfires. In the Blue
Mountains, a multiple-catchment (17-629 km²) source tracing study was conducted over a 5 year period
following wildfire (Wilkinson et al., 2009). Fallout radionuclides were used to trace contributions from
hillslope surface and subsurface (river bank and gully) sources to in-channel sediment deposits. Post-fire

480 erosion resulted in a change in sediment sources from 80 % subsoil prior to the fire up to 86 % surface 481 soil for one of the study watersheds in the first year after burning (Wilkinson et al., 2009). Hillslope 482 surface contributions then declined after the fire. In north-eastern Victoria, hillslope surface erosion was 483 found to decline from approximately 100 % in the first year to 58% in the fourth year after wildfire in an intensively monitored 1.36 km² research watershed (Smith et al., 2011). Coupling this information with 484 485 sediment load data showed that hillslope erosion accounted for 93 % of the total post-fire suspended 486 sediment yield over the study period, while the hillslope contribution in the first year after fire equated 487 to 75 % of the measured fine sediment output (Smith et al., 2011). Despite differences between the 488 studies in terms of watershed size, geology, topography, soil and forest type, hillslope surface sources 489 dominated in the first year after wildfire and showed similar declining trends with post-fire recovery. In 490 contrast, studies in North America have used sediment source fingerprinting to demonstrate the 491 dominance of channel bank sources following wildfire. For example, Owens et al. (2012) showed that 492 channel bank sources contributed ca. 91.5% to the sediment flux exported from the 135 km² Fishtrap 493 Creek watershed in British Columbia, Canada, for the period 2004-2010, following a wildfire in 2003. The 494 difference between findings for North America (see also Moody and Martin, 2009) compared to 495 European and Australian landscapes reflect differences in climatic drivers, and vegetation type and 496 recovery (Owens et al., 2013).

497

498 3.3 Urban landscapes

Compared to agricultural and forested landscapes, relatively few studies have quantitatively determined
the sources of sediment in urban waterheds with studies to date being concentrated in Australia (e.g.,
Ormerod, 1999; Charlesworth et al., 2000), Brazil (e.g., Poleto et al., 2009; Franz et al., 2014), China (e.g.,
Yin and Li, 2008), UK (e.g., Charlesworth et al., 2000; Carter et al., 2003) and USA (e.g., Devereux et al.,

503 2010). In part this stems from the inherent hydrological complexities associated with urban areas, 504 alongside multiple diffuse sediment sources, and the potential for transformations in the physical and 505 chemical properties of the sediment (Taylor and Owens, 2009). For example, most urbanized and 506 industrialized rivers receive discharges from sewage treatment works (STWs) and industrial facilities, 507 which contain dissolved materials that interact with fine-grained sediment and change its chemical 508 composition. For example, Owens and Walling (2002b) showed that the phosphorus (P) content of 509 suspended sediment in the River Aire, UK, increased immediately downstream of STWs reflecting inputs 510 of both particulate and dissolved P from the STWs; in the case of the dissolved P this adsorbed onto the 511 passing suspended sediment, so that the P content of the downstream sediment no longer reflected the 512 P content of the original source. Other studies have explored the complex interactions between P and 513 fine-grained sediment in rivers receiving urban and industrial inputs; for a review, see Withers and Jarvie 514 (2008).

515 Numerous studies have qualitatively inferred the sources of sediment in urban aquatic systems (e.g., 516 rivers, lake/reservoirs and estuaries; Charlesworth et al., 2000; Zhong et al., 2012). Many of these have 517 used multivariate statistical approaches such as principal components analysis (PCA) and cluster analysis 518 (CA) to match the contaminant properties of sediment (e.g., metals, PCBs) to those of potential sources. 519 Typically, the elevated concentrations (i.e., relative to natural baseline, such as Cu from a copper mine) 520 or presence of an element (e.g., artificial substances, such as PCBs from industry) indicate the likely 521 source. One of the most comprehensive studies to use the sediment source fingerprinting approach to 522 quantify the sources of sediment in an urban watershed was by Carter et al. (2003). These authors 523 determined how the sources of the suspended sediment transported in the River Aire, UK, changed in a 524 downstream direction reflecting inputs of new sources from urban areas. In the agricultural (mainly pasture) headwaters of this watershed the main sediment sources were uncultivated topsoil (range for 525 526 several streams = 16-57 %) and channel bank (43-80 %). However, downstream of the main urban areas

(including the cities of Leeds and Bradford) the relative contribution from these source types decreased
(combined = 22-40 %) reflecting contributions from additional sources such as cultivated topsoils (20-45
%), solids from STWs (14-18 %) and road-deposited sediment (RDS, 19-22 %). The change in the
contribution of channel bank sources also reflects the artificial protection of many channel banks from
erosion and lateral migration in urban areas.

532 The high contribution of urban sources (ca. 40 % from STWs and RDS) illustrates the marked contrast of 533 sediments in urban watersheds to those in non-urbanized watersheds described in previous sections. 534 The results from the River Aire are consistent with those of Yin and Li (2008) who used ⁷Be and ²¹⁰Pb as 535 fingerprints to estimate that about 60 % of the suspended sediments at the outlet of a sewer system in 536 Wuhan City, China, was derived from the drainage system (gutter sediments and combined sewer 537 sediments), with about 40 % from RDS. They are also consistent with Poleto et al. (2009) who used a 538 composite fingerprint based on geochemical (e.g., metals) and carbon, to determine that roads (paved 539 and unpaved) and channel banks contributed 69 % and 31 %, respectively, to the suspended sediment 540 load transported in a river near Porto Alegre in Brazil.

541 One of the important aspects of these studies is that while the contribution from urban sediment 542 sources such as RDS and solids from STWs has been recognised (e.g., Foster and Charlesworth, 1996; 543 Charlesworth et al., 2000; Owens et al., 2011), fingerprinting has enabled such contributions to be 544 quantified, albeit in a relative sense. Furthermore, the work by Carter et al. (2003) also provided 545 important new information on the timing of such contributions, and how this changes during the course 546 of a rainfall event (Fig. 4). In the case of RDS, contributions from this source increased during the event 547 reflecting this increased connectivity of the road network to the channel system as the rainstorm 548 progressed (i.e., more runoff), while the contributions from STWs and other sources decreased during

- the course of the event because of dilution effects. The complex hydrology and flashy nature of urban
- 550 catchments can pose significant challenges for sampling design and monitoring efforts.

551

552

553

Fig. 4. Variation in the relative contribution from surface material from uncultivated and cultivated areas, channel bank material, road-deposited sediment and solids from sewage treatment works (STWs) for five suspended sediment samples collected from the downstream reaches of the River Aire, UK, during a

rainfall-driven high streamflow event during March 1998 (from: Carter et al., 2003).

558

- 559 Other source tracing and fingerprinting studies in urban environments have been concerned with
- atmospheric sediment (i.e., dust and airborne fine particulate matter). Much of this interest has been
- driven by the health concerns associated with the impacts of fine particulate material (e.g., PM_{2.5}) on the
- 562 human respiratory system. Thus numerous studies have attempted to fingerprint the sources of fine

airborne particulates in urban areas based on the geochemical properties of the sediment (e.g., Park and
Kim 2005), and these are reviewed in Section 6.

565

566 3.4 Estuarine and coastal landscapes

567 At the interface between watersheds and the marine environment, estuaries represent critical sink zones 568 for fine sediment and associated nutrients and contaminants. Estuarine morphology and fluvial and tidal 569 currents are key factors in determining the processes that control sediment accretion and, linked to this, 570 knowledge of sediment source is a key part of the management of sediment problems and remediation 571 strategies. Sediment source information is also critical to inform coastal management strategies particularly in the context of management realignment schemes for flood defence and habitat 572 573 restoration (Rotman et al., 2008). Although limited in number compared to river basin studies (described 574 above), a range of sediment tracing and fingerprinting approaches have been used in estuarine and 575 coastal environments including recent advances in CSSIs (Gibbs, 2008), application of mineral magnetic 576 properties (e.g., Yu and Oldfield, 1989; Jenkins et al., 2002, 2005; Rotman et al., 2008), rare earth 577 elements (REEs) (Zhou et al., 2010) and radionuclide fingerprints (e.g., Hebinck et al., 2007; Yeager et al., 578 2005, 2006) – with a focus on geogenic uranium and thorium series-based signatures. These tracers are 579 largely controlled by mineralogy and are therefore less likely to be affected by transformations 580 associated with transfers from freshwater to saline conditions. This is an important consideration for acid 581 soluble geochemical properties that have been extensively used in river basin systems (section 3.1). 582 Siltation problems are a key driver for knowledge of sediment sources and sediment fluxes to estuaries. 583 Gibbs (2008) presents a study where CSSI signatures were used to apportion sediment deposited in 584 estuarine mangroves back to potential upstream source areas. The agricultural watershed feeding into 585 the estuary in northern New Zealand presented a range of land uses from pasture (~70 %) to native

586 forest (~20 %) and plantation pine forest (~8 %) in the steeplands plus ~4 % urban coverage. In addition, 587 outer estuary sediments were sampled as a separate source. The study was driven by notable declines in the abundance of a suspension-feeding bivalve which were hypothesised to result from enhanced 588 589 suspended solids linked to watershed disturbance with implications for oyster aquaculture sited on the 590 inter tidal flats. The isotopic signature highlighted the input of the pine plantation activities to sediment 591 stored in upper and mid estuary deposits. The lower estuary was dominated by reworked materials from 592 the coastal zone. In addition to identifying the potential of this relatively new sediment tracing and 593 fingerprinting tool (i.e., CSSIs; also see section 3.1.2), the study highlighted the wide variation in source 594 inputs in different zones of the estuary and the importance of comprehensive sampling strategies in 595 sediment sink zones.

596 As well as being perceived as an environmental problem in estuaries, sediment supply can also be a key 597 factor in the development of coastal zone habitats. Where management strategies are designed to 598 enhance these, or mitigate detrimental effects, knowledge of sediment source can be critical part of the 599 decision-making process. As such, sediment source fingerprinting has been used to identify sources of 600 sediment entering barrier reefs such as those in Australia (e.g. Douglas et al., 2010; Bainbridge et al., 601 2016) and other sensitive coastal environments. In this context, Rotman et al. (2008) used mineral 602 magnetic signatures to develop knowledge of sediment sources contributing to the restoration of 603 intertidal flats and saltmarsh. A particular focus was to examine how the managed realignment sites 604 interacted with wider geomorphological processes in the estuary. The sampling programme focussed on 605 proximal sources of sediment to include established saltmarsh and intertidal deposits seaward of the 606 study site, plus terrestrial sources. Magnetic signatures were shown to discriminate the sampled sources 607 based largely on different magnetite concentration and magnetic grain size. Apportionment results 608 suggested that a large component of deposited material in the managed realignment site was derived 609 from existing eroding saltmarshes which did not align with the management goal of habitat creation.

610 Model 'efficiency' (often termed goodness of fit) was also explored and lower values in some areas 611 indicated that either a source was missing from the analysis or that signature transformation might be 612 an issue in some locations.

613

614 **3.5 Oceanic environments and sedimentary basins**

615 Oceanic environments and sedimentary basins are the ultimate sink for sediment along the sediment 616 cascade and the abundant room for storage within these features creates a long geologic record of 617 sedimentation which is useful for the reconstruction and interpretation of the geological history of the 618 Earth. It is interesting to note that while many of the other disciplines and applications covered within this review use the term "sediment source fingerprinting" the oceanography, geology, and 619 620 sedimentology disciplines typically use the term "sediment provenance" but the ultimate goal remains 621 the same (i.e., identify the sources of sediment). However, the objectives of these types of sediment 622 provenance studies are typically much larger in both temporal (e.g., palaeoclimate; Meyer et al., 2011) 623 and spatial extent (e.g., palaeogeography; Yang et al., 2006) but also investigate contemporary and 624 anthropogenic driven sediment fluxes (e.g., environmental degradation; McCulloch et al., 2003). 625 Furthermore, these studies are not limited to unconsolidated sediment but also include the analysis and 626 interpretation of the sources of sediment within siliciclastic sedimentary rocks (e.g., submarine fan 627 sandstones; Morton et al., 2005). In addition, many sediment provenance studies do not directly sample 628 potential sources but rather draw conclusions about the characteristics of the sources (e.g., sediments 629 source from rocks intermediate between felsic and mafic composition; Armstrong-Altrin et al., 2015). 630 Weltje and von Eynatten (2004) identified and described three main approaches to 631 characterizing the properties of sediment within provenance studies and include the analysis of: 1) bulk 632 sediment; 2) specific groups of minerals; and 3) single grains. The analysis of bulk sediment is one of the

633 more common approaches used in many of the other fingerprinting applications described in this review 634 (e.g., Section 3.1.1) and includes the determination of the concentration of major, trace, and rare-earth 635 elements (REE), isotopic ratios, and bulk mineralogy. It is interesting to note that REE concentration data 636 in these types of provenance studies, are often presented as normalized to either the average upper 637 continental crust (UCC) concentration (e.g., Padoan et al., 2011) or to chondrite (a stony meteorite) 638 concentration (e.g., Meinhold et al., 2007). This normalization makes it easier to display the values as some elements are orders of magnitude different, and allows for the detection of anomalously high (> 1) 639 640 or low (<1) concentrations.

641 The isolation and the characterization of specific mineral groups, typically heavy minerals (> 2.85 g cm⁻³), 642 allows for greater discriminatory power as the inclusion of the more common light minerals (< 2.85 g cm⁻ 643 ³; quartz, feldspar and mica) may not add much additional information on the potential source of 644 sediment (Dill, 1998). While the heavy mineral fraction makes up only a small fraction of the sample 645 (often < 1 %) there are < 30 mineral species that can be identified and used in sediment provenance 646 studies, many of which have a characteristic paragenesis (association of minerals in a particular type of 647 rock) (Morton, 1985). The identification and abundance (i.e., assemblage) of these heavy minerals have 648 been used to provide information about the potential sources of sediment (e.g., Rodríguez et al., 2012). 649 In some case studies, the ratio of stable minerals with similar densities has been used to fingerprint 650 sediment to avoid potential issues of changes in composition due to transport, deposition and diagenetic 651 processes (e.g., garnet/zircon; Morton et al., 2005).

Single grain analysis is typically limited to the coarse-grained sediment (> 63 μm) as the silt and
clay grains are too small given the resolution of the analytical equipment (Weltje and von Eynatten,
2004). However, it is important to consider that single grain analysis provides information on the source
of the mineral of interest which can result in biased results with respect to the source of the sediment as

656 a whole (Morton and Hallsworth, 1994). There are two main types of single grain analysis - geochemical 657 composition and radiometric dating - and von Eynatten and Dunkl (2012) provide a review of single grain 658 techniques. For geochemical analysis (also known as varietal heavy mineral analysis), the variability in 659 the concentration of major and trace elements of different minerals are used to differentiate between 660 sediment sources (e.g., Tsikouras et al., 2011). One of the more common single grain radiometric dating 661 analysis used to fingerprint sediment is zircon geochronology. The mineral zircon is highly resistant to 662 both chemical and physical weathering and is commonly found in many sedimentary deposits making it 663 ideal to fingerprint. The premise of using geochronology as a fingerprint is to link the sediment to the 664 source of sediment based on the age of the parent rock as the age of the mineral is interpreted to be the 665 crystallization age of a rock (Thomas, 2011).

666 The large-scale nature of these studies in addition to the unique characteristics of the sources 667 (e.g., potential sources are unknown) and pathways of sediment (e.g., large distance between sources 668 and sink) and the post-deposition environmental conditions (e.g., increased pressure through burial) and 669 processes (e.g., dissolution of less stable minerals) creates a challenging situation which has resulted in 670 the development of different analytical techniques being used to fingerprint sediment. The techniques 671 used to fingerprint sediment are in response to the non-conservative behaviour of sediment properties 672 which is exceptionally important under these circumstances. Therefore, the use of properties of the 673 more durable minerals and the distribution of less mobile elements/isotopes and their ratios as 674 sediment fingerprints are more commonly used (Basu et al. 2016). Table 3 provides a summary of the 675 different sediment properties that have been utilized as diagnostic sediment fingerprints. Furthermore, 676 Thomas (2011) suggests that context, including the stratigraphic, sedimentologic, tectonic, and 677 palaeogeographic setting, is also important to consider when interpreting fingerprinting data, especially 678 in case studies where the sources are non-unique.

679 Cook et al. (2013) presents an interesting case study using the isotopic ratios of ¹⁴³Nd/¹⁴⁴Nd and 680 ⁸⁷Sr/⁸⁶Sr as sediment fingerprints to identify the sources of sediment in a glaciated environment. In this 681 study, Cook et al. (2013) assessed the vulnerability of the east Antarctic ice sheet (predominately land-682 based) to warmer temperatures as a result of a changing climate. This was undertaken by investigating 683 sediments that were deposited during an interval in the geological record when the temperature was 684 warmer than present. A core was drilled 310 km offshore (64º24'5" S 143º53'1" E; 3,465 m water depth) 685 and the section of the core that was studied was 75 - 125 m (below sea floor) and was deposited during 686 the Pliocene (5.3 - 3.3 million years ago) when the mean annual global temperature was 2 - 3 °C higher 687 than present. The core section was characterized by two alternating sedimentary layers: diatom-rich silty 688 clay sediment and diatom-poor clayey sediment layers representing warmer and cooler temperature 689 periods, respectively. Within the vicinity of the ice sheet, the isotopic ratios varied between the different 690 rock types and these variations were attributed to differences in both age and lithology and the isotopic 691 ratios provided good discrimination between the potential sources of sediment. The isotopic signatures 692 varied in a systematic manner that paralleled the alternating sedimentary layers suggesting a switch in 693 the dominate source of sediment between the warmer periods (ice retreat) and the cooler periods (ice 694 advance). By estimating the relative contributions from the different sediment sources the patterns of 695 erosion could be inferred and this information provided some direct evidence of the locations of ice 696 margin retreat. Overall, this research provided information that helps predict the future dynamics of the 697 Antarctic ice sheet under a warming climate.

698

699 4. Archaeological and geoarchaeological applications

There is a long tradition of geological "provenance" or source fingerprinting research in archaeology and
geoarchaeology. Two broad areas of research activity may be identified. The first is aimed at a better

understanding cultural processes of raw material exploitation and use, while the second involves a suite
of geological and anthropogenic processes associated with the creation of the archaeological record.
They may be summarised as studies investigating the procurement of sedimentary material or natural
depositional processes.

Procurement involves studies that explore the source of geological raw materials used by past societies in the production of artefacts such as stone tools, pottery, jewellery, statuary, etc. and the built environment (e.g. building stones, mortars, floor and wall plasters). These activities involved the procurement of hard rocks including flint, chert, obsidian or marble, as well as unconsolidated finegrained sediments. Studies of raw material sources can provide valuable information on how ancient societies interacted with the landscape; they can also provide evidence of past trade and exchange especially when distant sources were involved.

713 A good deal of research has focussed on the origin of naturally deposited sediments associated with the 714 formation of an archaeological site such as the sediment matrix in a limestone rockshelter or the 715 deposits associated with the burial of ancient settlements on a floodplain. Such deposits are typically the 716 product of natural geomorphological processes but can help to link on-site archaeological records with 717 palaeoenvironmental datasets obtained from the wider landscape. This section will present examples 718 from each of these broad areas of research but will focus on studies designed to identify the source of 719 fine-grained sediments through the use of a fingerprinting approach. This therefore excludes the large 720 body of work on provenancing artefacts made from hard rocks and minerals (e.g. Salgán et al., 2015).

721

4.1 Fine-grained sediments as raw materials and sourcing clays for pottery

723 Within the broad field of raw material sourcing there is a very active area of research that has many 724 similarities to the fluvial sediment source fingerprinting described in previous sections. This involves 725 locating the source of fine-grained deposits (clays, silts and/or sands) that, because of particular physical 726 and chemical properties, were deliberately targeted in the production of items such as pottery, wall 727 plasters and building mortars. In the case of pottery production, potters often made use of the same 728 sediment sources over many generations to secure clays and tempers with desirable characteristics. This 729 kind of research allows the exploration of long-term linkages between the people and landscapes of the 730 past (Michelaki et al., 2015). Studies of raw material procurement using a source fingerprinting approach 731 are integral to a better understanding of many aspects of past human behaviour and technology. In the 732 study of ancient buildings, they can shed light on the history of construction phases and even restoration 733 efforts in antiquity; a good deal of work, for example, has focused on the composition of Roman mortars 734 in an attempt to better understand the technology behind the extraordinary durability of Roman 735 building materials (De Luca et al., 2015).

736 Because the mineralogical and geochemical signatures of the raw materials used in the production of 737 many ceramics (e.g. pottery) are preserved in the finished product, the source of the raw materials can 738 often be identified in the landscape using a source fingerprinting approach. The preparation of materials 739 to be worked into a finished pot can involve mixing sediments collected from quite different and 740 distinctive sources to achieve the optimum combination of fine clay matrix and temper. The temper is 741 normally some kind of angular sand-sized material, with a limited particle size range, that is added in 742 known proportions to the clay to control shrinkage and help the pot withstand high temperatures. It is 743 typically procured from a different location to the source of the clay matrix and therefore provides 744 another dimension to ceramic raw material sourcing projects. The composition of the temper in a pot 745 sherd can commonly be identified in thin section using traditional petrological methods (e.g., Gonzales
et al., 2015). Table 4 shows a number of sediment fingerprinting studies and a range of tracer properties
applied to the study of ceramic raw material sources.

748 In a recent study of sediment sources and pottery composition in northern Ghana, Owen et al. (2013) 749 were able to recognise differences in raw material procurement practices between modern and ancient 750 potters using a fingerprinting approach. The potential raw materials were found to cluster into three 751 distinct geographical zones. By combining mineralogical and geochemical data with microstructural 752 observations of pot sherds, they were able to establish linkages between the pottery wares and local 753 sediment sources. Multidimensional scaling (MDS) was used to identify compositional similarities and 754 dissimilarities in the dataset. Mass balance calculations were carried out to establish the extent to which 755 the sediment sources could account for the major and minor element compositions of the pot sherds. It 756 was found that Late Stone Age potters mixed clays from a local escarpment with sediments collected 757 from a local stream bed. The presence of tiny granite clasts and angular granite-derived minerals in some 758 pot sherds pointed to deliberate collection and crushing of granite for use as a temper in pot 759 manufacture (Owen et al. 2013). The source of an aluminous component identified in the pottery could 760 not, however, be identified.

761 On the Greek island of Aegina in the southern Aegean Sea, Christidis et al. (2014) developed an 762 integrated multi-method approach to establish the source of clays used by Bronze Age potters. They 763 made use of geographical, petrographic, mineralogical, mineral chemistry, and geochemical data to 764 create a substantial database to characterise the composition of the ceramics and to allow effective 765 discrimination between potential sources of clay-rich sediments on the island. Christidis et al. (2014) 766 were able to isolate a distinctive outcrop of Pliocene volcanic clay as the exclusive raw material source 767 for the distinctive Bronze Age ceramics on Aegina. They used the same approach to exclude older 768 Pliocene marls from the same location as a potential raw material source. In common with some of the rearly quantitative sediment source fingerprinting work in river basins (e.g. Walling and Woodward,

1995), they stressed the importance of using a multi-tracer approach to avoid ambiguous outcomes.

771 Whether a project is seeking to establish the composition of a pot sherd or a sample of fluvial suspended 772 sediment or use this information to trace the source of the constituents in the wider landscape, the 773 guiding principles are essentially the same. It is also important to appreciate that suspended sediment 774 samples from river basins are complex environmental mixtures that typically include material from 775 multiple diffuse source types. In contrast, ceramics can be produced from raw materials from one or two 776 distinctive point sources. The principles of source identification are essentially the same in each case, 777 however, but this can sometimes make identification of the dominant raw material source both 778 theoretically and practically more straightforward in these archaeological contexts. There is clearly a 779 great deal of scope for collaboration and cross-fertilisation of ideas between these sediment source 780 fingerprinting communities - especially in relation to the statistical treatment of source data and the 781 unmixing of target samples whether these end products result from natural or anthropogenic mixing. In 782 fluvial geomorphology, watershed sediment budget investigations help us to better understand the 783 operation of watershed processes and the evolution of landscapes. In a similar way, linking the 784 composition of a pot to raw materials in the landscape helps us to better understand cultural processes 785 and decision making in the past and directly links archaeological sites and past societies to their wider 786 landscape (Michelaki et al., 2015; Ratto et al., 2015).

787

788 4.2 Sediment sources and archaeological site formation

789 An understanding of sediment sources can also provide valuable information on the formation of

depositional records in many kinds of archaeological site (see Goldberg and Macphail, 2006). In the case

of rockshelters and caves formed in hard limestone bedrock, the fine-grained components within

792 Pleistocene and Holocene fills are typically derived from off-site sources since the host rock contains only 793 very small amounts of insoluble clays and silts (Woodward and Bailey, 2000). A range of mechanisms can 794 be involved in the transport of fine sediments from off-site sources into a cave or rockshelter including, 795 most commonly, aeolian, colluvial, and fluvial processes (Farrand, 2001; Woodward and Goldberg, 2001). 796 The Late Upper Palaeolithic rockshelter site of Boila is located next to the Voidomatis River in Northwest 797 Greece. It contains a sequence of Late-glacial slackwater flood deposits that have been dated using 798 radiocarbon (Figure 5). These slackwater sediments are underlain by coarse-grained fluvial gravels that 799 were deposited by high energy meltwater floods during the last cold stage (Woodward et al., 2008). The 800 contribution to the slackwater deposits from seven potential geological sediment sources in the 801 upstream drainage basin was established via a quantitative sediment source fingerprinting approach that 802 used XRF and magnetic susceptibility (Hamlin et al., 2000; Woodward et al., 2001). The magnetic 803 susceptibility data were helpful in ascertaining the extent of any post-depositional weathering in each of 804 the slackwater flood units. Traditional petrological analysis using thin sections was also employed as an 805 independent test of the fingerprinting results. Such checks can be extremely useful, but they are rarely 806 carried out in sediment source fingerprinting studies. The sediment source data from Boila and the local 807 Pleistocene record showed that the occupation of the rockshelter by Upper Paleolithic hunters only took 808 place following climatic amelioration in the region after the deglaciation of the basin headwaters 809 towards the end of the last cold stage. The sediment source data from the rockshelter showed that a 810 distinctive glacial input to the fine-grained load of the Voidomatis River dominated the cold stage river 811 but was rapidly replaced by non-glacial sediment inputs after about 17 ka (Woodward et al., 2008) 812 (Figure 5). Sediment delivery from gullies on flysch bedrock has dominated the fine sediment load of the 813 Voidomatis River for much of the Late-glacial and all of the Holocene.

814 In a very different setting, Kourampas et al. (2009) studied the changing sources of the sediment in a 815 Late Pleistocene to early Holocene (>31,000 to c. 7800 years BP) granite rockshelter record in humid 816 tropical southwest Sri Lanka. They developed an allogenic sediment index to quantify the changing input 817 of fine sediments to the rockshelter over time. In a tropical dry environment, Herries (2006) employed 818 mineral magnetic tracers to detect the changing input of very fine-grained sediments derived from 819 weathered soils that were blown into Sibudu Cave in South Africa during colder and dustier phases of the 820 Late Pleistocene. At this location, major changes in sediment sources and the dominant 821 geomorphological processes were related to shifts in monsoon intensity after the Last Glacial Maximum. 822 By quantifying long-term changes in fine sediment sources it is possible to link the formation of such 823 sediment records (and the archaeology associated with them) to changes in the operation of

geomorphological processes in the wider landscape (see Woodward and Bailey, 2000).

825

824

826

827 Figure 5. Sediment fingerprinting of fine-grained fluvial slackwater sediments deposited in the lower reaches of the Voidomatis River basin in NW Greece towards the end of the last cold stage. The inset 828 829 map shows the location of the Boila and Old Klithonia Bridge (OKB) sites on the left bank of the 830 Voidomatis. The stars on the Boila Rockshelter stratigraphy mark where samples were taken for 831 sediment provenance analysis. Samples (n = 52) of potential source materials were collected from across the catchment. See Hamlin et al. (2000) and Woodward et al. (2008) for further details. Fine sediments 832 from gullied lowland flysch landscapes have dominated the suspended sediment load of this river during 833 the Late glacial and Holocene. The suspended load was dominated by glacially-comminuted limestone 834 silts and clays during periods of glaciation on Mount Tymphi (Woodward et al., 1992; Hughes et al., 835

836 2006). A key feature of these Late Pleistocene sediment fingerprinting data is the abrupt end of the837 meltwater-dominated system during the last deglaciation.

838 **5. Forensic applications**

839 Soil forensics is similar to sediment source fingerprinting as it utilizes the physical and biogoechemical 840 properties of soils (i.e., fingerprints) as trace evidence (Ruffell, 2010). There is typically a two-way 841 exchange of trace evidence (e.g., soil or sediment) when subjects and objects come into contact with 842 each other. This is where soil forensics can establish or refute a link between people and objects and a 843 particular location of interest using soils as trace evidence. Table 5 shows the wide range of scenarios in 844 which soil forensics have been studied, or used, along with the soil properties and analytical techniques 845 utilized to compare soil samples within the context of forensic investigations. There are many different 846 mechanisms by which soil can be transferred away from a crime scene including cadavers, clothing, 847 footwear, vehicles and tools (see Table 5 for a list of references).

848 Soil forensics draws many parallels with the other applications of sediment source fingerprinting outlined 849 in this review. Similarly, locating and appropriately characterizing source materials (e.g., spatial 850 variability; see Section 7.1) is important and other evidence can be used to narrow the sampling area 851 (e.g., near footprints) (Pye et al., 2006; Dawson and Hillier, 2010). In some cases, the potential sources of 852 the soil or sediment may not be immediately known and the potential source needs to be deduced from 853 the evidence collected (e.g., Lombardi, 1999; see below for a description of the case). The selection of 854 independent measurements (i.e., some soil properties are correlated; see Section 7.2) is important as this provides the strongest case for determining the origins because the use of non-independent 855 856 properties as supportive evidence may be problematic in a court of law (Morgan and Bull, 2007a). The 857 contamination or mixing of soil/sediment pre-, syn- and post-forensic investigation are important 858 considerations as this may lead to erroneous conclusions (Morgan and Bull, 2007a). This is where the

development of protocols in documenting, collecting, preserving, preparing, analyzing and interpreting the data is important (also see Section 7.3). In a similar way to the issues surrounding particle size correction factors (also see Section 7.4), it is important to have an understanding of the mechanism of soil/sediment transfer as the process can be particle-size selective (e.g., clay tends to stick to footwear whereas sand does not) (Dawson and Hillier, 2010).

864 One of the biggest differences between soil forensics and other fingerprinting applications in earth and 865 environmental sciences is in the philosophy of the science. Soil forensics often seeks to exclude potential 866 sources whereas the other applications are more concerned with identifying and confirming potential 867 sources (Morgan and Bull, 2007a). For example, soil samples sharing similar properties cannot be said to 868 have the same origins, but only that it cannot be excluded from having been derived from the same 869 location. Another difference relates to the size of soil samples, for example, Ruffell and Sandiford (2011) 870 only recovered 300 soil particles from an article of clothing, whereas 1 - 10 g of soil/sediment is typically 871 used in earth and environmental science applications. The types (e.g., non-destructive and destructive 872 analysis) and order of soil analysis needs to be carefully selected due to the small masses that are often 873 recovered (Dawson and Hillier, 2010).

874 Very few cases are reported fully in the literature due to the sensitive nature of criminal investigations. 875 Lomardi (1999) presents an interesting case report in which soil forensics contributed to a murder 876 investigation. On March 16, 1978, the Italian Prime Minister, Aldo Moro, was kidnapped and on May 8, 877 1978 he was found dead, from gunshot wounds, in the trunk of a parked car near the centre of Rome. 878 Small amounts of sand and soil were collected from the victim's trouser cuffs, shoes and coat pockets as 879 well as from the floor, fenders and tires of the vehicle in which the victim was found. Along with the soil 880 and sand there were also traces of plant material, asphalt, fibres and an assortment of building materials 881 (e.g., brick chips). These samples were used to help identify the origin of the vehicle and the last

whereabouts of the victim. A range of analytical techniques was used to characterize both the sand and
soil samples including: particle size analysis (sieving), particle morphology (microscopy), mineralogy (xray diffraction, scanning electron microscopy and polarized microscopy), soil colour (microscopy), pollen
analysis (microscopy) and the identification of micro-fossils (microscopy).

886 Results from the analysis showed that the sand was well sorted and had a rounded to sub-rounded 887 morphology which is typical of a beach deposit. Based on the colour, mineralogy and the micro-fossil 888 assemblage the area of origin was narrowed down to the Tyrrhenian coast near Rome (~150 km in 889 length). Since there were limited data on the composition of sand along this stretch of coast a systematic 890 sampling of sand was initiated. Samples were collected at beach sites with road access, for a total of 92 891 sampling locations, with 1 - 3 samples collected at each location. Initial screening, using microscopy, 892 eliminated 22 samples as having clear differences from the collected evidence. The remaining 70 samples 893 were analyzed using polarized microscopy. The analysis narrowed the initial 150 km search area down to 894 a more manageable 11 km stretch of the coast.

895 The soil samples contained a mixture of halloysite-rich clay, glassy scoriae and an assemblage of volcanic 896 minerals with an overall reddish-brown colour. The soil samples were identified as volcanic in origin; 897 however, this type of soil is very prevalent in the area covering more than 6000 km². The vast areal 898 extent of this soil type prevented any meaningful insight to the origin of the soil. Pollen extracted from 899 the soil was identified as coming from Cypress and Hazel trees, which is produced in the winter. This 900 information established that the soil adhered to the vehicle prior to the abduction of the victim. The 901 fingerprinting of the soil and sand evidence found on the victim and car was one line of enquiry that 902 helped to reconstruct a timeline of events leading up to the murder and to corroborate the testimony 903 from potential suspects.

904

905 6 Human health applications: fingerprinting airborne particles

906 Soils and sediments, and the contaminants associated with them, can be a risk to human health 907 (Abrahams, 2002). The main pathways by which soils and sediments and associated contaminants enter 908 humans are: direct ingestion; inhalation through nose and mouth; and adsorption through the skin. 909 Consequently, there has been an interest in determining the origin of soils and sediments known to be a 910 risk to human health. One such application is the identification of the sources of very fine airborne 911 particles, especially in urban areas. In this context, particulate material with a diameter less than 10 µm 912 (i.e. PM_{10}) or 2.5 μ m ($PM_{2.5}$) is of greatest concern because when they are inhaled they are able to 913 penetrate deep into the alveoli where they can be deposited and absorbed. The effects include chronic 914 lung disease, lung cancer, influenza, asthma, and increased mortality. In addition to the small size of such 915 particles, they are also detrimental to human health because of the contaminants associated with them, 916 such as metals and polycyclic aromatic hydrocarbons (PAHs). Numerous studies have collected such 917 particles and used geochemical fingerprints to identify sources. The approach is broadly similar to that 918 described above for other applications, and involves establishing diagnostic chemical (e.g., trace 919 elements, organic elements, PAHs) and physical (e.g. particle morphology) fingerprints, and the use of 920 statistical and modelling approaches (e.g. Receptor Modelling, Positive Matrix Factorization, Principal 921 Components Analysis) to quantitatively determine source types or spatial areas (Breed et al., 2002; 922 Dogan et al., 2008; Callén et al., 2014; Huang et al., 2014; Suman et al., 2014). Typically, airborne 923 particles are collected using specialised samplers with filters. Some studies in the urban environment 924 have determined sources of road-deposited sediment (RDS) which is itself a major source of PM₁₀ and 925 PM_{2.5} and an important contributor to the fine-grained sediment load of urban rivers (Owens et al., 926 2011; Karanasiou et al., 2014).

For example, Karanasiou et al. (2014) collected samples of RDS from Madrid, Spain, in 2009. They used
chemical analysis (major and trace elements, carbon) of the <10 μm fraction to establish fingerprints and

929	applied Positive Matrix Fractionization to determine its source. Their results (Fig. 6) illustrate the
930	importance of both natural and anthropogenic sources of fine-grained RDS and thus PM_{10} , including
931	sources from the construction industry. Such information was used to provide guidance on street
932	sweeping approaches in Madrid to minimise detrimental impacts on human health. Other studies (e.g.
933	Merefield et al., 1999, 2000) have used similar approaches (including SEM/EDAX and XRD analysis) to
934	determine sources of airborne particles associated with construction, mining and other resource
935	extraction industries.
936	
937	

938

939

- 941 in 2009 determined using chemical analysis and Positive Matrix Fractionization (modified from:
- 942 Karanasiou et al., 2014).

943

944 **7. Methodological considerations and recommendations**

945 While there has been a rapid growth in studies undertaking sediment source fingerprinting in a range of 946 environments and applications, there are still aspects of the approach that warrant further improvement 947 in order to increase its robustness and acceptability. The following sections consider some of these 948 needs; further considerations and background can be found in Walling (2013) and Smith et al. (2015).

949

950 **7.1 Collection of soil and sediment samples**

951 As with most areas of earth and environmental sciences, field sampling of the materials under 952 investigation (i.e., soils and sediments) represents a key consideration. The design of the sampling 953 programme needs to be flexible to suit the specific environment and research objective (e.g., the various 954 applications described in Sections 3 to 6), since there cannot be a single approach to the sampling of 955 soils and sediments. However, it is important to optimise the sampling of soils and sediments in order to 956 characterize both the spatial and temporal variability of fingerprint properties. For example, in the case 957 of surface soil material, samples of the upper 0-2 cm layer are usually collected and this is assumed to 958 represent the material mobilised by erosion processes and delivered to stream channels. Even with 959 adjustments for particle size effects (see section 7.4) such material is unlikely to be truly representative 960 of the material that is delivered to channels, coastal areas or oceans. Thus, it may be more appropriate 961 to sample eroded soil and sediment that is being actively transported. This could be achieved by 962 sampling during runoff events or installing suitable samplers (i.e., Gerlach troughs). Furthermore, some 963 studies (e.g. Walling et al., 1999; Laceby et al., 2015b) have used suspended sediment samples collected 964 from tributary streams to characterize the sources (type and spatial) of suspended or deposited 965 sediment in downstream waterbodies, thereby reducing the need for correction factors. In addition, 966 there are concerns surrounding the nature of the most appropriate sampling design and how effectively

967 it characterizes a particular source (e.g., random, transect or strategic sampling) or tracer property
968 (Wilkinson et al., 2015). Understanding the geomorphological context in terms of the erosional history of
969 the landscape (at least in a general way) and the dominant water and sediment transport pathways can
970 be helpful in the design of an appropriate sampling framework.

971 In a similar way, it is important to ensure that the target sediment samples are representative of the 972 materials for which the study is attempting to determine its sources. Typically, actively transported fluvial 973 sediment or atmospheric particles are sampled, or it is the fine sediment stored in the upper layers of 974 the channel bed, or estuarine/coastal zone that is collected. In other situations, when the focus of the 975 study is on reconstructing past sediment sources, rockshelter, floodplain, wetland, lake or ocean 976 sediments are collected. In all cases it is important to consider if the samples are temporally and spatially 977 representative. For example, Koiter et al. (2013b) and Wethered et al. (2015) have demonstrated that 978 the location of the sampling point (i.e., headwaters or downstream basin outlet) can influence which 979 sediment sources dominate due to issues of scale and hydro-geomorphological connectivity; this links 980 back to the reason for the study and to the research objectives. In terms of the temporal 981 representativeness of suspended sediment, Walling et al. (1999) suggest that samples be collected over a 982 range of flow conditions, and that the data be flow-weighted (as opposed to simple averages) so that the 983 final source apportionment results account for variations in sediment fluxes.

It is also necessary when developing a source material and sediment sampling protocol to consider the requirements of the statistical and numerical approaches that are used to convert fingerprinting property data into quantitative estimates of sediment sources. For example, in the case of source materials, there is a need consider the number of samples to be collected so as to provide a meaningful representation of the fingerprinting properties of that source. The number of samples to be collected should be guided be the spatial variability of the fingerprint properties in that source, which is likely to 990 vary for different properties (e.g. fallout radionuclides, geochemical properties, colour parameters, CSSIs) 991 and different sources (e.g. cultivated fields, forest, channel banks). In addition, the spatial variability of 992 source materials is likely to increase with larger study areas. Furthermore, while the concentrations of 993 some properties may be essentially random within sources, others (e.g. fallout radionuclides) may 994 exhibit some spatial structure due to erosion and deposition processes or environmental gradients (e.g. 995 Wilkinson et al., 2015) and may require a stratified sampling protocol (e.g. Wilkinson et al., 2015) and/or 996 the collection of samples along transects or environmental gradients (e.g. Koiter et al., 2013b). Thus, 997 while some studies have provided estimates of the number of samples to be collected (typically of the 998 order of 30 composite samples per source type), in reality each study area is different and requires site-999 specific considerations.

1000

1001 **7.2 Selection of fingerprint properties**

1002 While it may be possible to measure soil and sediment samples for hundreds of different physical, 1003 chemical and biological properties, of paramount importance is the selection of properties that make 1004 sense in terms of how fingerprints have developed (Collins and Walling, 2002). This is required for three 1005 reasons: (i) so that the source and sediment samples are collected in the correct way (e.g., soils and 1006 sediment to the correct depth, as in the case of fallout products like ⁷Be or artificial amendments like 1007 fertilisers); (ii) so that laboratory analysis is cost-effective (i.e., avoid unnecessary analysis); and (iii) so 1008 that the user can understand and interpret the data. Again, this will depend on the study site and the 1009 purpose of the investigation. In most cases the reason for the study can help to inform the selection of 1010 suitable fingerprints. Thus, if the aim is to investigate the relative contributions of topsoil compared to 1011 channel bank sources, then properties that either label surface materials (e.g., some organic properties, 1012 fallout radionuclides and other fallout products, and agricultural amendments) or are enriched in subsoil 1013 materials (i.e., geochemical properties that reflect bedrock or surficial materials) are likely to be worth1014 considering.

1015 Once soil and sediment properties have been selected and measured, an addition step prior to further 1016 statistical and numerical analysis is to plot the data (i.e. bi-plots; Figure 2) and consider if the data make 1017 sense in the context of any prior knowledge concerning the environmental distribution of a given 1018 fingerprint property. For example, if fallout radionuclides are elevated in subsoil or channel bank 1019 material compared to topsoil, then either the property is not appropriate as a fingerprint and/or may 1020 have been compromised (e.g., soil disturbance) or there are additional processes that are occurring 1021 which warrant further investigation. For example, Owens et al. (2012) measured some subsoil samples with high ¹³⁷Cs and unsupported ²¹⁰Pb values in a wildfire-affected watershed in British Columbia, 1022 1023 Canada (see Fig. 2). In this case, the complete combustion of individual trees had exposed subsoil materials to new fallout of unsupported ²¹⁰Pb and some redistribution of old ¹³⁷Cs-enriched surface soil. 1024 1025 For the fingerprinting technique to be robust and repeatable it is crucial that the processes controlling 1026 their behaviour within the particular landscape or river basin are well understood and can be predicted. 1027 Furthermore, fingerprints that fall below the detection limit in one or more samples are typically 1028 discarded without consideration as to whether the fingerprint has the potential to provide good 1029 discrimination. There are statistical procedures available to deal with left-censored data but their uses in 1030 sediment source fingerprinting studies have not been fully explored.

1031

1032 7.3. Laboratory analysis and data reporting

1033 While there has been a reasonable amount of debate on appropriate field sampling and statistical

1034 procedures (e.g. Walling, 2005, 2013; Koiter et al., 2013a; Smith et al., 2015), there has been much less

1035 discussion of laboratory analysis. In this respect, appropriate sample storage and preparation prior to

analysis represent fundamental requirements, particularly as the requirements are likely to vary for
different analyses. This is likely to be especially so for organic tracers, and to some extent for colour
analyses due to issues associated with geochemical stabilization. As sample analysis can be destructive
for some determinants (e.g., particle size, organic matter via loss-on-ignition, some geochemistry) there
is also a need to consider the order of analysis if a sample is being analysed for a range of determinants
(i.e., particle size, colour, geochemical, radionuclide, CSSI properties). This is especially relevant for lowmass samples.

1043 Once samples have been analysed, then there should be a detailed and complete reporting on analysis, 1044 including the reporting of any deviations from standard protocols. This should include the reporting of 1045 fingerprint data in publications. At a minimum, this should take the form of summary table(s) containing 1046 source and sediment fingerprint data without any corrections or modifications. It could also extend to 1047 the inclusion of complete datasets tabulated in supplementary material. Such a step would then allow 1048 readers to run the same procedures described in the paper to confirm the outcomes of the data 1049 processing and source unmixing. This enhanced level of transparency would be likewise supported by 1050 reporting of specific statistical programmes or R packages used in the analysis, along with inclusion of 1051 any bespoke code in the supplementary material (see section 7.6). Such steps could make significant 1052 progress towards reducing ambiguities and ensuring reproducibility in data treatment and analysis 1053 between sediment source fingerprinting studies.

1054

1055 **7.4. Particle size and organic matter correction factors**

1056 One of the most controversial aspects of the sediment source fingerprinting technique is the use of 1057 correction factors to account for differences in some properties between sources and sediments. The 1058 two main correction factors relate to the particle size distribution and organic matter content, as many 1059 fingerprint properties are often related to these two parameters (Horowitz, 1991). In many studies (e.g., 1060 Walling and Woodward, 1995; Collins et al., 1997a; Walling et al., 1999; Owens et al. 2000) relatively 1061 simple correction factors are determined based on the ratio of measures of the particle size distribution 1062 (i.e., median particle size or specific surface area) and/or organic matter content (i.e., OM%) of the 1063 source and sediment samples. It is typically assumed that the relation between tracer property 1064 concentration and particle size or organic matter content is linear. However, some studies (e.g., Foster et 1065 al., 1998; Russell et al., 2001; Smith and Blake, 2014; Taylor et al., 2014) have demonstrated that such 1066 relations can be more complex, and may be tracer- and site-specific. Other studies (e.g., Stone and 1067 Walling, 1997) have shown that the particle size composition and organic matter content of sediment 1068 can change as it moves from source to sink. For example, Koiter et al. (2015) used a recirculating flume to 1069 simulate river channel conditions, and documented that both particle size and organic matter content 1070 changed over time (i.e. distance travelled) and that the degree of change was influenced by the depth 1071 and porosity of the channel bed sediment. Indeed, some studies (e.g., Martinez-Carreras 2010; Dutton et 1072 al., 2013; Koiter et al., 2013a; Smith and Blake, 2014; Palazón et al., 2015a) have stated that particle size 1073 and organic matter correction factors are inappropriate. Smith and Blake (2014) have demonstrated that 1074 such manipulation of the raw data can significantly change source apportionment results. Thus it is 1075 important to consider if such corrections factors are appropriate, and clearly further research is required 1076 to address this concern.

1077 Other studies have attempted to overcome problems of particle size and/or organic matter influences by 1078 focussing on a specific size fraction. While most studies restrict analysis of source materials and sediment 1079 samples to the <63 μ m fraction, other studies have fractionated source and sediment samples prior to 1080 analysis. For example, Haddadchi et al (2015) separated samples into fine sand (63-212 μ m), silt (10-63 1081 μ m) and fine silt and clay (<10 μ m). The selection of finer size fractions can remove some of the 1082 confounding influences of changing particle size composition between source and sink, but it may also 1083 limit the representativeness of the results, as most suspended sediment in rivers is >2 μ m (Walling et al., 1084 2000).

1085	The choice of particle size fraction for analysis can influence the source apportionment results
1086	(Haddadchi et al., 2015). Hence, it is important that studies explain the choice of size fraction for analysis
1087	in relation to the research context and objective. Previously the choice of the <63 μm fraction was
1088	justified because it was considered representative of sediments largely transported in suspension that
1089	were of most concern in terms of water quality impacts and the transport of particle-bound
1090	contaminants (e.g. Walling et al., 1999). However, such a choice may be unsuitable in environments
1091	dominated by sandy materials or where the research objective is unrelated to water quality.
1092	Alternatively, a focus on a finer fraction such as <10 μm may be justified by concerns related to the
1093	specific impacts of these finer-grained sediments on particular ecosystems, such as coral reefs
1094	(Bainbridge et al., 2016) and oceanic environments. It may also be justified from a process perspective,
1095	for example, in the study of sediment source contributions to post-fire debris flows, where fine sediment
1096	supply is an important factor in debris flow initiation from burnt hillslopes (Smith et al., 2012).

1097

1098 **7.5 Conservative behaviour of soil and sediment properties**

One of the fundamental assumptions underpinning the source tracing and fingerprinting technique is that the properties of the collected sediment samples are directly comparable to those in the potential source materials. In some cases, allowance is made for differences in the particle size and organic matter content between the two types of materials (see section 7.4). However, Koiter et al. (2013a) have recently reviewed the broader environmental literature on the range of soil/sediment properties used as fingerprints and demonstrated that for several properties there exists the potential for considerable modification in concentrations as sediments move through river basins; i.e., from hillslopes through riparian zones, into and through river channels, and into deposition in floodplain, lake/reservoir,
estuarine and marine environments. Several properties, such as phosphorus, are known to exhibit nonconservative behaviour during fluvial transport and short-term storage in river channels (e.g., Withers
and Jarvie, 2008), while other properties are known to undergo transformations in medium- to longterm storage elements such as floodplains, lakes, wetlands and oceans due to changes in redox, pH,
salinity and other environmental conditions (Hudson-Edwards et al., 1998; Owens et al., 1999; Foster et
al., 2006; Pulley et al., 2015).

1113 While it may be possible to account for such behaviour, most sediment source fingerprinting studies do 1114 not do this in a rigorous or standardized way. The conservative behaviour of tracers can be assessed 1115 through experimentation. For example, Poulenard et al. (2012) assessed the conservative behaviour of 1116 Diffuse Reflectance Infrared Fourier Transform Spectrometry (DRIFTS;) including colour) properties by 1117 placing samples in micro-porous bags and submerging them in the river for up to two weeks. They found 1118 that the DRIFTS signature was sufficiently conservative to be used as a potential fingerprint property. In 1119 addition, Legout et al. (2013) assessed the conservative behaviour of the colourimetric properties of 1120 source materials in a similar experiment for up to 63 days, and found comparable results.

1121 A common procedure to help identify if fingerprint properties are behaving conservatively is to compare 1122 the property values (mean, median or range) of the sources to those of the collected target sediment, 1123 sometimes called the "range test", with the idea that if the sediment values for a particular property fall 1124 outside of the values for the potential sources that either the property is exhibiting non-conservative 1125 behaviour or that not all sources have been identified or fully characterised. Properties that fail this test 1126 are often discounted as potential fingerprints and removed from further analysis. This approach 1127 represents a useful test of property behaviour, although it represents only part of the solution. The range 1128 test cannot definitively identify all tracers that are behaving non-conservatively. Rather it could also

1129 reveal the existence of an un-sampled source or a tracer property may have been altered by non-1130 conservative behaviour during mobilization and deposition but remains within the source range. This 1131 could affect the source apportionment but would not be captured by the application of the range test 1132 alone. Others (e.g. Koiter et al., 2013b; Kraushaar et al., 2015; Laceby et al., 2015b) advocate that tracer 1133 selection should not be based purely on statistical procedures and that knowledge of the hydrological, 1134 geomorphological and geochemical processes controlling tracer behaviour should also be used to help 1135 select appropriate soil and sediment properties for sediment fingerprinting. Koiter et al. (2013a) make 1136 some more general recommendations to help identify, and reduce, problems associated with non-1137 conservative behaviour of fingerprinting properties, but further research is needed to understand such

behaviour and incorporate such understanding into the sediment source fingerprinting technique.

1139

1140 **7.6 Statistical and unmixing model approaches and incorporation of uncertainties**

1141 Statistical tests and unmixing models are crucial for enabling raw data on property concentrations to be 1142 converted to meaningful values of source contributions. There are several approaches available for both 1143 the statistical procedures (e.g., Walling et al., 1993; Yu and Oldfield 1993; Walling and Woodward, 1995; 1144 Collins et al., 1997a) and unmixing models used. Others (e.g., Collins et al., 2010, 2012a, b) have 1145 suggested some recent developments to the statistical framework. In the case of unmixing models, 1146 earlier frequentist-based approaches used optimization to minimise residuals between sources and 1147 sediment mixtures to estimate the unknown proportional source contributions (e.g., Collins et al., 1997a; 1148 Walling et al., 1999). These approaches are now increasingly being superseded by Bayesian models 1149 drawn from studies of diet within ecology (i.e., IsoSource, SIAR, MixSIAR; Parnell et al., 2013) which are 1150 showing much promise, and consequently are recommended by organisations such as IAEA and are 1151 increasingly used in recent studies, especially in earth sciences (e.g., Dutton et al., 2013; Koiter et al.,

1152 2013b; Barthod et al., 2015; Cooper et al., 2015a, b). Bayesian unmixing models have several advantages 1153 over frequentist-based models, including: (i) better incorporation of prior information; and (ii) incorporation and reporting of uncertainties. Indeed, unlike many previous unmixing models, Bayesian 1154 1155 models can explicitly capture many of the sources of uncertainty presently associated with the sediment 1156 source fingerprinting approach including: spatial variability in fingerprint properties across the study 1157 area, uncertainties associated with instrumental precision, covariance between fingerprint properties, 1158 and residual model errors (Cooper et al., 2015b). Furthermore, several of the Bayesian models are open-1159 source with standard operating procedures (SOPs), often with graphical user interfaces (GUIs) and 1160 operated using R (e.g. MixSIAR), which has increased their usage in a variety of settings. Such an 1161 approach provides the opportunity for some level of standardisation and should enable researchers to 1162 reproduce and compare results.

While studies in earth sciences have tended to use unmixing models (either frequentist- or Bayesianbased), other fields have used different approaches, such as Positive Matrix Factorization models, although often the underlying concepts are similar. In several cases the sources are inferred using principal components analysis or similar statistical procedures (e.g. studies of airborne particulates within human health: section 6), or through the use of elemental ratios (e.g. provenance studies in ocean sciences: section 3.5).

The limitations of unmixing models and the fingerprinting approach as a whole, including estimation of uncertainties, are not well quantified and can be difficult to assess. Haddadchi et al. (2014b) attempted to assess the accuracy of several different unmixing models, and found that some perform better than others. Furthermore, weightings factors have been widely used in the frequentist optimization-based models to account for the differing ability of tracers to discriminate between sources or to enable tracers with lower within-source variability to exert a greater influence on source apportionment results (Collins 1175 et al., 2010). However, work by Laceby and Olley (2015a) and Haddadchi et al. (2014b) showed that the 1176 inclusion of such weightings actually reduced the accuracy of source contribution predictions compared 1177 to known artificial mixtures. It follows that the inclusion of any such parameters requires explicit 1178 justification and support based on the evaluation of model outputs compared to experimental or 1179 synthetic datasets. Indeed, the use of synthetic or virtual sediment mixture data is an efficient way of 1180 evaluating the performance of different unmixing model structures or data treatments (Palazón et al, 1181 2015b), and it is recommended that this practice be more widely adopted by sediment fingerprinting 1182 studies alongside measured datasets.

1183

1184 **7.7 Linking source fingerprinting to sediment budgets**

1185 Most sediment source fingerprinting studies have determined the *relative* contributions from different 1186 sources and not absolute mass contributions. In most cases, the former information is adequate. 1187 However, when determining sediment sources over time (e.g., events, seasons, years, millenia) it is more 1188 important to either determine mass contributions from the sources and/or consider sediment flux and 1189 storage information. For example, it may be possible for the relative contribution from two sources to 1190 remain constant from year to year but the absolute mass flux to change. Thus some studies (e.g., Smith 1191 et al., 2011) have linked sediment source data to sediment flux data to determine if sediment mass 1192 contributions from different sources have changed.

In a similar way, changes in upstream storage could mask changes in sediment sources (e.g., Trimble, 1194 1983). For example, an increase in hillslope erosion rates in headwater areas could be offset by concomitant increased sediment storage on floodplains, such that no net change in relative sources is determined at a downstream sediment collection site if all other sources remain constant. Incorporating sediment source information within wider sediment budget investigations should help to ensure that an 1198 overall picture of sediment dynamics within a river basin or marine environment is obtained. Thus,

sediment source fingerprinting represents one tool and is most effective when it is utilised with other

1200 tools (e.g. sediment budgets, monitoring, remote sensing).

1201

1202 8. Conclusion and perspective

1203 Sediment source fingerprinting has emerged within the last few decades as an important tool that can be 1204 used for a range of applications, including those in earth and ocean sciences, (geo)archaeology, forensics 1205 and human health. While applications in forensic and health sciences may have longer histories, there 1206 has been a dramatic increase within earth sciences, particularly since the 1990s, reflecting the fact that 1207 the approach is able to provide useful information on landscape and watershed processes and, 1208 especially, as it can be used to inform management decisions. To date, within the earth sciences it has 1209 mainly been used within agricultural landscapes but its use within other settings (e.g., forested, urban, 1210 estuarine, marine) is increasing. This partly reflects the development of new tracers, such as CSSIs, REEs 1211 and clay mineralogy, which can help to tackle new research questions and be used in new environments. 1212 It is apparent from this review that there is considerable commonality between the approaches of the 1213 various groups using fingerprinting to identify the sources of airborne and aquatic sediments. These 1214 include: (i) the need to collect representative samples of source materials and airborne or aquatic 1215 sediments; (ii) the selection of soil/sediment/dust properties that can effectively distinguish between 1216 potential sources; and (iii) the broad use of statistical and numerical approaches that are able to 1217 quantitatively apportion sediments to sources. Despite this commonality, there are often differences 1218 between the approach used which include: (i) the use of different tracer properties and combinations of 1219 properties; (ii) differences in the approaches used to account for issues of particle size and 1220 conservativeness; and (iii) differences in statistical and numerical approaches, and how to deal with

1221 uncertainty. As such, each discipline can learn from the others, and there exists the potential for cross-1222 fertilisation. Indeed, the recent up-take by fluvial geomorphologists and other earth scientists of organic 1223 tracers such as stable isotopes, CSSIs and DNA – many of which were developed by biologists and 1224 ecologists for other applications (e.g., food webs) - shows that the process is underway. There are also 1225 some useful approaches to the selection of appropriate fingerprinting properties and statistical 1226 procedures used within other disciplines that could benefit earth science applications. These include 1227 procedures to select less mobile elements as fingerprint properties and the use of procedures to 1228 normalise data so as to remove some of the confounding influences associated with changes in particle 1229 size composition and organic matter content, as used in sediment provenance studies in marine 1230 environments (i.e., section 3.5).

1231 One recommendation is that there is a need for comparison between the various tracer groups; for 1232 example, comparison between geochemical elements, fallout radionuclides, colour properties and CSSIs 1233 (e.g. Blake et al., 2012; Verhayen et al., 2014; Barthod et al., 2015). While each tracer type may give 1234 different results, reflecting the sources that they are able to distinguish – topsoil vs subsoil in the case of 1235 radionuclides, different crop types in the case of CSSIs – there should be internal consistency in the 1236 results. For example, if CSSIs identify that most of the organic component of the sediment is coming from 1237 the surface of cropland, then if other tracer groups identify that subsurface soils dominate (e.g., due to 1238 gully erosion) then there needs to be further investigation to assess if the difference is real (i.e., organic 1239 and mineral component derive from different sources) or if one tracer group is exhibiting non-1240 conservative behaviour.

Similarly, there is a need to compare source fingerprinting results to other, independent lines of
evidence. Such an approach is typical in geoarchaeological (section 4) and forensic (section 5)
applications, where is it important to both place source fingerprinting or provenance findings within a

1244 broader context and to determine the validity of the findings; as such, earth science applications could 1245 learn from these disciplines.. Thus, if fingerprinting results suggest that channel bank erosion is the main 1246 sediment source yet ground-truthing (e.g., monitoring) and aerial photographs show no evidence for 1247 such erosion then there is a need for further investigation to either determine which approach is correct, 1248 or to identify the cause of the difference (e.g., intermediate storage between source and sediment 1249 collection). In both of these cases (i.e., internal comparisons and comparisons with independent 1250 approaches) there is a considerable amount to be learnt about both the techniques themselves and how 1251 landscapes function. Sediment source fingerprinting should be viewed as only one component of 1252 investigations into sediment (airborne, terrestrial and aquatic) processes and dynamics, and it should be 1253 part of a more holistic assessment of landscape and watershed behaviour and functioning. 1254 The sediment source fingerprinting approach offers many advantages over more conventional 1255 techniques, such as landscape and watershed monitoring, given that information can be assembled 1256 relatively quickly and cheaply; although this in part depends on the actual approach adopted. In reality, 1257 the fingerprinting approach should be viewed as a complementary approach to these more conventional 1258 approaches. Realisation of the potential of the fingerprinting approach has seen its use expand into new 1259 applications as well as a growing interest and recognition of similar approaches in other disciplines. This 1260 review has highlighted some of these new applications, reviewed developments in cognate disciplines, 1261 and illustrated some of the areas requiring further work if the potential of the technique is to be fully 1262 realised.

1263

1264 Acknowledgements

1265 This review developed as part of a project on developing improved protocols for sediment fingerprinting1266 in Canadian watersheds funded by the Natural Sciences and Engineering Research Council of Canada

(STPGP 413426 – 2011). Additional ideas stem from several sessions on sediment source tracing and fingerprinting at the European Geosciences Union conferences, a Coordinated Research Project of the International Atomic Energy Agency, and from a workshop held at the Scripps Institute, University of California-San Diego, funded by the European Union. We would like to thank the editor and two anonymous referees for their constructive comments which helped to improve the paper.

1272 References

- 1273 Abrahams, P.W., 2002. Soils: their implications to human health. Sci. Total Environ. 291, 1-32.
- 1274 Alewell, C., Birkholz, A., Meusburger K., Schindler Wildhaber Y., Mabit, M., 2016. Quantitative sediment
- source attribution with compound-specific isotope analysis in a C3-plant dominated catchment (central
- 1276 Switzerland). Biogeosciences 13, 1587-1597.
- Anderson, S.L., 2016. A clay source provenance survey in Northwest Alaska: Late Holocene ceramic
 production in the Arctic. J. Field Archaeol. 41, 1-17.
- 1279 Armstrong-Altrin, J.S., Machain-Castillo, M.L., Rosales-Hoz, L., Carranza-Edwards, A., Sanchez-Cabeza, J.-
- 1280 A., Ruíz-Fernández, A.C., 2015. Provenance and depositional history of continental slope sediments in
- the Southwestern Gulf of Mexico unraveled by geochemical analysis. Continental Shelf Res. 95, 15–26.
- Bailey, M.J., Morgan, R.M., Comini, P., Calusi, S., Bull, P.A., 2012. Evaluation of particle-induced X-ray
 emission and particle-Induced γ-ray Emission of quartz grains for forensic trace sediment analysis. Anal.
 Chem. 84, 2260–2267.
- Bainbridge, Z., Lewis, S., Smithers, S., Wilkinson, S., Douglas, G., Hillier, S., Brodie, J., 2016. Clay mineral
 tracing and characterisation of Burdekin River and flood plume sediment. J. Soils Sediments 16, 687-706.
- 1287 Barthod, L.R.M., Liu, K., Lobb, D.A., Owens, P.N., Martinez-Carreras, N., Koiter, A.J., Petticrew, E.L.,
- 1288 McCullough, G.K., Liu, C., Gaspar, L., 2015. Selecting color-based tracers and classifying sediment sources

- in the assessment of sediment dynamics using sediment source fingerprinting. J. Environ. Qual. 44,1605-1616.
- Basu, A., Bickford, M.E., Deasy, R., 2016. Inferring tectonic provenance of siliciclastic rocks from their
 chemical compositions: A dissent. Sediment. Geol. 336, 26–35.
- 1293 Belfiore, C. M., La Russa, M. F., Barca, D., Galli, G., Pezzino, A., Ruffolo, S. A., Viccaro, M., Fichera, G. V.,
- 1294 2014. A trace element study for the provenance attribution of ceramic artefacts: the case of Dressel 1
- amphorae from a late-Republican ship. J. Archaeol. Sci. 43, 91-104.
- 1296 Belmont, P., Pazzaglia, F.J., Gosse, J.C., 2007. Cosmogenic ¹⁰Be as a tracer for hillslope and channel
- 1297 sediment dynamics in the Clearwater River, western Washington State. Earth Planet. Sci. Lett. 264,123–
- 1298 135.
- 1299 Belmont, P., Willenbring, J.K., Schottler, S.P., Marquard, J., Kumarasamy, K., Hemmis, J.M., 2014.
- 1300 Towards generalized sediment fingerprinting with tracers that are conservative and nonconservative
- 1301 over sediment routing timescales. J. Soils Sediments 14, 1479-1492
- 1302 Ben Slimane, A., Raclot, D., Evrard, O., Sanaa, M., Lefèvre, I., Ahmadi, M., Tounsi, M., Rumpel, C., Ben
- Mammou, A., Le Bissonnais, Y., 2013. Fingerprinting sediment sources in the outlet reservoir of a hilly
 cultivated catchment in Tunisia. J.Soils Sediments 13, 801–815.
- 1305 Blake, W.H., Wallbrink, P.J., Doerr, S.H., Shakesby, R.A., Humphreys, G.S., English, P., Wilkinson, S.,
- 1306 2006a. Using geochemical stratigraphy to indicate post-fire sediment and nutrient fluxes into a water
- 1307 supply reservoir, Sydney, Australia. In Sediment dynamics and the hydromorphology of fluvial systems,
- 1308 Rowan JS, Duck RW, Werritty A (eds). IAHS Publication No. 306, IAHS Press: Wallingford; 363-370.
- 1309 Blake, W.H., Walsh, R.P.D., Sayer, A.M., Bidin, K., 2006b. Quantifying fine-sediment sources in primary
- 1310 and selectively-logged rainforest catchments using geochemical tracers. Wat Air Soil Poll: Focus 6, 615–
- 1311 623.

- Blake, W.H., Wallbrink, P.J., Doerr, S.H., Shakesby, R.A., Humphreys, G.S., 2006c. Magnetic enhancement
 in wildfire-affected soil and its potential for sediment-source ascription. Earth Surf. Process. Landforms
 31, 249-264.
- 1315 Blake, W.H., Wallbrink, P.J., Wilkinson, S.N., Humphreys, G.S., Doerr, S.H., Shakesby, R.A., Tomkins, K.M.,
- 1316 2009. Deriving hillslope sediment budgets in wildfire-affected forests using fallout radionuclide tracers.
- 1317 Geomorphology 104, 105-116.
- Blake, W.H., Ficken, K.J., Taylor, P., Russell, M.A., Walling, D.E., 2012. Tracing crop-specific sediment
 sources in agricultural catchments. Geomorphology 139-140, 322–329.
- Boulay, S., Colin, C., Trentesaux, A., Pluquet, F., Bertaux, J., Blamart, D., Buehring, C., Wang, P., 2003.
 Mineralogy and sedimentology of Pleistocene sediment in the South China Sea (ODP Site 1144). In: Prell
 W., Wang P, Blum P, Rea D., Clemens S. (eds) Proceedings of the Ocean Drilling Program, Scientific
 Results. 184:1–21.
- 1324 Brachfeld, S., Pinzon, J., Darley, J., Sagnotti, L., Kuhn, G., Florindo, F., Wilson, G., Ohneiser, C., Monien,
- 1325 D., Joseph, L., 2013. Iron oxide tracers of ice sheet extent and sediment provenance in the ANDRILL
- 1326 AND-1B drill core, Ross Sea, Antarctica. Global Planet. Change 110, 420–433.
- 1327 Breed, C.A., Arocena, J.M., Sutherland, D., 2002. Possible sources of PM₁₀ in Prince George (Canada) as
- revealed by morphology and in situ chemical composition of particulate. Atmos. Environ. 36, 1721-1731.
- 1329 Brosinsky, A., Foerster, S., Segl, K., Kaufmann, K., 2014. Spectral fingerprinting: sediment source
- 1330 discrimination and contribution modelling of artificial mixtures based on VNIR-SWIR spectral properties.
- 1331 J Soils Sediments 14, 1949-1964.
- 1332 Brown, A.G., 1985. The potential use of pollen in the identification of suspended sediment sources. Earth
- 1333 Surf. Process. Landforms 10, 27-32.

- Brown, A.G., 2006. The use of forensic botany and geology in war crimes investigations in NE Bosnia.
 Forensic Sci. Int. 163, 204–210.
- Bull, P.A., Parker, A., Morgan, R.M., 2006. The forensic analysis of soils and sediment taken from the cast
 of a footprint. Forensic Science Int. 162, 6–12.
- Callén, M.S., Iturmendi A., López, J.M., 2014. Source apportionment of atmospheric PM2.5-bound
 polycyclic aromatic hydrocarbons by a PMF receptor model. Assessment of potential risk for human
 health. Environ. Poll. 195, 167-177.
- 1341 Carter, J., Owens, P.N., Walling, D.E., Leeks, G.J.L., 2003. Fingerprinting suspended sediment sources in an
- 1342 urban river. Sci. Total Environ. 314-316, 513-534.
- 1343 Cengiz, S., Cengiz Karaca, A., Çakır, İ., Bülent Üner, H., Sevindik, A., 2004. SEM–EDS analysis and 1344 discrimination of forensic soil. Forensic Science Int. 141, 33–37.
- 1345 Charlesworth, S.M., Ormerod, L.M., Lees, J.A., 2000. Tracing sediment within urban catchments using
- 1346 heavy metal, mineral magnetic and radionuclide signatures. In: Foster, I.D.L. (Ed.), Tracers in
- 1347 Geomorphology. Wiley, Chichester, UK, pp. 345-368.
- 1348 Chen, F., Zhang, F., Fang N., Shi, Z., 2016. Sediment source analysis using the fingerprinting method in a
- small catchment of the Loess Plateau, China. J. Soils Sediments 16, 1655-1669.
- 1350 Christidis, G.E., Shriner, C.M., Murray, H.H., 2014. An integrated methodological approach for source-clay
- determination of ancient ceramics: The Case of Aegina Island, Greece. Clays Clay Minerals, 62, 447-469.
- 1352 Clement, B.M., Javier, J., Say, J.P., Ross, M.S., 2011. The effects of wildfires on the magnetic properties of
- soils in the Everglades. Earth Surf. Process. Landforms 36, 460-466.
- 1354 Collins, A.L., Walling, D.E., 2002. Selecting fingerprint properties for discriminating potential suspended
- sediment sources in river basins. J. Hydrol. 261, 218–244.

- 1356 Collins, A.L., Walling, D.E., 2004. Documenting catchment suspended sediment sources: problems,
- approaches and prospects. Prog. Phys. Geog. 28, 159–196.
- 1358 Collins A.L., Walling, D.E., Leeks, G.J.L., 1997a. Source type ascription for fluvial suspended sediment
- based on a quantitative fingerprinting technique. Catena 29, 1-27.
- 1360 Collins, A.L., Walling, D.E., Leeks, G.J.L., 1997b. Use of the geochemical record preserved in floodplain
- deposits to reconstruct recent changes in river basin sediment sources. Geomorphology 19, 151–167.
- 1362 Collins, A.L., Walling, D.E., Webb, L., King, P., 2010. Apportioning catchment scale sediment sources 1363 using a modified composite fingerprinting technique incorporating property weightings and prior 1364 information. Geoderma 155: 249–261.
- Collins, A.L., Zhang, Y., McChesney, D., Walling, D.E., Haley, S.M., Smith, P., 2012a. Sediment source
 tracing in a lowland agricultural catchment in southern England using a modified procedure combining
 statistical analysis and numerical modelling. Sci.Total Environ. 414, 301–317.
- 1368 Collins, A.L., Zhang, Y., Walling, D.E., Grenfell, S.E., Smith, P., Grischeff, J., Locke, A., Sweetapple, A.,
- Brogden, D., 2012b. Quantifying fine-grained sediment sources in the River Axe catchment, southwest England: application of a Monte Carlo numerical modelling framework incorporating local and genetic algorithm optimisation. Hydrol. Process. 26, 1962–1983.
- Concheri, G., Bertoldi, D., Polone, E., Otto, S., Larcher, R., Squartini, A., 2011. Chemical elemental
 distribution and soil DNA fingerprints provide the critical evidence in murder case investigation. PLoS
 ONE 6:e20222.
- 1375 Cook, C.P., van de Flierdt, T., Williams, T., Hemming, S.R., Iwai, M., Kobayashi, M., Jimenez-Espejo, F.J.,
- 1376 Escutia, C., González, J.J., Khim, B.-K., McKay, R.M., Passchier, S., Bohaty, S.M., Riesselman, C.R., Tauxe,
- 1377 L., Sugisaki, S., Galindo, A.L., Patterson, M.O., Sangiorgi, F., Pierce, E.L., Brinkhuis, H., Klaus, A., Fehr, A.,

- Bendle, J.A.P., Bijl, P.K., Carr, S.A., Dunbar, R.B., Flores, J.A., Hayden, T.G., Katsuki, K., Kong, G.S., Nakai,
 M., Olney, M.P., Pekar, S.F., Pross, J., Röhl, U., Sakai, T., Shrivastava, P.K., Stickley, C.E., Tuo, S., Welsh, K.,
 Yamane, M., 2013. Dynamic behaviour of the East Antarctic ice sheet during Pliocene warmth. Nature
 Geosci. 6, 765–769.
- 1382 Cooper, R.J., Pedentchouk, N., Hiscock, K.M., Disdle, P., Krueger, T., Rawlins, B.G., 2015a. Apportioning
- sources of organic matter in streambank sediment: an integrated molecular and compound specificstable isotope approach. Sci.Total Environ. 520, 187-197.
- 1385 Cooper, R.J., Krueger, T., Hiscock, K.M., Rawlins, B.G., 2015b. High temporal resolution fluvial sediment
- source fingerprinting with uncertainty: a Bayesian approach. Earth Surf. Process. Landforms 40, 78-92.
- 1387 Cox, R., Peterson, H., Young, J., Cusik, C., Espinoza, E., 2000. The forensic analysis of soil organic by FTIR.
- 1388 Forensic Science Int. 108, 107–116.
- Dawson, L.A., Hillier, S., 2010. Measurement of soil characteristics for forensic applications. Surf.
 Interface Anal. 42, 363–377.
- 1391 De Luca, R., Miriello, D., Pecci, A., Domínguez-Bella, S., Bernal-Casasola, D., Cottica, D., Bloise, A., Crisci,
- G.M., 2015. Archaeometric study of mortars from the Garum Shop at Pompeii, Campania, Italy.Geoarchaeology 30, 330–351.
- 1394 Devereux, O.H., Prestegaard, K.I., Needelman, B.A., Gellis, A.C., 2010. Suspended-sediment source in an
- 1395 urban watershed, northeast branch Anacostia River, Maryland. Hydrol. Process. 24, 1391-1403.
 - D'Haen, K., Verstraeten, G., Degryse, P., 2012. Fingerprinting historical fluvial sediment fluxes. Prog. Phys. Geog. 36, 154-186.
- 1396 Dill, H., 1998. A review of heavy minerals in clastic sediments with case studies from the alluvial-fan
- through the nearshore-marine environments. Earth Sci. Rev. 45, 103–132.

- Doğan, G., Güllü, G., Tuncel, G., 2008. Sources and source regions effecting the aerosol composition of
 the Eastern Mediterranean. Microchem. J. 88, 142-149.
- 1400 Douglas, I., Bidin, K., Balamurugan, G., Chappell, N.A., Walsh, R.P.D., Greer, T., Sinun, W., I 1999. The role
- 1401 of extreme events in the impacts of selective tropical forestry on erosion during harvesting and recovery
- 1402 phases at Danum Valley, Sabah. Phil. Trans.Royal Soc. London, Series B Biol. Sci. 354, 1749-1761.
- 1403 Douglas, G.B., Kuhren, M., Radke, L.C., Hancock, G., Brooke, B., Palmer, M.R., Pietsch, T., Ford, P.W.,

1404 Trefry, M.G., Packett, R., 2010. Delineation of sediment sources to a coastal wetland in the Great Barrier

- 1405 Reef catchment: influence of climate variability and land clearing since European arrival. Environ. Chem.
- 1406 7, 190-226.
- Dutton, C., Ainsfield, A.C., Ernstburger, H., 2013. A novel sediment fingerprinting method using filtration:
 application to the Mara River, East Africa. J Soils Sediments 13, 1708-1723.
- 1409 Erkine, W., 2013. Soil colour as a tracer of sediment dispersion from erosion of forest roads in Chichester
- 1410 State Forest, NSW, Australia. Hydrol. Process. 27, 933–942.
- 1411 Evans, D.J., Gibson, C.E., Rossell, R.S., 2006. Sediment loads and sources in heavily modified Irish
- 1412 catchments: a move towards informed management strategies. Geomorphology 79, 93-113.
- 1413 Evrard, O., Poulenard, J., Némery, J., Ayrault, S., Gratiot, N., Duvert, C., Prat, C., Lefèvre, I., Bonté, P.,
- 1414 Esteves, M., 2013. Tracing sediment sources in a tropical highland catchment of central Mexico by using
- 1415 conventional and alternative fingerprinting methods. Hydrol. Process. 27, 911–922.
- 1416 Evrard, O., Laceby, P.J., Huon, S., Lefèvre, I., Sengtaheuanghoung, O., Ribolzi, O., 2016. Combining
- 1417 multiple fallout radionuclides (¹³⁷Cs, ⁷Be, ²¹⁰Pb_{ex}) to investigate temporal sediment source dynamics in
- 1418 tropical ephemeral river systems. J. Soils Sediments 16, 1130-1144.

- Farrand, W.R., 2001. Sediments and stratigraphy in rockshelters and caves: A personal perspective on
 principles and pragmatics. Geoarchaeology 16, 537–557.
- Foster, I.D.L., Charlesworth, S.M., 1996. Heavy metals in the hydrological cycle: trends and explanation.
 Hydrol. Process. 10, 227-261.
- 1423 Foster, I.D.L., Lees, J.A., 2000. Tracers in geomorphology: theory and applications in tracing fine
- 1424 particulate sediments. In: Foster, I.D.L. (Ed.), Tracers in Geomorphology. Wiley, Chichester, UK, pp. 3-20.
- 1425 Foster, I.D.L., Walling, D.E., 1994. Using reservoir deposits to reconstruct changing sediment yields and
- sources in the catchment of the Old Mill Reservoir, South Devon, UK, over the past 50 years. Hydrol. Sci.
- 1427 J. 39, 247-268.
- 1428 Foster, I.D.L., Lees, J.A., Owens, P.N., Walling, D.E., 1998. Mineral magnetic characterization of sediment
- sources from an analysis of lake and floodplain sediments in the catchments of Old Mill Reservoir and
- 1430 Slapton Ley, South Devon, UK. Earth Surf. Process. Landforms 23, 685-703.
- 1431 Foster, I.D.L., Mighall, T.M., Proffitt, H., Walling, D.E., Owens, P.N., 2006. Post-depositional ¹³⁷Cs mobility
- in the sediments of three shallow coastal lagoons, SW England. J. Palaeolimnology 35, 881-895.
- 1433 Foucher, A., Laceby, P. J., Salvador-Blanes, S., Evrard, O., Le Gall, M., Lefèvre, I., Cerdan, O., Rajkumar, V.,
- 1434 Desmet, M., 2015. Quantifying the dominant sources of sediment in a drained lowland agricultural
- 1435 catchment: The application of a thorium-based particle size correction in sediment fingerprinting.
- 1436 Geomorphology 250, 271-281.
- 1437 Fox, J.F., Papanicolaou, A.N., 2007. The use of carbon and nitrogen isotopes to study watershed erosion
- 1438 processes. J. Am. Water Resour. Assoc. 43, 1047–1064.

- Franz, C., Makeschin, F., Weiß, H., Lorz, C., 2014. Sediments in urban river basins: Identification of sediment sources within the Lago Paranoá catchment, Brasilia DF, Brazil – using the fingerprint approach. Sci. Total Environ. 466-467, 513–523.
- 1442 Gellis, A.C., Noe, G.B., 2013. Sediment source analysis in the Linganore Creek watershed, Maryland, USA,
- using the sediment fingerprinting approach: 2008 to 2010. J. Soils Sediments 13, 1735–1753.
- 1444 Gellis, A.C., Walling, D.E., 2011. Sediment-source fingerprinting (tracing) and sediment budgets as tools
- 1445 in targeting river and watershed restoration programs. In: Stream Restoration in Dynamic Fluvial
- 1446 Systems: Scientific Approaches, Analyses, and Tools. Simon, A., Bennett, S. and Castro, J.M. (Eds).
- 1447 American geophysical Union Monograph Series 194, Washington, D.C., USA, 263-291.
- 1448 Gibbs, M., 2008. Identifying source soils in contemporary estuarine sediments: A new compound-specific
- isotope method. Estuaries Coasts 31, 344–359.
- Glaser, B., 2005. Compound-specific stable-isotope (δ¹³C) analysis in soil science. J. Plant Nutr. Soil Sci.
 168, 633–648.
- Goldberg, P., Macphail, R.I., 2006. Practical and Theoretical Geoarchaeology. Blackwell Publishing,
 Oxford, UK.
- 1454 Gonzales, D. A., Arakawa, F., Koenig, A., 2015. Petrographic and geochemical constraints on the
- 1455 provenance of sanidine-bearing temper in ceramic potsherds, Four Corners Region, Southwest USA.
- 1456 Geoarchaeology 30, 59–73.
- 1457 Granger, S.J., Bol, R., Butler, P.J., Haygarth, P.M., Naden, P., Old, G., Owens, P.N., Smith, B.P.G., 2007.
- 1458 Processes affecting transfer of sediment and colloids, with associated phosphorus, from intensively
- 1459 farmed grasslands: tracing sediment and organic matter. Hydrol. Process. 21, 417-422.

- 1460 Gruszowski, K.E., Foster, I.D.L., Lees, J.A., Charlesworth, S.M., 2003. Sediment sources and transport
- 1461 pathways in a rural catchment, Herefordshire, UK. Hydrol. Process. 17, 2665–2681.
- 1462 Guedes, A., Ribeiro, H., Valentim, B., Noronha, F., 2009 Quantitative colour analysis of beach and dune
- sediments for forensic applications: A Portuguese example. Forensic Science Int. 190, 42–51.
- Guzmán, G., Quinton, J.N., Nearing, M.A., Mabit, L., Gómez, J.A., 2013. Sediment tracers in water
 erosion studies: current approaches and challenges. J Soils Sediments 13, 816–833.
- 1466 Haddadchi, A., Ryder, D.S., Evrard, O., Olley, J., 2013. Sediment fingerprinting in fluvial systems: review of
- 1467 tracers, sediment sources and mixing models. Int. J. Sediment Res. 28, 560-578.
- 1468 Haddadchi, A., Nosrati, K., Ahmadi, F., 2014a. Differences between the source contribution of bed
- 1469 material and suspended sediments in a mountainous agricultural catchment of western Iran. Catena 116,
- 1470 105–113.
- 1471 Haddadchi, A., Olley, J., Laceby, P., 2014b. Accuracy of mixing models in predicting sediment source
- 1472 contributions. Sci. Total Environ. 497-498, 139-152.
- 1473 Haddachi, A., Olley, J., Pietsch, T., 2015. Quantifying sources of suspended sediment in three size
- 1474 fractions. J. Soils Sediments 15, 2086-2100.
- 1475 Hamlin, R.H.B., Woodward, J.C., Black, S., Macklin, M.G., 2000. Sediment fingerprinting as a tool for
- 1476 interpreting long-term river activity: the Voidomatis basin, NW Greece. In: Foster, I.D.L. (Ed.) Tracers in
- 1477 Geomorphology. John Wiley and Sons, Chichester, pp. 473–501.
- 1478 Hancock, G.J., Revill, A.T., 2013. Erosion source discrimination in a rural Australian catchment using
- 1479 compound-specific isotope analysis (CSIA). Hydrol. Process. 27, 923–932.

Hebinck, K., Middelkoop, H., van Diepen, N., van der Graaf, E.R., de Meijer, R.J., 2007. Radiometric
fingerprinting of fluvial sediments in the Rhine-Meuse delta, the Netherlands - a feasibility test.
Netherlands Journal of Geosciences-Geologie en Mijnbouw 86, 229-240.

Herries, A.I., 2006. Archaeomagnetic evidence for climate change at Sibudu Cave. Southern African
Humanities 18, 131-147.

1485 Horowitz, A.J. 1991. A Primer in Sediment-trace Element Chemistry. Lewis Publishers, Michigan, USA

Huang, X.H.H., Bian, Q., Ng, W.M., Louie, P.K.K., Yu, J.Z., 2014. Characterization of PM2.5 major
components and source investigation in suburban Hong Kong: A one year monitoring study. Aerosol Air
Qual. Res. 14-237-250.

- Hudson-Edwards, K.A., Macklin, M.G., Curtis, C.D., Vaughan, D.J., 1998. Chemical mobilization of
 contaminated metals within floodplains sediment in an incising river system: implications for dating and
 chemostratigraphy. Earth Surf. Process. Landforms 32, 671-684.
- 1492 Hughes, A.O., Olley, J.M., Croke, J.C., McKergow, L.A., 2009. Sediment source changes over the last 250
- 1493 years in a dry-tropical catchment, central Queensland, Australia. Geomorphology 104, 262–275.
- 1494 Hughes, A.O., Croke, J.C., Pietsch, T.J., Olley, J.M., 2010. Changes in the rates of floodplain and in-channel
- 1495 bench accretion in response to catchment disturbance, central Queensland, Australia. Geomorphology

1496 114, 338-347.

- Hughes, P.D., Woodward, J.C., Gibbard, P.L., Macklin, M.G., Gilmour, M.A., Smith, G.R., 2006. The glacial
 history of the Pindus Mountains, Greece. J. Geol. 114, 413-434.
- 1499 Jenkins, P.A., Duck, R.W., Rowan, J.S., Walden, J., 2002. Fingerprinting of bed sediment in the Tay Estuary,
- 1500 Scotland: an environmental magnetism approach. Hydrol. Earth Syst. Sci. 6, 1007-1016.

- 1501 Jenkins, P.A., Duck, R.W., Rowan, J., 2005. Fluvial contribution to the sediment budget of the Tay Estuary,
- 1502 Scotland, assessed using mineral magnetic fingerprinting In: Walling, DE and Horowitz, AJ (eds) Sediment
- 1503 Budgets 1, IAHS Publication 291, IAHS Press, Wallingford, UK, pp. 134-140.
- Johansen, M.P., Hakonson, T.E., Whicker, F.W., Breshears, D.D., 2003. Pulsed redistribution of a contaminant following forest fire: cesium-137 in runoff. J. Environ. Qual. 32, 2150-2157.
- 1506 Karanasiou, A., Amato F., Moreno, T., Lumbreras, J., Borge, R., Linares, C., Boldo, E., Alastuey, A., Querol,
- 1507 X., 2014. Road dust emission sources and assessment of street washing effect. Aerosol Air Qual. Res. 14,
 1508 734-743.
- 1509 Khodakova, A.S., Smith, R.J., Burgoyne, L., Abarno, D., Linacre, A., 2014. Random whole metagenomic
 1510 sequencing for forensic discrimination of soils. PLoS ONE 9:e104996.
- 1511 Klages, M.G., Hsieh, Y.P., 1975. Suspended solids carried by the Galatin River of Southwestern Montana: II
 1512 Using mineralogy for inferring sources. J. Environ. Qual. 4, 68-73.
- 1513 Koiter, A.J., Owens, P.N., Petticrew, E.L., Lobb, D.A., 2013a. The behavioural characteristics of sediment
- 1514 properties and their implications for sediment fingerprinting as an approach for identifying sediment
- 1515 sources in river basins. Earth Sci. Rev. 125, 24–42.
- 1516 Koiter, A.J., Lobb, D.A., Owens, P.N., Petticrew, E.L., Tiessen, K., Li, S., 2013b. Investigation the role of
- 1517 scale and connectivity in assessing the sources of sediment in an agricultural watershed in the Canadian
- 1518 prairies using sediment source fingerprinting. J. Soils Sediments 13, 1676–1691.
- 1519 Koiter, A.J., Owens, P.N., Petticrew, E.L., Lobb, D.A., 2015. The role of gravel channel beds on particle size
- 1520 and organic matter selectivity of transported fine-grained sediment: implications for sediment
- 1521 fingerprinting and biogeochemical flux research. J. Soils Sediments 15, 2174-2188.
- 1522 Kourampas, N., Simpson, I. A., Perera, N., Deraniyagala, S. U., Wijeyapala, W.H., 2009. Rockshelter
- 1523 sedimentation in a dynamic tropical landscape: Late Pleistocene–Early Holocene archaeological deposits
- in Kitulgala Beli-lena, southwestern Sri Lanka. Geoarchaeology 24, 677–714.
- 1525 Kraushaar, S., Schumann, T., Ollesch, G., Schubert, M., Vogel, H.J., Siebert, C., 2015. Sediment
- 1526 fingerprinting in northern Jordan: element-specific correction factors in a carbonatic setting. J. Soils
- 1527 Sediments 15, 2155-2173.
- 1528 Kreutzweiser, D., Capell, S., Good, K., Holmes, S., 2009. Sediment deposition in streams adjacent to
- upland clearcuts and partially harvested riparian buffers in boreal forest catchments. Forest Ecol. Manag.
 258, 1578–1585.
- Laceby, J.P., Olley, J., Pietsch, T.J., Sheldon, F., Bunn, S.E., 2015a. Identifying subsoil sediment sources with carbon and nitrogen stable isotope ratios. Hydrol. Process. 29, 1956-1971.
- 1533 Laceby, J.P., McMahon, J., Evrard, O., Olley, J. 2015b. A comparison of geological and statistical
- approaches to element selection for sediment fingerprinting. J. Soils Sediments 15, 2117-2131.
- 1535 Lamba, J., Karthikeyan, K.G., Thompson, A.M., 2015a. Apportionment of suspended sediment sources in
- an agricultural watershed using sediment fingerprinting. Geoderma 239-240, 25–33.
- 1537 Lamba, J., Karthikeyan, K.G., Thompson, A.M., 2015b. Using radiometric fingerprinting and phosphorus
- to elucidate sediment transport dynamics in an agricultural watershed. Hydrol. Process. 29, 2681–2693.
- 1539 Leeks, G.J.L., Marks, S.D., 1997. Dynamics of river sediments in forested headwater streams: Plynlimon,
- 1540 Hydrol. Earth Syst. Sci. 1, 483-497.
- 1541 Legout, C., Poulenard, J., Nemery, J., Navratil, O., Grangeon, T., Evrard, O., Esteves, M., 2013. Quantifying
- 1542 suspended sediment sources during runoff events in headwater catchments using spectrocolorimetry. J.
- 1543 Soils Sediments 13, 1478-1492.

- Liu, G., Xiao, H., Liu, P., Zhang, Q., Zhang, J., 2016. An improved method for tracing soil erosion using rare earth elements. J. Soils Sediments 16, 1670-1679.
- Lombardi, G., 1999. The contribution of forensic geology and other trace evidence analysis to the investigation of the killing of Italian Prime Minister Aldo Moro. J. Forensic Sci. 44, 634–642.
- 1548 Longworth, G., Becker, L.W., Thompson, R., Oldfield, F., Dearing, J.A., Rummery, T.A., 1979. Mossbauer
- and magnetic studies of secondary iron oxides in soil. J. Soil Sci. 30, 93–110.
- 1550 Mabit, L., Benmansour, M., Abril, J.M., Walling, D.E., Meusburger, K., Iurian, A.R., Bernard, C., Tarján, S.,
- 1551 Owens, P.N., Blake, W.H., Alewell, C., 2014. Fallout 210Pb as a soil and sediment tracer in catchment
- sediment budget investigations: A review. Earth Sci. Rev. 138, 335–351.
- 1553 Mahler, B.J., Winkler, M., Bennett, P., Hillis, D.M., 1998. DNA-labelled clay: a sensitive new method for
- tracing particle transport. Geology 26, 831–834.
- 1555 Martínez-Carreras, N., Krein, A., Gallart, F., Iffly, J.F., Pfister, L., Hoffmann, L., Owens, P.N., 2010.
- 1556 Assessment of different colour parameters for discriminating potential suspended sediment sources and
- 1557 provenance: a multi-scale study in Luxembourg. Geomorphology 118, 118-129.
- 1558 McConnachie, J.L., Petticrew, E.L., 2006. Tracing organic matter sources in riverine suspended sediments:
- 1559 implications for fine sediment transfers. Geomorphology 79, 13–26.
- 1560 McCulloch, M., Pailles, C., Moody, P., Martin, C.E., 2003. Tracing the source of sediment and phosphorus
- into the Great Barrier Reef lagoon. Earth Planet. Sci. Lett. 210, 249–258.
- 1562 Meinhold, G., Kostopoulos, D., Reischmann, T., 2007. Geochemical constraints on the provenance and
- depositional setting of sedimentary rocks from the islands of Chios, Inousses and Psara, Aegean Sea,
- 1564 Greece: implications for the evolution of Palaeotethys. J. Geol. Soc. 164, 1145–1163.

- 1565 Merefield, J.T., Stone, I., Barron, J., Jones, J., 1999. Techniques for tracing fugitive mineral dusts for 1566 nuisance control and health risk. Trans. Inst. Mining Metallurgy (Sect A) 108, 77-81.
- 1567 Merefield, J.R., Stone, I.M., Roberts, J., Jones, J., Barron, J., Dean, A., 2000. Fingerprinting airborne
- particles for identifying provenance. In: Foster, I.D.L. (Ed.), Tracers in Geomorphology. Wiley, Chichester,
 UK, pp. 85-100.
- 1570 Meyer, I., Davies, G.R., Stuut, J.-B.W., 2011. Grain size control on Sr-Nd isotope provenance studies and
- 1571 impact on paleoclimate reconstructions: An example from deep-sea sediments offshore NW Africa.
- 1572 Geochem. Geophys. Geosyst. 12, Q03005.
- 1573 Michelaki, K., Braun, G.V., Hancock, R.G., 2015. Local clay sources as histories of human–landscape 1574 interactions: a ceramic taskscape perspective. J. Arch. Method Theory 22, 1-45.
- 1575 Minc, L.D., Sherman, R.J., Elson, C., Winter, M., Redmond, E.M., Spencer, C.S., 2016. Ceramic provenance
- 1576 and the regional organization of pottery production during the later Formative periods in the Valley of
- 1577 Oaxaca, Mexico: Results of trace-element and mineralogical analyses. J. Archaeol. Sci.: Rep. 8, 28-46.
- 1578 Minella, J.P.G., Walling, D.E., Merten, G.H. 2008. Combining sediment source tracing techniques with
- 1579 traditional monitoring to assess the impact of improved land management on catchment sediment
- 1580 yields. J. Hydrol. 348, 546-563.
- 1581 Minella, J.P.G., Walling, D.E., Merten, G.H., 2014. Establishing a sediment budget for a small agricultural
- 1582 catchment in southern Brazil, to support the development of effective sediment management strategies.
- 1583 J. Hydrol. 519, 2189–2201.
- 1584 Moody, J.A., Martin, D.A., 2009. Synthesis of sediment yields after wildland fire in different rainfall
- 1585 regimes in the western United States. Int. J. Wildland Fire 18, 96–115

- 1586 Moore, T.E., O'Sullivan, P.B., Potter, C.J., Donelick, R.A., 2015. Provenance and detrital zircon
- 1587 geochronologic evolution of lower Brookian foreland basin deposits of the western Brooks Range, Alaska,
- and implications for early Brookian tectonism. Geosphere 11, 93–122.
- 1589 Morgan, R.M., Bull, P.A., 2007a. The philosophy, nature and practice of forensic sediment analysis. Prog.
- 1590 Phys. Geog. 31, 43–58.
- 1591 Morgan, R.M., Bull, P.A., 2007b. The use of grain size distribution analysis of sediments and soils in 1592 forensic enquiry. Sci. Justice 47, 125–135.
- 1593 Morgan, R.M., Robertson, J., Lennard, C., Hubbard, K., Bull, P.A., 2010. Quartz grain surface textures of
- 1594 soils and sediments from Canberra, Australia: A forensic reconstruction tool. Aust. J. Forensic Sci. 42,
- 1595 169–179.
- Morton, A.C., 1985. Heavy Minerals in Provenance Studies. In: Zuffa GG (ed) Provenance of Arenites.
 Springer Netherlands, pp 249–277.
- 1598 Morton, A.C., Hallsworth, C., 1994. Identifying provenance-specific features of detrital heavy mineral 1599 assemblages in sandstones. Sediment. Geol. 90, 241–256.
- 1600 Morton, A.C., Whitham, A.G., Fanning, C.M., 2005. Provenance of Late Cretaceous to Paleocene
- 1601 submarine fan sandstones in the Norwegian Sea: Integration of heavy mineral, mineral chemical and
- 1602 zircon age data. Sediment. Geol. 182, 3–28.
- 1603 Motha, J.A., Wallbrink, P.J., Hairsine, P.B., Grayson, R.B., 2003. Determining the sources of suspended
- sediment in a forested catchment in southeastern Australia. Wat. Resourc. Res. 39, DOI:
- 1605 10.1029/2001WR000794.

- 1606 Mukundan, R., Walling, D.E., Gellis, A.C., Slattery, M.C., Radcliffe, D.E., 2012. Sediment source
- 1607 fingerprinting: transforming from a research tool to a management tool. J. Amer. Wat. Resourc. Assoc..
- 1608 Doi: 10.1111/j.1752-1688.2012.00685.x
- 1609 Nakai, I., Furuya, S., Bong, W., Abe, Y., Osaka, K., Matsumoto, T., Itou, M., Ohta, A., Ninomiya, T., 2014.
- 1610 Quantitative analysis of heavy elements and semi-quantitative evaluation of heavy mineral compositions
- 1611 of sediments in Japan for construction of a forensic soil database using synchrotron radiation X-ray
- 1612 analyses: Forensic soil database using synchrotron radiation X-ray analyses. X-Ray Spectrometry 43, 38–
- 1613 48.
- 1614 O'Leary, M.H., 1988. Carbon isotopes in photosynthesis. BioSci. 38, 328–336.
- 1615 Ormerod, L.M., 1999. Estimating sedimentation rates and sources in a partially urbanized catchment 1616 using caesium-137. Hydrol. Process. 12, 1009-1020.
- 1617 Oros, D.R., Mazurek, M.A., Baham, J.E., Simoneit, B.R.T., 2002. Organic tracers from wildfire residues in
 1618 soils and rain/river wash-out. Wat. Air Soil Poll. 137, 203-233.
- 1619 Owen, J. V., Casey, J. L., Greenough, J. D., Godfrey-Smith, D., 2013. Mineralogical and geochemical
- 1620 constraints on the sediment sources of Late Stone Age pottery from the Birimi Site, Northern Ghana.
- 1621 Geoarchaeology 28, 394–411.
- 1622 Owens, P.N., 2005. Conceptual models and budgets for sediment management at the river basin scale. J.
 1623 Soils Sediments 5, 201–212.
- 1624 Owens, P.N., 2008. Sediment behaviour, functions and management. In: Sustainable Management of
- 1625 Sediment Resources: Sediment Management at the River Basin Scale edited by P.N. Owens. Elsevier,
- 1626 Amsterdam, 1-29.

- 1627 Owens, P.N., Walling, D.E., 2002a. Changes in sediment sources and floodplain deposition rates in the
- 1628 catchment of the River Tweed, Scotland, over the last 100 years: the impact of climate and land use
- 1629 change. Earth Surf. Process. Landforms 27, 403-423.
- 1630 Owens, P.N., Walling, D.E., 2002b. The phosphorus content of fluvial sediment in rural and industrialized
- 1631 river basins. Wat. Res. 36, 685-701
- 1632 Owens, P.N., Walling, D.E., He, Q., 1996. The behaviour of bomb-derived caesium-137 fallout in
- 1633 catchment soils. J. Environ. Radioact. 32, 169-191.
- 1634 Owens, P.N., Walling, D.E., Leeks, G.J.L., 1999. Use of floodplain sediment cores to investigate recent
- 1635 historical changes in overbank sedimentation rates and sediment sources in the catchment of the River
- 1636 Ouse, Yorkshire, UK. Catena 36, 21-47.
- Owens, P.N., Blake, W.H., Petticrew, E.L., 2006. Changes in sediment sources following wildfire in
 mountainous terrain: a paired-catchment approach, British Columbia, Canada. Wat. Air Soil Poll.: Focus
 6, 637-645.
- 1640 Owens, P.N., Walling, D.E., Leeks, G.J.L., 2000. Tracing fluvial suspended sediment sources in the
- 1641 catchment of the River Tweed, Scotland, using composite fingerprints and a numerical mixing model. In:
- 1642 Foster, I.D.L. (Ed.), Tracers in Geomorphology, Wiley, Chichester, pp. 291-308.
- 1643 Owens, P.N., Caley, K.A., Campbell, S., Koiter, A.J., Droppo, I.G., Taylor, K.G., 2011. Total and size-1644 fractionated mass of road-deposited sediment in the city of Prince George, British Columbia, Canada: 1645 implications for air and water quality in an urban environment. J. Soils Sediments 11, 1040-1051.
- 1646 Owens, P.N., Blake, W.H., Giles, T.R., Williams, N.D., 2012. Determining the effects of wildfire on 1647 sediment sources using ¹³⁷Cs and unsupported ²¹⁰Pb: the role of natural landscape disturbance and
- 1648 driving forces. J. Soils Sediments 12, 982-994.

1649	Owens, P.N., Giles, T.R., Petticrew, E.L., Leggat, M., Moore, R.D., Eaton, B.C., 2013. Muted responses of
1650	streamflow and suspended sediment flux in a wildfire-affected watershed. Geomorphology 202, 128-
1651	139.

- Padoan, M., Garzanti, E., Harlavan, Y., Villa, I.M., 2011. Tracing Nile sediment sources by Sr and Nd
 isotope signatures (Uganda, Ethiopia, Sudan). Geochimica et Cosmochimica Acta 75, 3627–3644.
- Palazón, L., Gaspar, L., Latorre, B., Blake, W.H., Navas, A., 2015a. Identifying sediment sources by applying
 a fingerprinting mixing model in a Pyrenean drainage catchment. J. Soils Sediments 15, 2067-2085.
- 1656 Palazón, L., Latorre, B., Gaspar, L., Blake, W.H., Smith, H.G., Navas, A., 2015b. Comparing catchment
- sediment fingerprinting procedures using an auto-evaluation approach with virtual sample mixtures. Sci.
- 1658 Total Environ. 532, 456-466.
- 1659 Park, S.S., Kim, Y.J., 2005. Source contributions to fine particulate matter in an urban atmosphere.
- 1660 Chemosphere 59, 217-226.
- 1661 Parnell, A. C., Phillips, D. L., Bearhop, S., Semmens, B. X., Ward, E. J., Moore, J. W., Jackson, A. L., Grey, J.,
- 1662 Kelley, D. J., Inger, R., 2013. Bayesian stable isotope mixing models. Environmetrics 24, 387-399.
- 1663 Parson, A.J., Foster, I.D.L., 2011. What can we learn about soil erosion from the use of ¹³⁷Cs? Earth Sci.
- 1664 Rev. 108, 101-113.
- 1665 Peart, M.R., Walling, D.E., 1986. Techniques for establishing suspended sediment sources in two drainage
- 1666 basins in Devon, UK: a comparative assessment. In: Sediment Budgets. IAHS Pub 174, IAHS Press,
- 1667 Wallingford, UK, pp. 269-279.
- 1668 Perreault, L.M., Yager, E.M., Aalto, R., 2012. Application of ²¹⁰Pb_{ex} inventories to measure net hillslope
- 1669 erosion at burned sites. Earth Surf. Process. Landforms 38, 133-145.

- Pollard, M., Beisson, F., Li, Y., Ohlrogge, J.B., 2008. Building lipid barriers: biosynthesis of cutin and
 suberin. Trends Plant Sci. 13, 236–246.
- 1672 Poleto, C., Merten, C.H., Minella, J.P., 2009. The identification of sediment sources in a small urban
- 1673 watershed in southern Brazil: an application of sediment fingerprinting. Environ. Tech. 30, 1145-1153.
- 1674 Poulenard, J., Legout, C., Némery, J., Bramorski, J., Navratil, O., Douchin, A., Fanget, B., Perrette, Y.,
- 1675 Evrard, O., Esteves, M., 2012. Tracing sediment sources during floods using Diffuse Reflectance Infrared
- 1676 Fourier Transform Spectrometry (DRIFTS): A case study in a highly erosive mountainous catchment
- 1677 (Southern French Alps). J. Hydrol. 414-145, 452–462.
- 1678 Pulley S., Foster, I., Antunes, P., 2015. The application of sediment fingerprinting to floodplain and lake
- 1679 sediment cores: assumptions and uncertainties evaluated through case studies in the Nene Basin, UK. J.
- 1680 Soils Sediments 15, 2132-2154.
- 1681 Pye, K., Blott, S.J., Croft, D.J., Carter, J.F., 2006. Forensic comparison of soil samples: Assessment of
- small-scale spatial variability in elemental composition, carbon and nitrogen isotope ratios, colour, and
 particle size distribution. Forensic Sci. Int. 163, 59–80.
- 1684 Ratto, N., Gogni, V., Escobar, M. B., Plá, R., 2015. Mud-clay banks and regional geochemistry: The 1685 provenance of ceramic raw materials (Department Tinogasta, catamarca, Argentina). Quaternary Int. 1686 375, 13-26.
- 1687 Reiffarth, D., Petticrew, E.L., Owens, P.N., Lobb, D.A., 2016. Identification of sources of variability in fatty 1688 acid (FA) biomarkers in the application of compound-specific stable isotopes (CSSIs) to soil and sediment 1689 fingerprinting and tracing: a review. Sci. Total Environ. 565, 8-27.

- 1690 Renson, V., Jacobs, A., Coenaerts, J., Mattielli, N., Nys, K., Claeys, P. 2013. Using lead isotopes to
- 1691 determine pottery provenance in Cyprus: clay source signatures and comparison with Late Bronze Age
- 1692 Cypriote pottery. Geoarchaeol. 28, 517-530.
- 1693 Rodríguez, M.P., Lincoñir, L.P., Encinas, A., 2012. Cenozoic erosion in the Andean forearc in Central Chile
- 1694 (33°–34°S): Sediment provenance inferred by heavy mineral studies. Geol. Soc. Amer. Special Pap. 487,
- 1695 141–162.
- 1696 Roelofse, F., Horstmann, U.E., 2008. A case study on the application of isotope ratio mass spectrometry
- 1697 (IRMS) in determining the provenance of a rock used in an alleged nickel switching incident. Forensic Sci.
- 1698 Int. 174, 64–67.
- Rotman, R., Naylor, L., McDonnell, R., MacNiocaill, C., 2008. Sediment transport on the Freiston Shore
 managed realignment site: An investigation using environmental magnetism. Geomorphology 100, 241255.
- 1702 Rowan, J.S., Goodwill, P., Franks, S.W., 2000. Uncertainty estimation in fingerprinting suspended
 1703 sediment sources. In: Fister, I.D.L., (Ed.) Tracers in Geomorphology, Wiley, pp. 279-290.
- 1704 Ruffell, A., 2010. Forensic pedology, forensic geology, forensic geoscience, geoforensics and soil
 1705 forensics. Forensic Sci. Int. 202, 9–12.
- 1706 Ruffell, A., Sandiford, A., 2011. Maximising trace soil evidence: An improved recovery method developed
- during investigation of a \$26 million bank robbery. Forensic Sci. Int. 209, 1-7.
- 1708 Ruess, L., Chamberlain, P.M., 2010. The fat that matters: Soil food web analysis using fatty acids and their
 1709 carbon stable isotope signature. Soil Biol. Biochem. 42, 1898–1910.
- 1710 Russell, M.A., Walling, D.E., Hodgkinson, R.A., 2001. Suspended sediment sources in two small lowland
- 1711 catchments in the UK. J. Hydrol. 252, 1-24.

1712	Salgán, L., Garvey, R., Neme, G., Gil, A., Giesso, M., Glascock, M.D., Durán, V., 2015. Las Cargas:
1713	characterization and prehistoric use of a Southern Andean obsidian source. Geoarchaeology 30, 139
1714	150.

- 1715 Schindler Wildhaber, Y., Liechti, R., Alewell, C., 2012. Organic matter dynamics and stable isotope 1716 signature as tracers of the sources of suspended sediment. Biogeosciences 9, 1985–1996.
- 1717 Schuller, P., Iroumé, A., Walling, D.E., Mancilla, H.B., Castillo, A., Trumper, R.E., 2006. Use of Beryllium-7
- 1718 to document soil redistribution following forest harvest operations. J.Environ. Qual. 35, 1756-1763.
- 1719 Scott, K.R., Morgan, R.M., Jones, V.J., Cameron, N.G., 2014. The transferability of diatoms to clothing
- 1720 and the methods appropriate for their collection and analysis in forensic geoscience. Forensic Sci. Int.
- 1721 241, 127–137.
- 1722 Sherriff, S.C., Franks, S.W., Rowan, J.S., Fenton, O., Ó'hUallacháin D., 2015. Uncertainty- based 1723 assessment of tracer selection, tracer non-conservativeness and multiple solutions in sediment 1724 fingerprinting using synthetic and field data. J. Soils Sediments 15, 2101-2116.
- 1725 Smith, H.G., Blake, W.H., 2014. Sediment fingerprinting in agricultural catchments: a critical re-evaluation 1726 of source discrimination and data corrections. Geomorphology 204, 177-191.
- 1727 Smith, H.G., Sheridan, G.J., Lane, P.N.J., Noske, P., Heijnis, H., 2011. Changes to sediment sources 1728 following wildfire in a forested upland catchment, southeastern Australia. Hydrol. Process. 25, 2878-1729 2889.
- 1730 Smith, H.G., Sheridan, G.J., Nyman, P., Child, D.P., Lane, P.N.J., Hotchkis, M.A.C., Jacobsen, G.E., 2012.
- 1731 Quantifying sources of fine sediment supplied to post-fire debris flows using fallout radionuclide tracers.
- 1732 Geomorphology 139-140, 403-415.

- Smith, H.G., Blake, W.H., Owens, P.N., 2013. Discriminating fine sediment sources and the application of
 sediment tracers in burned catchments: a review. Hydrol. Process. 27, 943-958.
- 1735 Smith, H.G., Blake, W.H., Taylor, A., 2014. Modelling particle residence times in agricultural river basins
- using a sediment budget model and fallout radionuclide tracers. Earth Surf. Process. Landforms 39,
- 1737 1944–1959.
- Smith, H.G., Evrard, O., Blake, W.H., Owens, P.N., 2015. Preface Addressing challenges to advance
 sediment fingerprinting research. J. Soils Sediments 15, 2033-2037.
- 1740 Stewart, H.A., Massoudieh, A., Gellis, A., 2015. Sediment source apportionment in Laurel Hill Creek, PA,
- using Bayesian chemical mass balance and isotope fingerprinting. Hydrol. Process. 29, 2545–2560.
- Stone P, Walling, D.E., 1997. Particle size selectivity considerations in sediment budget investigations.
 Wat. Air Soil Poll. 99, 63-70.
- 1744 Stone, M., Collins, A.L., Silins, U., Emelko, M.B., Zhang, Y.S., 2014. The use of composite fingerprints to
- quantify sediment sources in a wildfire impacted landscape, Alberta, Canada. Sci. Total Environ. 473-474,642-650.
- 1747 Stott, T., Mount, N., 2004. Plantation forestry impacts on sediment yields and downstream channel
- dynamics in the UK: a review. Prog. Phys. Geog. 28, 197-240.
- Suman, Singh, G., Pal, A.K., 2014. Source apportionment of respirable particulate matter using principal
 component analysis a case study from India. Rep. Opinion 6, 26-32.
- 1751 Taylor, K.G., Owens, P.N., 2009. Sediments in urban river basins: a review of sediment–contaminant
- dynamics in an environmental system conditioned by human activities. J. Soils Sediments 9, 281-303.
- 1753 Taylor, A., Blake, W.H., Keith-Roach, M.J., 2014. Estimating Be-7 association with soil particle size
- 1754 fractions for erosion and deposition modelling. J. Soils Sediments 14, 1886-1893.

- Thomas, W.A., 2011. Detrital-zircon geochronology and sedimentary provenance. Lithosphere 3, 304–
 308.
- Trimble, S.W., 1983. A sediment budget for Coon Creek in the Driftless Area, Wisconsin, 1853–1977. Am.
 J. Sci. 283, 454–474.
- 1759 Tsikouras, B., Pe-Piper, G., Piper, D.J.W., Schaffer, M., 2011. Varietal heavy mineral analysis of sediment
- 1760 provenance, Lower Cretaceous Scotian Basin, eastern Canada. Sediment. Geol. 237, 150–165.
- 1761 Verheyen, D., Diels, J., Kissi, E., Poesen, J., 2014. The use of visible and near-infrared reflectance
- 1762 measurements for identifying the source of suspended sediment in rivers and comparison with
- 1763 geochemical fingerprints. J. Soils Sediments 14, 1869-1885.
- 1764 Vital, H., Stattegger, K., 2000. Major and trace elements of stream sediments from the lowermost
- 1765 Amazon River. Chem. Geol. 168, 151–168.
- von Eynatten, H., Dunkl, I., 2012. Assessing the sediment factory: The role of single grain analysis. Earth
 Sci. Rev. 115, 97–120.
- 1768 Wall, G.J., Wilding, L.P., 1976. Mineralogy and related parameters of fluvial suspended sediments in
- 1769 Northwestern Ohio. J. Environ. Qual. 5, 168-173.
- 1770 Wallbrink P.J., Croke J., 2002. A combined rainfall simulator and tracer approach to assess the role of
- 1771 Best Management Practices in minimising sediment redistribution and loss in forests after harvesting.
- 1772 Forest Ecol. Manag. 170, 217-232
- 1773 Wallbrink, P.J., Murray, A.S., 1996. Determining soil loss using the inventory ratio of excess lead-210 and
- 1774 cesium-137. Soil Sci. Soc. Amer. J. 60, 1201-1208.

- 1775 Wallbrink, P.J., Murray, A.S., Olley, J.M., Olive, L.J., 1998. Determining sources and transit times of
- 1776 suspended sediment in the Murrumbidgee River, New South Wales, Australia, using fallout ¹³⁷Cs and
- ²¹⁰Pb. Water Resourc. Res. 34, 879–887.
- 1778 Wallbrink, P.J., Roddy, B.P., Olley, J.M., 2002. A tracer budget quantifying soil redistribution on hillslopes
- after forest harvesting. Catena 47, 179–201.
- 1780 Walling, D.E., 1983. The sediment delivery problem. J. Hydrol. 65, 209-237.
- 1781 Walling, D.E., 2006. Human impact on land-ocean sediment transfer by the world's rivers.
- 1782 Geomorphology 79, 192-216.
- 1783 Walling, D.E., 2005. Tracing suspended sediment sources in catchments and river systems. Sci. Total
- 1784 Environ. 344, 159-184.
- Walling, D.E., 2013. The evolution of sediment source fingerprinting investigations in fluvial systems. J.
 Soils Sediments 13, 1658-1675.
- Walling, D.E., Collins, A.J., 2008. The catchment sediment budget as a management tool. Environ. Sci.
 Policy 11, 136-143.
- , ,
- 1789 Walling, D.E., Woodward, J.C., 1992. Use of radiometric fingerprints to derive information on suspended
- 1790 sediment sources. In: Bogen, J., Walling, D.E., Day, T.J. (Eds) Erosion and sediment transport monitoring
- 1791 programmes in river basins. IAHS Publ. 210, pp 153-164.
- 1792 Walling, D.E., Woodward J.C., 1995. Tracing suspended sediment sources in river basins: a case study of
- the River Culm, Devon, UK. Marine Freshwater Res. 46, 327–336.
- 1794 Walling, D.E., Woodward, J.C., Nicholas A.P., 1993. A multi-parameter approack to fingerprinting
- suspended-sediment sources. I: Tracers in Hydrology. IAHS Publ 215, IAHS Press, Wallingford, UK. Pp.
- 1796 329-338.

- 1797 Walling, D.E., Owens, P.N., Leeks, G.J.L., 1999. Fingerprinting suspended sediment sources in the
- 1798 catchment of the River Ouse, Yorkshire, UK. Hydrol. Process. 13, 955-975.
- 1799 Walling, D.E., Owens, P.N., Waterfall, B.D., Leeks, G.J.L., Wass, P.D., 2000. The particle size characteristics
- 1800 of fluvial suspended sediment in the Humber and Tweed catchments, UK. Sci. Total Environ. 251-252,
- 1801 205-222.
- 1802 Walling, D.E., Owens, P.N., Foster, I.D.L., Lees, J.A., 2003. Changes in the fine sediment dynamics of the
- 1803 Ouse and Tweed basins in the UK, over the last 100-150 years. Hydrol. Process. 17, 3245-3269.
- 1804 Walling, D.E., Collins, A.L., Stroud, R.W., 2008. Tracing suspended sediment and particulate phosphorus
 1805 sources in catchments. J. Hydrol. 350, 274–289.
- 1806 Walling, D.E., Russell, M.A., Hodgkinson, R.A., Zhang, Y., 2002. Establishing sediment budgets for two
- 1807 small lowland agricultural catchments in the UK. Catena 47, 323–353.
- 1808 Walling, D.E., Schuller, P., Zhang, Y., Iroumé, A., 2009. Extending the timescale for using beryllium 7
- 1809 measurements to document soil redistribution by erosion. Wat. Resourc. Res. 45, Article W02418.
- 1810 Walsh, R.P.D., Bidin, K., Blake, W.H., Chappell, N.A., Clarke, M.A., Douglas, I., Ghazali, R., Sayer, A.M.,
- 1811 Suhaimi, J., Tych, W., Annammala, K.V., 2011. Long-term responses of rainforest erosional systems at
- 1812 different spatial scales to selective logging and climatic change. Phil. Trans. Royal Soc. London, Series B –
- 1813 Biol. Sci. 366, 3340-3353.
- 1814 Weltje, G.J., von Eynatten, H., 2004. Quantitative provenance analysis of sediments: review and outlook.
- 1815 Sediment. Geol. 171, 1–11.
- 1816 Wethered, A.S., Ralph, T.J., Smith, H.G., Fryirs, K.A., Heijnis, H., 2015. Quantifying fluvial (dis)connectivity
- 1817 in an agricultural catchment using a geomorphic approach and sediment source tracing. J Soils
- 1818 Sediments 15, 2052-2066.

1819	White, L.F., Bailey, I., Foster, G.L., Allen, G., Kelley, S.P., Andrews, J.T., Hogan, K., Dowdeswell, J.A., Storey,
1820	C.D., 2016. Tracking the provenance of Greenland-sourced, Holocene aged, individual sand-sized ice-
1821	rafted debris using the Pb-isotope compositions of feldspars and 40Ar/39Ar ages of hornblendes. Earth
1822	Planet. Sci. Lett. 433, 192–203.
1823	Wiesenberg, G.L.B., Schneckenberger, K., Schwark, L., Kuzyakov, Y., 2012. Use of molecular ratios to

identify changes in fatty acid composition of Miscanthus × giganteus (Greef et Deu.) plant tissue,
rhizosphere and root-free soil during a laboratory experiment. Org. Geochem. 46, 1–11.

Wilkinson, S.N., Wallbrink, P.J., Hancock, G.J., Blake, W.H., Shakesby, R.A., Doerr, S.H., 2009. Fallout
radionuclide tracers identify a switch in sediment sources and transport-limited sediment yield following

- 1828 wildfire in a eucalypt forest. Geomorphology 110: 140-151.
- Wilkinson, S.N., Hancock, G.J., Bartley, R., Hawdon, A.A., Keen, R.J., 2013. Using sediment tracing to
 assess processes and spatial patterns of erosion in grazed rangelands, Burdekin River basin, Australia.
 Agric. Ecosyst. Environ. 180, 90–102.

Wilkinson, S.N., Olley, J.M., Furuichi, T., Burton, J., Kinsey-Henderson, A.E., 2015. Sediment source
tracing with stratified sampling and weighting based on spatial gradients in soil erosion. J. Soil Sediments
15, 2038-2051.

- 1835 Withers, P.J.A., Jarvie, H.P., 2008. Delivery and cycling of phosphorus in rivers: a review. Sci. Total 1836 Environ. 400, 379-395.
- 1837 Woodward, J.C., Bailey, G.N., 2000. Sediment sources and terminal Pleistocene geomorphological 1838 processes recorded in rockshelter sequences in northwest Greece. In: Foster, I.D.L. (Ed.), Tracers in 1839 Geomorphology. John Wiley, Chichester, pp. 521–551.
- 1840 Woodward, J.C., Goldberg, P., 2001. The sedimentary records in Mediterranean rockshelters and caves:
- 1841 Archives of environmental change. Geoarchaeology 16, 327-354.

- 1842 Woodward, J.C., Lewin, J., Macklin, M.G., 1992. Alluvial sediment sources in a glaciated catchment: the
 1843 Voidomatis basin, northwest Greece. Earth Surf. Process. Landforms 16, 205-216.
- 1844 Woodward, J.C., Hamlin, R.H.B., Macklin, M.G., Karkanas, P., Kotjabopoulou, E., 2001. Quantitative 1845 sourcing of slackwater deposits at Boila rockshelter: A record of lateglacial flooding and Paleolithic 1846 settlement in the Pindus Mountains, Northwest Greece. Geoarchaeology 16, 501–536.
- 1847 Woodward, J.C., Hamlin, R.H.B., Macklin, M.G., Hughes, P.D., Lewin, J., 2008. Glacial activity and 1848 catchment dynamics in northwest Greece: long-term river behaviour and the slackwater sediment record 1849 for the last glacial to interglacial transition. Geomorphology 101, 44-67.
- 1850 Yang, J., Wu, F., Shao, J., Wilde, S., Xie, L., Liu, X., 2006. Constraints on the timing of uplift of the Yanshan
- 1851 Fold and Thrust Belt, North China. Earth Planet. Sci. Lett. 246, 336–352.
- Yeager, K.M., Santschi, P.H., Phillips, J.D., Herbert, B.E., 2005. Suspended sediment sources and tributary
 effects in the lower reaches of a coastal plain stream as indicated by radionuclides, Loco Bayou, Texas.
 Environ. Geol. 47, 382-395.
- 1855 Yeager, K.M., Santschi, P.H., Schindler, K.J., Andres, M.J., Weaver, E.A., 2006. The relative importance of
- terrestrial versus marine sediment sources to the Nueces-Corpus Christi Estuary, Texas: An isotopic
 approach. Estuaries Coasts 29, 443-454.
- Yin, C., Li L., 2008. An investigation on suspended sediment sources in urban stormwater runoff using ⁷Be
 and ²¹⁰Pb as tracers. Wat. Sci. Technol. 57, 1945-1950.
- Yu, L., Oldfield, F., 1989. A multivariate mixing model for identifying sediment source from magnetic
 measurements. Quatern. Res. 32, 168-181.
- 1862 Yu, L., Oldfield, F., 1993. Quantitative sediment source ascription using mineral magnetic measurements
- in a reservoir-catchment system near Nijar, SE Spain. Earth Surf. Process. Landforms 18, 441-454.

1864	Zhang, X., Gu, Q., Long, X., Li, Z., Liu, D, Ye, D., He, C., Liu, X., Väänänen, K., Chen, X., 2016. Anthropogenic
1865	activities drive the microbial community and its function in urban river sediment. J. Soils Sediments 16,
1866	716-725.

- 1867 Zhong, L., Li, J., Yan, W., Tu, X., Huang, W., Zhang, X., 2012. Platinum-group and other traffic-related
- 1868 heavy metal contamination in road sediment, Guangzhou, China. J. Soils Sediments 12, 942-951.
- 1869 Zhou, X.J, Li, A.C., Jiang, F.Q., Meng, Q.Y., 2010. A preliminary study on fingerprinting approach in marine
- 1870 sediment dynamics with the rare earth elements. Acta Oceanologica Sinica 29, 62-77.

1871

Table1

Examples of the relative contributions of agricultural land (cultivated and pasture/grassland) determined using sediment source fingerprinting approaches to the total sediment budget of river basins. Values in parentheses correspond to the percentage of land in the river basin.

Country (River Basin)	Basin area (km²)	Contribution from agricultural land	Other main sources	Sediment tracers	Study
USA (Pleasant Valley Creek, WI)	50	45-97% (34%)	Channel banks 3-47%	Geochemical elements	Lamba et al. (2015a)
USA (Laurel Hill Creek, PA)	324	50-95% (27%)	Steam banks 5-50%	Geochemical elements, $\delta^{13}C,\delta^{15}N$	Stewart et al. (2015)
England (River Culm)	276	88% (Pasture 28%, Cultivated 60%)	Channel banks 12%	Fallout radionuclides, mineral magnetics, carbon and nitrogen	Walling and Woodward (1995)
England (River Kennet)	214	4% (84%)	Farm track 55%	Geochemical elements	Collins et al. (2012a)
England (River Aire)	1932	20-45% (NA)	Road dust 19-22%	Geochemical elements, TP*	Carter et al. (2003)
Scotland (River Tweed)	4390	54% (87%)	Channel banks/subsoil 39%; woodland 7%	Geochemical elements, ¹³⁷ Cs, mineral magnetics, TP, TOC**	Owens et al. (2000)

Tunisia	2.63	80% (70%)	Gully/Banks 20%	¹³⁷ Cs, TOC	Ben Slimane et al. (2013)
(Kamech)					
Brazil	950	1-9% (8%)	Urban areas 81-89% (34%)	Geochemical elements	Franz et al. (2014)
(Lago Paranoá)					
Iran	26	24% (88%)	Channel banks 72%	Geochemical elements	Haddadchi et al. (2014a)
(Taleghani)					
Australia	6000	64% (74%)	Channel banks 30%	Geochemical elements, ¹³⁷ Cs, ²¹⁰ Pb	Hughes et al. (2009)
(Theresa Creek, QLD)					

* Total phosphorus; ** Total organic carbon

Table 2

Studies using sediment source fingerprinting to determine sediment sources following wildfire arranged according to river basin size (modified from Smith et al., 2013).

Reference	Location	Watershed area (km ²) ^a Proportion of the watershed burned (%) ^b	Proportion of	Method	Post-fire	Proportional hillslope source contributions (%) ^d	
Nelerence	Location		Method	period	First year	Subsequent years	
Smith et al. (2012)	Dry eucalypt forest, Victoria,	0.07	100	FRN (¹³⁷ Cs, ²¹⁰ Pb _{ex} ^{239,240} Pu)	Debris flow	22-69	n/a
	Australia	0.23			events	32-74	n/a
Smith et al. (2011)	Wet eucalypt mountain forest, Victoria, Australia	1.36	99	FRN (¹³⁷ Cs, ²¹⁰ Pb _{ex})	3.5 years	96-100	58-76
Stone et al. (2014)	Conifer forest, Alberta, Canada	B: 5-34 U: 161	8-94	Geochemical and organic C	7 years	n/a	n/a ^e
Owens et al. (2012)	Conifer forest, British Columbia, Canada	B: 158 UB: 215	62	FRN (¹³⁷ Cs, ²¹⁰ Pb _{ex})	7 years	B: 7 UB: 0	B: 10 UB: 0
Wilkinson et al. (2009)	Blue Mountains, New South	17	31	FRN (¹³⁷ Cs, ²¹⁰ Pb _{ex})	5 years	10	n/a
	Wales, Australia	183	99			86	55-68
		446	57			45	29-51
		629	69			71	21-63

^aBurned (B); Unburned (UB)

^bNot available (n/a)

^cFallout radionuclide (FRN) tracers measure sources of fine sediment (either <10 or <63 μm), whereas field survey and erosion measurement techniques capture the full range of particle size fractions

^dChannel sources constitute the remaining percentage contribution for each of the studies.

eThis study did not estimate hillslope vs channel bank sources but instead determined relative contributions from burnt and unburnt sections of the watersheds

Table 3. Summary of geologic settings and sediment properties used in sediment provenance studies

Geologic setting	Sediment properties	Reference
Continental slope, Southwestern Gulf of Mexico	Chemical index of alteration Index of chemical maturity Elemental ratios Standardized composite indices	Armstrong-Altrin et al. (2015)
Submarine fan sandstones, Norwegian Sea	Heavy mineral analysis (ratios) Mineral varietal analysis Zircon geochonology (U–Pb)	Morton et al. (2005)
Ice Shelf, Antarctica	Fe-oxide Magnetic susceptibility	Brachfeld et al. (2013)
Amazon River, Brazil	Index of chemical maturity Index of textural maturity Geochemistry	Vital and Stattegger (2000)
Great Barrier Reef lagoon, Australia	¹⁴³ Nd/ ¹⁴⁴ Nd ⁸⁷ Sr/ ⁸⁶ Sr	McCulloch et al. (2003)
Northern margin of the South China Sea	Elemental ratios Clay mineralogy	Boulay et al. (2003)
Ice-rafted debris, Greenland	Feldspar Pb-isotopes Hornblende geochronology (⁴⁰ Ar/ ³⁹ Ar)	White et al. (2016)
Brookian foreland basin, Alaska	Petrography Zircon geochronology (U-Pb and fission- track)	Moore et al. (2015)

Table 4. A selection of recent studies employing sediment fingerprinting methods to investigate the origin of fine-grained sediments used in the production of ceramics for various ancient cultures in a range of geological settings.

Study region	Archaeological period	Ceramics of interest	Fingerprint properties	Potential source materials sampled	Reference
Cyprus	Late Bronze Age c. 1600-1000 BC	Fine pottery ware sherds from three archaeological sites (<i>n</i> = 35)	Pb isotope ratios: ²⁰⁸ Pb/ ²⁰⁴ Pb ²⁰⁷ Pb/ ²⁰⁴ Pb, ²⁰⁶ Pb/ ²⁰⁴ Pb	Clay samples from various geological sources including marls, mudstones, weathered lavas, and Holocene alluvium and colluvium (<i>n</i> = 65)	Renson et al. (2013)
Northwest Alaska	Early Alaskan ceramic technology c. 2800-1500 BP	Vessels and some clay lamps (<i>n</i> = 360 ceramic samples)	Geochemical analysis using Instrumental Neutron Activation Analysis (INAA)	Regional survey of clay (<i>n</i> = 31) and temper (<i>n</i> = 28) sources including glacial, alluvial, and beach materials. The survey was informed by ethnographic data on clay and temper sources.	Anderson (2016)
Oaxaca Valley in southern Mexico	Late Middle to Terminal Formative times (c. 700 to 200 BC) of the Zapotec civilization	Shards from vessels (<i>n</i> = 500) and daub (<i>n</i> = 4) representing four dominant wares from Formative production sites.	Trace elements and mineralogy determined by INAA and optical petrography of ceramic thin sections.	Sampling of field clays (<i>n</i> = 320) throughout the central valley from geological materials of various ages.	Minc et al. (2016)
Central Italy and	Late Republican	Amphorae recovered from	Thin section observations	Data on the composition of	

the Tyrrhenian Sea	(Roman) era between the 2 nd and first half of the 1 st century BC.	a shipwreck between the islands of Ponza and Palmarola (<i>n</i> = 13)	followed by SEM-EDS and trace element analysis (using LA-ICP- MS) of clinopyroxene crystals within volcanic inclusions in amphorae	clinopyroxenes from sources rocks in the main volcanic provinces of western and southern Italy compiled from the literature.	Belfiore et al. (2014)
Gambaga Escarpment of Northern Ghana	Late Stone Age c. 3500 to 3000 BP	Sherds (n = 15) from various types of Kintampo pottery	Mineralogy and bulk chemical composition (major and minor elements) determined SEM-EDS and ICP-MS.	Fine sediment samples collected from active clay pits and the White Volta and Morago rivers (<i>n</i> = 15)	Owen et al. (2013)

Table 5.

Summary of applications, fingerprint properties and analytical techniques used in soil forensics.

Scenario investigated	Fingerprint properties – analytical techniques	Transfer mechanism	Reference	
Simulated crime scene	Particle morphology – scanning electron microscope	NA	Morgan et al. (2010)	
Simulated crime scene	Particle morphology – scanning electron microscopy	NA	Bailey et al. (2012)	
Wildlife crime Murder	 Trace element mapping – particle-induced x-ray and γ- ray emission 	Shovel Vehicle	Bailey et al. (2012)	
Wildlife crime Hit and rui Murder	Particle size – laser granulometer Particle size – scanning electron microscope	Shovel Vehicle Victim body	Morgan and Bull (2007b)	
Murder	Mineralogy – binocular microscopy Particle size – laser granulometer Geochemistry – atomic absorption spectrophotometry Carbon/nitrogen ratio – method not specified Pollen grain identification – binocular microscopy	Footwear	Bull et al. (2006)	
Murder	Geochemistry – inductively coupled plasma mass and optical emission spectrometry Bacterial community – amplified ribosomal DNA restriction analysis	Vehicle	Concheri et al. (2011)	
War crimes	Mineralogy – x-ray diffraction Pollen grain identification – binocular microscopy	Reburial human remains	of Brown (2006)	
Theft/security breach	Isotopic analysis – isotope ratio mass spectrometry	Shipping container Roelofse and H (2008)		
Bank robbery/kidnapping	Soil colour, particle shape, mineralogy – visual comparisons	Footwear/clothing	Ruffell and Sandiford (2011)	
Experimental	Geochemistry – scanning electron microscope and energy dispersive X-ray spectrometer	NA	Cengiz et al. (2004)	

Experimental	Soil organic matter – Fourier transform infrared spectroscopy Soil colour – Munsell color chart	NA	Cox et al. (2000)
Experimental	Soil colour – spectrophotometer	NA	Guedes et al. (2009)
Experimental	Soil DNA – random whole metagenomic sequencing	NA	Khodakova et al. (2014)
Experimental	Diatoms – binocular and scanning electron microscope	Clothing	Scott et al. (2014)

Forensic soil database Geochemistry/mineralogy – synchrotron radiation X-ray analysis NA

Nakai et al. (2014)