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Abstract. Large uncertainties in land surface models (LSMs)
simulations still arise from inaccurate forcing, poor descrip-
tion of land surface heterogeneity (soil and vegetation prop-
erties), incorrect model parameter values and incomplete rep-
resentation of biogeochemical processes. The recent increase
in the number and type of carbon cycle-related observations,
including both in situ and remote sensing measurements,
has opened a new road to optimize model parameters via
robust statistical model–data integration techniques, in or-
der to reduce the uncertainties of simulated carbon fluxes
and stocks. In this study we present a carbon cycle data as-
similation system that assimilates three major data streams,
namely the Moderate Resolution Imaging Spectroradiometer
(MODIS)-Normalized Difference Vegetation Index (NDVI)
observations of vegetation activity, net ecosystem exchange
(NEE) and latent heat (LE) flux measurements at more than
70 sites (FLUXNET), as well as atmospheric CO2 concen-
trations at 53 surface stations, in order to optimize the main
parameters (around 180 parameters in total) of the Organiz-
ing Carbon and Hydrology in Dynamics Ecosystems (OR-
CHIDEE) LSM (version 1.9.5 used for the Coupled Model
Intercomparison Project Phase 5 (CMIP5) simulations). The
system relies on a stepwise approach that assimilates each
data stream in turn, propagating the information gained on
the parameters from one step to the next.

Overall, the ORCHIDEE model is able to achieve a con-
sistent fit to all three data streams, which suggests that cur-
rent LSMs have reached the level of development to assim-

ilate these observations. The assimilation of MODIS-NDVI
(step 1) reduced the growing season length in ORCHIDEE
for temperate and boreal ecosystems, thus decreasing the
global mean annual gross primary production (GPP). Us-
ing FLUXNET data (step 2) led to large improvements in
the seasonal cycle of the NEE and LE fluxes for all ecosys-
tems (i.e., increased amplitude for temperate ecosystems).
The assimilation of atmospheric CO2, using the general cir-
culation model (GCM) of the Laboratoire de Météorologie
Dynamique (LMDz; step 3), provides an overall constraint
(i.e., constraint on large-scale net CO2 fluxes), resulting in
an improvement of the fit to the observed atmospheric CO2
growth rate. Thus, the optimized model predicts a land C
(carbon) sink of around 2.2 PgC yr−1 (for the 2000–2009
period), which is more compatible with current estimates
from the Global Carbon Project (GCP) than the prior value.
The consistency of the stepwise approach is evaluated with
back-compatibility checks. The final optimized model (af-
ter step 3) does not significantly degrade the fit to MODIS-
NDVI and FLUXNET data that were assimilated in the first
two steps, suggesting that a stepwise approach can be used
instead of the more “challenging” implementation of a si-
multaneous optimization in which all data streams are assim-
ilated together. Most parameters, including the scalar of the
initial soil carbon pool size, changed during the optimization
with a large error reduction. This work opens new perspec-
tives for better predictions of the land carbon budgets.
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1 Introduction

Atmospheric CO2 concentrations have increased at an un-
precedented rate over the last few decades, predominantly
due to anthropogenic fossil fuel and cement emissions, as
well as land use and land cover change (LULCC). The oceans
and the terrestrial biosphere have absorbed CO2, removing
on average 50 % of anthropogenic emissions from the at-
mosphere. However, knowledge about the exact location of
sources and sinks of carbon (C) and the driving mechanisms
is still lacking. Land surface models (LSMs) can be used
to improve our understanding of the spatiotemporal patterns
of sources and sinks, as well as for attributing changes due
to CO2, climate variability and other environmental drivers.
However, the spread in the model predictions of terrestrial net
C (carbon) exchange currently has the same order of magni-
tude as the uncertainty of the terrestrial C budget estimated as
the residual of the other carbon cycle components (Le Quéré
et al., 2015). In addition to uncertainties in the mean global
annual terrestrial C budget and its trend over time (Sitch et
al., 2015), there remain strong discrepancies between LSMs
in their predictions of regional budgets (Canadell et al., 2013)
at seasonal and interannual timescales and in their sensitivity
to climate and atmospheric CO2 forcing (Piao et al., 2013).

Uncertainties in model simulations arise from inaccurate
forcing, incorrect model parameter values and/or an inade-
quate or incomplete representation of biogeochemical pro-
cesses in the model (for example the impact of nutrient
limitation on C fluxes, or C release related to permafrost
thawing). Arguably the best way to improve model predic-
tions is to confront simulations with multiple sources of data
within an appropriate and rigorous framework (Prentice et
al., 2015). In the last 2 decades significant efforts by the site
and satellite observation communities have resulted in a large
increase in the number and type of C cycle-related observa-
tions. These data contain some information at various spatial
and temporal scales and should be combined together to ro-
bustly address different aspects of the models. One way in
which these data can be used to better quantify and reduce
model uncertainty is by optimizing or calibrating the model
parameters via robust statistical model–data fusion (or data
assimilation – DA) techniques. In particular a Bayesian in-
ference framework allows us to update our prior knowledge
of the parameters based on new information contained in the
observations.

There is a long history of using DA techniques for pa-
rameter optimization, particularly in geophysics (Tarantola,
1987), but the initial studies in the field of global terres-
trial C cycle data assimilation started with the initial study
of Fung et al. (1987) and a pioneering work by Knorr and
Heimann (1995), who used atmospheric CO2 concentra-
tion to constrain the Simple Diagnostic Biosphere Model
(SDBM). Later, Kaminski et al. (2002) constrain the sea-
sonal cycle of SDBM with the same data stream. This effort
was continued by the original Carbon Cycle Data Assimi-

lation System (CCDAS) described in Rayner et al. (2005)
and Kaminski et al. (2012), which used both atmospheric
CO2 and satellite-derived Fraction of Absorbed Photosyn-
thetic Radiation (FAPAR) data to optimize vegetation pro-
ductivity by adjusting the C cycle-related parameters of the
Biosphere Energy-Transfer Hydrology (BETHY) model (see
a review in Kaminski et al., 2013). Note that although Rayner
et al. (2005) did use, in addition to atmospheric CO2 data,
soil moisture and radiation fields from an earlier assimilation
from a simpler model version, no parameters were passed
between the two assimilations and very little comment was
made on the consistency between the two assimilations, an
important issue that will be central to this paper. Meanwhile
substantial efforts have been put into the use of local eddy
covariance flux tower measurements of net exchange of CO2
and latent and sensible heat fluxes to optimize photosyn-
thesis, respiration and energy-related parameters of terres-
trial ecosystem models, both at individual sites (e.g., Wang
et al., 2001, 2007; Williams et al., 2005; Braswell et al.,
2005; Knorr and Kattge, 2005; Moore et al., 2008; Ricciuto
et al., 2008) and more recently using multiple sites together
(hereafter multiple sites) from the global FLUXNET network
(e.g., Groenendijk et al., 2011; Kuppel et al., 2012, 2014; Al-
ton, 2013; Xiao et al., 2014). Increasingly the focus in carbon
cycle data assimilation is moving towards using multiple dif-
ferent data streams as independent constraints, with the aim
of bringing more information at different spatial and tempo-
ral scales and constraining several processes at once in order
to reduce the likelihood of model equifinality (where multi-
ple sets of parameters achieve the same reduction in model–
data misfit). Recent examples include the combination of in
situ eddy covariance flux observations and ground-based in-
formation on vegetation structure and C stocks (Richardson
et al., 2010; Ricciuto et al., 2011; Keenan et al., 2012, 2013;
Thum et al., 2016), or in situ flux data and satellite FAPAR
(Kato et al., 2013; Zobitz et al., 2014; Bacour et al., 2015) or
atmospheric CO2 and biomass data using a simple biosphere
model (Saito et al., 2014). This is a non-trivial task however,
especially when optimizing a complex LSM (see MacBean
et al., 2016), which has many parameters acting from local
to global scales.

When assimilating multiple different data streams we have
two options: (i) to optimize the model with each data stream
in turn, and to propagate the information gained on the pa-
rameter values from one step to the next (hereafter referred to
as “stepwise” assimilation), or (ii) to include all data streams
together in the same optimization (hereafter referred to as
“simultaneous” assimilation). Kaminski et al. (2012) sug-
gested that it is essential to perform a consistent, simulta-
neous assimilation that includes all data streams in the same
optimization. It is important to note that this is an implemen-
tation question. Tarantola (2005) recast the fundamentals of
the approach as the conjunction or multiplication of proba-
bility densities. This multiplication is associative so it makes
no difference whether it is performed in one step or several
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(and whether the system is linear or not). In complex prob-
lems such as these, one cannot carry or even describe the full
structure of the relevant probability densities, so which ap-
proach will work best in each case is unclear. In particular,
technical difficulties associated with the different number of
observations for each data stream and the characterization
of error correlations between them, in addition to compu-
tational constraints to run global LSMs, might result in the
preference for a stepwise assimilation framework. Addition-
ally, it may be more straightforward, to expose a restricted
set of parameters (following a global sensitivity analysis) to
each observation type in a stepwise approach to ensure that
each data stream constrains only the most relevant parts of
the model. This reduces biases from other poorly represented
processes caused by inadequate model structure. Note finally
that more complex approaches based on random generation
of parameter sets, such as the multi-objective approach us-
ing the Pareto ranking of several cost functions (e.g., Yapo
et al., 1998), are not yet affordable for global LSMs from a
computational point of view. For these reasons we follow the
stepwise approach in this paper.

We present the first global-scale CCDAS that assimilates
three of the main global data streams that have been used to
date to understand the terrestrial carbon cycle – atmospheric
CO2 concentration, satellite-derived information of vegeta-
tion greenness (from the Moderate Resolution Imaging Spec-
troradiometer, MODIS, instrument) and multi-site eddy co-
variance net CO2 and latent heat flux measurements (from
FLUXNET) – to optimize the parameters of the Organiz-
ing Carbon and Hydrology in Dynamics Ecosystems (OR-
CHIDEE) process-based LSM (Krinner et al., 2005). This
study is the first (to our knowledge) to assimilate these three
major data streams in a process-based LSM used as the land
component of an Earth system model (ESM), the French In-
stitut Pierre Simon Laplace ESM. Two contemporary stud-
ies also optimize the parameters of the land component of
an ESM; however, Raoult et al. (2016) only used FluxNet
observations to optimize the parameters of the Joint UK
Land Environment Simulator (JULES) model, while Schür-
mann et al. (2016) only assimilate two data streams (FA-
PAR and CO2) in the JSBACH (Jena Scheme for Biosphere-
Atmosphere Coupling in Hamburg) model at coarse resolu-
tion (10◦× 10◦). Note finally that the level of complexity of
the ecosystem model (and the spatial resolution) is part of the
problem: achieving an optimization with a given model does
not guarantee that the framework would work with a more
complex or different one.

In this context, the main questions that we aim to answer
in this paper are as follows:

i. How and to which extend the optimization of the OR-
CHIDEE model allows one to fit the three data streams
that are considered?

ii. Does the stepwise optimization result in a degradation
of the fit to other data streams used in the previous
steps?

iii. What are the main changes in the optimized parameters
when using sequentially these three data streams in a
global CCDAS and which processes are constrained?

iv. What are the improvements for the land C cycle in
terms of net/gross fluxes and stocks as a result of multi-
data stream optimization? What preliminary perspec-
tives can we draw that may help us in improving model
predictions of trends, variability and the location of ter-
restrial C sources and sinks?

Following these objectives, the paper first describes the new
ORCHIDEE-CCDAS including the concept, the observa-
tions, the models and the optimization approach. We then
present the results, including the fit to the data, consistency
checks (question i, above) as well as the mean global and re-
gional C cycle budget for the period 2000–2009. The last sec-
tion discusses issues and perspectives associated with these
results.

2 Methods

2.1 ORCHIDEE-CCDAS concept

We have designed a CCDAS around the ORCHIDEE land
surface model (ORCHIDEE-CCDAS, later also referred to as
ORCHIDAS for simplicity) that combines a state-of-the-art
description of the driving biogeochemical processes within
the model with multiple observational constraints in a robust
statistical framework, in order to improve the simulation of
land carbon fluxes and stocks. The system allows us to re-
trieve the best estimate, given the observations and prior in-
formation, of selected parameters (see Sect. 2.3.3) as well as
to evaluate their uncertainty. It relies on a stepwise assim-
ilation of a comprehensive set of three C cycle-related ob-
servations that are representative of small (100 m) to large
(continental) scales (see Sect. 2.2):

– step 1: satellite measurements of vegetation activ-
ity using the Normalized Difference Vegetation Index
(NDVI) from the MODIS instrument over the 2000-
2008 period for a randomly selected set of sites for bo-
real and temperate deciduous vegetation types;

– step 2: in situ eddy covariance net CO2 and water (latent
heat) flux measurements from the FLUXNET database
for a large set of sites, spanning seven different vegeta-
tion types;

– step 3: in situ monthly atmospheric surface CO2 con-
centration measurements from the GLOBALVIEW-
CO2 database over 3 years (2002–2004).

www.geosci-model-dev.net/9/3321/2016/ Geosci. Model Dev., 9, 3321–3346, 2016
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Figure 1. Schematic of the ORCHIDEE Carbon Cycle Data Assimilation System (ORCHIDAS).

The system relies on two models:

– the ORCHIDEE global LSM, whose main C cycle pa-
rameters are optimized (see Sect. 2.3);

– the GCM of the Laboratoire de Météorologie Dy-
namique, LMDz (see Sect. 2.3), to relate the surface
carbon fluxes to atmospheric CO2 concentrations.

The framework combines the different observational data
streams within ORCHIDAS in order to optimize selected
model parameters using a variational data assimilation sys-
tem, described in Sect. 2.4. Figure 1 illustrates the struc-
ture of the CCDAS and the different components that are
involved. Such a framework distinguishes (i) the assimi-
lated observations, (ii) an ensemble of forcing and input data
streams, (iii) the models and optimization framework, as well
as (iv) an evaluation step, where independent data sets are
compared to the optimized model stocks and fluxes. As ex-
plained in the introduction, a major feature of the current sys-
tem is the stepwise approach, in which all data streams are
assimilated sequentially (i.e., one after the other). The infor-
mation retrieved at a given step (retrieved optimal parameter
values and associated uncertainty) is propagated to the next
step (see Fig. 2 and Sect. 2.4). Note that for simplicity we did
not propagate the error correlations in this first implementa-
tion of the system, a simplification that appeared sufficient
(see the consistency analysis in Sect. 3.2); Sect. 4 also dis-
cusses the potential impact of this simplification.

At each step, the parameter optimization relies on a
Bayesian framework that explicitly minimizes the difference
between the simulated and observed quantities in addition to
minimizing the difference between the optimized model pa-
rameters and “a priori” values (see Sect. 2.4.2). The depen-
dence of the simulated quantities on the optimized variables

ORCH ORCH
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CO2
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Figure 2. Illustration of the stepwise data assimilation ap-
proach used for the assimilation of multiple data streams in the
ORCHIDEE-CCDAS. The list of parameters for each step is sum-
marized in Table 1.

is nonlinear, which thus necessitates the use of an iterative
algorithm. Note that all components of the surface C bud-
get need also to be included in the ORCHIDAS, particularly
when using atmospheric CO2 measurements, which requires
the atmospheric transport model to be prescribed with fos-
sil fuel emissions, CO2 fluxes associated with biomass burn-
ing and ocean CO2 fluxes (see Sect. 2.5) in addition to net
ecosystem exchange (NEE) from ORCHIDEE.

2.2 Assimilated observations

2.2.1 MODIS-NDVI

MODIS collection 5 obtained from surface reflectance data
(from 2000 to 2008) in the red (R) and near-infrared (NIR)
bands at 5 km resolution (CMG) are used to optimize the
phenology-related parameters of ORCHIDEE in the first
step. The R and NIR data were processed to correct for direc-
tional effects following Vermote et al. (2009) and then used
to calculate the NDVI, which is assumed to be linearly re-
lated to the model FAPAR. The NDVI are then (i) aggregated
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to the 0.72◦ spatial resolution of the ERA-Interim meteoro-
logical fields that are used to force ORCHIDEE, (ii) inter-
polated to a daily time series (for practical implementation)
and (iii) checked for quality (see MacBean et al., 2015 for
details). If there is a gap in the observations of more than
15 days, no interpolation is done (i.e., no data during the gap
are assimilated). Figure 3 displays the location of the sites
that were selected (see Sect. 2.4.1).

2.2.2 Eddy covariance flux data

Eddy covariance flux measurements of net surface CO2 flux
– hereafter referred to as NEE and latent heat (LE) flux –
from 78 observation sites of a network of regional networks
(FLUXNET; see Fig. 3) are used to constrain ecosystem
physiology and fast C-related processes at daily to seasonal
timescales in ORCHIDEE in the second step. We use quality-
checked and gap-filled data from a global synthesis called
the La Thuile data set (Papale, 2006). In order to avoid deal-
ing with the large error correlations in the half-hourly data
(see Lasslop et al., 2008), daily mean values of NEE and LE
are used in the ORCHIDAS. Days with less than 80 % of the
half-hourly data are left out of the assimilation. The selection
of the sites and the data processing (gap-filling, correction for
energy balance closure) are detailed in Kuppel et al. (2014).
Note that uncertainties due to incomplete sampling of the di-
urnal cycle are likely very small (less than 5 %) as the error in
the gap-filling procedure is usually less than 20 % (Lasslop
et al., 2008).

2.2.3 Atmospheric CO2 concentrations

Atmospheric CO2 concentration measurements were taken
from an ensemble of selected surface stations around the
world (Fig. 3). The spatial concentration gradients relate
to the integral of the fluxes over large areas and thus al-
low the optimization of large-scale global patterns of car-
bon fluxes. These data were taken from the NOAA Earth
System Laboratory (ESRL) GLOBALVIEW-CO2 collabo-
rative product (GLOBALVIEW-CO2, 2013) and averaged
to monthly means. We assimilated the monthly values for
53 sites for the 2002–2004 period inclusive in the last step
of the assimilation system. Such a restricted period (3 years
only) was chosen for practical reasons (computing resources)
while constructing the ORCHIDAS system. The station lo-
cations, indicated in Fig. 3, favor the background conditions;
i.e., the surrounding air masses are only weakly influenced by
local continental sources, such as power plants. The choice
of monthly mean is related to the use of pre-calculated trans-
port fields with LMDz (see Sect. 2.3.2). We also used addi-
tional sites to evaluate the result of the optimization (loca-
tions indicated in Fig. 3): this included 17 continental sites
that are more directly influenced by local fluxes potentially
not well captured at the considered LMDz spatial resolu-
tion and 7 sites from Pacific Ocean cruises that were not in-

Figure 3. Location of the different observations used for each data
stream assimilated in the system: MODIS-NDVI measurements,
FLUXNET sites with NEE and LE measurements and atmospheric
CO2 stations (both the sites that are assimilated and the sites used
for the validation).

cluded in the optimization in order not to overweight that the
data contribution from that particular region. Note that we
did not considered free troposphere aircraft data or column
integrated measurements (TCCON sites) in this evaluation,
although they are less sensitive to biases in the planetary
boundary layer representation, given that (i) we are using
pre-calculated transport fields previously computed at sur-
face stations only and (ii) a few scarce free tropospheric data
sets will not bring much more information to the additional
surface stations.

2.3 Models and optimized parameters

2.3.1 ORCHIDEE land surface model

In this study we use the ORCHIDEE process-oriented land
surface model (Krinner et al., 2005), which computes wa-
ter, carbon and energy balances at the land surface on a half-
hourly time step, using a mechanistic description of the phys-
ical and biogeochemical processes (see, http://labex.ipsl.fr/
orchidee/). The model describes the exchange of carbon and
water at the leaf level, the allocation of carbon within plant
compartments (leaves, roots, heartwood and sapwood), the
autotrophic respiration, the production of litter, the plant
mortality and the degradation of soil organic matter (CEN-
TURY model; Parton et al., 1988). The hydrological pro-
cesses for the soil reservoir rely on a double bucket scheme
(Ducoudré et al., 1993). The link between the water and car-
bon modules is via photosynthesis, which is based on the
leaf-scale equations of Farquhar et al. (1980) for C3 plants,
and Collatz et al. (1992) for C4 plants, that are then integrated
over the canopy by assuming an exponential attenuation of
light. The FAPAR by each layer of the canopy is calculated
from the leaf area index (LAI) following a Beer–Lambert ex-
tinction law (Bacour et al., 2015).

ORCHIDEE uses the concept of the plant functional type
(PFT) to describe the vegetation distribution, with 13 PFTs
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(including bare soil) that can co-exist in each grid cell. Ex-
cept for the phenology (see a recent description in MacBean
et al., 2015), the equations governing the different processes
are generic, but with specific parameter values for each PFT.
Detailed descriptions of model equations can be found in nu-
merous publications (see for instance Krinner et al., 2005).
ORCHIDEE can be run at either global scale on a grid, or
at site level using point-scale surface meteorological forc-
ing variables. It is the land surface component of the Insti-
tut Pierre Simon Laplace (IPSL) Earth system model, and
the version that we used corresponds to Coupled Model In-
tercomparison Project Phase 5 (CMIP5) simulations in the
IPCC 5th Assessment Report (Dufresne et al., 2013). How-
ever, in this study the model is run offline using the ERA-
Interim 3-hourly near-surface meteorological forcing fields
(Dee et al., 2011) aggregated at the spatial resolution of
the atmospheric transport model for the global simulations
(2.5◦× 3.75◦; see Sect. 2.3.2). However, when we assimi-
late in situ flux data in the second step, we force the model
with the gap-filled half-hourly meteorological data measured
at each site. The global PFT map was derived from the high-
resolution IGBP AVHRR land data set (Vérant et al., 2004).
The carbon pools are brought to equilibrium (spin-up proce-
dure) for both site and global-scale simulations by cycling
the available meteorological forcing over several millennia,
to ensure that the long-term net carbon flux is close to zero.
For the global simulation in the third step, we spun-up the
model recycling the 1989–1998 meteorology and then used
a transient simulation from 1990 to 2001 with changing cli-
mate (ERA-Interim) and increasing CO2, before starting the
optimization with atmospheric data over 2002–2004. For the
site simulations (i.e., the assimilation of flux data), we re-
cycled the available in situ meteorological forcing to spin-
up the model, with present-day CO2. Note that the use of
soil carbon data, such as from the Harmonized World Soil
Database (as well as aboveground biomass data), to initial-
ize the model is not straightforward and represents a chal-
lenge to keep the internal model consistency, given that the
three soil carbon reservoirs of the CENTURY model are in
balance with all components of the model, in particular the
input through the different litter pools. Computational and
scientific issues to avoid a spin-up approach are still under
investigation with ORCHIDEE (see discussion section).

2.3.2 LMDz model

The transport model used in this study is version 3 of the
GCM, LMDz (Hourdin and Armengaud, 1999) with a hor-
izontal resolution of 3.75◦ (longitude)× 2.5◦ (latitude) and
19 sigma-pressure layers up to 3 hPa. The calculated winds
(u and v) are relaxed to the European Centre for Medium-
Range Weather Forecasts (ECMWF) reanalysis, ERA-40,
meteorological data (Uppala et al., 2005) with a relaxation
time of 2.5 h (guiding) in order to realistically account for
large-scale advection (Hourdin et al., 2006). Deep convection

is parameterized according to the scheme of Tiedtke (1989)
and the turbulent mixing in the planetary boundary layer is
based on a local second-order closure formalism. The LMDz
GCM model has been widely used to model climate (IPCC,
2007) and its derived transport model has been used for the
simulation of chemistry of gas and particles and greenhouse
gases distributions (Hauglustaine et al., 2004; Folberth et al.,
2005; Bousquet et al., 2005; Rivier et al., 2006). For this
study, we used pre-calculated transport fields, as described
in Peylin et al. (2005), that correspond to the sensitivity of
concentration at each atmospheric site and each month to
the surface flux of each model grid cell for each day (often
called influence functions). The sensitivities (using interan-
nual winds) were calculated with the “retro-transport” for-
mulation implemented in the LMDz transport model (Hour-
din et al., 2006). This approach decreases the computing time
of the optimization compared to the use of the full forward
LMDz model at each iteration, as the transport is replaced
by a matrix multiplication with the vector of surface fluxes.
Note that the initial 3-D state of the atmospheric concentra-
tions was defined from Chevallier et al. (2010).

2.3.3 Parameters optimized

The optimized parameters are described in Table 1, and their
prior values, uncertainty and range are given in Table 2. In the
most recent studies using ORCHIDAS at site scales, a large
set of ORCHIDEE parameters has been optimized (Kuppel
et al., 2014; Santaren et al., 2014; Bacour et al., 2015). In
this study a smaller set was chosen, based on a Morris sen-
sitivity analysis (Morris, 1991; results not shown) that deter-
mines the sensitivity of the NEE and LE to all model param-
eters at various FLUXNET sites (for each PFT), in order to
reduce the computational cost of the global optimization in
step 3 (see Sect. 2.5). We considered nine PFT-dependent and
four “global” (i.e., non-PFT-dependent) parameters that con-
trol mostly the fast carbon processes (diurnal to seasonal). In
addition, we introduced a new parameter, KsoilC, to scale the
initial values (after spin-up) of the modeled slow and passive
soil carbon pools, in order to take account of all the historical
effects not accounted for in the model that would result in a
disequilibrium of these pools in reality. For the site-specific
optimizations with FLUXNET data, we have one KsoilC,site
parameter per site. For the global-scale optimization step,
we used 30KsoilC,reg parameters corresponding to 30 regions
potentially coherent for land use and land management his-
tory as well as ecosystem and edaphic properties (see Fig. A2
in the Appendix). The initial soil carbon pools of all pixels
within each region were thus scaled by the same value. The
prior value for all KsoilC parameters was set to one; i.e., the
default state of soil carbon pools is assumed to be in equilib-
rium.

Overall (including all PFT-dependent parameters), we op-
timize 16 parameters related to phenology, 36 to photosyn-
thesis, 3 to respiration, 1 to the energy budget, 78 soil C
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Table 1. Parameters description, generality (PFT dependent, global, specific to FLUXNET sites or for a set of regions) and data stream(s)
that were used to constrain them.

Parameter Description Dependent Constraint

Vcmax Maximum carboxylation rate (µmol m−2 s−1) PFT Flux, CO2
Gs,slope Ball–Berry slope PFT Flux, CO2
cT ,opt Optimal photosynthesis temperature (◦C) PFT Flux, CO2
SLA Specific leaf area (m2 g−1) PFT Flux, CO2
KLAI,happy LAI threshold to stop using carbohydrate reserves PFT Sat, Flux, CO2
Kpheno,crit Multiplicative parameter of the threshold that determines the PFT Sat, Flux, CO2

start of the growing season
Lage,crit Average critical age of leaves (days) PFT Sat, Flux, CO2
CT ,senes Temperature threshold for senescence (◦C) PFT Sat, Flux, CO2
Fstress,h Parameter reducing the hydric limitation of photosynthesis PFT Flux, CO2
MRoffset Offset of the temperature dependence of maintenance respiration Global Flux, CO2
Q10 Temperature dependency of heterotrophic respiration Global Flux, CO2
HRHc Offset of the soil/litter moisture control function Global Flux, CO2
KsoilC,site Multiplicative factor of the initial soil carbon pools

per Site Flux
KsoilC,reg 30 regions CO2
Kalbedo Multiplicative factor of the vegetation albedo Global Flux, CO2

pool scalars (one for each FLUXNET site) and 30 regional
soil C pool scalars for the global simulations – a total of
184 parameters (16, 134 and 86 in step 1, 2 and 3, respec-
tively). Note that the soil C pool multipliers at the FLUXNET
sites are independent from the regional C pool multipliers,
as the history of soil carbon over large eco-regions of sev-
eral millions square kilometers is rather heterogeneous (as
it is mainly related to previous land use changes) and, most
likely, the FLUXNET sites are not representative of larger
regions in terms of the soil carbon disequilibrium. The prior
standard deviation for each parameter is equal to 40 % of the
parameter range (lower and higher boundaries) prescribed
for each parameter following Kuppel et al. (2012). The pa-
rameter ranges were specified following expert judgment of
their meaning in the ORCHIDEE equations and based on lit-
erature reviews or databases (such as the global database of
plant traits, TRY; Kattge et al., 2011).

2.4 System description: a stepwise approach

2.4.1 Stepwise assimilation of three data streams

The ORCHIDAS system relies on a stepwise assimilation of
the three data streams described in Sect. 2.2. Figure 2 illus-
trates the flow of information in this sequential approach:

Step 1 – assimilation of MODIS-NDVI: four parame-
ters related to the seasonal cycle of the vegetation (phenol-
ogy) are optimized for the temperate and boreal deciduous
PFTs (TeBD: temperate broadleaf deciduous, BoND: boreal
needleleaf deciduous, BoBD: boreal broadleaf deciduous and
NC3; see caption of Table 2). These four deciduous PFTs
alone are considered in step 1 in this ORCHIDAS version
because the tropical deciduous phenology modules in OR-
CHIDEE require further modifications to improve the func-

tions that control leaf growth and fall in response to water
availability (MacBean et al., 2015). Evergreen PFTs were
also not considered, as there are no phenology modules re-
lated to these PFTs in the model. The procedure is similar to
that described in detail in MacBean et al. (2015) and there-
fore only briefly recalled here. A simple linear relationship
between the modeled FAPAR and MODIS-NDVI observa-
tions is assumed, based on studies such as Knyazikhin et
al. (1998). Given that considerable discrepancies exist be-
tween so-called “high-level” satellite products such as LAI
or FAPAR when considering their magnitude (D’Odorico et
al., 2014), we thus only use the temporal information in the
NDVI observations and normalized both the model FAPAR
output and the NDVI observations to their 5th and 95th per-
centiles (following Bacour et al., 2015, and MacBean et al.,
2015). Note that assimilating raw FAPAR data with the OR-
CHIDEE model led to the degradation of the NEE with the
estimation of spurious parameter values (Bacour et al., 2015).
The model was run for 15 randomly selected grid cells for
each of the four PFTs using the ERA-Interim meteorologi-
cal forcing. Only grid cells that included vegetation fraction
of greater than 60 % for the PFT optimized were considered.
We selected a set of grid points instead of the whole grid to
substantially decrease the computing time; but the remaining
points are used for the evaluation of the optimized model.
The 15 sites for each PFT were included in one optimization
for each PFT following a multi-site approach, in which all
observations are used simultaneously to optimize the model
parameters. The optimized parameters are described in Ta-
ble 1. They correspond to a scalar on the growing degree days
(GDD) threshold for the start of the vegetation (Kpheno,crit), a
parameter controlling the use of carbohydrate reserve during
the start of leaf growth (KLAI,happy), a temperature threshold
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for the onset of leaf senescence (CTsenes) and the critical age
for leaves (Lagecrit).

Step 2 – assimilation of FLUXNET data: mean daily
NEE and LE flux measurements for 78 sites, including up to
10 years worth of data for each site, are used to optimize a
set of model parameters controlling the fast carbon and wa-
ter processes (photosynthesis, respiration, phenology; see Ta-
ble 1). The site selection and the choice of a daily time step
are described in more details in Kuppel et al. (2014). These
sites cover seven of the PFTs in ORCHIDEE (see Table 2).
The posterior parameter values of the four phenology param-
eters derived in step 1, and their associated uncertainties, are
input as prior information in step 2. For the additional param-
eters, the default ORCHIDEE values are used for the prior
and the uncertainties are set as described in Sect. 2.3.3. A
multi-site optimization is performed for each PFT indepen-
dently as in step 1. Global parameters, i.e., those that are not
PFT-dependent, were optimized for each PFT and the mean
across all PFTs was then calculated to define the prior pa-
rameter vector in step 3 of the assimilation with atmospheric
CO2 data (at global scale). Such an approach was chosen to
allow us to optimize all PFTs in parallel and therefore to sim-
plify the assimilation process.

Step 3 – assimilation of atmospheric CO2 concen-
trations: we use monthly mean CO2 concentrations from
53 surface stations over 3 years (2002–2004) to provide a
large-scale constraint to the land surface fluxes (i.e., to match
the global CO2 growth rate, mean seasonal cycle and its lat-
itudinal variation, as well as the spatial gradients between
stations). We use the LMDz atmospheric transport model
(see Sect. 2.3.2) to assimilate these observations. The set of
parameters optimized in step 2 are included in step 3, ex-
cept for the albedo scaling parameter (Kalbedo,veg), as the net
carbon fluxes are only weakly sensitive to that parameter.
We used the posterior parameter distributions from step 2
(parameter optimal values and associated uncertainties) as
prior information for step 3, and expanded the parameter vec-
tor to include the 30 KsoilC parameters that scale the initial
soil carbon pools for large “spatially coherent regions” (see
Sect. 2.1.2 and Fig. A2). The air–sea fluxes and fossil fuel
and biomass burning emissions are also accounted for (but
not optimized) in this final step, in order to close the global
carbon budget within the atmospheric transport model (see
Sect. 2.5).

2.4.2 Optimization procedure (for all steps)

In each step the statistically optimal parameter values are de-
rived with an optimization procedure following the principle
of the 4-D variational assimilation systems (developed for
numerical weather prediction), using a tangent linear opera-
tor (and finite differences for a few parameters, Bacour et al.,
2015). Assuming that the errors associated with the parame-
ters, the observations and the model outputs follow Gaussian
distributions, the optimal parameter set corresponds to the

minimum of a cost function, J (x), that measures the mis-
match between (i) the observations (y) and the corresponding
model outputs, H(x), (where H is the model operator), and
(ii) the a priori (xb) and optimized parameters (x), weighted
by their error covariance matrices (Tarantola, 1987; chap. 4):

J (x)=
1
2

[
(H(x)− y)TR−1 (H(x)− y)

+(x− xb)
TB−1 (x− xb)

]
. (1)

R represents the error variance/covariance matrix associated
with the observations and B the parameter prior error vari-
ance/covariance matrix. At each step a different cost func-
tion is defined with the observations and parameters related
to that step (see Fig. 2). R includes the errors on the measure-
ments, the model structure and the meteorological forcing.
Model errors are rather difficult to assess and may be much
larger than the measurement error itself. Therefore we chose
to focus on the structural error and defined the variances in R
as the mean squared difference between the prior model and
the observations for both steps 1 and 2 (see Kuppel et al.,
2013). For simplicity we assumed that the observation error
covariances were independent between the different observa-
tions and therefore we kept R diagonal (off-diagonal terms
set to zero), given the rapid decline of the model error auto-
correlation beyond 1 day (Kuppel et al., 2013). For step 3 we
used a different approach, given the large bias in the model a
priori concentrations, and therefore followed the methodol-
ogy of Peylin et al. (2005) based on the observed and mod-
eled temporal concentration variability at each site. Overall,
data uncertainties in the optimization procedure are between
0.1 and 0.45 for NDVI (step 1), around 3–6 mg C m−2 d−1 for
daily NEE, and 15–30 Wm−2 for daily LE (step 2) and be-
tween 0.1 ppm at remote oceanic stations and 4 ppm at con-
tinental sites (step 3).

The determination of the optimal parameter vector
that minimizes J (x) is performed by successive calls to
a “gradient-descent” minimization algorithm L-BFGS-B
(Byrd et al., 1995), which is specifically dedicated to solv-
ing large nonlinear optimization problems that are subject
to simple bounds on the parameter values. In order to find
the minimum of J (x), the algorithm requires the gradient
of J (x) (Jacobian) with respect to the ORCHIDEE param-
eters. L-BFGS-B explores each parameter space simultane-
ously along the gradient of the cost function, and uses an
approximation of the Hessian (second derivative) of J (x),
which is updated at each iteration, to define the size of the
step at each iteration.

For steps 1 and 2, the model “H” simply corresponds to
the land surface model: H = S, with S(x) representing the
surface fluxes from the ORCHIDEE model using the parame-
ter vector, x. The gradients dJ (x)/dx are calculated from the
tangent linear model of ORCHIDEE that was automatically
generated by the numerical transformation of algorithms in
Fortran (www.fastopt.de), except for two parameters linked
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to the model phenology for which the threshold functions
prevent the use of a linear approximation. A finite difference
approach was used for these parameters in order to define a
mean derivative at any point; we also checked that no spu-
rious oscillations occurred for these parameters during the
minimization iterations.

For step 3, the model “H” corresponds to the composition
of the land surface model with the transport model: H = T
o S (see Kaminski et al., 2002 for details), with T represent-
ing the LMDz transport model. T is a linear operator for a
non-reactive species: T (S(x))= T× S(x), with T a matrix
representation of the transport operator. It corresponds to the
sensitivity of CO2 concentrations at each site and for each
month to the daily surface flux of each model grid cell. It is
then combined with the ORCHIDEE surface fluxes (S(x))
through a matrix multiplication to derive H(x). T has been
pre-calculated for all atmospheric stations in order to save
computing time during the iterative optimization process (see
Sect. 2.3.2). For simplicity we use monthly mean values for
both the fluxes S(x) and the transport sensitivities (T) in the
computation of the gradients dJ (x)/dx.

For improved minimization efficiency, the inversion is
preconditioned (following Chevallier et al., 2005), which
means that L-BFGS-B is fed with the control variable x′ =

B−1/2(x− xb), rather than with x, as this homogenizes the
range of variation of the optimized parameters.

2.4.3 Error estimation

The posterior parameter error covariance matrix, A, can be
approximated to the inverse Hessian of the cost function, us-
ing the linearity assumption at the minimum of J (x). It can
be derived with the Jacobian of the model at the end of the
minimization (i.e., the last iteration), H∞, following Taran-
tola (1987):

A=
[
HT
∞×R−1

×H∞+B−1
]−1

. (2)

Note that for step 3, H∞ = T×S∞, where S∞ is the Jaco-
bian of the ORCHIDEE model at the last iteration. The pos-
terior parameter error covariance, A, can then be propagated
into the model state variable space (e.g., carbon fluxes and
stocks), Avar, given the following matrix product (only used
for the global fluxes in step 3):

Avar = S∞×A×ST∞. (3)

The square root of the diagonal elements of Avar corresponds
to the standard deviation, σ , of carbon fluxes/stocks for each
grid cell. In order to evaluate the knowledge improvement
brought by the assimilation, the uncertainty reduction be-
tween the prior (σprior) and posterior (σpost) is determined as
1− (σpost/σprior).

2.4.4 Additional processing steps

In order to analyze the fit to the atmospheric CO2 concen-
trations in terms of the trend and seasonal cycle, we decom-
posed the observed and modeled time series by fitting the
monthly mean values with a function comprising a first-order
polynomial term and four harmonics, and then filtered the
residuals of that function in frequency space using a low-
pass filter (cutoff frequency of 65 days), following Thoning
et al. (1989). The polynomial term defines the trend while the
seasonal cycle corresponds to the harmonics plus the filtered
residuals. The amplitude of the seasonal cycle is then calcu-
lated as the difference between the monthly mean maximum
and minimum for year 2003 (middle year of the optimization
period). Finally, we define the carbon uptake period (CUP)
as the sum of the days when the values of the seasonal cycle
extracted from the CO2 concentration time series are nega-
tive (a negative convention being for CO2 removed from the
atmosphere).

2.5 Prescribed emissions of carbon fluxes

In this section we describe the other components of the car-
bon cycle (apart from the surface C exchange with terrestrial
vegetation) that are imposed in step 3 of the optimization pro-
cess as fixed fluxes.

2.5.1 Ocean fluxes

The ocean contributes to an uptake of about one-quarter to
one-third of the anthropogenic emissions with significant
year-to-year variations (Sabine et al., 2004). For this version
of the ORCHIDAS, we developed a statistical model to es-
timate the spatial and temporal variations (monthly) of the
ocean surface CO2 partial pressure (pCOSW

2 ), and from that
the air–sea CO2 fluxes, using satellite and in situ ocean mea-
surements and model outputs. The air–sea CO2 fluxes are
primarily controlled by the ocean biogeochemistry, the hori-
zontal transport and the vertical mixing in the ocean and the
atmospheric forcing (CO2 partial pressure at the interface to
the water (pCOATM

2 ) and wind); they can be defined from the
following equation:

FCO2 =Kex×
(
pCOSW

2 −pCOATM
2

)
, (4)

where Kex stands for the exchange coefficient and FCO2 the
CO2 flux from the sea surface water to the atmosphere.

The computation of pCOSW
2 is performed using feedfor-

ward artificial neural networks, i.e., a multiLayer perceptron
(MLP; Rosenblatt, 1958) that maps a set of spatiotempo-
ral variables (input) onto observed pCOSW

2 data. We use a
two-step approach: the first step to derive a monthly mean
pCOSW

2 climatology and the second step to correct for the
year-to-year variations. The pCOSW

2 observations come from
the global surface pCO2 (Lamont–Doherty Earth Observa-
tory, LDEO) Database (Takahashi et al., 2009). The inputs
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are a series of variables connected to the spatial and tempo-
ral evolution of pCOSW

2 : (i) sea surface temperature (SST),
sea surface salinity (SSS) and mixed layer depth (MLD) as a
proxy of the physical processes (these fields come from a re-
analysis of the Nucleus for European Modelling of the Ocean
(NEMO) ocean model (Madec et al., 1998) with the assimila-
tion of several satellite observations), (ii) chlorophyll content
from SeaWiFS (Sea-viewing Wide Field-of-view Sensor), as
a proxy of the biogeochemistry (CHL), (iii) spatial and tem-
poral coordinates (LAT, LON and MONTH) and the pCOSW

2
at previous time step (recursive approach), i.e.,{
pCOSW

2

}
m
=MLP

(
{SST, SSS,MLD, CHL}(m−2,m−1,m),{

pCOSW
2

}
(m−2,m−1)

, LAT, LON
)
, (5)

where m is the monthly index. The available data
(20 685 points) is divided into two parts: 75 % is used for
the learning phase of the ANN and 25 % for the validation
phase. The overall performance of the neural network for ex-
trapolating the spatial and seasonal distribution of pCOSW

2 is
relatively good, with a spatiotemporal correlation coefficient
between the estimated pCOSW

2 and the independent observa-
tions of 0.80.
pCOATM

2 at the surface are taken from a global simulation
of atmospheric CO2 concentrations with optimized fluxes
(Chevallier et al., 2010). Kex is defined as the product of k,
the gas transfer velocity, taken from the Wanninkhof (1992)
formulation using winds from ERA-Interim, and s, the sol-
ubility of CO2, taken from the Weiss formulation (Weiss,
1974). The system is further described in Rödenbeck et
al. (2015). The global ocean sink is around 1.60 PgC yr−1 for
the period 2002–2004 used in step 3. It is within the uncer-
tainty range of the Global Carbon Project (GCP) estimates
(Le Quéré et al., 2015) if we account for the pre-industrial
ocean outgassing flux included in our “delta pCO2” ap-
proach. Its temporal evolution is depicted in Fig. A1.

2.5.2 Global fossil fuel and cement CO2 emissions

We have used a recently developed CO2 fossil fuel
and cement emission product (see http://www.carbones.eu/
wcmqs/) that covers the period 1980 to 2009 at the spa-
tial resolution of 1◦× 1◦ and hourly resolution. It is based
on EDGAR v4.2 spatially distributed annual emissions
(Olivier et al., 2012) and time profiles developed by the
University of Stuttgart (http://carbones.ier.uni-stuttgart.de/
wms/impressum.html). It was assumed that EDGAR de-
livers the most up-to-date spatially distributed and sector
specific emissions, based on national emission statistics.
The IER (Institut für Energiewirtschaft und Rationelle En-
ergieanwendung) further applied country and sector spe-
cific time profiles, taking into account monthly, daily, and
hourly variations depending on the sector. The derivation
of the time profiles relies on different data sets (e.g., Euro-
stat; ENSTO-E, https://www.entsoe.eu/about-entso-e/Pages/

default.aspx; UN monthly bulletin) as well as correlations be-
tween recorded emissions and climate variables. Currently,
the temporal profiles are derived mostly from data sets over
Europe that were extrapolated using information on climate
zone, average monthly temperature for the seasonal cycles
and similarity in socio-economic parameters like population
and gross domestic product (GDP). The annual mean emis-
sion for the period 2002–2004 is 7.14 PgC yr−1.

2.5.3 Fire emissions

Fire emissions data from the Global Fire Data (GFEDv3;
https://daac.ornl.gov/VEGETATION/guides/global_fire_
emissions_v3.1.html) are prescribed in the ORCHIDAS
(except during the model spin-up). The GFEDv3 data are
broken-down into six sectors (deforestation, peat fires,
savanna fires, agriculture, forest fires, and woodland) that are
further grouped into three main types. We generated fluxes
of CO2 relevant for typical “burning–regrowth” processes,
as detailed in Appendix A2. The first type corresponds to
deforestation and peat fires with carbon permanently lost
to the atmosphere, the second to agriculture and savannah
fires, which are assumed to be compensated by a sink during
the regrowth period (i.e., with zero annual net emission for
each pixel), and the third to woodland and burnt forests,
which are assumed to be at steady state for a given region
(10 sub-continental-scale regions) over the period covered
by GFEDv2 (i.e., regrowth of nearby forest compensates for
the burned forest derived in GFED). The sum of these three
components leads to the global flux, with a gross emission
around 2.1 PgC yr−1 and a net emission after regrowth
of only 1.1 PgC yr−1 (Fig. A2 in the Appendix) that is
prescribed to the ORCHIDAS over the period 2002–2004.

3 Results

3.1 Model fit to the data

3.1.1 Step 1: assimilation of MODIS NDVI data

The optimization in step 1 resulted in an improved fit to the
MODIS NDVI observations for the four PFTs considered
(TeBD, BoND, BoBD, NC3; see Sect. 2.4) as seen in Fig. 4,
which shows the mean seasonal cycle across the 2000–2008
period for all sites for each PFT. The most prominent change
after the optimization was a substantially shorter growing
season for all PFTs due to an earlier start of leaf senescence.
This was caused by both a lower critical leaf age (Lagecrit)
and a higher temperature threshold for senescence (CTsenes)
(see Fig. 9). The impact on the start of leaf growth was less
dramatic but important nonetheless, with a shift to a later
start of leaf growth as a result of an increase in theKpheno,crit
parameter, which acts as a scalar on the threshold of GDD
used to trigger leaf onset (see Appendix A in MacBean et
al., 2015). Overall, a mean reduction in root mean square er-
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TeBD BoBD 

BoND NatC3 

Figure 4. Mean seasonal cycle (2000–2008) of the normalized modeled FAPAR before and after optimization, compared to that of
the MODIS NDVI data, for the temperate and boreal deciduous PFTs (TeBD, BoBD, BoND and NatC3). Black=MODIS NDVI data;
gray= prior simulation (default ORCHIDEE parameters); green= posterior multi-site optimization.

ror (RMSE) of 23, 17, 58 and 19 % was achieved for TeBD,
BoBD, BoND trees and NC3 grasses, respectively, with the
greatest improvement for BoND trees. The mean correlation
between the normalized MODIS-NDVI and modeled FAPAR
time series over the 2000–2008 period increased for TeBD
and BoND trees and NC3 grasses (prior and posterior of 0.9
to 0.93, 0.42 to 0.91 and 0.6 to 0.66, respectively). The prior
correlation of 0.55 remained similar after the assimilation for
BoBD trees.

Following the improvement at the sites selected for the
optimization, we evaluated the impact for each PFT at the
global scale using the global median correlation between the
MODIS-NDVI and the model FAPAR time series (from all
pixels where the fraction of a given PFT is above 60 %; see
Maignan et al., 2011). The global correlation increased for
BoND trees and NC3 grasses from 0.36 to 0.91 and 0.53 to
0.59 (prior to posterior), respectively. It remains stable for
BoBD (0.54) or slightly increased for TeBD (0.88 to 0.89).

3.1.2 Step 2: assimilation of FLUXNET data

The optimization in step 2 brings an improvement to the
simulated NEE and LE for all seven PFTs considered, with
Fig. 5 showing the corresponding PFT-averaged mean NEE
seasonal cycles (mean across all sites/years). NEE is overes-
timated by the prior model for all PFTs on average. This is
partly due to the model spin-up procedure, which brings each
simulated site to a near equilibrium state with a mean NEE
close to zero (i.e., no net carbon sink, see Sect. 2.1.1). This
bias is significantly corrected by the optimization to match
the observed carbon uptake at most sites, notably via the scal-
ing of the initial soil carbon pool content at each site (param-
eters KsoilC,site; Table 1), which thus significantly reduces
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Figure 5. Mean seasonal cycle of the net ecosystem exchange
(NEE) for the different plant functional type optimized in step 2
of the assimilation. The mean across all sites for a given PFT is pro-
vided for the observations (black), the posterior of step 1 (green)
and the posterior of step 2 (blue).

the ecosystem respiration (Kuppel et al., 2014). Overall, the
largest reductions of model–data RMSE are found in tem-
perate forests (TeNE: temperate needleleaf, TeBE: temperate
broadleaf evergreen and TeBD: temperate broadleaf decidu-
ous), where the RMSE decreased by more than 25 % com-
pared with the prior model. The improvements are less sig-
nificant for the other PFTs, with RMSE reductions between
10 and 18 %.

In addition, the optimization increases the NEE seasonal
amplitude in temperate evergreen (TeNE and TeBE) forests
and temperate broadleaf deciduous (TeBD) forests, and re-
duces the amplitude for boreal needleleaf evergreen (BoNE)
forest and natural C3 grasses (NC3), in agreement with the
observations (except for BoNE where the amplitude decrease
is too large). Despite the better model–data agreement for ev-
ergreen broadleaf forests (TrBE: tropical broadleaf evergreen
and TeBE), the optimized model still fails to catch some sea-
sonal features such as a persistent carbon uptake (i.e., nega-

Geosci. Model Dev., 9, 3321–3346, 2016 www.geosci-model-dev.net/9/3321/2016/



P. Peylin et al.: A new stepwise carbon cycle data assimilation system 3333

 
Time Time

Figure 6. Monthly mean atmospheric CO2 concentrations after step 3 of the optimization, for several stations over the period 2002–2004 of
the optimization. The observations (black), the prior model (gray) and the posterior model after step 2 (blue) and step 3 (red) are displayed.
Numbers in parenthesis correspond to RMSEs.

tive NEE) in the dry season for the tropical regions (TrBE)
and nearly null carbon exchange in the first months of the
year for temperate regions (TeBE). These results are dis-
cussed further in Kuppel et al. (2014), who used a similar
optimization setup with a slightly different parameter set –
see Sect. 2.3.3. Similar improvements, although of smaller
amplitude, occur for the latent heat fluxes (not shown).

3.1.3 Step 3: assimilation of atmospheric CO2 data

The final optimization step with the atmospheric CO2 con-
centrations provides a large improvement of the fit to the
observed concentrations at most stations. The cost function
J was reduced through the minimization by a factor of 5.7
within 37 iterations.

Figure 6 illustrates the simulated concentrations for four
stations (representative of different conditions), over the as-
similation period, with the standard prior parameter vector
(used in step 1), the posterior vector from step 2 (used as prior
in step 3) and the posterior vector from this last step. The
improvement in the fit to the observations can be quantified
with the reduction in RMSE (from the prior to the posterior
of step 3) – the largest reduction is at the South Pole station
(73 %) and is on average around 25 % across all sites. Note
that for a few stations the fit is slightly degraded (up to 10 %)

except for one Pacific site (regular ship measurements around
the Equator, POCN00) for which there is a 40 % degradation,
possibly due to small biases in the simulation of the ITCZ
(Intertropical Convergence Zone) position in LMDz. When
calculated with respect to the standard prior (used in step 1)
the RMSE decrease is slightly larger on average, especially
for the northern mid-to-high latitude stations. For these sta-
tions the optimization performed in step 2 with FLUXNET
data led to a significant improvement of the mean seasonal
cycle amplitude of the atmospheric CO2 data, as discussed
in Kuppel et al. (2014).

We then investigated the fit to the observed CO2 concen-
trations in terms of the mean seasonal cycle and trend (see
Sect. 2.4.4). With only 3 years of data the mean trend is more
difficult to define as it varies between stations; however, the
optimization in step 3 increases the net land carbon sink in
order to match the observed trend at most stations (as ex-
pected). If we take the Mauna Loa and South Pole stations
that are representative of an integration of the fluxes at hemi-
spheric scales, the prior CO2 trend of 2.8 and 2.9 ppm yr−1,
respectively, is reduced to 2.1 and 2.2 ppm yr−1 close to the
observations (2.1 ppm yr−1 for both). The left panel of Fig. 7
illustrates changes in the amplitude of the simulated seasonal
cycle at each station (see definition in Sect. 2.4.4). The values
correspond to relative changes between the prior (of step 3)
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(b) Length of CUP: relative changes (a) Seasonal amplitude: relative changes 

Figure 7. Changes in the mean seasonal cycle of the atmospheric CO2 concentrations after step 3 of the optimization at all atmospheric
stations. Left: relative changes (in percentage) between the prior of step 3 and posterior absolute model–data differences for the amplitude
of the seasonal cycle. Right: same metric but for the length of the carbon uptake period (CUP), measured as the sum of the days when the
de-trended concentrations are negative (see text).

and posterior of the absolute difference between observed
and modeled amplitude (

[∣∣1Apost
∣∣− ∣∣1Aprior

∣∣]/ ∣∣1Aprior
∣∣).

They reveal an improvement in the seasonal cycle amplitude
at nearly all stations of the Southern Hemisphere (≈ 40 % im-
provement) and at the majority of the Northern Hemisphere
stations (≈ 15 %). A few stations in northern East Asia (3)
and northwestern America (4) show a small degradation of
the amplitude (≈ 15 %). The right panel of Fig. 7 displays the
changes of the CUP (see Sect. 2.4.4) expressed in terms of
relative changes between prior and posterior of the absolute
values of model–data differences, as it is for the amplitude.
Most stations reveal an improvement of the CUP of around
20 %, which is slightly lower than the improvement for the
seasonal cycle amplitude.

Finally, we verified that the improvement is valid not only
at the optimization sites but also at independent atmospheric
CO2 stations (see Sect. 2.2.3). On average the mean RMSE
for the 24 additional sites is 10.5 ppm for the prior of step 1
(prior of ORCHIDEE), 2.8 ppm for the prior or step 3 (i.e.,
posterior of step 2) and 2.1 ppm for the posterior of step 3.
The corresponding values for the 53 sites used for the opti-
mization are 10.5, 2.45 and 1.8 ppm, respectively. The error
reduction during step 3 is thus similar for both the assimi-
lated and the validation data sets, further confirming that the
optimization provides a global improvement of the simulated
carbon fluxes.

3.2 Consistency of the stepwise optimization

The main issue with a stepwise data assimilation system (vs.
a simultaneous approach) concerns the potential degradation
of the model–data fit for the different data streams that are
assimilated in previous steps. We noted that CO2 concen-
trations were already improved when NDVI and FLUXNET
data are assimilated (see Sect. 3.1.3), but we need to check if
the final parameter set from step 3 leads to a degradation of

the fit to MODIS-NDVI (step 1) and to FLUXNET (step 2)
data compared to the fit achieved during the respective steps
and, in the case of a significant degradation, if we still have
an improvement for these data streams compared to the ini-
tial a priori fit.

Figure 8 summarizes the performance of the model data
fit for MODIS-NDVI and FLUXNET-NEE data streams for
the prior and posterior of each step by evaluating the me-
dian RMSE between the model and the observations across
all sites. The values are calculated for each PFT separately.
In this section, we keep in mind the fact that we do not opti-
mize the same PFTs with FLUXNET data and with MODIS-
NDVI.

3.2.1 Consistency for MODIS-NDVI

First, we notice again the significant RMSE reduction be-
tween the prior and step 1, as discussed in Sect. 3.1. The fit
to MODIS-NDVI (normalized data) for steps 2 and 3 shows
only a significant degradation (increased RMSE) for tem-
perate broadleaf deciduous (TeBD) forest, which decreases
the improvement achieved in step 1 (compared to the prior)
by a factor of 2. A marginal degradation for natural C3
(NC3) grassland is obtained after step 3: the RMSE increases
slightly from 0.24 to 0.26, but is still lower than the prior
value of 0.3. There is no degradation for boreal needleleaf
deciduous (BoND) trees, but a surprising small decrease of
the RMSE (i.e., improvement in the model–data fit) for bo-
real broadleaf deciduous forests (BoBD; from 0.26 to 0.23).
In this latter case, the use of additional parameters in steps 2
and 3 (see Sect. 2.4) allows for further improvement of the
fit between the normalized FAPAR and NDVI time series.
On average the degradation of the fit to NDVI is thus very
limited in steps 2 and 3, and in no case is the RMSE worse
than the prior.
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Figure 8. RMSE between model outputs and observations for two types of observations: MODIS-NDVI on the left and FluxNet-NEE on the
right, for different plant functional types (PFT: TrBE, TeNE, TeBE, TeBD, BoBD, BoND, NC3) and for the prior model simulation and the
posterior of each step of the assimilation framework. Missing bars correspond to the fact that no data were available to constrain a given PFT.

3.2.2 Consistency for FLUXNET data

Figure 8 again reveals the significant reduction of the RMSEs
for NEE in step 2 compared to the standard prior or to the
posterior of step 1 for most PFTs, except BoNE. We see only
small degradations (increases) in RMSE between steps 2 and
3 for TeNE forests (from 1.06 to 1.13 g C m2 d−1), TeBE
forests (from 1.06 to 1.09 g C m2 d−1), TeBD forests (from
1.06 to 1.13 g C m2 d−1) and BoNE forests (from 0.59 to
0.60 g C m2 d−1). An interesting feature to notice is that the
NEE RMSE increases from the prior to the posterior of
step 1 (i.e., before NEE has been used in the optimization
in step 2). Using remote sensing products of vegetation ac-
tivity or “greenness” (e.g., NDVI) to calibrate the phenology
of ORCHIDEE thus does not always improve the simulated
NEE, as they only provide a strong constraint on the timing
of the leaf phenology (and thus indirectly the gross primary
production, GPP) and a weak constraint on the maximum
GPP but no constraint on the respiration fluxes. These rea-
sons were discussed in Bacour et al. (2015), who used the
same LSM and assimilation system. Overall, the reduction
of the improvement of the model data fit to the NEE (step 3
vs. step 2) is marginal (limited to a few percent), thus further
suggesting the consistency of our stepwise approach. Similar
results are also obtained for the LE flux (not shown).

3.3 Estimated parameter values

We now discuss the parameter values, focusing on the
changes obtained though the successive steps. Figure 9
presents the prior and posterior values for each parameter to-
gether with their associated uncertainties (estimated through
Eq. 2) and the allowed range of variation. Note that nine pa-
rameters are PFT dependent while four are global (non PFT
dependent). For the global non-PFT-dependent parameters
included in the step 2 optimization, we took the mean value
and error variance (see Sect. 2.4) as the prior for step 3. Note

finally that the parameters linked to the initial soil carbon
pools (KsoilC,site, KsoilC,reg) are not shown in Fig. 9 as they
are too numerous (though see Fig. A2 for the regional val-
ues).

If we first consider the phenology parameters optimized
in step 1 (KLAI,happy, Kpheno,crit, Lage_crit, CT ,senes; see Ta-
ble 1), we see that for most PFTs they do not change sig-
nificantly between steps 1 and 3, although they differ sig-
nificantly from the prior. There are few exceptions, includ-
ing Kpheno,crit (the threshold for the start of the growing sea-
son) for boreal needleleaf deciduous forests and KLAI,happy
(level of carbohydrate use) for TeBD and BoBD. Note that
a few phenology parameters hit one of the physical bounds,
which may indicate model structural errors or model param-
eter equifinality. For most phenology parameters, the uncer-
tainties are strongly reduced during their first optimization
(step 1), except for a few cases like CT ,senes for C3 grass-
land. Note finally that a more in depth spatiotemporal vali-
dation demonstrated the generality of the optimized phenol-
ogy parameters across multiple sites (for further details see
MacBean et al., 2015).

For the photosynthesis parameters (Vcmax, Gs,slope, cT ,opt,
SLA, fstress; see Table 1), we find a similar result with small
changes between steps 2 and 3, but still a significant depar-
ture from the prior values. Most parameters are well con-
strained by the inversion, with posterior uncertainties that are
greatly reduced compared to the prior, except for TrBR forest
and BoND forest for which there is nearly no constraint on
Gs,slope and fstress (see Table 1).

The non-PFT-dependent respiration-related parameters
(HRH,c,Q10, MRb) mostly change in step 2 and only slightly
in step 3 (with an additional reduction of the error) in order to
fit the large-scale constraint provided by the atmospheric ob-
servations. The values of the scalar of the initial soil carbon
pools size for the FLUXNET site optimizations (KsoilC,site,
one parameter per site, not shown) were largely reduced on
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Figure 9. Prior and posterior parameter values and uncertainties for a set of optimized parameters (nine PFT dependent and four non-PFT
dependent). The prior value corresponds to the horizontal black line and the physical allowed range of variation to the “y” range (i.e., the
white zone). For PFT-dependent parameters, there are nine sub-plots corresponding to PFTs that were optimized (except for Kpheno,crit with
only five PFTs). For each parameter, there are three estimated values for the three successive steps: step 1: assimilation of MODIS-NDVI
data (green symbol); step 2: adding FLUXNET data (blue symbol); step 3: adding atmospheric CO2 data (red symbol). The parameter values
are depicted with the symbols and the estimated uncertainties with the vertical line (±σ ).

average, in order to decrease the heterotrophic respiration
(see Kuppel et al., 2014 for additional discussion). In step 3
the same scalars that were defined for an ensemble of large
regions (KsoilC,reg) have decreased in the Southern Hemi-
sphere (less than 10 %; see Fig. A2 in Appendix A3) and
slightly increased in the Northern Hemisphere (around 1 %),
to achieve a better match to the atmospheric CO2 growth
rate and north–south gradient. Importantly, we notice that
for step 3, the fit to the atmospheric CO2 concentrations (es-
pecially to the trend) is achieved mainly by small changes
in KsoilC,reg and in few other respiration-related parame-
ters. Note finally that the parameter controlling the albedo
(Kalbedo,veg), modified with the FLUXNET observations only
(see Sect. 2.4), is not well constrained by the optimization
(only a small reduction in uncertainty). Overall, most param-
eters appear to be well constrained when first optimized, with
only small changes in the following steps. This suggests that

the targeting of different parameter subspaces in the various
optimization steps was well chosen.

3.4 Estimated carbon fluxes and uncertainties

The main objective of a carbon cycle data assimilation pro-
cedure is to improve the simulated land surface net and gross
carbon fluxes as well as the simulated carbon stocks for both
present and future conditions. Given the focus of the paper,
i.e., to describe the potential of a stepwise global carbon cy-
cle data assimilation system, we only discuss a few large-
scale features of the optimized annual net and gross carbon
fluxes, as well as one of the carbon stock variables (forest
aboveground biomass). We thus do not discuss the interan-
nual flux variability.
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Figure 10. Left: net ecosystem exchange (NEE) for three regions (north of 35◦ N, tropics, south of 35◦ S) for the prior model, and after each
step of the optimizations (mean over 2002–2004). The NEE estimate from the Global Carbon Project (GCP) for the same period (Le Quéré et
al., 2015) is provided for step 3 with its error bar. Right: same but for gross primary production (GPP) where the data-driven estimate (MTE
product using FluxNet data; Jung et al., 2011) is provided for comparison.

3.4.1 Large-scale annual mean net fluxes

The mean annual carbon fluxes (NEE) for the globe, northern
extra tropics, tropics and southern extra tropics are reported
in Fig. 10 for the 2000–2009 decade for the prior and pos-
terior model simulations for all steps. We ran the optimized
model over the full decade in the 2000s in order to compare
with one other estimate of the land surface residual from the
GCP (Le Quéré et al., 2015) over the same decade. The prior
NEE indicates a total sink of 0.5 PgC yr−1 over this period,
from both the northern and tropical regions. Such a prior
sink is due to the increase of atmospheric CO2 during the
transient simulation following the spin-up (1990–2009, see
Sect. 2.3.1) and climate variability. Changes from the prior
are rather small in step 1 (assimilation of MODIS NDVI)
with an increase of the northern sink by 0.12 PgC yr−1 and
a decrease of the tropical sink by 0.05 PgC yr−1 (Fig. 10).
Step 2 (assimilation of FLUXNET data) does not signifi-
cantly change the net C sink from step 1, with only a small in-
crease in the tropical sink by 0.1 PgC yr−1. The assimilation
of atmospheric CO2 data in step 3 provides a large-scale con-
straint, as already discussed, and increases the total land sink
to 2.2 PgC yr−1, a value in much closer agreement with the
estimate by the GCP. A larger tropical NEE uptake is respon-
sible for the large increase of the terrestrial biosphere C sink
(from 0.3 PgC yr−1 in step 2 to 1.7 PgC yr−1) while the sink
in the north increases by less than 0.1 PgC yr−1. The compar-
ison with the GCP number should be taken with caution. The
ORCHIDAS estimated sink includes all effects (natural and
anthropogenic), since we used atmospheric CO2 as a global
constraint. Thus, the optimized parameters must account for
any missing processes like nitrogen limitation or a proper de-
scription of agricultural processes and management. How-
ever, the GCP number is only for the anthropogenic uptake,

excluding the pre-industrial sink due for instance to river ex-
port of carbon (around 0.45 PgC yr−1; Regnier et al., 2013).

3.4.2 Spatial distribution of the annual mean net flux

Figure 11 shows the spatial distribution of NEE averaged
over 2002–2004 for the standard prior and posterior after
step 3. The large tropical net land carbon sink that is inferred
in step 3 is mainly explained by an increase of the carbon
uptake for the tropical forests of the Amazon basin and equa-
torial Africa, as well as a decrease of the carbon release on
the southern edge of the Amazon basin (tropical rain-green
forests and grasses). In the northern mid-to-high latitudes
only smaller regional changes from the prior occur. For Eu-
rope, most of north Asia and Canada, the strength of the C
sink slightly decreased from the prior (up to 30 g C m2 yr−1),
while for central USA the strength of C source slightly de-
creased. If we now consider the uncertainties on the net an-
nual carbon flux that arise from the parameter uncertainty
(second row of Fig. 11; Eq. 2), we observe a very large
reduction (compared to the prior) in the monthly flux un-
certainty (averaged over the 3 years used in step 3) over
tropical forests. It is reduced by a factor 4 with initial val-
ues around 150 g C m2 yr−1 and posterior values between 22
and 66 g C m2 yr−1. For mid-to-high latitude boreal ecosys-
tems, the uncertainty reduction is smaller, but the posterior
errors are slightly lower than over the tropics, between 18
and 55 g C m2 yr−1.

3.4.3 Large-scale annual mean gross primary
production

For the GPP the relative changes from the prior are smaller
than for the NEE (Fig. 10b). The mean annual total GPP
is 172, 155, 156 and 157 PgC yr−1 for the prior and poste-
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Figure 11. Simulated annual net carbon exchange (NEE) for the land ecosystems prior to any optimization (left column) and after step 3 of
the optimization process (right column). Upper figures correspond to the mean NEE (in g C m−2 yr−1) over the assimilation period (2001–
2003) and lower figures to the associated monthly flux uncertainties (averaged over the whole period and expressed in g C m−2 yr−1) due to
the parameter uncertainties (see text).

rior of step 1, 2 and 3, respectively. The small overall de-
crease (9 %) brings the GPP slightly closer to the estimate by
Jung et al. (2011), around 120 PgC yr−1, based on a statisti-
cal model tree ensemble (MTE) that upscaled the in situ flux
measurements (resulting from the partition of measured NEE
into GPP and total ecosystem respiration). The decrease in
GPP occurs mainly in the Northern Hemisphere after step 1
(−10 PgC yr−1) following the decrease in Vcmax (Fig. 9)
while it remains relatively stable over the tropics across all
steps. Note that (i) the study of Welp et al. (2011) suggests
a GPP around 150 PgC yr−1, similar to our estimate, based
on measurements of 18O /16O ratio in atmospheric CO2 and
(ii) Koffi et al. (2012) found optimized GPP of 146 PgC yr−1

from a CCDAS using the BETHY model.

3.4.4 Aboveground forest biomass

We analyze the impact of the optimization on the forest
aboveground biomass at equilibrium (i.e., after spin-up; see
Fig. 12) as an example of the impact on model C stocks,
and compare the simulated values, for the same three lati-
tude bands than above, to the estimate based on field obser-
vations and remote sensing data. This product, which was
produced in the GEOCARBON project (and thus is referred
to by the same name), integrates a pan-tropical biomass map
(Avitabile et al., 2016) with a boreal forest biomass product
(Santoro et al., 2015).

For the northern extra tropics, the prior aboveground C
stock (∼ 180 PgC) is reduced by the optimization to 140 PgC,
mainly through the decrease of the growing season length

Figure 12. Aboveground forest biomass data for the prior OR-
CHIDEE model and after step 1, step 2 and step 3 of the opti-
mization process. Estimates from satellite observations (Santoro
et al., 2015) and referred as “GEOCARBON” (following the EU-
GEOCARBON project) are provided for comparison.

in step 1 with the assimilation of MODIS-NDVI. The sig-
nificant decrease in GPP during step 1 (18 %) led indeed
to a similar decrease of the forest biomass (16 %). Parame-
ter changes through the assimilation of FLUXNET and CO2
data have a smaller impact (a change of less than 5 PgC).
These changes in the northern extra tropics bring the esti-
mates by the ORCHIDEE model closer to the satellite-based
GEOCARBON product (∼ 120 PgC).
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For the tropics, while there is nearly no change with the as-
similation of MODIS-NDVI in step 1, the use of FLUXNET
data leads to a significant increase of the forest aboveground
biomass (close to 25 %). Such an increase does not corre-
spond to an increase of the GPP (Fig. 10) but to changes in
the autotrophic respiration parameter (MRb) that lead to a de-
crease of autotrophic respiration and an increase of net pri-
mary production (NPP). The value does not change through
step 3 and remains significantly higher than the data-driven
estimate. Note however that the lower value in the GEOCAR-
BON product could be partly due to the fact that we did not
yet account for land use effects in the CCDAS, such as de-
forestation in the Amazon.

4 Discussion and conclusions

In this paper we have described a first global carbon cycle
data assimilation system that assimilates three major carbon-
cycle-related data streams, namely MODIS-NDVI observa-
tions of vegetation activity at 60 sites, FLUXNET NEE and
LE measurements, at more than 70 sites, and atmospheric
CO2 concentrations at 53 surface stations over 3 years in or-
der to optimize the C cycle parameters of the ORCHIDEE
process-based LSM (ORCHIDEE-CCDAS). The study de-
tails the concept, the implementation and the main results
of a stepwise assimilation approach, where the data streams
have been assimilated in three successive steps (including a
propagation of the retrieved posterior parameter distributions
from one step to the next).

The assimilation of MODIS-NDVI (60 grid-cell points,
step 1) improved the phenology of ORCHIDEE with a sig-
nificant reduction of the growing season length and thus a
direct impact on the GPP. The results are similar to those
presented in MacBean et al. (2015), who describe the im-
pact of such optimization on the global FAPAR simulations
and the improvement in the bias of the calculated leaf onset
and senescence dates in more detail. The optimization with
FLUXNET data (78 sites, step 2) led to large improvements
in the seasonal cycle of the NEE and LE fluxes, constrain-
ing primarily the photosynthetic processes. Some discrepan-
cies remain due to site heterogeneity (i.e., different species
and edaphic conditions) that the model does not fully cap-
ture, and due to missing processes in the model (see Kuppel
et al., 2014 for a more thorough discussion). However, with-
out the assimilation of atmospheric CO2 concentrations, the
global (and continental) net carbon balance after step 2 was
still clearly outside the admitted range (as reported by the
GCP in Le Quéré et al., 2015), which highlights the impor-
tance of assimilating a data stream such as this that provides
information at larger scales (constraining large-scale respi-
ration fluxes). The use of atmospheric CO2 concentration as
an overall constraint in step 3 was technically challenging as
it required the coupling of ORCHIDEE with an atmospheric
transport model in forward and reverse mode (i.e., to com-

pute the cost function and its gradients at each step of the
minimization process). As a result of the final step, we were
able to fit the atmospheric CO2 growth rate and thus to derive
a land C sink compatible with current best estimates from the
GCP. The assimilation of CO2 data also slightly changed the
seasonality of the NEE, which improved the fit to the atmo-
spheric CO2 seasonal cycle. Note that assimilating only CO2
data would lead to a similar global land C sink but with a
different model parameter set not compatible with the infor-
mation provided by MODIS-NDVI and FLUXNET data.

The consistency of the stepwise approach has been eval-
uated with back-compatibility checks after the final step
(step 3: assimilation of atmospheric CO2 concentration). The
optimized model with the final set of parameters does not de-
grade the fit to MODIS-NDVI and FLUXNET data that were
assimilated in the first two steps (only minor changes of the
RMSEs occur; see Fig. 8). This result has two important con-
sequences. Most importantly it suggests that current state of
the art LSMs (at least ORCHIDEE) have reached a level of
development where consistent assimilation of multiple data
streams is finally possible. This overcomes the most impor-
tant limitation noted by Rayner (2010) to the widespread use
of CCDAS systems. At a more technical level it suggests that
stepwise assimilation is a valid and feasible approach. Al-
though we only carried the estimated parameter uncertainties
from one step to the next (as a first more simple approach),
and not the full error variance-covariance matrix, we were
able to propagate enough information to maintain an optimal
model–data fit after the last step for the three data streams,
as confirmed with the back-compatibility checks. MacBean
et al. (2016a) provided a more specific analysis of this issue.
However, not propagating the covariance terms may have a
larger impact for the reduction of the inferred parameter un-
certainties (see for instance the large parameter/flux error re-
duction in Fig. 9/Fig. 11). The order of the different steps was
dictated by the number of parameters we choose to expose
to each data stream, from only a few phenology parameters
for NDVI up to the largest set for atmospheric CO2. Recall
that under the fundamental theory the order of assimilation
is unimportant. Testing whether our system meets this crite-
rion is an important check on the robustness of the method
but is not technically feasible with the full-blown system; it
is currently being tested with some smaller models.

Most of the optimized parameter values have significantly
changed compared to their prior values, with a large error re-
duction for most (Fig. 9) that results in a strong constraint
on the simulated fluxes (Fig. 11). In the last step, the assim-
ilation of atmospheric CO2 data mainly led to the optimiza-
tion of respiration-related parameters, especially the regional
soil carbon multipliers (KsoilC,reg). Note that this was also
the case for the BETHY-CCDAS, as described in Rayner et
al. (2005) (see their Table 2). This is linked to the difficult
issue of representing the effects of historical changes in land
cover and land management as well as soil texture effects on
soil carbon dynamics, and the necessary choice of a standard
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spin-up procedure to account for these effects. Ideally one
would need to perform the optimization of the model over
a long historical period with LULCC and land management
practices included and the optimization of related parame-
ters. However, this is not currently feasible at global scale and
uncertainties in the forcing would introduce as much diffi-
culty as uncertainties in the initial condition. The adjustment
of the initial C pool contents is thus a logical compromise and
further investigations into the impact of the selected setup
(number of regions for KsoilC,reg, their associated uncertain-
ties) on the C fluxes simulated in the future are needed. Note
that a first improvement would be to include LULCC in the
transient simulation (to define the initial state) before the as-
similation period.

Nonetheless, several limitations, inherent to the optimiza-
tion of model parameters in a CCDAS, need to be called to
mind when evaluating these results (see also Rayner, 2010).
First, the structure of the land surface model (i.e., how bio-
geochemical processes are represented) is critical. Any miss-
ing/misrepresented processes may have a direct impact and
thus lead to biases in the selected parameters. Note that
this limitation could be even more severe when using atmo-
spheric CO2 measurements, as these data provide a direct
constraint on the overall net C exchange between the atmo-
sphere and the vegetation, thus including all processes. As an
example, the model sensitivity to atmospheric CO2 increase
(e.g., through the parameters Vcmax and Gs,slope) could be
non-optimal as the current model version does not include
explicit nitrogen and phosphorus limitations on photosynthe-
sis. Second, the chosen set of observations does not provide
specific constraints on long-term C processes such as tree
mortality, disturbance effects or C allocation within a plant.
For instance Fig. 12 illustrates that the optimized model may
still significantly overestimate tropical forest biomass. The
assimilation of aboveground biomass or soil carbon stock
observations (i.e., site-level measurements or regional esti-
mates) should thus provide critical complementary informa-
tion (see Bloom et al., 2016 and Thum et al., 2016). Addi-
tionally, uncertainties on the other components of the car-
bon cycle, such as fossil fuel and biomass burning emis-
sions and ocean fluxes, can be also critical when using atmo-
spheric CO2 as a constraint. Finally, one can mention new
approaches based on remote sensing data to account for site
level differences in productivity potential due to edaphic vari-
ability (soil quality and slope/drainage) within the same veg-
etation type, as illustrated for high latitudes in North America
(Ise and Sato, 2008).

To conclude, this work is a step forward in terms of multi-
ple data streams assimilation that opens new perspectives for

a better understanding of the carbon cycle and better predic-
tions of the fate of the land carbon sink in the 21st century
as a consequence of anthropogenic changes. As ORCHIDEE
is part of the IPSL Earth system model the impact of the op-
timization on future climate change predictions will be as-
sessed in a future study. However, we first need to run the
ORCHIDAS with a longer atmospheric CO2 record (i.e., sev-
eral decades) in order to provide stronger constraints on pa-
rameters controlling the impact of climate extremes on the
net carbon fluxes at continental to global scales, and the sen-
sitivity of photosynthesis to increasing CO2 concentration.
The optimized model will allow for a more in-depth inves-
tigation of the trend and interannual variations of land sur-
face C fluxes at continental to regional scales, as well as their
driving mechanisms. It will offer a more reliable and robust
process-based diagnostic of the land C cycle that is compat-
ible with current major data streams. Overall, we have illus-
trated the benefit of combining multiple data streams in a
process-based model to optimize different processes of the
model, related to different temporal and spatial scales. The
optimization will be updated regularly as new processes are
integrated into the ORCHIDEE model, such as for instance
land management (Naudts et al., 2015).

5 Code and data availability

The ORCHIDEE model code and the run environment are
open source (http://forge.ipsl.jussieu.fr/orchidee) and the as-
sociated documentation can be found at https://forge.ipsl.
jussieu.fr/orchidee/wiki/Documentation. Note that the tan-
gent linear version of the ORCHIDEE model has been gen-
erated using commercial software (TAF; http://www.fastopt.
com/products/taf/taf.shtml). For this reason, only the “for-
ward” version of the ORCHIDEE model is available for
sharing. The optimization scheme (in Python) is available
through a dedicated web site for data assimilation with OR-
CHIDEE (http://orchidas.lsce.ipsl.fr/). Nevertheless readers
interested in running ORCHIDEE are encouraged to contact
the corresponding author for full details and latest bug fixes.
Finally, the source code of the LMDz atmospheric transport
model can be downloaded from the following site: http://
lmdz.lmd.jussieu.fr/. The MODIS MOD09CMG collection 5
surface reflectance data are freely available to download
from the Land Processes Distributed Active Archive Center
(LP DAAC) data portal (https://lpdaac.usgs.gov, NASA LP
DAAC, 2015).
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Appendix A

A1 Ocean fluxes

Figure A1 displays the air–sea fluxes from the statistical
model.

A2 Fire fluxes

In order to account for fundamental differences between
six fire flux categories provided by the GFED product, we
grouped these emissions into three types with specific treat-
ments. The first group includes C emissions from deforesta-
tion and peat fires, which are considered to be permanent
carbon lost to the atmosphere, at least over the considered
timescales. These fluxes are rescaled to an annual emission
of 1.1 PgC yr−1 globally following typical values reported in
the literature for deforestation (Houghton, 2003). The sec-
ond group consists of C emissions from agriculture and sa-
vannah fires, which are compensated by a C sink during the
regrowth of these biomes (i.e., savannah and some type of
plants on the farmland). These effects are not completely
accounted for in ORCHIDEE as the model does not simu-
late savannah and agriculture fire. Hence, the emissions over
the whole period and for each pixel become zero, but their
seasonal variations are used. The final group includes emis-
sions from woodland and burnt forests. We considered that
at steady state and for a given region certain forests burn but
that nearby forests are re-growing following older fires. We
thus imposed regrowth at the region scale given that the OR-
CHIDEE model version that we use does not account for
such regrowth. The main assumption is that over century
timescales the forest/woodland system is at steady state over
a given region (few thousand km2); i.e., there is no net de-
forestation. We selected an ensemble of small regions over
which we calculated the regrowth of these biomes. The de-
rived emissions over the whole period and for each region
thus become zero; however, we include their spatial and tem-

Figure A1. CO2 air–sea fluxes including the natural ocean out-
gazing, used as input to the ORCHIDEE-CCDAS and estimated
from a neural network approach using observed pCO2 data (see
main text, Sect. 2.5.1). The northern, tropical and southern ocean
contributions to the global ocean flux (blue curve) are also provided.

Va
lu

e

Figure A2. Map of the posterior values of the coefficient scaling the
initial carbon pool sizes per regions.

poral variations. The overall biomass burning flux considered
in the CCDAS for the optimization process is the sum of the
three fluxes as described above.

A3 Multipliers of the soil initial carbon pools

Figure A2 provides the optimized values of the KsoilC,reg pa-
rameters that optimize the initial soil carbon pool sizes.
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